
A Testable Theory of Imperfect Perception

Andrew Caplin and Daniel Martin∗

May 15, 2011. Preliminary and Incomplete

Abstract

Psychologists have long recognized that perceptions do not simply mirror reality, but may

differ in systematic fashion. Economists are increasingly interested in incorporating this insight.

We present a model of optimal decision making that has strong testable implications without

in any way restricting perception. To do this, we impose rational expectations: decision makers

are assumed to understand how their perceptions relate to choices and their consequences. The

signature of the resulting theory is that stochastic choices must be “unimprovable”, with the

precise improvements that can be ruled out depending on the data available for model testing.

Our model captures two distinct forms of presentation effect whereby one and the same choice

set gives rise to distinct patterns of choice. While restrictive, our model allows for reasonable

forms of stochastic choice that are inconsistent with stochastic utility models.

Key Words: Stochastic choice, Bounded Rationality, Imperfect Perception, Rational Ex-

pectations, Framing Effects, Nudges

1 Introduction

Psychologists from the time of Weber [1834] on have investigated the gap between subjective

perceptions and external reality (Glimcher [2010]). Somewhat belatedly, economists are starting to

incorporate imperfect perception into the standard model of optimal decision making. One factor

that has impeded such research is that it is hard, if not impossible, to observe perceptions. It is
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also highly challenging to derive testable implications of imperfect perception for observed choices.1

Current economic models overcome this limitation by making distinct yet strong assumptions on the

nature of perceptual errors as resulting from, e.g: from particular bounds on memory; incomplete

and selective attention; sequential search; particular decision making protocols and procedures;

algorithmic approximations, etc. (e.g. Mullainathan [2002], Wilson [2002], Sims [2003], Manzini

and Mariotti [2007], Rabin and Weizsacker [2009], Masatlioglu and Nakajima [2009], Gennaioli and

Shleifer [2010], Gottlieb [2010], Schwartzstein [2010], Ergin and Sarver [2010], Caplin and Dean

[2011], Compte and Postlewaite [2011]).

We introduce a general model that allows an essentially unlimited array of perceptual limita-

tions to be introduced into the standard economic model of choice under uncertainty. We neither

restrict perceptions nor attempt to observe them directly. Rather, our theory derives its testable

implications from the assumption of rational expectations. We consider decision makers (DMs) who

have come to understand how their perceptions relate to choices and their consequences. In the

“rational expectations perception based representations” (RE-PREP) that we study, DMs fully in-

ternalize how their perceptions, whatever they may be, relate to choices and to their consequences.

The signature of the resulting theory is that stochastic choices must be “unimprovable”, with the

precise improvements that can be ruled out depending on the data available for model testing.

Our main characterization result involves a data set that includes the fine details of the decision

making environment, in particular detailed information about how the decision was presented to

the DM (in a sense to be made precise). In this context, existence of a RE-PREP representation

is equivalent to a “No Improving Switches” (NIS) condition: there must be a utility function such

that no action can be switched for an alternative in a manner that raises utility. These restrictions

correspond to the non-emptiness of the feasible set for a data-defined linear program. The sharpest

tests requires non-standard choice data: in that sense this paper continues a line of research on

choice theory and non-standard choice data (Caplin [2008], Caplin and Dean [2011] and Caplin,

Dean, and Martin [forthcoming]).

Our model of perception and our focus on experimental tests draws strongly from the psycho-

logical tradition. In particular, our formulation of the act of choice as separate from reception of

1This is related to the difficulties in identifying “mistaken” decisions from choice data, and the dangers of so

doing without strong theoretical guidance: see Koszegi and Rabin [2008], Bernheim and Rangel [2008] and Gul and

Pesendorfer [2008].
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a prize was inspired by simple choice experiments of the drift-diffusion form (see Ratcliff [1978],

Ratcliff and McKoon [2008], and Shadlen and Newsome [2001]). This same separation is explicit

in the experimental study by Reutskaja, Nagel, Camerer and Rangel [2011] of choice among food

options represented by icons positioned on a computer screen. Framing effects were uncovered: the

stochastic structure of demand was impacted by the position of prizes on the screen (Rubinstein

and Salant [2006], Salant and Rubinstein [2008], Bernheim and Rangel [2008]).

Our model allows for two quite distinct framing effects. Both the layout of the prizes (e.g. order

in a list or position on a screen) and the information content of the environment (e.g. the extent

to which the first in the list has turned out to be the best) impact choice behavior. Hence our

model allows rich study of how informational “nudges” impact attention and choice (Madrian and

Shea [2001], Benartzi and Thaler [2004], Thaler and Sunnstein [2008], and Choi, Laibson, Madrian,

and Metrick [2009]). We outline an experimental design to explore these effects, focusing particular

attention on how information from the decision making environment interacts with perceptual effort

to produce decision making mistakes.

While allowing for framing effects, our model has implications for more standard data set

on stochastic choices. In this case, as in other theories of choice, the data restrictions apply

across choice problems. We show that the restrictions imposed by our theory are weaker than

those imposed by standard models of stochastic choice (Block and Marschak [1960], Luce [1959],

McFadden [1973], Falmange [1978], Gul and Pesendorfer [2006] ). For example, our theory covers

cases in which perceptual similarities between a good and a bad prize result in the selection of

a moderately good but more distinctive prize when all three are available (Debreu [1960] and

Natenzon [2011]).2

In section 2 we introduce our formal model and define “RE-PREP” representations. In sections

3 and 4 we provide the precise observable restrictions associated with the model in cases in which

the decision making environment can be observed with precision: the NIS conditions. In section

5 we consider the various framing effects that our model encompasses. A theoretically-inspired

experimental design for understanding the sources and the nature of imperfect imperception is

presented in section 6, together with highly preliminary findings. In section 7 we characterize

the restrictions our model places on standard stochastic choice data and contrast these with those

2 In that sense our results relate to the question posed some sixty years ago by Block and Marschak [1960] concerning

how to distinguish stochastic choices resulting from decision making errors from those resulting from stochastic utility.
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deriving from random utility models. Concluding remarks outlining other applications of our model

are in section 8.

2 Decision Making and Perceptions

We study decisions in which the DM may not fully understand all objects of choice. This may be

because there are many available options, because these items are complex, or because the DM is

not able or willing to expend the effort to be thoroughly familiar with the available options. This

is the world envisaged in models of bounded rationality at least since the pioneering work of Simon

[1955].

2.1 Prizes, Actions, and Layouts

We assume that there is an “ideal observer” (IO) who understands fully the choice environment

and who is distinct from the decision maker (DM) whose choice behavior is being modeled. The IO

knows not only the key ingredients of the decision making environment the DM is facing but also

observes the choices and their results. To distinguish the choice from the results of that choice, we

separate in the model the act of choice from receipt of a prize. For the DM’s choice to be seen by

the IO as based on misperception requires actions and consequences to be separately observable.

In formal terms, our model involves a finite prize set X with generic element xn, for 1 ≤ n ≤ N :

this fixes the physical presentation of each option once and for all, including its packaging, etc.

There is a separate set Y of choices that has the same cardinality as the prize set,

|Y | = |X| = N ≥ 2.

Each y ∈ Y is to be physically interpreted as e.g. locations on a screen or lines in a list. A layout

is a 1-1 and hence onto function f : Y → X, with F the set of all such layouts,

F = {f : Y → X|f is 1− 1}.

It is the layout that connects actions with consequences.
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2.2 Choice Environment

If a given action choice always produced the same prize, one would expect the DM to learn this,

making the question of misperception moot. It is primarily when there is doubt about how actions

get translated into prizes that there is room for misperception. We study a DM making many

independent choices in a stable environment identified with a specific probability measure over

layouts, μ ∈ ∆(F). We refer to this triple as (X,Y, μ) as the “choice environment.”

We define F(μ) ⊂ F as the support of μ. In principle, the measure μ provides the subject

a statistical sense of what tends to happen when a given action is selected. DM choices may

be influenced both by this information and by information that they derive from their effort to

accurately perceive the available options.

2.3 Experimental Data

Given μ ∈ ∆(F) an experimental data set, P , identifies the probability distribution over feasible

actions as it depends on the layout,

P : F −→ ∆(Y ).

This entire function is assumed to be known to the IO and provides the data that a theory of

choice must explain.3 It is the quadruple (X,Y, μ, P ) that fully identifies the objects upon which

our theory of perception is built. We call such a quadruple an “observed choice environment”

(OCE).

Our model allows the structure of observed choices to be dependent on the layout. For example,

we allow for situations of search in which the first item in a list is most likely to be the best, which

may induce default behavior of selecting this option. In such cases, the stochastic structure of

choice is strongly impacted by which object is put first in the list. For that reason, a test of our

theory requires that the set of choices Y is identifiable to the IO, and that the choice environment

μ is also understood. Such knowledge is most naturally derived in an experiment, and plays a key

role in the experimental design of section 6. In section 7 we consider cases in which the layout is

unobservable, and the only available data relates to stochastic choice of prize.

3The domain of this data does not allow the order of the experimental runs to be recorded, hence the explanatory

hypotheses we consider will not involve learning the structure of the experiment.
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2.4 Subjective States and the Perception Function

We take as given an OCE sets (X,Y, μ, P ) and look to structure perceptual theories of choice based

on three elements: a subjective state space, S; a perception function, ρ : F(μ)→∆(S); and

a choice function, C : S(ρ) → Y , where S(ρ) ⊂ S is the union across f ∈ F(μ) of the supports

of ρ(f).

The set S specifies all possible subjective mental states of the DM, and is intended as a sufficient

statistic for the information that the DM has extracted from the choice environment and the specific

layout in front of them. In general, S may encode characteristics or facets of the good, state of a

finite automaton, etc. In the current context it will be sufficient to consider the set S to comprise

the space of “subjective prize lotteries” with finite support S = ∆(X)M ,

S = {s ∈ RMN
+ |

NX
n=1

smn = 1 for 1 ≤ m ≤M}.

The reason we can so limit the subjective state space is that the behavior we are characterizing

is based on expected utility theory, for which lotteries over prizes are the appropriate objects of

choice. One can array s ∈ S as an M × N matrix with row m identifying the lottery over prizes

associated with action ym.

The perception function maps the actual deterministic layout, as specified by f ∈ F(μ), into the

probability distributions over subjective states with finite support, ∆(S). Given the finite support,

the set S(ρ) itself, the set of lottery states that are perceived as possible in the given experiment,

is finite, and each state s ∈ S(ρ) has strictly positive probability.

2.5 RE-PREPs

For (ρ,C) to be a possible explanation (perception-based representation or PREP) of the observed

data requires that, when combined with the perception of the evidence ρ : E→∆(S), C generates

the observed experimental data set. We are interested only in such explanations in which the

DM is a Bayesian EU maximizer with rational expectations. We consider whether or not there is

some utility function U : X → R that can rationalize the data as a result of optimization based

on rational expectations. Note the insistence in the technical definition on strictness in the utility

comparison of some pair of acts in some state of mind, to prevent the conditions from being trivially

satisfied by a utility function in which all utilities are identical.
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Definition 1 (ρ,C,U) form a rational expectations perception-based representation (RE-

PREP) of (X,Y, μ, P ) if:

1. Data Matching: P f (y) = ρf{C−1(y)} for all f ∈ F and y ∈ Y .

2. Rational Expectations: For all 1 ≤ m ≤M , 1 ≤ n ≤ N , and s ∈ S(ρ),

smn =

P
{f∈F|f(ym)=xn} μ(f)ρ

f (s)P
{f∈F} μ(f)ρ

f (s)
.

3. Optimization: If C(s) = ym, then,

NX
n=1

smnU(xn) ≥
NX
n=1

sknU(xn) all 1 ≤ k ≤M,

with the inequality being strict for some pair k,m with 1 ≤ k,m ≤M .

Note that if there is only one action taken,

C(s) = y all s ∈ S,

then it is trivial to find a non-trivial RE-PREP by setting y as the uniquely optimal choice. Hence

we will consider only cases in which there are at least two distinct actions taken with strictly

positive probability.

2.6 Rational Expectations and Experimentation

The most distinctive aspect of the RE-PREP is rational expectations, which, when combined with

data matching, implies that the DM is aware of the consequences of all choices in each state of

mind. In a RE-PREP, the statistical association between subjective perceptions, choices, and

prizes is assumed to have been internalized by the DM. Implicitly, this is based on the idea that

this is a familiar environment and that the DM has learned through a process of trial and error

what the results are when any given choice is made in any particular state of mind. Having thus

experimented, they select an optimal such action, and the consequences are then at least acceptable,

in the sense that they do not perceive there to be any superior choice. The full formal confirmation

of this intuitive description of the axioms is formalized in our representation theorem.

As is often the case, the application of rational expectations logic is easiest to justify as the

end result of an unmodeled and unobserved process of experimentation. However, in the actual
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definition, a specific deterministic action is taken in each state of mind, and there is no experi-

mentation whatever. The exact process of experimentation or decision making tremble that would

produce rational expectations and thereby rationalize the strong informational assumption that the

RE-PREP imbeds is not modeled.

3 Testability: the 2× 2× 2 Case

The question we address in the next two sections is how to characterize conditions on the EDS

equivalent to existence of a RE-PREP for a given μ. Before introducing the general characterization

theorem in the next section, we provide in this section a thorough analysis of the 2 × 2 × 2 case,

with X = {x1, x2}; Y = {y1, y2};and with two possible decision states, F = {g, h},

g(y1) = h(y2) = x1; g(y2) = h(y1) = x2.

In this setting, two parameters pg1, p
h
1 ∈ [0, 1] identify the EDS,

(P g
1 (y1), P

g
1 (y2)) = (pg1, 1− pg1);

(Ph
1 (y1), P

h
1 (y2)) = (ph1 , 1− ph1);

Throughout this section, we will look for RE-PREPs using two perceptual states,

S = {s1, s2}

with,

si11, s
i
21 ∈ [0, 1] , i = 1, 2,

denoting the probability in the subjective lottery states s1, s2 that actions (y1, y2) will yield prize

x1 rather than prize x2, with,

si12 = 1− si11, s
i
22 = 1− si21,

representing the corresponding probabilities for prize x2.

Figures 1 to 3 illustrate the logic of this simple 2×2×2 case. We prove in the next section that

adding more states than actions does not expand feasibility, so that the analysis of this section is

complete.
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Figure 1: 2× 2× 2 case

Figure 2: Data matching in 2× 2× 2 case

9



Figure 3: Rational expectations in 2× 2× 2 case

3.1 A Symmetric Case

We start with a case in which each choice is equally likely to yield the better prize,

μ(g) = μ(h) = 0.5.

We suppose also that the EDS is frame-free and that y1 is chosen strictly more frequently,

pg1 = (1− ph1) > 0.5.

1. We identify the more frequently chosen object, x1, as having higher utility,

U(x1) = 1 > U(x2) = 0.

2. We specify subjective lottery states as follows:

s111 = s221 = pg1 > 0.5;

s121 = s211 = 1− pg1 = ph1 < 0.5.

Intuitively, subjective state s1 signals that action y1 is more likely than is action y2 to yield

prize x1 and vice versa for s2.
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3. We specify that the action is taken that is more likely to yield the better prize: y1 in state

s1, y2 in state s2;

C(si) = yi, i = 1, 2.

4. Finally we specify that the probability that when the act-prize function is g (so that action

y1 will indeed yield x1) the probability of the state s1, indicating that y1 is more likely to

yield x1, precisely matches the true stochasticity associated with choice of y1 revealed in the

experimental data set. The corresponding statement holds for h and its association with state

s2,

ρg(s1) = ρh(s2) = pg1 =⇒ ρg(s2) = ρh(s1) = 1− pg1 = ph1 .

It is straightforward to confirm that this represents a RE-PREP by checking the three condi-

tions.

• Data Matching: By construction,

ρg{C−1(y1)} = ρg(s1) = ρh{C−1(y2)} = ρh(s2) = pg1;

ρg{C−1(y2)} = ρg(s2) = ρh{C−1(y1)} = ρh(s1) = ph1 .

• Rational Expectations: Note first that the states s = α, β are equiprobable

μ(g)ρg(s1) + μ(h)ρh(s1) = μ(g)ρg(s2) + μ(h)ρh(s2) = 0.5.

Hence the rational expections conditions hold by construction:

s111 = 2μ(g)ρg(s1) = pg1;

s121 = 2μ(h)ρg(s1) = 1− pg1;

s211 = 2μ(h)ρh(s2) = ρh(s1) = 1− pg1;

s221 = 2μ(g)ρh(s2) = pg1.

• Optimization: In state s1 it is strictly better to select y1 than y2, since this yields the lottery

with the higher chance of yielding prize x,

s111U(x1) + (1− s111)U(x2) = pg1 > 1− pg1 = s121U(x1) + (1− s121)U(x2).

This same inequality implies that it is strictly better to select y2 than y1 in state s2.
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3.2 Asymmetric Cases

Given pg1, p
h
1 , μ

g ∈ (0, 1) we again consider conditions for a RE-PREP involving two perceptual

states, S = {s1, s2}, with C(si) = yi, i = 1, 2 and with x1 having higher utility,

U(x1) = 1 > U(x2) = 0.

We analyze necessary conditions for a RE-PREP in stages, and then establish sufficiency. Finally,

we note the symmetric conditions that apply for RE-PREPs in which x2 has higher utility.

• Data Matching: We list all four necessary conditions:

ρg{C−1(y1)} = ρg(s1) = pg1;

ρg{C−1(y2)} = ρg(s2) = 1− pg1;

ρh{C−1(y1)} = ρh(s1) = ph1 ;

ρh{C−1(y2)} = ρg(s2) = 1− ph1 .

• Rational Expectations: It is necessary that,

si11 =
μgρg(si)

μgρg(si) + (1− μg)ρh(si)
= si22, i = 1, 2.

• Optimality yields,

s111 ≥ s121 and s221 ≥ s211,

with at least one strict.

Substitution of DM in RE yields

s111 =
μgpg1

μgpg1 + (1− μg)ph1
= s122;

s211 =
μg(1− pg1)

μg(1− pg1) + (1− μg)(1− ph1).
= s222

Substitution in Optimality yields,

s111 ≥
1

2
and s222 ≤

1

2
,

with at least one strict. Substitution for s111 yields,

2μgpg1 ≥ μgpg1 + (1− μg)ph1 ;

pg1 ≥
ph1(1− μg)

μg
=

ph1
R
;
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where,

R ≡ μg

1− μg
.

Substitution for s222 yields,

2μg(1− pg1) ≤ μg(1− pg1) + (1− μg)(1− ph1);

1− pg1 ≤
(1− ph1)(1− μg)

μg
=
1− ph1
R

;

pg1 ≥
R− 1
R

+
ph1
R

Looking at these two necessary conditions, there are three cases depending on the value of R:

• If R = 1 (μg = 1
2), then in order for both inequalities to hold, one strictly, it is necessary and

sufficient that,

pg1 > ph1 .

• If R > 1 (μg > 1
2), then the only constraint is,

pg1 ≥
R− 1
R

+
ph1
R
.

• If R < 1 (μg < 1
2), the only constraint is,

pg1 ≥
ph1
R
.

The conditions in the case in which x2 has strictly higher utility are readily seen to be precisely

the converse. Combining the two permissible utility functions, we arrive at the following necessary

and sufficient conditions:

• If R = 1 (μg = 1
2), then,

pg1 6= ph1 .

• If R > 1 (μg > 1
2), then the constraints are,

pg1 ≤
ph1
R
or pg1 ≥

R− 1
R

+
ph1
R
.

• If If R < 1 (μg < 1
2), then the constraints are,

pg1 ≤
R− 1
R

+
ph1
R
or pg1 ≥

ph1
R
.
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3.3 Three Examples

Example 1 Assume μg = 1
2 , U(x1) = 1 > U(x2) = 0. In this case the necessary and sufficient

condition for a RE-PREP is that pg1 > ph1 . This implies that, in an unconditional sense, action y1

is strictly more likely to yield prize x1 than it is to yield prize x2. Conversely, this also implies that

ph2 > pg2, so that action y2 is also strictly more likely to yield prize x1 than it is to yield prize x2.

The converse condition U(x2) = 1 > U(x1) = 0 has as a necessary and sufficient condition that

pg1 < ph1 . This implies that, in an unconditional sense, action y1 is strictly more likely to yield prize

x2 than it is to yield prize x1. Conversely, this also implies that ph2 < pg2, so that action y2 is also

strictly more likely to yield prize x2 than it is to yield prize x1. The only case that is ruled out is

when each act yields each prize with equal probability. Here only complete ignorance can justify, so

that any two states of mind would involve equal probability, reducing us to the trivial case that is

removed by definition.

Example 2 Consider the case with μg = 0.8 so that R = 4. If U(x1) = 1 > U(x2) = 0, the

condition is,

pg1 ≥ 0.75 + 0.25ph1 .

Conversely, if U(x2) = 1 > U(x1) = 0, the condition is,

pg1 ≤ 0.25ph1 .

We draw these constraint sets in figure 4.

Example 3 The model can characterize a reversal of apparent preference, as when stochastic de-

mand is,

pg1 = 0.9; p
h
1 = 0.7,

so that x1 is chosen with probability 0.9 with g, yet only with probability 0.3 in h. To construct a

RE-PREP in this case, set U(x1) = 1 > U(x2) = 0 and allow for a mental state s1 in which y1

is taken and state s2 in which y2 is taken. Since mental state 1 is equivalent to action 1 in the

RE-PREP representation, rational expecations implies that,

ρg(s1) = 0.9 and ρh(s1) = 0.7,
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Figure 4: Constraints implied by R=4 (interior region is infeasible)

15



to reflect the empirically observed frequencies with which action y1 is chosen. This implies that the

lottery associated with choice of y1 in s1 is yields prize x1 with probability,

0.9

1.6
> 0.5,

Similarly, the prize lottery associated with action y2 in s2 yields prize 1 with probability,

ρh(s2)

ρg(s2) + ρh(s2)
=
0.3

0.4
> 0.5.

We can complete the specification of a RE-PREP by applying the rational expectations condition to

set the probabilities for the untaken lotteries in line with what they would actually be,

s121 =
ρh(s1)

ρg(s1) + ρh(s1)
=

0.7

0.7 + 0.9
< 0.5;

s211 =
ρg(s2)

ρg(s2) + ρh(s2)
=

0.1

0.1 + 0.3
< 0.5;

Hence it is strictly optimal to pick y1 is s1 and y2 is s2, completing the confirmation that this is a

RE-PREP.

4 No Improving Switches

4.1 Action Switches

There is a simple idea that organizes the conditions identified in the 2×2×2 case and that applies

to the general case. The idea involves first switching attention from the action that is chosen to the

prize that results. Consider in this light the third example above with μg = 0.8 so that R = 4, and

suppose that pg1 = 0.75 and ph1 = 0, so that p
g
2 = 0.25 and ph1 = 0. In this case, whenever action 1

is taken the layout is g, so that it yields prize 1 for sure. On the other hand, act y2 is taken both

when it yields prize x1 and when it yields prize x2. To understand the stochastic choice resulting

from action y2, note that this action is taken with probability

μgpg2 + (1− μg)ph2 = 0.8(0.25) + 0.2 = 0.4,

yielding x1 only in h, for an overall even chance of winning prize x1 as opposed to prize x2.

There are two general points that this example illustrates. First, note that the overall probability

of getting the good prize is 1 in the 60% of cases in which action y1 is taken, and 0.5 in the 40%
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of cases in which action y2 is taken, for a net probability of 0.8. It is intuitive that there cannot

be a RE-PREP with a lower such probability, since the simple strategy of picking y1 always yields

this outcome. But there is one other observation that explains the constraints with more precision,

which is that the chance of getting the better prize from action y2 cannot be strictly less than 50%.

Intuitively, if it were to be thus, then it would be strictly superior to switch action y2 to y1 and

always to take the latter action. It is this insight that characterizes a RE-PREP in the general

case.

First, note that the expected utility when action y1 is taken in a setting with U(x1) = 1 >

U(x2) = 0 is the probability that it is taken in state 1 as against the overall probability with which

y1 is taken,
μgpg1

μgpg1 + (1− μg)ph1
.

The probability of receiving the good prize if action y1 was replaced whenever it was chosen by

action y2 would be reversed,
(1− μg)ph1

μgpg1 + (1− μg)ph1
.

Hence the condition that this not yield an improvement is precisely,

μgpg1 ≥ (1− μg)ph1 ;

or,

pg1 ≥
ph1
R
.

In like manner, the condition that the expected utility when action y2 is taken in a setting with

U(x1) = 1 > U(x2) = 0 exceeds that from switching to action y1 is,

(1− μg)ph2 ≥ μgpg2;

or,

(1− μg)(1− ph1) ≥ μg(1− ph1),

and finally,

pg1 ≥
R− 1
R

+
ph1
R
.

The fact that these are identical constraints is not coincidental.
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4.2 Characterization

The key observation is that a necessary condition for a RE-PREP is that there be some utility

numbers such that it is better to take an action than it is to switch it to some fixed alternative in

all situations in which it was used. We also establish sufficiency of this condition, which corresponds

to non-emptiness of a set of (N − 1)2 linear inequalities.

Definition 2 Given (X,Y, μ, P ), the stochastic demand associated with choosing yk in place of ym,

δmk ∈ ∆(X) is defined as

δmk(xn) =

P
{f∈F|f(yk)=xn} μ(f)P

f (ym)P
f∈F μ(f)P f (ym)

.

We say that the NIS inequalities are satisfied by a utility function U : X → R if, for all 1 ≤

k,m ≤ N ,
NX
n=1

[δmm(xn)− δmk(xn)]U(xn) ≥ 0,

Note that δmm ∈ ∆(X) is the stochastic demand associated with choice of ym in the EDS.

Theorem 4 (X,Y, μ, P ) have a RE-PREP representation if and only if there exists U : X → R

that satisfies the NIA inequalities.

Proof. Sufficiency. Supposs that there one state of mind sj per action that is taken with strictly

positive probability (for now assume all acts), with,

C(sj) = yj .

To satisfy data matching requires that,

ρf{sj} = P f (yj) ,

all f ∈ F(μ) and 1 ≤ j ≤ M . We substitute this into the rational expectations condition to solve

for all sjmn: for all 1 ≤ m ≤M , 1 ≤ n ≤ N , and sj ∈ S,

sjmn =

P
{f∈F|f(ym)=xn} μ(f)P

f (yj)P
f∈F μ(f)P f (yj)

.
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We now pick U : X → R such that, for all 1 ≤ k,m ≤M ,

NX
n=1

[δmm(xn)− δmk(xn)]U(xn) ≥ 0.

By construction (ρ,C,U) satisfy data matching and rational expectations. To establish that

they identify a RE-PREP it remains only to show that, for all 1 ≤ m ≤M ,

NX
n=1

smmnU(xn) ≥
NX
n=1

smknU(xn) all 1 ≤ k ≤M,

with the inequality being strict for some pair k,m with 1 ≤ k,m ≤M . We substitute for sm as in

(*) and the required condition becomes,

NX
n=1

P
{f∈F|f(ym)=xn} μ(f)P

f (ym)P
f∈F μ(f)P f (ym)

U(xn) ≥
NX
n=1

P
{f∈F|f(yk)=xn} μ(f)P

f (ym)P
f∈F μ(f)P f (ym)

U(xn),

or,
NX
n=1

δmm(xn)U(xn) ≥
NX
n=1

δmk(xn)U(xn),

which holds by assumption, in addition with one strict by construction.

Necessity: The above shows that identifying a utility function that satisfies the NIA inequali-

ties is not only sufficient for a RE-PREP, but also necessary for a RE-PREP in which there is only

one state of mind per action. The full result folllows from the observation that if we identify a

RE-PREP with more than one mental state per decision, then there must exist a RE-PREP with

only one state per action: hence allowing for multiple states does not expand the set of EDS for

which a RE-PREP exists. To confirm this, suppose that we have identified a RE-PREP (ρ,C,U)

of μ ∈ ∆(F) and P ∈P with the property that there is more than one state such that some given

action is taken: say there exists y ∈ Y and states sp ∈ S(ρ) for 1 ≤ p ≤ P with P ≥ 2 such that,

C(sp) = y all p.

Then we can define a new RE-PREP (ρ̃, S̃, C̃, Ũ) that is identical to (ρ,C,U) except in three

respects: C−1(y) is a singleton with a single state s̃ ∈ S replacing all sp; ρf{s̃} =
PP
1 ρ

f (sp); and

s̃mn =

PP
1

P
{f∈F|f(ym)=xn} μ(f)ρ

f (sp)PP
1

P
{f∈F} μ(f)ρ

f (sp)
.

To complete the proof, note that this satisfies data matching and rational expectations by con-

struction, as well as optimality,

NX
n=1

spmnU(xn) ≥
NX
n=1

spknU(xn) all p =⇒
NX
n=1

s̃mnU(xn) ≥
NX
n=1

s̃knU(xn) all 1 ≤ k ≤M.
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5 Two Framing Effects

In most studies in economics and psychology the primary interest is in how likely is each prize to

be received as a result of the choices that are made, rather than how often each particular physical

location that contains a prize is selected.

Definition 3 Given (X,Y, μ, P ), the stochastic choice function D : F −→ ∆(X) is defined as,

Df (x) ≡ P f {y ∈ Y |f(y) = x} .

5.1 Layout Effects

The characterization theorem makes clear that the layout may have a significant impact on demand:

all that is necessary is that the NIS conditions are satisfied. We now go over an example consistent

with the NIS conditions in which there is a particular clarity about the object associated with

action 1, for example, which makes it more likely per se to be chosen (as in Geng [2011]).

Example 5 Suppose that the prizes comprise amounts of money, but that the precise value of the

prize is hard to identify.To be concrete, suppose that there are 10 prizes, one of each value $1 through

$10, and that each of the ten choices is ex ante equally likely to yield each prize. Technically,

X = {$1, $2, ..., $10};

Y = {yn|1 ≤ n ≤ 10};

μ(f) =
1

10!
all f ∈ F .

Now suppose that the process of perception is such that the prize corresponding to action 1 is always

seen with perfect clarity, while the other actions are not understood beyond the prior and the noticed

identify of the prize corresponding to y1. In this case, there are 10 subjective states,

S(ρ) = {(x,Λ−x) ∈ X ×∆(X)9|},

where Λ−x corresponds to μ(f) conditioned on y1 = x. Even if the DM is risk neutral, it is

immediate that action y1 will be chosen whenever it is seen to contain a prize of $6 or above, which
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is a 50% chance. With risk aversion, this chance will be strictly higher than 50%. Note also that

the conditional distribution of prizes based on the selection of action 1 will be entirely different than

that associated with any action yn for n > 1.

5.2 Blind Choice and Symmetry

In certain cases it may be held that the layout is unlikely to impact stochastic choice. Indeed this

has been the traditional if implicit assumption in models of stochastic choice. Even when allowance

is made for possible confusion, it is typically treated as resulting from similarities between product

characteristics (e.g. Natenzon [2011]) and as such as being independent from where exactly prizes

are laid out.

Definition 4 (X,Y, μ, P ) is layout-independent if there exists D ∈ ∆(X) such that,

Df (x) = D(x) all x ∈ X.

Even in the layout-free case, the choice environment may impact stochastic choice. In a RE-

PREP, the DM has fully understands the statistical association between subjective perceptions,

choices, and prizes. For example, if the first option is a list is always the best, then this is internal-

ized. Hence the DM is able to pick the best object effortlessly by relying on the information content

in the decision making environment. This means that existence of a RE-PREP representation is far

more restrictive when there is a highly asymmetric choice environment such that a particular prize

is always associated with the same physical action. It is far less restrictive in situations in which

there is greater symmetry, so that each action is approximately equally likely to be associated with

each prize.

In technical terms, overall average expected utility computed with any utility function U : X →

R that is a component of a RE-PREP representation (ρ,C,U) is always above that available from

“blind choice” of y ∈ Y across all f ∈ F . The following definition expresses this formally.

Definition 5 Given (X,Y, μ) and U : X → R, P satisfies the No Increasing Blind Strategy

(NIBS) Property w.r.t. (X,Y, μ, U) if,X
f∈F

X
x∈X

Df (x)U(x) ≥ max
y∈Y

X
f∈F

X
x∈X

μ{f ∈ F|f(y) = x}U(x).
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Theorem 1 implies that a necessary condition for (X,Y, μ, P ) to have a RE-PREP representation

is that there exist U : X → R such that P satisfies the NIBS Property w.r.t. (X,Y, μ, U). To prove

this, one uses any U : X → R for which a RE-PREP exists, noting that if the NIBS property did

not hold, then switching always to choice y ∈ Y whenever it is not chosen would yield a strict

increase in utility, contrary to the NIA condition.

Necessity of the NIB constraint implies that the permissible stochastic structure of demand is a

function of the information contained in the EDS. For example, when each choice is deterministically

associated with a given prize, so that μ assigns probability 1 to a particular element f ∈ F , the NIB

constraint implies that demand must be completely concentrated on goods of maximal utility to

be consistent with the model. On the other extreme, the NIBS property is trivially satisfied when

there is a complete symmetry in the layout so that μ assigns equal probability to all f ∈ F . More

broadly, one can develop a partial order over the information content of various choice environments

μ ∈ ∆(F) based on the convex hull of the lotteries that are delivered by all pure choice strategies,

which identifies the NIB constraints. As this convex hull expands, so the set of stochastic demands

consistent with the model becomes more restricted. In section 7 we show that, if we treat the

layout dependent nature of stochastic choice as unobservable, there is a sense in which the NIBS

constraint is not only necessary but also sufficient for existence of a RE-PREP.

6 Nudges, Attention, and Mistakes

The above indicates the key role that the choice environment plays in impacting stochastic choices

when our model applies. In fact the key issue is how much additional perceptual effort is put in

over and above that which the choice environment provides in an essentially effort-free manner. In

applications, this may be the key comparative static: the connection between effortless extraction

and the effort required to understand the situation yet better and therefore make a more fully

informed choice. We have designed an experiment aimed at just this issue.

If individuals possess imperfect perception, the effect of policy “nudges” on choice quality is

ambiguous. Although nudges may provide beneficial information on which layout f individuals are

facing through their knowledge of the choice environment μ (i.e. the default retirement plan is

likely to be the best plan), nudges may cause subjects to decrease how much effort they put into

understanding which layout f they face through perception ρ (i.e. put less time into considering
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Figure 5: A typical round

each plan).

We have initiated experiments to study this tradeoff experimentally in a setting where imperfect

perfection seems highly likely and choice quality is easy to measure. In each round, subjects are

presented with three options, each of which is composed of 20 numbers. Figure 5 shows a screen

capture of a typical round. The value of each option is the sum of the 20 numbers, and subjects

are incentivized to select the object with the highest value. In the baseline treatment (“33%, 33%,

33%”), subjects were informed that all three options were equally likely to be the highest valued

option, but in two other treatments, they were nudged towards the first option. In one of the nudge

treatments (“40%, 30%, 30%”), subject were informed that the first option was 40% likely to be the

highest valued option (the other two were both 30% likely). In the other nudge treament (“45%,

27.5%, 27.5%”), subjects were told that the first option was 45% likely to be the highest valued

option (the other two were both 27.5% likely). Subjects completed 12 rounds of each treatment,

which were presented in a random order.

The experiment was run with 25 subjects in the CESS laboratory. On average, subjects choose

the best (highest valued) option in 54% of rounds, which is higher than the expected percentage

under random choice but far below that associated with perfect perception. The fraction of rounds

in which the highest valued option is chosen is stable over the course of the experiment — the

fraction in the first half of rounds is not significantly different that the fraction in the second half
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Figure 6: Fraction of rounds in which the 1st option is best and the best option is chosen by

treatment

of rounds (α = .10). Also, as the figure 6 shows, increasing the likelihood of the first option being

the best option does not increase the fraction of rounds in which the best option is chosen. In fact,

the fraction is not significantly different between any two treatments (α = .10).

Were subjects affected by the nudges? Although performance is similar across treatments,

choice behavior is markedly different. The first column of table 1 shows that the percent of rounds

in which the first option is chosen increases substantially as the likelihood of the first option being

the best option increases and is significant higher in the nudge treatments than the probability

of the first option being the best option. This high rate of picking the first option appears to be

driven by informational differences, not a predisposition towards picking a particular choice. In the

baseline treatment, the data is close to frame free, and the percent of rounds in which the second

and third option are chosen is not significantly different in any treatment (α = .10).

24



Table 1. Percent of rounds each option chosen by treatment

Treatment 1st Option 2nd Option 3rd Option

33%, 33%, 33% 36.6% 32.6% 31.9%

40%, 30%, 30% 58.9% 20.2% 20.9%

45%, 27.5%, 27.5% 72.1% 14.1% 13.8%

Thus, it appears that subjects internalized the informational content of the nudge, but reduced

their consideration of the alternatives in such a way that their performance was unchanged. In

line with this conclusion, and in keeping with the No Improving Switches condition, we see in the

table 2 that despite the asymmetry in choice probabilities, the percent of rounds in which the best

option is chosen is remarkably similar for all options selected in all treatments.

Table 2. Percent of rounds best option chosen by option chosen and treatment

Treatment 1st Option 2nd Option 3rd Option

33%, 33%, 33% 52.8% 52.6% 54.7%

40%, 30%, 30% 50.9% 58.3% 54.8%

45%, 27.5%, 27.5% 55.1% 54.8% 53.7%
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