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1 Introduction

Prospect Theory (PT), as formulated by Kahneman and Tversky (1979), provides a flexible

account of decision making under uncertainty that accommodates a wide variety of departures

from the Expected Utility (EU) paradigm. As a result, it has been enormously influential

throughout the social sciences. In contrast to the EU formulations of von Neumann and Mor-

genstern (1944), Savage (1954), and Samuelson (1952), a central premise of PT holds that

attitudes toward objective probabilities display non-linearities, with highly unlikely events re-

ceiving greater proportionate weight than nearly certain ones. This feature reconciles PT with

important behavioral puzzles such as the famous Allais (1953) paradoxes, as well as the simulta-

neous purchase of lottery tickets and insurance, as in Friedman and Savage (1948). Probability

weighting is also well-supported by simple and widely-replicated laboratory experiments.1

Unfortunately, the formulation of probability weighting embedded in PT leads to conceptual

difficulties because it implies violations of first-order stochastic dominance even in relatively

simple settings. This is a serious flaw given the broad consensus that this property renders a

model of decisionmaking unappealing on both positive and normative grounds.2 To understand

the problem, consider a lottery that pays X with probability p; for our current purpose, we

will leave other events and payoffs unspecified. Now imagine a second lottery, identical to the

first, except that it splits the aforementioned event, paying X and X − ε each with probability

p/2.3 Given the S-shape of the probability weighting function, we can choose p so that the
1For example, when graphing the empirical certainty equivalent, C, for a lottery that pays X with probability

p and 0 with probability 1−p, one typically finds an inverse S-shaped pattern, with pX exceeding C for moderate-
to-large values of p (as risk aversion would imply), but with the opposite relation for small p (see, e.g., Tversky
and Kahneman, 1992; Tversky and Fox, 1995).

2As noted by Quiggin (1982), “Transitivity and dominance rules command virtually unanimous assent...
even from those who sometimes violate them in practice... If a theory of decision under uncertainty is to be
consistent with any of the large body of economic theory which has already been developed... it must satisfy
these rules." (p. 325).

3Kahneman and Tversky (1979) described their theory as being concerned with lotteries that have at most
two non-zero outcomes. Hence, to apply Prospect Theory strictly in accordance with their original intent, one
would have to assume that this lottery pays zero with probability 1−p. Kahneman and Tversky (1979) (p. 288)
note that the model extends naturally to more than two non-zero outcomes, and extensions which correspond to
our three outcome formulation are provided by, for example, Camerer and Ho (1994) and Fennema and Wakker
(1997). Kahneman and Tversky (1979) actually provided two formulations of Prospect Theory; we assume their
Equation 1 for ‘regular prospects.’ They implicitly invoke the same assumption when examining the Allais
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total weight assigned to two events occurring with probability p/2 discretely exceeds the weight

assigned to a single event occurring with probability p. Consequently, if X is large and/or ε

is small, the first lottery will yield lower PT utility than the second even though it is clearly

preferrable based on first-order stochastic dominance.4

Ultimately, “rank-dependent” probability weighting was offered as a solution to the stochas-

tic dominance problem (Quiggin, 1982; Schmeidler, 1989), and was incorporated into a new

version of PT known as Cumulative Prospect Theory, henceforth CPT (Tversky and Kahne-

man, 1992). To understand intuitively how CPT resolves the issue, consider a lottery L with

three possible payoffs, X > Y > Z, occurring with probabilities p, q, and 1− p− q. Another

description of the same lottery involves cumulative probabilities: it pays Z with probability 1,

adds Y − Z with probability p + q, and then incrementally adds X − Y with probability p.

Accordingly, within the EU framework, one could write its expected utility as follows:

Expected Utility = u(Z) + (p+ q)(u(Y )− u(Z)) + p(u(X)− u(Y )).

CPT involves an analogous calculation, except that a reference-dependent utility function,

u(·|r) (where r is the reference point), is applied to the payoffs, while a weighting function,

π(·), is applied to the cumulative probabilities:

U(L) = π(1)u(Z|r) + π(p+ q)[u(Y |r)− u(Z|r)] + π(p)[u(X|r)− u(Y |r)].

Normally this expression is rewritten in a form that attaches a weight to each outcome:

U(L) = π(p)u(X|r) + [π(p+ q)− π(p)]u(Y |r) + [π(1)− π(p+ q)]u(Z|r). (1)

common consequence paradox (p. 282).
4 Kahneman and Tversky appreciated this problematic implication of PT and attempted to address it through

an “editing” assumption: “Direct violations of dominance are prevented, in the present theory, by the assumption
that dominated alternatives are detected and eliminated prior to the evaluation of prospects" (p. 284). Most
economists have found this ad hoc “fix” conceptually unsatisfactory, and it is rarely invoked in applications.
Kahneman and Tversky also provided a formulation for two-outcome lotteries with either all positive or all
negative outcomes that does indeed respect dominance (see e.g., Equation 2 of Kahneman and Tversky, 1979).
One can see in that formulation the roots of Cumulative Prospect Theory.
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Now imagine, as before, a second lottery, identical to the first, except that it splits the event

yielding the payoff X into two events paying X and X − ε, each with probability p/2. In that

case, the term π(p/2)u(X|r) + [π(p)−π(p/2)]u(X− ε|r) replaces the term π(p)u(X|r). Notice

that the total weight assigned to the two events is still π(p), the same as for the original lottery.

Consequently, the stochastic dominance problem noted above does not arise (Quiggin, 1982;

Tversky and Kahneman, 1992). CPT nevertheless accommodates the same assortment of EU

violations as PT. For these reasons, CPT has replaced PT as the leading behavioral model of

decisionmaking under uncertainty.

To understand the sense in which CPT involves rank-dependent probability weighting, con-

sider the weight applied to the event that generates the payoff X as we change its value.

Initially X exceeds Y , and its weight is π(p). As we reduce the value of X, the weight remains

unchanged until X passes below Y , at which point it changes discontinuously to π(p+q)−π(q).

Thus, the weight assigned to the event depends not only on probabilities, but also on the ranking

of the event according to the size of the payoff.

The current paper devises and implements a simple and direct approach to measuring the

change in probability weights resulting from a change in payoff ranks. Our method is entirely

non-parametric in the sense that it requires no maintained assumptions concerning functional

forms, either for utility and risk aversion, or for probability weighting. An essential feature of

our method is that it involves lotteries with three outcomes. To understand why the presence

of a third outcome facilitates a sharp and powerful test of the premise, consider equation (1).

For any small increase (m) in the value of Y , there is a small equalizing reduction (k) in the

value of Z that leaves the decisionmaker indifferent. This equalizing reduction measures the

marginal rate of substitution between Y and Z, capturing relative probability weights.

Both EU theory and PT imply that the magnitude of the equalizing reduction is entirely

independent of the value of X, regardless of functional forms. The same is true for CPT,

provided X remains within one of the following three ranges: X > Y + m, Y > X > Z, or

Z − k > X. However, as the value of X crosses from one of these ranges into another, the
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ranking of the payoffs changes, which causes the probability weights to change. This change

in probability weight alters the marginal rate of substitution between Y and Z, and thus the

equalizing reduction. Critically, we show (for small changes) that the percentage change in the

equalizing reduction precisely measures the percentage change in the probability weights applied

to the outcomes. Thus our strategy is to quantify the extent of rank-dependence in probability

weights by eliciting equalizing reductions for X > Y +m and X ∈ (Z, Y ).

Subjects in our experiment perform decision tasks that reveal their equalizing reductions

for three-outcome lotteries of the type described above. We find no evidence that probability

weights are even modestly sensitive to the ranking of outcomes. The actual percentage change

in the equalizing reductions, and hence probability weights, ranges from +3% to -3%, and in

no case can we reject the hypothesis of rank-independence. Our estimates rule out changes in

probability weights larger than 7% as ranks change with 95% confidence.

In light of these findings, it is important to confirm that there is nothing unusual about our

subjects, and in particular that they exhibit the standard choice patterns usually associated

with CPT. Accordingly, following previous studies (Tversky and Kahneman, 1992; Tversky and

Fox, 1995), we also elicit subjects’ certainty equivalents for a collection of binary lotteries,

which we use to derive their CPT parameters. This method reproduces standard findings

regarding probability weights: subjects apparently attach disproportionately high weight to

low probabilities and disproportionately low weight to high probabilities, so the π(·) curve has

the standard inverse S-shape. Moreover, our estimates of the curvature parameters correspond

closely to those reported in the prior literature.

Many economists have adopted these types of CPT calibrations for the purpose of studying

applied problems; see, for example, the discussion of asset pricing in Barberis, Mukherjee and

Wang (2016). Such work proceeds from the assumption that valuations of binary lotteries

reveal the values of "deep" CPT preference parameters that are stable across a wide range of

contexts. It is therefore of interest to treat these calibrations as benchmarks, and to compare

their implications for rank-induced changes in relative probability weights to the estimates
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obtained through our methods. According to the calibrations, increases in X that change the

rankings of X and Y in our experiment should change the equalizing reductions by –22% to

–46%, even though the actual change is negligible. Critically, this contrast does not reflect some

inherent difference between the standard Prospect Theory elicitation tasks and our equalizing

reduction tasks. It is also possible to estimate the implied curvature of the probability weighting

function directly from the latter design using responses to variations in probabilities across

tasks. Precisely the same implications follow: the implied degree of curvature in the probability

weighting function is highly inconsistent with the constancy of the equalizing reduction except

under the hypothesis that probability weights are rank-independent.

Similar patterns are also apparent at the individual level, with a preponderance of subjects

exhibiting virtually no rank dependence for their probability weights, despite responding to

changes in probabilities in ways that imply substantial curvature of their probability weighting

functions, and hence substantial rank dependence within the CPT framework. The results

are robust with respect to a variety of alternative analytic procedures, such as using only

between-subject variation and eliminating potentially confused subjects. We also demonstrate

that our methods are robust with respect to alternative assumptions about reference points.

Endogenizing reference points (as in Bell, 1985; Loomes and Sugden, 1986) changes nothing of

substance. Models with reference distributions (Koszegi and Rabin, 2006, 2007) have similar

predictions for equalizing reductions, and hence we falsify them as well.

Our experimental design elicits equalizing reductions through choices over lotteries with

a single common outcome, X. A pair of early papers in this area raised the possibility that

subjects may employ a heuristic that involves the cancellation of common outcomes (Wu,

1994; Weber and Kirsner, 1997).5 Under that ancillary hypothesis, our method would produce

spurious evidence of rank-independence. We address this possibility by examining a similar
5Weber and Kirsner (1997) provide evidence from certainty equivalents tasks where no cancelation is possible.

They find more support for models of rank dependence when comparing certainty equivalents for lotteries than
when comparing choices between the lotteries themselves. We thank an anonymous referee for drawing our
attention to this work and inspiring this modification. Our ‘split-event’ experiments discussed in section 5 also
explore the forces of rank dependence without the potential confound of cancelation.
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decision setting in which no cancellation is possible: we add m to X instead of to Y , and

reduce both Y and Z by k. CPT rank dependence predicts discontinuities in k of opposite signs

as X passes from X > Y > Z to Y > X ′ > Z to Y > Z > X ′′.6 For this modified decision task,

we again find no evidence of CPT rank dependence, clearly refuting the cancelation hypothesis

as a rationale for our results.

It is worth emphasizing that the stunning failure of CPT to account for our data is not

a mere technical shortcoming. Our test focuses on a first-order implication of the theory –

indeed, it isolates the critical feature that distinguishes CPT from PT. To put the matter

starkly, if equalizing reductions in three-outcome lotteries are not rank-dependent, then neither

are probability weights, and the CPT agenda is on the wrong track.

What type of model should behavioral economists consider in place of CPT? One possibil-

ity is that PT is correct, and that people actually exhibit the implied violations of first-order

stochastic dominance. We test this possibility with a third experiment eliciting certainty equiv-

alents for three outcome lotteries that pay X + ε with probability p/2, X − ε with probability

p/2, and Y with probability 1−p. We include the case of ε = 0, which reduces to a two-outcome

lottery. We choose the parameters so that standard formulations of PT predict a sizable and

discontinuous drop in the certainty equivalent at ε = 0. In contrast, CPT implies continuity.

Contrary to both predictions, we find a discontinuous increase in the certainty equivalent at

ε = 0. This behavior implies violations of dominance, but not the type PT predicts.

A good theory of choice under uncertainty would therefore have to account for three patterns:

(1) the inverse S-shaped certainty equivalent profile, (2) the absence of rank-dependence in

equalizing reductions, and (3) the sharp drop in certainty equivalents that results from splitting

an event. EU is inconsistent with (1) and (3), while CPT is inconsistent with (2) and (3),

and PT is inconsistent with (3). We hypothesize that the observed behavior results from a

combination of standard PT and a form of complexity aversion: people may prefer lotteries
6We did not design the main portion of our investigation around these types of decision tasks because EU,

PT, and CPT all imply that the associated value of k should vary with X even when ranks do not change. This
variation complicates the task of reliably measuring the change in k when ranks do change.
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with fewer outcomes because they are easier to understand. One can think of the well-known

certainty effect as a special case of this more general phenomenon.

The current paper is most closely related to a handful of studies that aim to test the

axiomatic foundations of rank-dependent models (Wu, 1994; Wakker, Erev and Weber, 1994;

Fennema and Wakker, 1996; Weber and Kirsner, 1997; Birnbaum, 2008). Unlike our approach,

the methods used in these papers do not yield estimates of the degree to which probability

weights depend on payoff ranks (non-parametric or otherwise), and the conclusions the authors

draw from them do not necessarily follow in settings with noisy choices; see Section 2.3 and

Appendix B for details.

Aside from the aforementioned studies, the assumption of rank-dependent probability

weighting has been the subject of surprisingly little formal scrutiny given its central role in

the leading behavioral theory of decisionmaking under uncertainty, as well as in recent applica-

tions of the theory.7 Fehr-Duda and Epper’s (2012) recent review of the literature acknowledges

this point.8 The literature has focused instead on identifying the shapes of CPT functions and

associated parameter values based on choices involving binary lotteries (Tversky and Kahne-

man, 1992; Tversky and Fox, 1995; Wu and Gonzalez, 1996; Gonzalez and Wu, 1999; Abdellaoui,

2000; Bleichrodt and Pinto, 2000; Booij and van de Kuilen, 2009; Booij, van Praag and van de
7 Barseghyan, Molinari, O’Donoghue and Teitelbaum (2015) investigate choices involving a range of insurance

products. They demonstrate that the bracketing of risks – for example, whether people consider home and
automobile insurance together or separately – affects the implications of probability weighting because it changes
the ranking of outcomes. Epper and Fehr-Duda (2015) examine the data from Andreoni and Sprenger (2012) on
intertemporal decisionmaking under various risk conditions, which exhibits deviations from discounted expected
utility. They argue that CPT can rationalize an apparent choice anomaly if one frames two independent binary
intertemporal lotteries as a single lottery with four possible outcomes. This alternative framing delivers the
desired prediction because it alters the rankings of the four outcomes. Barberis et al. (2016) examine historical
monthly returns at the stock level for a five year window and link the CPT value of the stock’s history to future
returns, demonstrating a significant negative correlation. The interpretation for the negative relation is that
investors overvalue positively skewed, lottery-like stocks. Given 60 equi-probabable monthly return events, PT
would equally overweight all outcomes, giving no disproportionate value for skewness. CPT, on the other hand,
allows the highest ranked outcomes to receive higher proportionate weight. Barberis et al. (2016) show that CPT
substantially outperforms EU in predicting future returns. Given that that the PT formulation (ignoring the
reference point) would be collinear with the EU formulation, rank-dependence would seem critical for delivering
this result.

8They state “It is our impression that this feature of rank-dependent utility has often not been properly
understood. For example, an inverse S-shaped probability weighting function does not imply that all small
probabilities are overweighted. Whether a small probability is overweighted or underweighted depends on the
rank of the outcome to which it is attached" (p. 571).
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Kuilen, 2010; Tanaka, Camerer and Nguyen, 2010). In cases where the experimental tasks

encompass an appropriate range of binary lotteries, one can devise and implement tests of rank

dependence, conditional on maintained assumptions about functional forms. Unfortunately, an

incorrect functional specification can manifest as spurious rank dependence. To our knowledge,

in cases where such data are available, no formal test of rank dependence has been performed.9

An additional strand of literature in psychology tests further implications, such as adherence

to stochastic dominance and invariance to lottery description, also showing deviations (for dis-

cussion, see, e.g., Birnbaum, 2008).10 Defenses of rank dependence, such as the discussion in

Diecidue and Wakker (2001), are instead typically based on intuitive arguments and/or point to

findings concerning the psychology of decisionmaking that arguably resonate with the premise

(Lopes, 1984; Lopes and Oden, 1999; Weber, 1994).

The paper proceeds as follows. Section 2 outlines the pertinent implications of CPT and

related theories. Section 3 elaborates our experimental design, while section 4 presents our main

results and robustness checks. Section 5 discusses implications, including alternative theories

and tests thereof. Section 6 concludes.

2 Theoretical Considerations

Let L = ({p, q, 1− p− q} , {X, Y, Z}) represent a lottery with three potential outcomes, X, Y ,

and Z, played with corresponding probabilities p, q, and 1−p−q, with p, q ≥ 0 and 1−p−q ≤ 1.

EUT, PT, and CPT all assume that preferences over such lotteries have the following separable
9As we explain in Appendix A, the data in Tversky and Kahneman (1992) lend themselves to such tests. We

show that the data from Tversky and Kahneman (1992) could be interpreted as consistent with rank dependence.
However, as noted in the Appendix, that finding hinges on the validity of their functional form assumptions.
We show that depending on the assumptions for the shape of utility, probability weighting for a given chance
of receiving an outcome can either appear to be rank dependent or not.

10One notable phenomenon discussed by Birnbaum (2008) is a sensitivity of lottery valuations to descrip-
tion of events. Describing two lotteries as ({0.85, 0.10, 0.05}; {100, 50, 50}) and ({0.85, 0.10, 0.05}; {100, 100, 7})
leads to qualitatively different hypothetical binary choice patterns than ({0.85, 0.15}; {100, 50}) and
({0.95, 0.05}; {100, 7}). This failure of ‘coalescing’ is part of a number of violations reviewed by Birnbaum
(2008) and is clearly at odds with CPT. Our split-event design in section 5 carries some similarity to this work
as we do vary the presentation of lotteries between subjects and then split events. For example we elicit certainty
equivalents both for ({0.3, 0.3, 0.4}; {30, 30, 20}) and ({0.6, 0.4}; {30, 20}). In our incentivized decisions, we do
not see the failure of coalescing noted by Birnbaum (2008) for hypothetical choice.
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form:

U(L) = wXu(X) + wY u(Y ) + wZu(Z),

where wi represents the decision weight for outcome i.11 Under EUT and PT, wi is a fixed

number that depends only on the probability of event i, and not on the values of X, Y , or

Z. Under CPT, wi depends on the probabilities of the three events and the ordering of the

payoffs. For PT and CPT, our notation suppresses the dependence of u on the reference point,

which for simplicity we take as fixed and assume to be less than X, Y , and Z. We address

more sophisticated forms of reference dependence in section 2.2.

Our analysis employs the concept of an equalizing reduction, defined as the value

of k that delivers indifference between the lottery L and a modified lottery Le =

({p, q, 1− p− q} , {X, Y +m,Z − k}), where m is a (small) fixed number. Intuitively, the

equalizing reduction approximates the marginal rate of substitution between the payoffs Y and

Z (MRSY Z). EUT and PT imply that MRSY Z is completely independent of X. CPT shares

this implication as long as variations in X do not change the payoff ranks. However, if the

ranks change, CPT implies that MRSY Z will change discontinuously.

The preceding intuition suggests a sharp qualitative test of EUT, PT, and CPT. Assuming

m and k are small, so that the payoff ranks are the same for L and Le, then under all three

theories we have

wY u(Y ) + wZu(Z) = wY u(Y +m) + wZu(Z − k) (2)

or alternatively

k = Z − u−1
[
u(Z) +

wY

WZ

(u(Y )− U(Y +m))

]
. (3)

Suppose we assess k for various values of X. Under EUT and PT, wY
WZ

is a fixed number (as are

Z, Y , and m), so a graph of k against X should be a flat line. Under CPT, wY
WZ

is fixed as long

as the payoff ranking is preserved, but it changes discontinously when the value of X passes
11Our application of PT to these three-outcome lotteries corresponds to the extension of PT provided by, for

example, Camerer and Ho (1994) and Fennema and Wakker (1997).
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through the value of Y or Z. Therefore, a graph of k against X should exhibit three flat line

segments with discontinuities at X = Y and X = Z.12

The strength of our approach is that it yields more than a qualitative test of the underlying

theories – it also provides a quantitative, nonparametric estimate of the change in relative

decision weights that results from a change in payoff ranks. Say we obtain k using the value

X, and k using the value X. Defining ∆ log(a) = log(a) − log(a) (for the generic variable a),

we have:13

Proposition 1 : Suppose the reference point is fixed, that decision weights are fixed for a

given payoff ranking, and that u is continuously differentiable at Y and Z.14 Consider any X

and X distinct from Y and Z. Then

lim
m→0

∆ log(k) = ∆ log

(
wY
wZ

)
Proof : See Appendix E.1.

Proposition 1 tells us that the percentage change in k (from k to k) provides a quantitative

estimate of the percentage change in the relative decision weights, wY
wZ

(from wY
wZ

to wY
wZ

) resulting

from the change in X (from X to X).

To drive the implications of this point home, suppose in particular that we choose X and X

such that X > Y +m > Z and Y > X > Z. Then, under CPT, we have wY = π(p+ q)− π(p)

and wZ = 1− π(p+ q), while wY = π(q) and wZ = 1− π(p+ q). It follows that

∆log(k) ≈ log (π(p+ q)− π(p))− log (π(q))

Thus, for the maintained hypothesis of CPT, in this special case the percentage change in k

12Technically, the discontinuities occur at Y and Z in the limit as m goes to zero.
13As noted by one of our referees, it is relatively straightforward to dispense with the assumption that u is

differentiable. Continuity and monotonicity of u are sufficient for the existence of positive right-derivatives,
which cancel out in the limit.

14The continuous differentiability requirement rules out cases in which Y or Z coincides with the reference
point. The proof extends to these cases but requires attention to some additional technical details.
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provides a quantitative estimate of the percentage change in the probability weight assigned to

payoff Y when the value of X passes from above Y to below Y .15

2.1 Simulated Equalizing Reductions under CPT Decisionmaking

In this section, we examine the particular lotteries studied in our experiment and show that

changes in payoff ranks yield large changes in probability weights under standard parameter-

izations of CPT. We also demonstrate that the percentage change in the equalizing reduction

approximates the percentage change in the probability weights to a high degree of accuracy

even when m represents a discrete payoff increment of non-trivial magnitude.

We focus on the parametric specification used in the original formulation of CPT (Tversky

and Kahneman, 1992),16 which posited a probability weighting function, π(p) = pγ/(pγ + (1−

p)γ)1/γ, a reference point of r = 0, and a utility function u(x) = xα for x > r = 0. The

parameters identified by Tversky and Kahneman (1992) were γ = 0.61 and α = 0.88.

Consider the lottery, L, with {X, Y, Z} = {$30, $24, $18} and {p, q, 1 − p − q} =

{0.4, 0.3, 0.3}. Increase Y by m = $5, from $24 to $29. For the parameters γ = 0.61

and α = 0.88, the equalizing reduction is k = 1.67.17 Now consider the lottery L′ with
15 It is natural to wonder whether our central insight would apply to models in which probability weighting

functions include linear segments, so that log (π(p+ q)− π(p)) − log (π(q)) = 0 over a given range. One
prominent example is the neo-additive model of Chateauneuf, Eichberger and Grant (2007). Under the neo-
additive model with objective probabilities, decision weights for cumulative probabilities away from 0 and 1
are linear as in expected utiility, but extra weight is given to the best and worst outcome in a lottery. For
Z < X < Y , the neo-additive utility is

U = γu(Z) + (1− γ − λ)
[
pu(X) + qu(Y ) + (1− p− q)u(Z)

]
+ λu(Y ),

where γ and λ represent the additional weight on the worst and best outcomes, respectively. In contrast, for
Z < Y < X,

U = γu(Z) + (1− γ − λ) [pu(X) + qu(Y ) + (1− p− q)u(Z)] + λu(X).

Because outcome Y is no longer the best outcome, its weight changes discontinuously. It is straightforward to
show that

∆log(k) ≈ log
(

(1− γ − λ)q

λ+ (1− γ − λ)q

)
,

so a discontinuity in equalizing reductions is predicted, and the log change in equalizing reduction again closely
approximates the change in decision weight applied to outcome Y .

16Tversky and Fox (1995) and Gonzalez and Wu (1999) employ a similar two parameter π(p) function. See
Prelec (1998) for alternative S -shaped specifications.

17Note that Y and Z are received with equal probability, so that a risk neutral decisionmaker would exhibit
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{X,Y, Z} = {$23, $24, $18} and {p, q, 1 − p − q} = {0.4, 0.3, 0.3}. For the same CPT pa-

rameters as above, the equalizing reduction for m = 5 is k = $3.22.18 Thus, a standard

parameterization of CPT implies a sharp discontinuity in equalizing reductions: moving from

X < Y to X > Y + m cuts the equalizing reduction roughly in half. The log difference in

equalizing reductions, ∆log(k) = −0.66, closely approximates the change in probability weight

associated with the outcome Y , as log(π(0.7) − π(0.3)) − log(π(0.3)) = −0.66 as well. In-

deed, the approximation remains quite close even when the utility function has much greater

curvature. For example, with α = 0.5, ∆log(k) = −0.65, and for α = 0.25, ∆log(k) = −0.64.

In Table 1, we provide additional simulations with the same values of X, Y, Z, and m as

above, but using three different values of γ, 0.4, 0.61, 0.8, as well as three different probability

vectors, {p, q, 1 − p − q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}, and {0.1, 0.3, 0.6}.19 For the CPT

parameter values of Tversky and Kahneman (1992), the probability weight on payoff Y changes

by 29 to 66 percent as X passes through Y . Even with more modest curvature of the probability

weighting function (γ = 0.8), the change in probability weight remains sizable. The effect is

largest for the third probability vector. In that case, shifting X from below Y to above Y

changes the decision weight on Y by removing the relatively large weight associated with

the first 10% lump of probability and adding the relatively small weight associated with the

fourth 10% lump of probability. Critically, in all cases, the percentage change in the equalizing

reduction approximates the percentage change in the probability weight associated with payoff

Y to a high degree of accuracy.

an equalizing reduction of k = $5.
18One again, note that a risk neutral decisionmaker would exhibit an equalizing reduction of k = $5.
19To demonstrate the dependence of discontinuities in equalizing reduction on the extent of probability weight-

ing, we hold α fixed at 0.88 throughout.
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Table 1: Cumulative Prospect Theory Simulated Equalizing Reductions

γ = 0.4 γ = 0.61 γ = 0.8

{p, q, 1− p− q} k k ∆log(k) k k ∆log(k) k k ∆log(k)

∆log
(
wY
wZ

)
= log(π(p+q)−π(p)

π(q)
) ∆log

(
wY
wZ

)
= log(π(p+q)−π(p)

π(q)
) ∆log

(
wY
wZ

)
= log(π(p+q)−π(p)

π(q)
)

{0.6, 0.3, 0.1} 1.97 1.33 -0.39 5.17 3.88 -0.29 9.21 7.84 -0.16
-0.39 -0.29 -0.17

{0.4, 0.3, 0.3} 1.61 0.53 -1.12 3.22 1.67 -0.66 4.29 3.13 -0.31
-1.12 -0.66 -0.32

{0.1, 0.3, 0.6} 1.45 0.40 -1.30 2.39 1.39 -0.55 2.60 2.08 -0.22
-1.30 -0.55 -0.22

Notes: Dollar values for equalizing reductions in Z for increase in Y to Y +m. k calculated with {X,Y, Z} =
{$30, $24, $18}, m = $5. k calculated with {X,Y, Z} = {$23, $24, $18}, m = $5. CPT calculations with
u(x) = xα, α = 0.88; and π(p) = pγ/(pγ + (1− p)γ)1/γ with γ varying by column.

2.2 Reference Point Formulation and Alternative Models of Refer-

ence Dependence

Throughout the previous discussion, we assumed that the reference point is fixed and below all

potential payoffs. While this assumption is a reasonable starting point, one naturally wonders

whether our conclusions are robust with respect to other possibilities.

First consider the possibility that the reference point is exogenous but falls either (i) above

all payoffs, or (ii) between the lottery’s payoffs, which it segregates into gains and losses. Case

(ii) may seem particularly concerning because CPT applies probability weighting to gains and

losses separately. Notice, however, that Proposition 1 subsumes these possibilities because it

is proved for a specification with general decision weights. Because CPT still implies that the

weights change when the value of X passes through Y , precisely the same implications follow.20

Notably, additional discontinuities in equalizing reductions emerge (for similar reasons) at the

point where the reference point passes the outcomes Y and Z (see Appendix C.1). Thus the

equalizing reduction approach offers not only a novel test of rank dependence, but could also

be used to test the hypothesis that gains and losses relative to the reference point are weighted
20An additional complication arises for non-infinitessimal values of m, in that an increase from Y to Y + m

could cross the reference point, or cause Z − k to cross the reference point. As shown in Appendix C.1, the
implications of CPT are nevertheless unchanged.
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separately.

Next consider the possibility that the reference point depends on the lottery’s payoffs, as in

Bell (1985) and Loomes and Sugden (1986). We will use r to denote a generic reference point

and R(X, Y, Z) to denote the reference point for a lottery that yields payoffs {X, Y, Z} with

probabilities {p, q, 1 − p − q}. (The reference point may also depend on the probabilities, but

we hold them constant, and consequently suppress those arguments for notational simplicity.)

Here we will focus on cases in which the reference point r coincides with neither Y nor Z.

Proposition 2 : Suppose decision weights are fixed for a given payoff ranking, that u(x, r) is

continuously differentiable in neighborhoods of (Y,R(Y, Y, Z)) and (Z,R(Y, Y, Z)), and that R

is continuously differentiable in a neighborhood of (Y, Y, Z). Consider any sequence (Xn, X̄n)→

(Y, Y ) such that Xn > Y > X̄n > Z. Then

lim
n→∞

lim
m→0

∆ log(k) = ∆ log

(
wY
wZ

)
Proof : See Appendix E.1.

Thus, even with an endogenous reference point, the discontinuity in the X-k schedule at

X = Y still measures the percentage change in the relative decision weights on Y and Z. That

said, if the reference point depends on the payoff X, then the X-k schedule may no longer

be flat within intervals with fixed decision weights, a possibility that could in principle make

the size of any discontinuity more difficult to measure. However, as we will see, there is no

indication that this potential issue materializes in practice. On the contrary, the flatness of the

empirical X-k schedule eliminates any complications arising from the potential endogeneity of

the reference point.

With an endogenous reference point, an additional discontinuity in the equalizing reduction

emerges where X cross the reference point, even in the absence of probability weighting (see

Appendix C.2). Thus our approach offers a novel test of theories with endogenous reference

points, such as Disappointment Aversion.
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A final possibility worth considering is that subjects have reference point distributions, as in

Koszegi and Rabin (2006, 2007). We show in Appendix C.3 that this preference formulation also

yields discontinuities in the equalizing reduction as X passes through Y and Z, even without

probability weighting.21 Furthermore, when we apply a calibrated model to our experimental

tasks, we find that the implied discontinuities are substantial, and that their signs are opposite

those implied by the CPT calibrations. Thus our approach also offers a novel and discerning

test of the Koszegi and Rabin (2006, 2007) framework.

2.3 Relation to Existing Tests of Cumulative Prospect Theory

As mentioned in the introduction, our work is most closely related to a handful of studies that

aim to test the axiomatic foundations of rank-dependent models (Wu, 1994; Wakker et al., 1994;

Fennema and Wakker, 1996; Weber and Kirsner, 1997; Birnbaum, 2008). A defining feature

of those models is that they assume the independence axiom holds on a limited domain. In

particular, we say that two lotteries are comonotonic if they induce the same payoff ranking over

states of nature. Under EUT, PT, and CPT, if two comonotonic lotteries yield the same payoff,

xj, in some state j, then a change in xj that leaves the ranking intact should have no effect

on preferences between the lotteries. This property reflects an axiom known as Comonotonic

Independence (CI), which EUT, PT, and CPT all satisfy. Naturally, one can also ask whether

preferences between the lotteries are invariant with respect to changes in xj that alter the

payoff ranking. This type of invariance follows from a property known as Non-Comonotonic

Independence (NCI), which EUT and PT satisfy, but CPT does not. Thus, evidence validating

both CI and NCI would point to either EUT or PT, and evidence favoring CI while challenging

NCI would point to CPT.

When interpreting laboratory evidence concerning conformance with choice axioms, it is

important to allow for the possibility that observed choices are somewhat noisy. As a result,
21Masatlioglu and Raymond (2016); Barseghyan et al. (2015) note a tight connection between rank dependent

theories and the Koszegi and Rabin (2006, 2007) model. This work presages the results outlined in Appendix
C.3.
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even if a theory captures the essence of decisionmaking, one would expect to observe violations

of the axioms that characterize it. What then can one conclude from the frequency of violations?

Existing tests of rank dependence involve comparisons between the prevalence of violations for

different axioms. For instance, Wakker et al. (1994) attribute the differential between the

frequency of NCI violations and CI violations to rank dependence. Because they find little

difference in these frequencies, they conclude that rank dependence is not supported.

These types of frequency comparisons raise two difficulties, both stemming from the fact

that the results are difficult to interpret without a parametric model of noisy choice. First, the

premise of the approach – that violation frequencies are necessarily higher for invalid axioms

– is flawed. For reasonable models of noisy choice, noise-induced violations of choice axioms

are more likely to occur when the parameters of the tasks place the decisionmaker closer to

the point of indifference. Existing approaches provide no way to ensure that the “distance to

indifference” is held constant when comparing CI and NCI violations. It is therefore easy to

construct examples in which a “noisy” CPT decisionmaker violates CI just as frequently, or even

more frequently, than NCI. Second, even if one could control for “distance to indifference,” this

approach offers no basis for judging whether a given discrepancy between the frequencies of CI

and NCI violations is large or small relative to the implications of a reasonably parameterized

CPT model. For any given degree of rank dependence, one can construct simple examples

(with constant “distance to indifference”) in which the differential between violation frequencies

falls anywhere between zero and unity. See Appendix B for a description of the aforementioned

examples.

Because rank dependence is characterized by the restriction of the independence axiom to

comonotonic lotteries (Wakker et al., 1994), any valid test of the hypothesis is necessarily related

to the existing studies, and ours is no exception. However, our use of equalizing reductions

has no counterpart in the existing literature. Instead of counting violatons of CI and NCI,

we measure equalizing reductions separately for each lottery, and then compare them across

lotteries. Certainly, the constancy of the equalizing reduction over values of X that preserve
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the payoff ordering is an implication of CI, and the discontinuity in the equalizing reduction at

the point where X = Y or X = Z reflects a failure of NCI. However, because the essence of our

approach is to measure characteristics of indifference curves (MRSs), all potential confounds

associated with unintended variations in “distance to indifference” are eliminated. Critically,

in addition, magnitudes are interpretable in our framework: as we have shown, the percentage

change in the equalizing reduction resulting from a rank-changing variation inX provides a non-

parametric estimate of the percentage change in decision weights. Finally, the interpretation

of the change in the equalizing reduction remains the same regardless of whether choices are

noisy; only the precision of the estimates is affected.

3 Design of the Main Experiment

Our experimental design follows closely the theoretical discussion of section 2. Conditional on

various probability vectors, {p, q, 1 − p − q}, we test for differences in equalizing reductions

between lotteries with ranks X > Y > Z and those with ranks Y > X > Z. Subjects

also complete a battery of certainty equivalent tasks involving binary lotteries; these tasks are

commonly used to derive risk-preference parameters within the CPT framework. This strategy

allows us to verify that our subjects exhibit the standard choice patterns commonly associated

with CPT preferences, and to compare the observed equalizing reductions to predicted values

based on standard CPT calibration methods for the same individuals. We divide our discussion

of design into three subsections. First we describe the elicitation of equalizing reductions;

second we detail the conventional elicitation of CPT preference parameters; third, we discuss

other design details including task orders and payment procedures.

3.1 Elicitation of Equalizing Reduction

We elicited equalizing reductions using the method of price lists. In each task, subjects made a

series of decisions between ‘Option A’ and ‘Option B’, both three outcome lotteries. Option A
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was fixed throughout the task as either a lottery with X > Y > Z or a lottery with Y > X > Z.

Option B was constructed by adding $5 to Y and reducing Z by $k. The value of k varied

throughout the task. The point at which an individual switched from choosing Option A to

choosing Option B places tight bounds on the equalizing reduction, either k or k. Panels A and

B of Figure 1 provide two tasks eliciting k and k. Appendix H provides the full instructions

given to subjects along with all tasks.

As in the simulations of section 2, our design fixes Y = $24, Z = $18, and m = $5. We use

three values of X > Y +m , {$34, $32, $30}, and three values of X < Y , {$23, $21, $19}. Our

objective in using multiple values of X on either side of Y is to allow for the possibility that

the change in the equalizing reduction might be gradual in a neighborhood of the change-in-

ranks threshold rather than sudden, perhaps because payoff rankings are non-salient for nearby

outcomes. We use one additional value, X = $25, to check robustness; see the discussion

in Appendix G.22 This set of values allows us to investigate both rank dependence and the

prediction that equalizing reductions are constant within ranks.

As in the simulations of section 2, we examine three probability vectors, {p, q, 1− p− q} =

{0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}, and {0.1, 0.3, 0.6}. The cumulative probability of receiving at

least Y ranges from 0.3 to 0.6 + 0.3 = 0.9, which provides broad scope for detecting the

predicted discontinuities. Note that the design varies the relative probabilities of Y and Z from

0.3/0.1 = 3 to 0.3/0.6 = 1/2, generating a wide range of equalizing reductions.23

With seven values of X/X and three probability vectors, we have 21 equalizing reduction

tasks in total. We organize these tasks into seven blocks, each of which presents the three prob-

ability vectors for a single value of X/X. Hence, the tasks within each block are differentiated

by the probability vector, {p, q, 1 − p − q}. We distributed task blocks to subjects one at a

time, and collected responses before moving on to the next block. This feature of our design

was intended to limit any tendency to respond mechanically with the same answer as X varies,

22Note that for X = $25, adding $5 to Y induces a change of ranks. These tasks allow us to investigate the
possibility that explicit rank changes influence choice. See Appendix G for further detail.

23For example, an expected value decisionmaker would exhibit values of k, k between $2.50 and $15 across
these tasks.
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a possibility that could artificially obscure discontinuities. As we will see, subjects responded

strongly to variations in probability within each block before moving on to the next value of

X.

3.2 Prospect Theory Elicitation Tasks

We also elicit our subjects’ risk preference parameters using the same experimental tech-

niques employed by Tversky and Kahneman (1992). The approach employs seven tasks, each

of which elicits the certainty equivalents for a two-outcome lottery, (p, $25; 1 − p, 0), p ∈

{0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. We grouped these tasks in a single block. Figure 2 illustrates

one of these tasks, and Appendix H describes the full set. Although these tasks provide no

information concerning rank dependence in probability weighting, they allow us to determine

whether our sample exhibits representative risk preferences, and they permit us to generate

precise sample-specific predictions for equalizing reductions based on a standard calibration

method.

3.3 Design Details

One hundred fifty three subjects were recruited from the Stanford Economics Research Labo-

ratory subject pool in September, October, and November of 2014. A total of 20 sessions were

conducted with the number of subjects varying between two and sixteen. We varied the order

of the six main equalizing reduction blocks systematically across sessions. Subjects completed

three equalizing reduction blocks, then the CPT elicitation block, then three more equalizing

reduction blocks. The X = $25 equalizing reduction tasks were always presented last. Table 2

lists all sessions, dates, numbers of subjects and block orders.

To induce truthful revelation of equalizing reductions and certainty equivalents, we incen-

tivized subjects by paying them based on one randomly selected question in one randomly

selected task. On average, subjects earned $26.87. This random-lottery incentive mechanism

is widely used in experimental economics, but note that it transforms the experiment into a
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Figure 2: Prospect Theory Elicitation Task

TASK 22
On this page you will make a series of decisions between two options. Option A will be a 50 in 100

chance of receiving $25 and a 50 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
50 in 100 Chance 50 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2

single compound lottery. The literature on choice under risk, dating to Holt (1986) and Karni

and Safra (1987), suggests that random mechanisms need not be incentive compatible in such

contexts if either the Independence or Reduction of Compound Lotteries axioms are violated.

As CPT violates independence, this limitation is a potential concern. Importantly, however,

Starmer and Sugden (1991) and Cubitt, Starmer and Sugden (1998) demonstrate that this

mechanism can be used even when subjects deviate from expected utility because, in practice,
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Table 2: Experimental Sessions
Number Date Order # Obs

1 09/24/14 {34, 32, 30, CE, 23, 21, 19, 25} 16
2 09/24/14 {34, 21, 30, CE, 23, 32, 19, 25} 11
3 09/30/14 {23, 32, 19, CE, 34, 21, 30, 25} 9
4 09/30/14 {19, 32, 23, CE, 30, 21, 34, 25} 12
5 10/01/14 {30, 21, 34, CE, 19, 32, 23, 25} 12
6 10/02/14 {21, 30, 34, CE, 32, 19, 23, 25} 14
7 10/07/14 {32, 19, 23, CE, 21, 30, 34, 25} 10
8 10/07/14 {23, 19, 32, CE, 34, 30, 21, 25} 5
9 10/08/14 {34, 30, 21, CE, 23, 19, 32, 25} 13
10 10/09/14 {30, 34, 21, CE, 19, 23, 32, 25} 5
11 10/14/14 {19, 23, 32, CE, 30, 34, 21, 25} 4
12 10/16/14 {32, 23, 19, CE, 21, 34, 30, 25} 6
13 10/26/14 {21, 34, 30, CE, 32, 23, 19, 25} 7
14 10/28/14 {21, 34, 30, CE, 32, 23, 19, 25} 3
15 10/29/14 {32, 23, 19, CE, 21, 34, 30, 25} 2
16 11/05/14 {23, 19, 32, CE, 34, 30, 21, 25} 2
17 11/07/14 {19, 23, 32, CE, 30, 34, 21, 25} 6
18 11/10/14 {23, 19, 32, CE, 34, 30, 21, 25} 6
19 11/14/14 {30, 34, 21, CE, 19, 23, 32, 25} 6
20 11/18/14 {32, 23, 19, CE, 21, 34, 30, 25} 4

Total 153

Notes: Session number, date, order and number of observations. Order of tasks refers to the value of X/X in
each task block. CE corresponds to the block of tasks with certainty equivalent questions.

they narrowly frame each lottery, making each decision in isolation. Whether their findings ap-

ply to our setting is of course an empirical question. Our Prospect Theory elicitation tasks are

especially important in this regard because they allow us to assess the validity of the method

we use. If isolation fails in this context, then our subjects would not exhibit standard patterns

of probability weighting in binary tasks. Conversely, if our subjects do exhibit standard prob-

ability weighting patterns in binary tasks, then one cannot reasonably attribute the absence of

implied discontinuities in the equalizing reduction tasks to a failure of isolation.

Ten of 153 (6.5%) subjects exhibited at least one instance of multiple switching within a

single experimental task. This figure compares favorably to other experiments employing price

lists.24 Because multiple switch points are difficult to rationalize and may indicate subject
24Around 10 percent of subjects feature multiple switch points in similar price-list experiments (Holt and

Laury, 2002; Meier and Sprenger, 2010), and as many as 50 percent in some cases (Jacobson and Petrie, 2009).
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confusion, researchers often exclude such observations or mechanically enforce single switch

points.25 We begin by excluding all subjects exhibiting multiple switch points in any task,

leaving a sample of 143 subjects. In Appendix G we include the ten subjects with multiple

switch points, taking each subject’s first switch point as their relevant choice, and demonstrate

that the results are qualitatively unchanged.

4 Results

We present our results in six subsections. We begin with the conventional Prospect Theory elic-

itation tasks, demonstrating that our subjects exhibit the classic manifestations of probability

weighting found in previous studies. The second subsection explores equalizing reductions. We

show that there is no relationship between payoff ranks and equalizing reductions. Our non-

parametric estimates of the change in the relative probability weights resulting from a change

in ranks cluster around zero, and in all cases we can reject even modest changes with 95%

confidence. The remaining subsections examine various potential explanations for our results

other than a failure of rank dependence, including the possibilities that our findings may reflect

unrepresentative subjects (section 4.3), order effects (section 4.4), “cancelation" of common

outcomes (section 4.5), or inattention to the parameters of the decision tasks (section 4.6).

We present evidence that rules out each of these possibilities. Additional robustness exercises

appear in Appendix G.

4.1 Certainty Equivalents: Eliciting CPT Parameters

As in the original experiments of Tversky and Kahneman (1992), we administered seven cer-

tainty equivalent tasks involving lotteries over payoffs of $25 and $0, with the governing prob-

ability p ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}. Panel A of Figure 3 summarizes these data.

To capture average behavior, we first estimated an interval regression (Stewart, 1983) describ-
25See Harrison, Lau, Rutstrom and Williams (2005) for discussion.
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ing the certainty equivalent, C, as a function of indicators for the experimental probabilities,

p.26 Panel A thus presents the estimated mean certainty equivalent for each value of p along

with its 95% confidence interval.27 Following Tversky and Kahneman (1992), we present the

data in Panel A relative to a benchmark of risk neutrality so that they would directly reveal

aggregate probability weighting, π(·), if the utility function were linear.

Figure 3: Certainty Equivalents and Equalizing Reductions
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Notes: Panel A: Mean behavior for C estimated from interval regression (Stewart, 1983) of experimental re-
sponse on indicators for probability vectors. Standard errors clustered at individual level to provide 95%
confidence interval. Appendix Table A2, column (1) provides corresponding estimates. Dashed line corresponds
to predicted CPT behavior with α̂ = 0.941 (s.e. = 0.019) and γ̂ = 0.715 (0.015); standard errors clustered at
individual level. Panel B: Mean behavior for k estimated from interval regression of experimental response on
indicators for probability vectors interacted with indicators for value of X. Standard errors clustered at indi-
vidual level to provide 95% confidence interval. Appendix Table A4 provides corresponding estimates. Dashed
line corresponds to predicted values of equation (3) for CPT decisionmaker with risk preference parameters
α̂ = 0.941 (s.e. = 0.019) and γ̂ = 0.715 (0.015). Standard errors clustered at individual level and calculated
using the delta method to provide 95% confidence interval.

26Virtually identical results are obtained when using OLS and the midpoint of the interval.
27Standard errors are estimated clustered at the individual level. Appendix Table A2, column (1) provides

corresponding estimates. Column (2) provides estimates of risk premia, demonstrating statistically significant
risk tolerance at low probabilities and statistically significant risk aversion at high probabilities.
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Tversky and Kahneman (1992) and Tversky and Fox (1995) obtain probability weighting pa-

rameters from certainty equivalents by parameterizing both the utility and probability weighting

functions and assuming each observation satisfies the indifference condition u(C) = π(p) ·u(25).

We follow Tversky and Kahneman (1992) by assuming power utility, u(x) = xα, and a weighting

function π(p) = pγ/(pγ + (1−p)γ)1/γ. We then estimate the parameters γ̂ and α̂ by minimizing

the sum of squared residuals for the non-linear regression equation

C = [pγ/(pγ + (1− p)γ)1/γ × 25α]
1
α + ε. (4)

where C is the midpoint of the certainty equivalent interval defined by experimental choice.

When conducting this analysis for our aggregate data with standard errors clustered on the

subject level, we obtain α̂ = 0.941 (s.e. = 0.019) and γ̂ = 0.715 (0.015). The benchmark model

of expected utility, γ = 1, is rejected at all conventional confidence levels, (F1,142 = 341.5, p <

0.01). The value of the probability weighting parameter is reasonably close to the estimate of

Tversky and Kahneman (1992) (γ̂ = 0.61), and coincides with the findings of Wu and Gonzalez

(1996), who estimate γ̂ = 0.71. The dashed line in Figure 3, Panel A, shows the in-sample

model fit, which closely matches actual behavior.28

The empirically parameterized probability weighting function does an impressive job of

matching the patterns exhibited. If this calibrated model has external validity, equalizing

reductions should exhibit substantial discontinuities as ranks change.

4.2 Average Equalizing Reductions

Panel B of Figure 3 presents equalizing reductions, k and k, for each value of X and X. We

exhibit separate results for each of the three probability vectors. To determine average behavior,

we performed an interval regression describing the equalizing reduction, k or k, as a function of
28The correlation coefficient for predicted and actual certainty equivalents is 0.93, and a regression of the

true certainty equivalent on the model’s prediction yields a slope coefficient of 0.998 (clustered s.e. = 0.020), a
constant of 0.102 (0.214), and an R-squared value of 0.86. The null hypothesis that the constant is 0 and the
predicted value’s true coefficient is 1 is not rejected (F2,142 = 0.17, p = 0.84).

25



indicators for the probability vectors interacted with indicators for the value of X or X.29 The

figure exhibits the estimated mean equalizing reductions along with 95% confidence intervals.30

Vertical lines at Y = $24 and Y +m = $29 partition the figure into three regions, one showing

k, another showing k, and a transitional region.

Table 3: Equalizing Reductions
Panel A: Mean Behavior and Estimated Rank Dependence Panel B: CPT Estimates and Predicted Rank Dependence

Certainty Equivalents Equalizing Reductions Equalizing Reductions
X > Y > Z, Y > X > Z

γ = 0.715 (0.015) γ = 0.830 (0.021) γ = 0.784 (0.020)

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

) ̂
∆log

(
wY
wZ

) ̂
∆log

(
wY
wZ

) ̂
∆log

(
wY
wZ

)
[95% Conf.] [95% Conf.] [95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 9.02 (0.39) 9.28 (0.38) 0.03 (0.02) -0.23 (0.01) -0.14 (0.02) -0.18 (0.01)
[-0.01,0.07] [-0.25,-0.21] [-0.18,-0.11] [-0.21,-0.15]

{0.4, 0.3, 0.3} 4.31 (0.12) 4.34 (0.12) 0.01 (0.02) -0.47 (0.03) -0.27 (0.04) -0.35 (0.03)
[-0.03,0.05] [-0.52,-0.41] [-0.34,-0.20] [-0.41,-0.28]

{0.1, 0.3, 0.6} 2.63 (0.08) 2.56 (0.07) -0.03 (0.02) -0.35 (0.03) -0.18 (0.03) -0.22 (0.02)
[-0.07,0.01] [-0.40,-0.30] [-0.24,-0.13] [-0.30,-0.19]

Notes: Panel A: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimen-
tal response on indicators for probability vector interacted with indicator for whether X > Y . Estimated
change in relative decision weights, ̂∆log (wY /wZ), calculated as ∆log(k). Standard errors clustered at
individual level and calculated using the delta method, in parentheses. See Appendix Table A3, column (1)
and Appendix Table A4 for detail. Panel B: Predicted change in probability weight for CPT decisionmaker
with probability weighting estimated solely from certainty equivalents data, from equalizing reductions
with X > Y > Z, or from equalizing reductions with Y > X > Z. Estimated probability weighting
parameter noted for each prediction. Change in relative decision weights, ̂∆log (wY /wZ), calculated as
log(π(p + q) − π(p)) − log(π(q)) for estimated weighting function. Standard errors clustered at individual
level and calculated using the delta method, in parentheses.

Notable from Figure 3 is the consistency of the equalizing reductions, k and k, for each fixed

probability vector. Corresponding statistics are provided in Table 3, Panel A. For {p, q, 1 −

p − q} = {0.6, 0.3, 0.1}, the mean value of k is 9.02 (clustered s.e. = 0.39), while the mean

value of k is 9.28 (0.38). The difference, k − k = 0.26 (0.17), is not statistically different from

zero χ2(1) = 2.31, p = 0.13. In the last column of Panel A, we compute the change ∆log(k)

resulting from the change in ranks, and present it as an estimate of the change in the log of

the relative probability weights,
̂

∆log
(
wY
wZ

)
. For the first probability vector, the point estimate

29Virtually identical results are obtained when using OLS and the midpoint of the interval.
30Standard errors are estimated clustered at the individual level. Appendix Table A4 provides corresponding

estimates.
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is +0.03 (0.02). Consequently, the estimates of the equalizing reduction rule out a decline in

wY /wZ greater than 1%. Similar results are obtained for the other probability series.31

In the context of the CPT model, the log changes in equalizing reductions reported in Table

3, Panel A, should closely approximate the change in probability weight assigned to outcome

Y as ranks change. Viewed in this light, the equalizing reductions reported in Table 3 reflect

a striking absence of rank dependence. We can rule out any change in probability weight for

outcome Y in excess of 1% for the first probability vector, 3% for the second, and 7% for the

third.

We have already seen in Table 1 that even modest curvature of the probability weighting

function (γ = 0.8) would, in combination with rank dependence, imply changes in relative

decision weights far larger than the estimates in Panel A of Table 3. For convenience, Panel

B of Table 3 includes the changes, ∆ log
(
wY
wZ

)
, implied by three estimates of the curvature

parameter, γ. The first estimate, 0.715 (0.015), is based on the standard CPT preference

elicitation tasks discussed in Section 4.1. For {p, q, 1− p− q}, the implied value of ∆ log
(
wY
wZ

)
is −0.23 (0.01) — i.e., a 23% reduction in the relative decision weight on Y as ranks change.

Predictions for the other probability vectors are even more extreme.32

Panel B of Figure 3 also displays the predicted values of k and k, based on our estimates of

the CPT parameters, α̂ = 0.941 (s.e. = 0.019) and γ̂ = 0.715 (0.015). With this parameteri-

zation, we obtain closed-form solutions for k and k based on equation (3), and derive standard

errors using the delta method. Figure 3 shows the predicted values along with 95% confidence
31 For {p, q, 1 − p − q} = {0.4, 0.3, 0.3}, the mean value of k is 4.31 (0.12), while the mean value of k is

4.34 (0.12). The difference, k − k = 0.04 (0.09), is not statistically different from zero χ2(1) = 0.18, p = 0.67.

The 95% confidence interval for
̂

∆log
(
wY

wZ

)
is [−0.03, 0.05], indicating that we can reject a decline in the ratio

wY /wZ more extreme than 3%. For {p, q, 1− p− q} = {0.1, 0.3, 0.6}, the mean value of k is 2.63 (0.08), while
the mean value of k is 2.56 (0.07). The difference, k − k = −0.07(0.06), is not statistically different from zero

χ2(1) = 1.70, p = 0.19. The 95% confidence interval for
̂

∆log
(
wY

wZ

)
is [−0.07, 0.01], indicating that we can

reject a decline in the ratio wY /wZ more extreme than 7%. While these statistics do not account for multiple
hypotheses, the joint test for equality of equalizing reductions across ranks is also not statistically distinguishable
from zero, χ2(1) = 4.50, p = 0.21. In Appendix Tables A3 and A5, we reproduce these analyses with individual
fixed effects and robust standard errors, and reach identical conclusions.

32 The implied value of ∆ log
(
wY

wZ

)
is −0.47 (0.01) for {p, q, 1− p− q} = {0.4, 0.3, 0.3}, and −0.35 (0.03) for

{p, q, 1− p− q} = {0.1, 0.3, 0.6}.
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intervals, which appear as dashed lines. Substantial discontinuities are readily apparent.

The contrast between our findings and the predictions of the conventionally calibrated CPT

model are notable. The calibrated curvature parameter for the probability weighting function

implies that decision weights, and hence equalizing reductions, should change substantially as

ranks change, but we find no evidence of rank dependence, and we can confidently rule out

even relatively small effects. For every probability vector we consider, the 95% confidence

interval for the actual value of ∆log(k), is concentrated near zero and does not overlap with

the corresponding interval for the predicted difference.33

We interpret the absence of rank-dependent probability weights in the final column of Table

3, Panel A, and the contrast with the degree of rank-dependence exhibited by the calibrated

CPT model, shown in the first column of Table 3, Panel B, as falsifying the hypothesis of rank

dependence. An alternative possibility is that the probability weighting function subjects use

when performing the equalizing reduction tasks may differ from the one they use for the cer-

tainty equivalent tasks, and may exhibit so little curvature that rank dependence is essentially

irrelevant.34 We now turn our attention to that alternative possibility, and demonstrate that it

is inconsistent with our data.
33With mean estimates and standard errors for predicted ∆log(wY /wZ) and actual ∆log(k) and assumptions

of normality for both, hypothesis tests for equality between predicted and actual rank dependence are easily
implemented via calculation of the following test statistic:

z =
̂∆log(wY /wZ)−∆log(k)√

s.e.( ̂∆log(wY /wZ))2 + s.e.(∆log(k))2
.

Under the null hypothesis of equality, the distribution of z is standard normal. For calibrations based on our
certainty equivalent tasks, we find z = 12.0, (p < 0.01), z = 13.9, (p < 0.01), and z = 9.7, (p < 0.01)
for {p, q, 1 − p − q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}, and {0.1, 0.3, 0.6}, respectively. For calibrations based on
our equalizing reduction tasks with X > Y , these statistics are z = 6.9, (p < 0.01), z = 6.8, (p < 0.01),
and z = 4.5, (p < 0.01); and for calibrations based on our equalizing reduction tasks with X < Y , they are
z = 8.8, (p < 0.01), z = 9.0, (p < 0.01), and z = 6.2, (p < 0.01). Applying a Bonferroni correction for multiple
hypotheses for these n = 9 tests requires a p-value below 0.01/9 = 0.001 or a z-score above 3.26 to retain the
interpretation of 1% statistical signifcance. As all test statistics lie above this value, they are clearly robust to
a multiple hypothesis correction.

34Under the maintained hypothesis of CPT, the estimates of ∆ log
(
wY

wZ

)
in the third column of Table 3,

Panel A imply the following values for the curvature parameter (γ) of the probability weighting function (along
with confidence intervals): for {p, q, 1 − p − q} = {0.6, 0.3, 0.1}, γ = 1.041 [0.987, 1.094]; for {p, q, 1 − p − q} =
{0.4, 0.3, 0.3}, γ = 1.006 [0.979, 1.033]; for {p, q, 1− p− q} = {0.1, 0.3, 0.6}, γ = 0.971 [0.928, 1.014].
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First observe that, with the sole exception of implying rank dependence where none exists,

the calibrated CPT model predicts choices in the equalizing reduction tasks with reasonable

accuracy. As long as payoffs respect the ranking Y > X > Z, the predictions track behav-

ior reasonably well, matching differences in levels of equalizing reductions across probability

vectors.35 Importantly, Figure 3 shows that– according to the calibrated CPT model – a rank-

altering change in X should have roughly the same effect on the equalizing reduction as moving

30% of the probability mass from the high to low outcome under the fixed ranking Y > X > Z.

Subjects respond strongly (and as predicted) to the latter change, but not at all to the former.

Second, we can obtain alternative estimates of the curvature parameter for the probability

weighting function directly from responses to variations in probabilities in the equalizing reduc-

tion tasks, rather than in the certainty equivalent tasks. In order to focus just on responses to

changes in probabilities rather than on responses to changes in ranks, we generate two alterna-

tive estimates of γ, one for choices with X > Y > Z, the other for choices with Y > X > Z.36

Those estimates appear in the second and third columns of Table 3, Panel B, respectively. We

estimate γ = 0.830 (0.022) in the first instance and γ = 0.784 (0.020) in the second. As shown

in the table, these estimates of the curvature parameter continue to imply percentage reductions

in the relative decision weight for outcome Y that far exceed the observed percentage declines

in the measured equalizing reductions. Accordingly, under the maintained hypothesis of rank

dependence, the same decisions either imply negligible curvature of the probability weighting
35Given that the calibrated CPT model is nearly linear in payoffs, the difference between its predictions and

those of a risk-neutral objective function are primarily attributable to probability weighting.
36 Under the maintained hypothesis of CPT, for the case of X > Y > Z,

k = Z − u−1
(
u(Z)−

[
π(p+ q)− π(p)

1− π(p+ q)

]
[u(Y +m)− u(Y )]

)
,

while for Y > X > Z

k = Z − u−1
(
u(Z)−

[
π(q)

1− π(p+ q)

]
[u(Y +m)− u(Y )]

)
.

As in our certainty equivalents estimation, we assume these equalities are satisfied up to an additive error term
for the midpoint of k defined by experimental choice, and use the functional forms of Tversky and Kahneman
(1992): u(x) = xα, π(p) = pγ/(pγ + (1− p)γ)1/γ . We then estimate the parameters γ̂ and α̂ by minimizing the
sum of squared residuals for the corresponding non-linear regression equations for k and k. For X > Y > Z,
we estimate α̂ = 1.024, (clustered s.e. = 0.082) and γ̂ = 0.830 (0.022). For Y > X > Z, we estimate
α̂ = 0.911 (0.063), and γ̂ = 0.784 (0.020).
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function, or substantial curvature, depending on whether one examines changes in ranks or

changes in probabilities.

To underscore the fact that the CPT model cannot simultaneously account for the responses

to probabilities and the absence of responses to ranks in the equalizing reduction tasks, we use

the data for the equalizing reduction tasks (and only that data) to estimate a model of the

form

k = δkC(α, γ) + (1− δ)kP (α, γ) + ε, (5)

where k is the midpoint of the equalizing reduction interval defined by experimental choice,

kC(α, γ) is the equalizing reduction implied by a CPT model with parameters (α, γ), kP is

the value of implied by an otherwise identical PT model (without rank dependence), and ε

is a disturbance term.37 Notice that the parameter δ governs the relative weights placed on

the CPT and PT predictions. Estimating this equation with non-linear least squares (and

clustering errors at the subject level), we obtain: α̂ = 0.684 (0.059), γ̂ = 0.793 (0.019), and δ̂ =

−0.105 (0.094). Notice that the probability weighting function exhibits substantial curvature.

As a result, δ must be close to zero to account for the absence of noticeable differences between

k and k. Indeed, the point estimate of the weight on the CPT model is negative, and we can

reject the hypothesis that it is greater than 8 percent (0.08) with 95 percent confidence.

In the following subsections, we examine various potential explanations for our results other

than a failure of rank dependence, including the possibilities that our findings may reflect

unrepresentative subjects (section 4.3), order effects (section 4.4), “cancellation" of common

outcomes (section 4.5), and inattention to the parameters of the decision tasks (section 4.6).

We present additional evidence that rules out each of these possibilities. In Appendix G,

we provide supplemental analyses that examine alternative formulations for CPT using the

functional forms of Prelec (1998), explore behavior in tasks where X = $25 (which implies that

37The formulation of kC and kC are noted in footnote 35, and

kP = kP = Z − u−1
(
u(Z)−

[
π(q)

π(1− p− q)

]
[u(Y +m)− u(Y )]

)
.
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adding m = $5 to Y = $24 changes the ranking), and include potentially confused subjects

who switch more than once in a given task. These exercises all yield the same conclusion: rank

dependence in risky choice and the predictions of CPT are soundly rejected.

4.3 Subject-level Analysis

Next we address the possibility that our findings might reflect the behavior of unrepresentative

subjects. Each subject in our experiment provides us with data on equalizing reductions and

certainty equivalents. Accordingly, we can replicate our analysis at the subject level. For each

subject and each probability vector, we calculate the average k and k for values of X < Y

and X > Y + m, respectively, and compute the actual change, ∆log(k).38 Additionally, we

use each subject’s certainty equivalent data to estimate their CPT risk preference parameters

based on equation (4), and then use the curvature parameter, γ, to predict the change in the

log of relative decision weights — ∆log(wY /wZ) = log (π(p+ q)− π(p)) − log (π(q)) — and,

hence, in equalizing reductions, for each probability vector.

Panel A of Figure 4 presents the distributions of the predicted values of ∆log(wY /wZ) and

the actual values of ∆log(k) for each of the three probability vectors, along with their rela-

tionship for our 143 subjects. For {p, q, 1 − p − q} = {0.6, 0.3, 0.1}, the median actual value

for ∆log(k) is 0 and the interquartile range is [−0.05, 0.12]. Results for the other probability

vectors are similar.39 Thus, the changes in equalizing reductions for our subjects, and hence

the changes in their relative decision weights, are concentrated within a small band around

zero. Though the equalizing reductions exhibit almost no rank dependence, substantial rank

dependence is predicted according to the estimated subject-level CPT models; see also Fig-

ure 4, Panel A.40 Panel B shows the subject-level relationship between predicted and actual
38This calculation is based on the midpoints of the intervals for k or k implied by each subject’s switch point.
39For {p, q, 1 − p − q} = {0.4, 0.3, 0.3}, the median actual value for ∆log(k) is 0 and the interquartile range

is [−0.10, 0.10] while for {p, q, 1 − p − q} = {0.1, 0.3, 0.6}, the median actual value for ∆log(k) is 0 and the
interquartile range is [−0.11, 0.10].

40For {p, q, 1− p− q} = {0.6, 0.3, 0.1}, the median predicted value for ∆log(wY /wZ) is -0.17, for {p, q, 1− p−
q} = {0.4, 0.3, 0.3}, it is -0.33, and for {p, q, 1 − p − q} = {0.1, 0.3, 0.6}, it is -0.23. Wilcoxon signed rank tests
for equivalent distributions across predicted and actual rank dependence yield the following test statistics: z =
7.00, (p < 0.01), z = 8.77, (p < 0.01), and z = 7.54, (p < 0.01) for {p, q, 1−p−q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3},
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Figure 4: Individual Results
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Notes : Mean actual value of ∆log(k) calculated for each individual in each probability set.
Predicted value of ∆log(wY /wZ) calculated for each individual based on equation (3) for CPT
decisionmaker with parameters estimated from each individual’s certainty equivalent responses.

rank dependence. For every probability vector, the correlation between the predicted value,

∆log(wY /wZ), and the actual value, ∆log(k), is indistinguishable from zero.41 We obtain sim-

ilar results when we use subject-level estimates of the curvature parameter for the probability

weighting function based on responses to variations in probabilities for the equalizing reduction

tasks rather than for the certainty equivalent tasks.42

and {0.1, 0.3, 0.6}, respectively.
41 Correlations between predicted and actual values are ρ = 0.01, (p = 0.86), ρ = 0.06, (p = 0.46), and

ρ = −0.03, (p = 0.69) for {p, q, 1− p− q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}, and {0.1, 0.3, 0.6}, respectively.
42Unlike our certainty equivalent estimates, where predictions for rank dependence can be made for every

subject, estimates from equalizing reductions do not reliably converge within 200 iterations for every subject.
For X < Y , predictions for rank dependence can be made for 133 of 143 subjects, while for X > Y , predictions
can be made for 137 subjects. Predictions of ∆log(wY /wZ) can be made for all three methodologies for 130
subjects. For 1 of these subjects one prediction of ∆log(wY /wZ) > 10. For the remaining 129 subjects, the
cross-subject correlations between the measured ∆log(k) and predicted ∆log(wY /wZ) are 0.02 when inferring γ
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Our subject-level results provide striking evidence against CPT’s assumption of rank-

dependent probability weighting. The majority of subjects exhibit no evidence of quantitatively

consequential rank dependence as ranks change from X > Y to X < Y . Further, the individ-

ualized CPT models predict sizable percentage changes in relative weights for many subjects,

and those predictions bear no relation to the actual magnitudes. Plainly, our main findings are

not driven by a few unrepresentative subjects.

4.4 Order Effects

Our main findings exploit within-subject variation in payoff rank. If a subject’s early responses

in the tasks used to elicit equalizing reductions somehow anchor their later responses, that

approach could obscure rank dependence. We note, however, that responses often change

considerably at the individual level from one block of tasks to the next. For example, between

the first and second block of tasks, 59% of individual responses differ and 37% of responses differ

by more than 25 percent.43 Order effects certainly do not appear to dampen within-subject

responses to changes in the probability vector, hence it is hard to see why they should do so

for rank-order effects.

To address any residual concerns about anchoring, we replicate our analysis using only

the first task block for each subject. Recall that payoff rank is fixed within each block. It

from certainty equivalent tasks, 0.13 when inferring from equalizing reduction tasks with X < Y and 0.04 when
inferring from equalizing reduction tasks with X > Y . The cross-subject correlations between predicted values
of ∆log(wY /wZ) based on certainty equivalent tasks, and based on equalizing reduction tasks with X < Y is
0.46; for equalizing reduction tasks with X > Y , the correlation is 0.42. The cross-subject correlation between
predicted values of ∆log(wY /wZ) based on equalizing reduction tasks with X < Y and those with X > Y is
0.49.

43The 143 subjects make three decisions in each task block yielding 429 potential differences across the first
and second task blocks. Of these, 175 responses (41%) exhibit no change, 100 responses (23%) increase, and 154
(36%) decrease. The order of the first two task blocks has no measurable relationship with changes. Forty-four
subjects began with X < Y first and then proceeded to X > Y , giving 132 potential differences. Of these, 57
responses (43%) exhibit no change, 34 responses (26%) increase, and 41 (31%) decrease. Forty-one subjects
began with X > Y first and then proceeded to X < Y , giving 123 potential differences. Of these, 50 responses
(41%) exhibit no change, 33 responses (27%) increase, and 40 (33%) decrease. Under the estimated CPT model,
one would expect more frequent decreases for subjects with X < Y first and more frequent increases for subjects
with X > Y first. The differences in response across the first two blocks does not seem localized to a limited
number of subjects with only 28 of 143 subjects (20%) exhibiting no change across any of the three decisions,
and 45 (31%) exhibiting a change in all three.
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follows that, with this alternative approach, we identify possible rank-dependence entirely from

between-subject variation using responses that are untainted by anchoring. For such between-

subjects analysis, we rely only on the variation in the ordering of tasks across sessions. To

account for selection on observable characteristics, we additionally include measures of gender,

age, and cognitive ability from a post-study questionnaire and each subject’s average certainty

equivalent in their binary lottery tasks to control for the level of risk aversion.44

Table 4 presents between-subjects results based on the first task blocks with and without the

controls noted above.45 We see a hint of rank dependence, particularly for {p, q, 1 − p − q} =

{0.6, 0.3, 0.1}, without controls in Panel A. With controls in Panel B we find essentially no

differences between k and k. In all cases, the degree of observed rank dependence falls far short

of the various CPT predictions from Table 3, Panel B.

Can one construe the small differences between k and k without controls as limited evidence

of rank-dependent probability weighting and CPT? In our view, any such inference would be

unwarranted. With 143 subjects in total, the subsamples that first faced X < Y and X > Y

are of modest size, and consequently not perfectly matched. Indeed, we find some hints of

selection across these subsamples in observable characteristics such as gender, cognitive ability,

and average risk aversion, all of which correlate highly with equalizing reductions (see Appendix

Table A3, Columns (5) and (6) for detail).46 Absent controls for this potential selection, the

differences in characteristics inflate k relative to k, spuriously producing the appearance of rank

dependence.47

44Cognitive ability is measured with the three question Cognitive Reflection Test introduced and validated in
Frederick (2005).

45 See Appendix Table A3, columns (3) and (5) for further detail on these regressions. Of the 143 subjects
in the primary sample, 21 had the X = 19 block first, 23 had the X = 21 block first, 21 had the X = 23 block
first, 22 had the X = 30 block first, 19 had the X = 32 block first, and 37 had the X = 34 block first.

46Subjects who first faced X < Y (X > Y ) are 51% (45%) male, with Cognitive Reflection Test scores of 2.28
(2.02), and average certainty equivalents of 11.96 (11.35). Of these comparisons, the difference in risk aversion
has a two-sided t-test p-value of 0.05 and the difference in cognitive ability has a two-sided p-value of 0.15. An
omnibus test of selection from the regression of assignment to X < Y first on the controls of Table 4, Panel B
yields F (5, 134) = 1.60, p = 0.17), suggestive of the potential for selection on observables. These differences
are of no consequence for the main portion of our analysis, which relies on within-subject variation, but could
be influencing the results of Table 4, Panel A.

47 In Appendix Table A6, we also present a specification that includes controls for gender, age and cognitive
ability, but omits our risk aversion proxy. The latter specification addresses any concerns that the average
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Table 4: Equalizing Reductions Between Subjects
Panel A: First Task Block (without Controls) Panel B: First Task Block (with Controls)

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

)
k k

̂
∆log

(
wY
wZ

)
[95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 9.81 (0.65) 8.71 (0.56) -0.12 (0.09) 9.77 (0.60) 9.13 (0.56) -0.07 (0.09)
[-0.30,0.06] [-0.24,0.10]

{0.4, 0.3, 0.3} 4.78 (0.19) 4.41 (0.19) -0.08 (0.06) 4.65 (0.22) 4.61 (0.21) -0.01 (0.07)
[-0.20,0.04] [-0.14,0.12]

{0.1, 0.3, 0.6} 3.16 (0.16) 2.88 (0.12) -0.09 (0.07) 3.01 (0.20) 3.07 (0.16) 0.02 (0.09)
[-0.22,0.04] [-0.15,0.19]

Notes: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimental
response on indicators for probability vector interacted with indicator for whether X > Y . Estimated
change in relative decision weights, ̂∆log (wY /wZ), calculated as ∆log(k). Standard errors clustered at
individual level and calculated using the delta method, in parentheses. See Appendix Tables A3, columns
(3) and (5) and Table A8 for detail. Panel A: No controls; 143 total subjects. Panel B: controls include age,
gender, Cognitive Reflection Task score, and mean certainty equivalent from seven certainty equivalents
tasks; 135 total subjects.

4.5 Rank Dependence and Cancelation

Our experiment could also obscure rank dependence if decisionmakers adopt the heuristic prac-

tice of “canceling” common elements across available lotteries before evaluating them (see Wu,

1994; Weber and Kirsner, 1997). Specifically, subjects may cancel the probability p chance of

winning X common to both L and Le when determining their equalizing reduction. In that

case, they would ignore the changes in payoff ranks that occur when the value of X passes

through either Y or Z.

To determine whether our results are attributable to cancelation, we designed a modified

equalizing reduction task. In this task, we add m to X while reducing Y and Z by k. That

is, the modified equalizing reduction identifies the value of k that makes a subject indifferent

between the lottery L = ({p, q, 1−p−q}, {X, Y, Z}) and the lottery Le = ({p, q, 1−p−q}, {X+

m,Y − k, Z − k}). Note that L and Le share no common events with identical probabilities

certainty equivalent in binary lottery tasks might be sensitive to the types of three-outcome lottery tasks
(X < Y versus X > Y ) the subject encounters first, a possibility we regard as remote. Results for that
specification are similar to those reported in Table 4, Panel B.
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and payoffs, so there is nothing for the decisionmaker to cancel.

We can use these modified equalizing reductions as the basis for an alternative test of CPT

probability weighting. Suppose in particular that we measure one equalizing reduction, k, for

a lottery with X > Y > Z, another, k′, for a lottery with Y − k > X ′ + m > X ′ > Z, and a

third, k′′, for a lottery with Z − k′′ > X ′′ +m. In that case, CPT implies:

m

k
≈ π(p+ q)− π(p)

π(p)

du/dY

du/dX
+

1− π(p+ q)

π(p)

du/dZ

du/dX
, (6)

m

k′
≈ π(q)

π(p+ q)− π(q)

du/dY

du/dX ′
+

1− π(p+ q)

π(p+ q)− π(q)

du/dZ

du/dX ′
, (7)

and
m

k′′
≈ π(q)

1− π(1− p)
du/dY

du/dX ′′
+
π(1− p)− π(q)

1− π(1− p)
du/dZ

du/dX ′′
. (8)

The differences between k, k′, and k′′ will depend on rank dependent probability weights for

X,X ′, X ′′ and Y along with marginal utilities for X,X ′, X ′′, Y and Z. To build intuition, we

will start with the case where utility is linear (so that marginal utility is fixed), while probability

weights potentially vary. For small m, CPT predicts a discontinuous change in the equalizing

reduction as the value of X passes through Y :

log(k)− log(k′) ≈ log

(
1− (π(p+ q)− π(q))

π(p+ q)− π(q)

)
− log

(
1− π(p)

π(p)

)
.

As long as p is not too large (so that π(p) > p), the concavity of the probability weighting curve

for low probabilities implies that π(p) > π(p+q)−π(q). It then follows that log(k)−log(k′) > 0,

which means that the equalizing reduction decreases discontinuously as X passes below Y .

Likewise, for small m, CPT also implies a discontinuous change in the equalizing reduction as

the value of X passes through Z:

log(k′)− log(k′′) ≈ log

(
π(1− p)

1− π(1− p)

)
− log

(
1− (π(p+ q)− π(q))

π(p+ q)− π(q)

)
.
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As long as p is not too large (so that π(1 − p) < 1 − p), the convexity of the probability

weighting curve for large probabilities implies 1 − π(1 − p) > π(p + q) − π(q). It then follows

that log(k′)− log(k′′) < 0, which means that the equalizing reduction increases discontinuously

as X passes below Z.

The key implication of the preceding analysis is that, under CPT, variations in X should

produce discontinuities in the modified equalizing reduction of opposite signs depending on

whether the value of X passes through Y (the high payoff) or Z (the low payoff). Our strategy

is to test this distinctive implication. The following calculations provide an illustration using

the parameterized probability weighting function of Tversky and Kahneman (1992). For p =

0.4, q = 0.3, we have π(0.4) = 0.37, π(0.7) − π(0.3) = 0.22 and 1 − π(1 − 0.4) = 0.53,

which implies opposing discontinuities: log(k)− log(k′) = 0.76, and log(k′)− log(k′′) = −1.40.

Similarly for p = 0.6, q = 0.2, we have π(0.6) = 0.47, π(0.8) − π(0.2) = 0.35 and 1 − π(1 −

0.6) = 0.63, which likewise implies opposing discontinuities: log(k) − log(k′) = 0.53, and

log(k′)− log(k′′) = −1.17.

The preceding discussion assumes utility is linear. In Appendix E.2, we generalize our

analysis to the case of concave utility, proving that the X—k schedule continues to exhibit two

discontinuities of opposite signs (see Proposition 3). In addition, variations in X that leave

ranks unaffected can change the modified equalizing reduction. From equations (6) through

(8), it is apparent that k, k′, and k′′ are proportional to, respectively, du/dX, du/dX ′, and

du/dX ′′. Assuming concavity, these marginal utilities decline as the payoff rises, which imparts

a downward slope to the X—k schedule within each of the three regimes (the "curvature

effect"). For instance, with the standard parametrization of utility, u(X) = Xα, we have

log(k) = K − (1 − α)log(X) (for some constant K), along with similar expressions for k′ and

k′′. Under EUT and PT, we would expect to see a continuous, downward-sloping curve of this

form. Notice that, for discrete changes in the value of X, the rank-dependence effect reinforces

the curvature effect when X crosses Z, but opposes it when X crosses Y . Accordingly, if the

rank-dependence effect is important, we should observe substantially different changes in the
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modified equalizing reductions in these two cases.

We implemented our supplemental design with 84 Stanford subjects in the Fall of 2017 and

Winter of 2018. Each subject completed 18 modified equalizing reduction tasks. In each task

subjects made a series of decisions between two lotteries. We examined two probability vectors,

{p, q, 1 − p − q} = {0.4, 0.3, 0.3} and {p, q, 1 − p − q} = {0.6, 0.2, 0.2}, corresponding to the

examples provided above. In each task Y = $36, Z = $18, m = $4 and k ranged from $0

to $9.75 in $0.25 increments. We used nine values of X/X ′/X ′′ for each probability vector,

{2, 3, 4, 20, 21, 22, 38, 39, 40}; notice that X increased by a factor of 20 across all tasks. We vary

X over this wide range to ensure that the differences are salient to the subjects, and we verify

this salience by demonstrating below that subjects respond to the variation in X precisely as

one would predict in light of the utility function’s curvature. Appendix Figure A4 provides a

sample task.48 As before, subjects also completed the seven Prospect Theory elicitation tasks of

Tversky and Kahneman (1992) which we used to generate benchmark predictions for behavior in

the new environment. Seventy-two of 84 subjects (85.7%) completed all tasks without multiple

switching.49

Figure 5 presents results from this supplemental experiment. As before, the elicited certainty

equivalents reproduce the S -shaped pattern commonly associated with probability weighting.

Based on these data, we estimate α̂ = 0.982 (clustered s.e. = 0.024) and γ̂ = 0.766 (0.021),

and reject at all conventional levels the null hypothesis of a linear weighting function, γ = 1,

F1,71 = 121.9, (p < 0.01). Using these parameters, we predict modified equalizing reductions.50

Panel B shows the predicted pattern for each probability vector. The predicted X−k schedule

exhibits striking non-monotonicity.51 Additionally, the curvature effect discussed above leads to
48Note that subjects had no opportunity to choose values of k that would have changed payoff ranks within

any task.
49Incorporating multiple switching subjects by removing only their multiple switching observations yields

virtually identical results.
50For these predictions we assume a reference point of r = 0 and calculate the value k that solves for

indifference between L = ({p, q, 1− p− q}, {X,Y, Z}) and Le = ({p, q, 1− p− q}, {X +m,Y − k, Z − k}) at the
estimated CPT parameters.

51The X − k schedule does not feature sharp discontinuities because of our use of non-infinitesimal values of
m and k. There exist two transitional regions where either: 1) Z > X and Z − k < X + m, or 2) Y > X and
Y − k < X +m.
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slightly decreasing values of k within the regions X > Y > Z, Y > X ′ > Z, and Y > X ′′ > Z.

In contrast to the predictions based on the calibrated CPT model, the average value of the

actual modified equalizing reduction shows no hint of non-monotonicity in X. Though subjects

respond strongly to differences in probabilities, there is no indication that payoff ranks matter,

either as CPT predicts or otherwise. The observed declines in equalizing reductions are smooth

and monotonic, and the overall patterns are qualitatively consistent with the curvature effect

noted above. At the individual level, only 4 of 72 subjects exhibit the non-monotonic pattern

predicted by CPT for both probability vectors.52

As in our original design, the failure of rank dependence in our modified equalizing re-

duction tasks is not a consequence of the new design generating a flat probability weighting

function.53 Estimating again equation (5) with standard errors clustered at the individual level

yields α̂ = 0.948 (0.017), γ̂ = 0.809 (0.025), and δ̂ = −0.039 (0.062). The probability weighting

function continues to exhibit substantial curvature, but the rank-dependent CPT version re-

ceives approximately zero weight. Interestingly, the estimated probability weighting from this

specification is quite similar to that obtained from certainty equivalents for the same subjects,

which lends further support to the claim that the modified equalizing reduction design does

not, itself, dramatically alter the shape of probability weighting.

Figure 5 confirms that the absence of evidence favoring rank dependence in our main ex-

periment is not an artifact of cancelation. Subjects attend to payoff values and probability

vectors when determining their equalizing reductions, but there is no indication that the rank

of outcomes per se influences behavior.
52For the purpose of this calculation, we treat the subject as conforming to the predicted pattern for a

particular probability vector if their average values of k and k′′ are at least 25 cents greater than their average
value of k′.

53Within each region, we estimate considerable probability weighting from the variation in probabilities. Using
the functional forms of Kahneman and Tversky (1992) and an additive disturbance, we estimate equations (6),
(7), and (8) using non-linear least squares with standard errors clustered at the individual level. The estimates
are γ̂ = 0.785 (0.039), γ̂ = 0.862 (0.024), and γ̂ = 0.741 (0.043) for X > Y > Z, Y > X ′ > Z, and Y > Z > X ′′,
respectively.
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Figure 5: Certainty Equivalents and Modified Equalizing Reductions
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Notes: Panel A: Mean behavior for C estimated from interval regression (Stewart, 1983) of experimental
response on indicators for probability vectors. Standard errors clustered at individual level to provide 95%
confidence interval. Dashed line corresponds to predicted CPT behavior with α̂ = 0.982 (s.e. = 0.024) and
γ̂ = 0.766 (0.021); standard errors clustered at individual level. Panel B: Mean behavior for modified equalizing
reduction estimated from interval regression of experimental response on indicators for probability vectors
interacted with indicators for value of X. Standard errors clustered at individual level to provide 95% confidence
interval. Dashed line corresponds to predicted equalizing reductions for CPT decisionmaker with risk preference
parameters α̂ = 0.982 and γ̂ = 0.766.

4.6 Random Choice

Finally, it is important to rule out the possibility that we detect no rank dependence because

our subjects ignore the parameters of their decision tasks (either in general, or X in particular)

and make their choices more or less randomly. This hypothesis is inconsistent with the following

findings.
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First, as we have noted, equalizing reductions are highly responsive to variations in the

probability vector. Shifting 20% of the probability mass from the high-payoff outcome to the

low-payoff outcome, thereby reducing p from 0.6 to 0.4, cuts the average equalizing reduction in

half (see Table 3 and Figure 3, Panel B). Moving another 30% of the probability mass from the

high payoff to the low payoff, thereby reducing p from 0.4 to 0.1, halves the equalizing reduction

again. According to our parameterized CPT models, the induced changes in payoff ranks should

be just as consequential, in that they ought to induce similar changes in probability weights,

yet they have no effects. More generally, the parameterized CPT model generally predicts

behavior with reasonable accuracy out of sample with the exception of variations involving

rank dependence.

Second, our analysis of subject-level results (section 4.3) shows that estimates of the per-

centage change in k induced by a change in payoff ranks cluster tightly around zero. In other

words, as a general matter, changing payoff ranks induces very little change in the equalizing

reduction, which means we rarely observe subjects who exhibit economically meaningful rank-

dependence. In contrast, if choices were truly random, we would often observe economically

meaningful rank dependence simply by chance: the distributions for the change in equaliz-

ing reduction resulting from a change in ranks would still be centered around zero, but they

would be far more diffuse (see Appendix E for simulations). Thus, the consistent absence of

rank-dependence, documented in Panel A of Figure 4, rejects the random choice hypothesis.

Third, our analysis of the cancelation hypothesis (section 4.5) shows clearly that equalizing

reductions respond strongly to changes in X precisely in the way theory predicts they should

based on utility curvature. (See in particular Panel B of Figure 5, in which the relationships

between actual equalizing reductions and X are robustly downward-sloping.) In light of these

results, one cannot plausibly claim that our experiments induce subjects to ignore variations

in the value of X.
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5 Event Splitting and Violations of Dominance

Our analysis casts doubt on the empirical validity of the assumption about rank-dependent

probability weighting that lies at the core of CPT. What type of model should behavioral

economists consider in its place? One possibility is that PT is correct, in which case people

should actually exhibit the implied violations of first-order stochastic dominance that motivated

the formulation of CPT in the first place. After we obtained our main results, we fielded an

additional treatment designed to investigate that hypothesis.

We conducted the follow-up experiment at Stanford University and UC San Diego during the

Spring and Fall of 2015. A total of 214 subjects completed the experiment, and 182 exhibited

no instances of multiple switching.54 We elicited certainty equivalents first for binary lotteries,

such as a 40% chance of receiving $30 and 60% chance or receiving $20. In one task the lower

payoff was more likely, and in another it was less likely. Then we elicited certainty equivalents

for related “split-event” lotteries, which we created by splitting the more likely event in each of

the binary lotteries. For the preceding example, a “split-event” lottery would take the following

form: a 40% chance of receiving $30, a 30% chance of receiving $20 + ε, and a 30% chance of

receiving $20 − ε. Across tasks, ε took on the following values: $0.50, $1, $2, and $3. Note

that this split-event design is also immune to critiques involving the cancelation hypothesis,

as subjects choose between lotteries and sure amounts rather than between two lotteries with

common elements. Subjects also completed a series of seven Prospect Theory elicitation tasks

involving binary lotteries, as before.

Most empirical parameterizations of PT imply that a 60% probability receives substantially

less than twice the weight of a 30% probability. Splitting an event occurring with 60% prob-

ability into two similar events, each occurring with 30% probability, should therefore increase

certainty equivalents dramatically. It follows that PT predicts a sharp downward discontinu-

ity at ε = 0. As noted in Section 1, such discontinuities imply violations of dominance. In
54We recruited 126 at UC San Diego and 88 at Stanford. Those who exhibited no instances of multiple

switching include 99 subjects from UC San Diego and 83 from Stanford. Subjects from the two locations made
qualitatively similar choices.
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contrast, CPT predicts that responses vary smoothly with ε and thereby avoid dominance vio-

lations. Importantly, under CPT the nature of the outcome that is split influences the direction

of response. Splitting a good event occurring with 60% probability into two similar events with

30% probability creates a lottery with greater proportionate weight on better outcomes, increas-

ing valuations.55 Splitting a bad event occurring with 60% probability into two similar events

with 30% probability creates a lottery with greater proportionate weight on worse outcomes,

decreasing valuations.56 Hence, CPT can generate an asymmetric prediction in this setting.

This prediction differs in turn from that of EUT, which predicts weakly decreasing (increasing)

valuations for all types of split events provided utility is concave (convex).57

Figure 6 presents our findings. As shown in Panel A, the Prospect Theory elicitation tasks

exhibit the hallmark pattern of probability weighting. In Panel B, we use the fitted probability

weighting to predict the effect of event-splitting on certainty equivalents.58 The predicted

certainty equivalents vary smoothly but asymmetrically with ε under CPT, and feature a sharp

increase at zero under PT. In contrast, the means of the actual certainty equivalents both

decrease sharply when we split the low-outcome event, and then level off. Specifically, moving
55Consider a 60% probability of $30, 40% probability of $20. Split the 60% of $30 to two 30% probabilities

of $30 +/− ε. The split lottery will yield higher utility if

π(0.3)u(30 + ε|r) + [π(0.6)− π(0.3)]u(30− ε|r) + [1− π(0.6)]u(20|r) > π(0.6)u(30|r) + [1− π(0.6)]u(20|r).

Under the approximation u(30 + ε|r)− u(30|r) = u′(30|r)ε and u(30|r)− u(30− ε|r) = u′(30|r)ε , this reduces
to

2π(0.3) > π(0.6),

a property easily held by S -shaped weighting functions in the literature.
56Consider a 60% probability of $20, 40% probability of $30. Split the 60% of $20 to two 30% probabilities

of $20 +/− ε. The split lottery will yield lower utility if

π(0.4)u(30|r) + [π(0.7)− π(0.4)]u(20 + ε|r) + [1− π(0.7)]u(20− ε|r) < π(0.4)u(30|r) + [1− π(0.4)]u(20|r).

Under the approximation u(20 + ε|r)− u(20|r) = u′(20|r)ε and u(20|r)− u(20− ε|r) = u′(20|r)ε , this reduces
to

2π(0.7) < 1 + π(0.4),

a property easily held by S -shaped weighting functions in the literature.
57Another valuable aspect of this design is that certainty equivalents are used for elicitation of both the CPT

parameters and split-event valuations. Hence, any elicitation issues related to certainty effects plausibly effect
both elements of the design.

58Using the same estimation strategy as before, we obtain the following parameter values: α̂ = 0.975 (clustered
s.e. = 0.019) and γ̂ = 0.671 (0.013).
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from ε = 0 to ε = 0.5 reduces the average certainty equivalent by $0.47 (clusted s.e. = 0.11),

(z = 4.16, p < 0.01).59 We observe a qualitatively similar though somewhat muted pattern

when we split the high-outcome event.60

Figure 6: Certainty Equivalents and Split Probabilities
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Notes: Panel A: Average certainty equivalent, C, estimated from an interval regression (Stewart, 1983) of
elicited certainty equivalents on the probability of winning $25. Confidence intervals based on standard errors
clustered at the subject level. Dashed line corresponds to CPT predictions with α̂ = 0.975 (s.e. = 0.019) and
γ̂ = 0.671 (0.013); standard errors clustered at individual level. Panel B: Average certainty equivalent, C,
estimated from interval regressions of elicited certainty equivalents on the value of ε. Confidence intervals based
on standard errors clustered at subject level. For ε = 0, separate averages reported based on presentation style
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The findings in Panel B of Figure 6 are inconsistent with PT, CPT, and EUT, and therefore

call for an alternative explanation. A viable theory must account simultaneously for all three
59Test statistics are derived from interval regressions (Stewart, 1983) of certainty equivalents on indicators

for ε. Standard errors are clustered at the subject level.
60The apparent distaste for splitting an event, which turns a binary lottery into a trinary one, is not an artifact

of differences in presentation. As shown in Figure 6, certainty equivalents are essentially the same regardless of
whether we present a binary lottery as a 60%-40% gamble, or as a 30%-30%-40% gamble with identical payoffs
for the first two events. Recall that we employed a single presentation of binary lotteries for each subject, so
this finding reflects between-subject comparisons.
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patterns discussed in this study: (1) the inverse S-shaped certainty equivalent profile, (2)

the absence of rank-dependence in equalizing reductions, and (3) the sharp drop in certainty

equivalents that results from splitting an event. EU is inconsistent with (1) and (3), while CPT

is inconsistent with (2) and (3), and PT is inconsistent with (3). Alternatives to CPT that

likewise incorporate rank-dependent probability weighting are also rejected.

One possibility is to reformulate PT probability weighting in terms of normalized weights

– that is, π(pk)
π(p1)+...+π(pK)

rather than simply π(pk). That model accounts for the downward

discontinuity observed when splitting the low-payoff event, but implies an upward discontinuity

when splitting the high-payoff event, which we do not observe. It also precludes the theory from

accounting for the well-known certainty effect, which Allais famously described as a “preference

for security in the neighborhood of certainty” (Allais, 2008), for which there is considerable

evidence (see, e.g., Camerer, 1992; Harless and Camerer, 1994).

A second and more promising possibility is that the observed behavior reflects a combination

of standard PT and a form of complexity aversion: people may prefer lotteries with fewer

outcomes because they are easier to understand.61 One can think of the certainty effect as a

special case of this more general phenomenon. Under this hypothesis, sufficiently small values

of ε lead subjects to see a lottery as binary rather than trinary, which discretely increases

their certainty equivalents. Because the PT probability-weighting effect works in the opposite

direction, the composite effect of reducing ε to zero can be positive or negative.

The aforementioned theory can in principle account for the somewhat different patterns

observed when we split the high-payoff and low-payoff events. Higher stakes may reduce the

magnitude of the complexity effect by making subjects more willing to ponder their prospects.

Additionally, if subjects think of discrepancies between payoffs in relative terms, a higher payoff

will tend to enlarge the “neighborhood” within which they implicitly “merge” events yielding
61We are certainly not the first to discuss complexity as a driver of choice. A body of relevant work has

highlighted the effects of complexity and the number of decision options on choice (see, e.g., Iyengar and
Lepper, 2000; Iyengar, Jiang and Huberman, 2003; Iyengar and Kamenica, 2010; Sonsino and Mandelbaum,
2001). Additionally, Stodder (1997) draws links between complexity and Allais-style behavior with a theoretical
development based on costly calculation.
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similar outcomes. Both implications are consistent with the pattern observed in Panel B of

Figure 6, but we acknowledge that this is an ex post rationalization for a somewhat limited

collection of results rather than a bona fide and systematic test of the theory.

It is important to acknowledge that complexity effects, like PT, potentially give rise to

violations of dominance. However, the implied violations are explicable, because they involve

the selection of options that are easier to understand. To illustrate, in our experiment, splitting

a 60% chance of receiving $20 into a 30% chance of receiving $20.50 and a 30% chance of

receiving $19.50 decreases the certainty equivalent by $0.47. Assuming the addition of $0.50

to the $19.50 payoff increases the certainty equivalent by less than $0.47, we plainly have a

violation of dominance: the individual attaches more value to the original lottery than to the

revised split-event lottery even though the latter dominates the former.62

6 Conclusion

The main lessons of this study concern the empirical validity of rank-dependent probability

weighting, an assumption that lies at the core of Cumulative Prospect Theory (CPT). We

propose and implement an experimental test involving the elicitation of ‘equalizing reductions.’

CPT implies that these equalizing reductions should change discontinuously when a shift in

the payoff associated with an unrelated realization alters the ranking of payoffs, but should

otherwise remain constant. Indeed, we have shown that the percentage change in the equalizing

reduction precisely (and non-parametrically) measures the percentage change in the relative

decision weights applied to the outcomes. Based on standard parameterizations of CPT as well

as our own estimates for our subject pool, these discontinuities should be substantial. And yet

we find no evidence of the predicted pattern at either the aggregate or individual level, based on

both within and between-subjects analysis. Thus we conclude that an empirical foundation for

rank-dependent probability weighting is absent. We demonstrate that models with reference
62Viewing complexity as a rationale for indirect violations of dominance between binary and trinary lotteries

may also yield insights concerning other indirect dominance violations between binary and degenerate lotteries,
such as those documented by Gneezy, List and Wu (2006) and Andreoni and Sprenger (2011).
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distributions (notably Koszegi and Rabin, 2006, 2007) have similar implications, and hence we

falsify them as well.

Our findings pose serious challenges for future research on choice under uncertainty. If

CPT has taken the PT agenda in the wrong direction by promoting the assumption of rank-

dependent probability weighting (which several other recent theories embrace), how can we

reconcile PT with the presumed absence of implied dominance violations? As we demonstrate

in a supplemental experiment involving the effects of “event splitting,” those violations indeed

do not arise. Instead, we observe a different type of violation that is at odds not only with

PT, but also with CPT and EUT. An important direction for future research is to explore

tractable explanations for this finding that do not involve rank-dependence. One potential

explanation involves a general form of aversion to complexity. That notion rationalizes the

behavioral patterns discussed in this study, but whether it survives rigorous and systematic

testing remains to be seen.

A potential defense of rank dependence is that it is an assumption of convenience: it renders

PT more tractable for applications, but is rarely required to account for observed behavior,

including anomalies. This argument strikes us as odd. First, rank dependence undeniably plays

a critical role in a number of applications, and is responsible for generating particular results.

We noted several examples in footnote 7. If there is no empirical support for rank dependence,

then plainly those applications require reexamination. Second, in other applications, either (1)

it is known that rank dependence is inessential for generating the results of interest, or (2) it

is not known. Case (1) cannot arise unless the researcher has conducted the analysis without

assuming rank dependence and found it tractable, in which case there is no reason to employ

rank dependence as an assumption of convenience. In case (2), the possibility remains that the

result of interest may be an artifact of an assumption that lacks empirical validity.

Additional research is plainly required to test the robustness of our findings. In twenty-

five years since the publication of Tversky and Kahneman (1992), there have been numerous

studies of probability weighting for binary lotteries, but decidedly few systematic studies of
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rank dependence. Further work is needed to resolve the relevance of rank dependence in a

variety of experimental and naturally occurring contexts. If the findings of the current study

replicate, the profession should discard CPT and other models that employ or (as in the case

of Koszegi and Rabin’s theory of reference distributions) imply rank dependence.
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A Re-examination of Prior Prospect Theory Elicitation
Data

Experiments designed to elicit Prospect Theory parameters such as Tversky and Kahneman
(1992), Tversky and Fox (1995), and Gonzalez and Wu (1999) generally have subjects provide
certainty equivalents for binary lotteries. For example, Tversky and Kahneman (1992) elicit
certainty equivalents for a 10%, 50%, and 90% chance of receiving $50 with the alternative
being zero, and also elicit certainty equivalents for a 10%, 50%, and 90% chance of receiving
$50 with the alternative being $100.

One may wish to use such data to examine whether a given probability of receiving $50 is
weighted differently depending on its rank. Note that binary lotteries generally do not permit
meaningful tests of the core axioms of comonotonic and non-comonotonic independence in the
vein of Wu (1994) andWakker et al. (1994) because two binary lotteries with a common outcome
will have a dominance relation. Nonetheless, parametric estimates using binary lottery data
could, in principle, support an interpretation of rank dependence in probability weights.

For lotteries with a p-probability of receiving $50 and an alternative of $0, Tversky and
Kahneman (1992) report median certainty equivalents for p ∈ {0.1, 0.5, 0.9} of {$9, $21, $37}.
For lotteries with a p-probability of receiving $50 and an alternative of $100, Tversky and
Kahneman (1992) report median certainty equivalents for p ∈ {0.1, 0.5, 0.9} of {$83, $71, $59}.

Using these two data sets, one could estimate probability weighting and curvature under
the null hypothesis of rank-independence and then test that null. That is, for each lottery, one
assumes the indifference condition

C = u−1 (π(p)u(50) + π(1− p)u(X)) + ε

is satisfied, where X is either $0 or $100 depending on the lottery in question.63 Given the
two parameter model and non-linear estimation techniques described in section 4.1, with three
observations we can estimate both the probability weighting parameter of π(·), γ, and the utility
curvature parameter of u(·), α, with one degree of freedom in each series. Conducting such an
exercise using the reported median data for lotteries between $50 and $0, we find γ = 0.64 and
α = 0.98. Conducting such an exercise using the reported median data for lotteries between
$50 and $100, we find γ = 0.55 and α = 1.99. Strictly speaking, these point estimates are
inconsistent with the null hypothesis of rank independence. Consider a 90% chance of receiving
$50 when the alternative is $0. With γ = 0.64, π(0.9) = 0.74. Now consider a 90% chance
of receiving $50 when the alternative is $100. With γ = 0.55, π(0.9) = 0.66. Thus, the 90%
chance of $50 either receives 74% or 66% of the decision weight depending on whether the
alternative is higher or lower than $50. Setting aside the question of statistical precision, these
estimates are inconsistent with the null hypothesis of rank independence.64

Exercises such as the one described above suffer from a fundamental identification problem.
If one does not make specific functional assumptions about the shape of utility, the same data

63Note that this formulation is not equivalent to that of Kahneman and Tversky (1979) for binary lotteries,
which, by their equation 2, is rank dependent.

64This conclusion is not altered (although the direction changes) if one imposes a common value of α = 0.98
across the two data sets. The estimated γ for the alternative of $100 becomes 0.70 and a 90% chance of $50
receives a decision weight of 78%.
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are reconcilable with rank independence. Let wH(p) and wL(p) represent the weight applied to
a $50 payoff when it is higher than the alternative (i.e., $0) or lower than the alternative (i.e.,
$100), respectively. The certainty equivalents for such prospects are

wH(p)u(50) + wH(1− p)u(0) = u(c1)

wL(p)u(50) + wL(1− p)u(100) = u(c2).

The weighting function is rank-independent if wH(p) = wL(p) = w(p). In such a case

w(1− p) =
u(c2)− u(c1)

u(100)− u(0)
.

Appropriate choice of utility function u(·) can rationalize the behavior c1 and c2 with a rank-
independent weighting function. For example, focusing on Kahneman and Tversky’s data for
p = 0.9, rationalization requires

w(1− 0.9) =
u(59)− u(37)

u(100)− u(0)
.

Thus, to rationalize all the data from Tversky and Kahneman (1992) with a rank-independent
weighting function, one need only find u(·) and w(·) such that

w(0.1) =
u(59)− u(37)

u(100)− u(0)
,

w(0.5) =
u(71)− u(21)

u(100)− u(0)
,

w(0.9) =
u(83)− u(9)

u(100)− u(0)
.

This exercise demonstrates that interpreting data from binary lotteries as evidence for (or
against) rank dependence is problematic. Different assumptions about the shape of utility can
lead to qualitative differences in the extent of apparent rank dependence. One clear benefit
of our proposed test of rank dependence is that at its core it is free from functional form
assumptions both for the shape of utility and probability weighting.

B Examples of Confounds Affecting Existing Tests of Rank
Dependence

In section 2.3, we explained that existing tests of rank dependence are difficult to interpret
without a parametric model of noisy choice. In this appendix, we provide examples to illustrate
the conceptual points made in the text.

As noted in section 2.3, prior experiments in this domain have compared the frequencies
of Comonotonic Independence (CI) and Non-Comonotonic Independence NCI violations. One
first elicits a binary preference between two comonotonic lotteries, S and R, that share a payoff
event. One tests CI by replacing the shared payoff with another payoff that does not alter the
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ranking of outcomes, and eliciting preferences between the new options, S ′ and R′. One tests
NCI by replacing the shared payoff with another payoff that does alter the ranking of outcomes,
and eliciting preferences between the new options S ′′ and R′′. For example, in one series of
tasks, Wakker et al. (1994) consider the comonotonic lotteries

S = ({0.55, 0.25, 0.2}; {0.5, 6.0, 7.0}) , R = ({0.55, 0.25, 0.2}; {0.5, 4.5, 9.0}).

They replace the common 55% chance of 0.50 with 3.50 to construct

S ′ = ({0.55, 0.25, 0.2}; {3.5, 6.0, 7.0}) , R′ = ({0.55, 0.25, 0.2}; {3.5, 4.5, 9.0}),

which preserves the ranking. They replace the common 55% chance of 3.50 with 6.50 to
construct

S ′′ = ({0.55, 0.25, 0.2}; {6.5, 6.0, 7.0}) , R′′ = ({0.55, 0.25, 0.2}; {6.5, 4.5, 9.0}),

which alters the rankings. CPT requires a stable preference between (S,R) and (S ′, R′), an
implication of CI, but permits preference reversals between (S ′, R′) and (S ′′, R′′), a failure of
NCI.

Given that rank dependent models permit violations of NCI, but not CI, some have used
the relative frequency of CI and NCI violations in such environments as a measure of empirical
support for rank dependence. The predominant finding is that decisionmakers violate both CI
and NCI with high frequency, and at roughly the same rates.65 Some interpret this finding as
casting doubt on the validity of rank dependence.

Two features of these experiments preclude strong inference and may have limited the impact
of these works.

First, as explained in the text, the premise of the approach – that violation frequencies
are necessarily higher for invalid axioms – is flawed. For reasonable models of noisy choice,
noise-induced violations of independence are more likely to occur when the parameters of the
choice tasks place the decisionmaker closer to the point of indifference. Existing approaches
provide no way to ensure that the “distance from indifference” is held constant when comparing
CI and NCI violations. Accordingly, one has no way of knowing whether the frequency of CI
violations provides a valid benchmark for judging whether and to what extent the frequency of
NCI violations is elevated. It is potentially an apples-to-oranges comparison.66

The following simple example starkly illustrates the problems resulting from this first point.
We envision a CPT subject who obeys CI but not NCI. As noted above, we test CI by comparing
choices between lotteries S and R with choices between lotteries S ′ and R′. Assume the subject
has a “true” strict preference between S and R, and necessarily the same preference between
S ′ and R′, but because of (independent) noise chooses both S and S ′ with probability p. In

65Wakker et al. (1994) consider 12 CI tests and 6 NCI tests for each subject. The violation rates for both
CI and NCI are around 40%. Wu (1994) presents similar tests and finds CI violation rates of 47-50% and NCI
violation rates of 38-50%.

66To make formal comparisons, Wakker et al. (1994) explicitly assume that noise produces the same rate of
violations for all choices. That assumption is obviously problematic, as one would expect violations to be much
more common for tasks that place the decisionmaker close to the point of indifference, which is what we assume
for our next illustration.
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that case, we will observe violations of CI with probability 2p(1− p). Likewise, we test NCI by
comparing choices between S ′ and R′ with choices between S ′′ and R′′. Assume the resulting
change in probability weighting yields a strong preference, so that S ′′ is chosen over R′′ with
probability 1. In that case, the frequency of observed NCI violations will be 1−p. The difference
between the frequency of NCI and CI violations is then (1−p)(1−2p). A couple of observations
follow. First, if the subject is initially close to indifference, so that p is close to 0.5, the observed
differences in violation frequencies will be close to zero. Second, if p > 0.5, one will actually
observe a higher frequency of violations for CI than for NCI, despite the fact that CPT is valid.

Second, even if one could control for “distance to indifference,” existing approaches offer no
basis for judging whether a given discrepancy between the frequencies of CI and NCI violations
is large or small relative to the implications of a reasonably parameterized “noisy" CPT model.
The following example illustrates how, even with constant “distance to indifference,” one could
find little or no difference between violation frequencies for CI and NCI, even though the rank-
dependent formulation is correct. Assume in particular that, when confronted with a choice
between two lotteries, the decisionmaker behaves according to the following noisy version of
CPT: with probability p, she flips a coin; with probability 1− p, she picks the best alternative
according to a stable CPT objective function. Now suppose the experimental tasks are inad-
vertently chosen so that the typical subject is always far from indifference, with the unintended
implication that rank reversals have no effect on the optimal choice according to the CPT rep-
resentation. In that case, true rank dependence will not give rise to any NCI violations. Thus,
the observed frequencies of CI and NCI violations will be identical (p/2), even though CPT is
the right theory, subject to noise.

Our illustrations are admittedly extreme. However, our point is general: without having a
parameterized model of noisy choice and a method of gauging distance from indifference, there
is simply no way to judge whether the discrepancy between the frequencies of CI and NCI
violations is out of line with the implications of CPT.

C Equalizing Reductions Under Different Reference Point
Formulations

C.1 Fixed Referents

This section investigates the predictions of CPT decisionmaking under alternative locations of
an exogenous reference point. Under CPT, the decisionmaker is assumed to separate gains and
losses and weight the corresponding probabilities separately. Gains are weighted according to
the cumulative distribution beginning with the best possible outcome, while losses are weighted
according to the decumulative distribution beginning with the worst possible outcome. CPT
also allows for differences in the extent of probability weighting for gains and losses, π+(·) and
π−(·), and the shape of utility for gains and losses, u+(·) and u−(·).

In Section 2.2, we explained that CPT robustly implies a discontinuous change in decision
weights whenX crosses Y or Z, and that the percentage change in equalizing reduction robustly
approximates the percentage change in relative decision weights. One complication noted in
the text is that for non-infinitesimal values of m, Y +m, Z−k, or Z−k may cross the reference
point.
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In order to examine the effect of crossing the reference point, Figure A1 provides simulations
for k, k and ∆log(k) for Z = $18, Y = $24, X = 23 and X = $30 at values of the reference
point, r ∈ (0, 40) for each of our probability vectors. Following Tversky and Kahneman (1992),
we assume that gain and loss probability weighting functions are identical, π−(p) = π+(p) =
pγ/(pγ + (1 − p)γ)1/γ, with γ = 0.61. We also assume a piecewise linear formulation for loss
averse utility such that u−(−x) = −λu+(x) with u+(x) = x. The value of λ varies across rows.
In addition to predicted behavior, we also provide estimates of ∆log(wY /wZ) for γ = 0.61 and
the relevant probability vector for each condition.

Provided r < Z − k, Z − k or r > Y + m, the values of ∆log(k) closely approximate the
change in weights ∆log(wY /wZ). Note, however, that because probability weighting is reference
dependent, the relevant theoretical benchmark shifts from log(π(p+q)−π(p))− log(π(q)) when
r < Z − k, Z − k to log(π(1− p)− π(1− p− q))− log(1− π(1− q)) when r > Y +m.

Figure A1, also illustrates two regions of transition. The first region encompasses r ∈
(Z − k, Z). In this region, log changes in behavior deviate from the theoretical benchmark. As
r passes Z − k, k is determined both by loss aversion, λ, and the weight attached to Z − k
when it is considered a loss, π(1 − p − q). Once r passes Z − k, the same is true of k. When
Z − k, Z − k < r < Z, ∆log(k) 6= log(π(p + q) − π(p)) − log(π(q)). However, the simple
difference,

(k − k)Z−k,Z−k<r<Z =
π(p+ q)− π(p)− π(q)

λπ(1− p− q)
m,

can be related to the prior difference when r < Z − k,

(k − k)r<Z−k =
π(p+ q)− π(p)− π(q)

1− π(p+ q)
m.

Whether the difference (k − k), and hence ∆log(k), grows or shrinks relative to this prior case
depends on the value of λ and the difference between π(1 − p − q) and 1 − π(p + q). For our
probability vectors, with γ = 0.61, π(1− p− q) < 1− π(p + q). As such, reference dependent
probability distortions, alone, would lead to larger values of ∆log(k) in this region, and more
apparent evidence of rank dependence. The top panel of Figure A1, illustrates this case with
λ = 1. Values of λ > 1 counteract the force of probability weighting in this region. It must
be noted, however, that even with substantial loss aversion of λ = 2, large negative values of
∆log(k) are still predicted. When r passes Z, simulated behavior once again accords with the
theoretical benchmark.

A second transition region arises for r ∈ (Y, Y + m). Because Y and Y + m are treated
asymetrically, k and k are a function both of reference-dependent probability distortions, and
loss aversion. Specifically,

k =
π(q)

π(1− p− q)λ
m+

[π(q)− (1− π(1− q))λ]

π(1− p− q)λ
(Y − r)

k =
(π(p+ q)− π(p))

π(1− p− q)λ
m+

{[(π(p+ q)− π(p))]− [(π(1− p)− π(1− p− q))λ]}
π(1− p− q)λ

(Y − r)
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Figure A1: Fixed Referents and Equalizing Reductions
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in the transitional region. When r → Y ,

∆log(k)→ log(π(p+ q)− π(p))− log(π(q)),

and when r → Y +m,

∆log(k)→ log(π(1− p)− π(1− p− q))− log(1− π(1− q)),

exactly the theoretical benchmarks at the region end-points. Though reference-dependent prob-
ability distortions determine the end-points of the transitional region, Figure A1 illustrates that
the value of λ governs the speed of transition.

An interesting implication of CPT, which we mention in the main text, is that the relative
decision weights on Y and Z do not just depend on their relationship to X, but also on the
relationship of all three to the reference point. Examples of such effects are readily observed
in Figure A1. As r passes the key points of Z and Y , equalizing reductions change abruptly,
regardless of ranking information. This observation suggests a method for empirically identi-
fying reference points: look for values of X, Y, Z at which the equalization reduction changes
even though payoff ranks remain fixed.

These simulations show that CPT under standard parametric assumptions predicts sizable
differences between k and k when the values of m and k are non-infinitesimal regardless of
the location of the reference point, and that the percentage change in the equalizing reduction
continues to approximate the percentage change in the relative decision weights outside of
narrow regions of transition.

C.2 Endogenous Referents

Section 2.2 also provided a discussion of endogenous reference-points as in the models of Dis-
appointment Aversion (DA) due to Bell (1985) and Loomes and Sugden (1986). In DA the
reference point is taken to be the EUT certainty equivalent of the lottery in question, c. Here
we point out another feature of such models: even without rank-dependent probability weight-
ing, these models imply the existence of a discontinuity in the equalizing reduction when X
crosses the certainty equivalent, c. By varying X over a range that encompasses plausible values
of c, one can therefore either identify the reference point or, in failing to find a discontinuity
(as in our data), reject the theory.

Consider lottery L, which yields X > Y > Z with corresponding probabilities p, q, 1−p− q.
Absent any additional probability weighting, the disappointment averse representation is

UDA(L) = pu(X|c) + qu(Y |c) + (1− p− q)u(Z|c),

where
c = v−1 (pv(X) + qv(Y ) + (1− p− q)v(Z)) .

The reference dependent utility is formalized as

u(x|r) = v(x) + µ(v(x)− v(r)).
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Assume a piecewise-linear gain-loss utility function,

µ(y) =

{
η · y if y ≥ 0
η · λ · y if y < 0

}
,

where the parameter η captures sensitivity to gains and losses and λ represents the degree of
loss aversion.67 Under this formulation, for X treated as a gain, k/m remains an approximation
for the marginal rate of substitution between Y and Z:

MRSY Z(X > Y, c) =

[
q + ηq − ηpq − ηq2 − ηλq(1− p− q)

(1− p− q) + ηλ(1− p− q)− ηp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2

] [
v′(Y )

v′(Z)

]
≈ k

m
.

If one lowers X to X, but it remains treated as a gain relative to c, one predicts no change
in equalizing reduction. However, if X is low enough to be considered a loss relative to c,68 one
finds

MRSY Z(X < Y, c) =

[
q + ηq − ηλpq − ηq2 − ηλq(1− p− q)

(1− p− q) + ηλ(1− p− q)− ηλp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2

] [
v′(Y )

v′(Z)

]
≈ k

m

and

∆log(k) = log

(
q + ηq − ηpq − ηq2 − ηλq(1− p− q)
q + ηq − ηλpq − ηq2 − ηλq(1− p− q)

)
+

log

(
(1− p− q) + ηλ(1− p− q)− ηλp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2

(1− p− q) + ηλ(1− p− q)− ηp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2

)
≈ ∆log(MRSY Z).

The value of X crossing the endogenous reference point of c leads to a discontinuity in the
67Whether Y is a loss or a gain depends on the exact values, probabilities, and shape of the utility function.

Here, we analyze the case when Y is a gain and the addition of m and subtraction of k doesn’t alter any gain
loss comparisons. In this case

UDA(L) = [p+ ηp− ηp2 − ηpq − ηλp(1− p− q)]v(X) +

[q + ηq − ηpq − ηq2 − ηλq(1− p− q)]v(Y ) +

[(1− p− q) + ηλ(1− p− q)− ηp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2]v(Z),

a formulation which ‘weights’ each outcome. If the addition of m to Y and subtraction of k from Z doesn’t
alter any gain loss comparisons, the weights are the same for the equivalent lottery, Le. As in our general
formulation, the equalizing reduction captures the relative weights for outcomes Y and Z.

68For X low enough to be considered a loss, one arrives at

UDA(L) = [p+ ηλp− ηλp2 − ηpq − ηλp(1− p− q)]v(X) +

[q + ηq − ηλpq − ηq2 − ηλq(1− p− q)]v(Y ) +

[(1− p− q) + ηλ(1− p− q)− ηλp(1− p− q)− ηq(1− p− q)− ηλ(1− p− q)2]v(Z).

Note that the weights on both Y and Z have changed relative to the previous case. As before, the equalizing
reduction summarizes these new relative weights.
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marginal rate of substitution and, hence, in equalizing reductions absent independent proba-
bility weighting.

C.3 Endogenous Reference Distributions

Koszegi and Rabin (2006, 2007) (KR) build upon DA by assuming that the referent is depen-
dent on the entire distribution of expected outcomes. An additional innovation of Koszegi and
Rabin (2006, 2007) is a rational expectations equilibrium concept, the Unacclimating Personal
Equilibrium (UPE). The objective of the UPE concept is to represent the notion that a rational
individual will employ a reference distribution that coincides with the distribution of outcomes
that will actually follow from her choices. The KR theory also features two refinements, Pre-
ferred Personal Equilibrium (PPE) and Choice-acclimating Personal Equilibrium (CPE).69 We
apply CPE when deriving the predictions of KR. That is, we assume the equalizing reduction
corresponds to the point where the the decisionmaker switches from choosing L to Le in CPE.

Let r represent a possible reference point drawn according to measure F . Let x be an
outcome drawn according to the same measure F . Then the KR CPE utility formulation is the
double integral

U(F |F ) =

∫∫
u(x|r)dF (r)dF (x)

with u(x|r) as in DA. Under these preferences, the utility of lottery L, which yields X > Y > Z
with probabilities p, q, (1− p− q) is

UKR(L|L) = p (p[v(X)] + q[v(Y ) + ηλ(v(Y )− v(X))] + (1− p− q)[v(Z) + ηλ(v(Z)− v(X))]) +

q (p[v(X) + η(v(X)− v(Y ))] + q[v(Y )] + (1− p− q)[v(Z) + ηλ(v(Z)− v(Y ))]) +

(1− p− q) (p[v(X) + η(v(X)− v(Z))] + q[v(Y ) + η(v(Y )− v(Z))] + (1− p− q)[v(Z)]) .

As for other models k/m remains an approximation for the marginal rate of substitution be-
tween Y and Z, when X > Y :

MRSY Z(X > Y ) =

[
(q + pqη(λ− 1) + q(1− p− q)η(1− λ))

((1− p− q) + p(1− p− q)η(λ− 1) + q(1− p− q)η(λ− 1))

] [
v′(Y )

v′(Z)

]
≈ k

m
.

For X < Y , the gain-loss comparisons are altered relative to the prior case, and

MRSY Z(X < Y ) =

[
(q + pqη(1− λ) + q(1− p− q)η(1− λ))

((1− p− q) + p(1− p− q)η(λ− 1) + q(1− p− q)η(λ− 1))

] [
v′(Y )

v′(Z)

]
≈ k

m
.

As X passes below Y , the marginal rate of substitution, and hence, the equalizing reduction
69Both concepts maintains that the choice with the highest ex-ante expected utility is selected. The opera-

tional distinction between the two concepts is that a CPE need not be UPE, but a PPE must be UPE.
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changes discontinuously, with

∆log(k) = log

(
(q + pqη(λ− 1) + q(1− p− q)η(1− λ))

(q + pqη(1− λ) + q(1− p− q)η(1− λ))

)
≈ ∆log(MRSY Z).

Even without explicit probability weighting, the KR theory carries implications of rank-
dependence and can also be tested by comparing equalizing reductions at different ranks.

To get a sense for magnitudes, Table A1 simulates behavior under KR preferences in our
experiment with v(x) = x, η = 1 and λ = 1.5, 2.70 These simulations show that under the KR
model, substantial discontinuities in equalizing reductions should be observed, in contrast to
our findings.71

Table A1: Koszegi-Rabin Preferences

η = 1, λ = 1.5 η = 1, λ = 2

{p, q, 1− p− q} k k ∆log(k) k k ∆log(k)

{0.6, 0.3, 0.1} 6.72 12.93 0.65 2.37 11.84 1.61

{0.4, 0.3, 0.3} 2.41 3.89 0.48 0.88 3.24 1.30

{0.1, 0.3, 0.6} 1.35 1.56 0.14 0.54 0.89 0.51

Notes: Simulated values of k and k under Koszegi-Rabin preferences.

D Random Choice
In Section 4.6, we addressed the possibility that we detect no rank dependence because our
subjects ignore the parameters of their decision tasks (either in general, or X in particular)
and make their choices more or less randomly. In this appendix, we examine this possibility
more formally by considering two explicit models. First, we consider individuals who choose
randomly in each row of each equalizing reduction task. Such individuals would be expected to
exhibit patterns of multiple switching many times in our experiment, which we do not observe.
Standard practice in the experimental literature has been to take the first switch point as the
relevant decision for such subjects. We reproduce our aggregate and individual graphs under
this hypothesis in Figures A2 and A3. We simulate 100 random subjects in our experimental
design, choosing each option with 50% probability. Two patterns would be observed in our data

70For λ > 2 the CPE version of the KR model violates first order stochastic dominance. As such, the case of
λ = 2 represents the most extreme loss aversion possible without generating such behavior.

71Notably, these differences are in the opposite direction than those predicted by our calibrated models
of CPT. This difference is due to the convexity of our estimated weighting functions over our experimental
parameters. Indeed, had we estimated a globally concave CPT weighting function, the directional predictions
of CPT and KR would be the same.
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Figure A2: Aggregate Data With Random Response
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if such random choice were prevalent. First, in the aggregate data equalizing reductions would
generally be low (the random first switch point would rarely stray above a few dollars) and
would be insensitive to variation in probabilities or ranks. Second, in individual data, a wide
degree of heterogeneity would be observed in the log difference, ∆log(k), delivering apparent
evidence of substantial rank dependence for many subjects.72 These counterfactual predictions,
along with the implication for the frequency of multiple switching, rule this hypothesis out as
a plausible explanation of our data.

Second, we consider the possibility that each subject chooses a random switch point in each
decision task. Simulated data for 100 such subjects appear in Figures A2 and A3. In addition
to exhibiting no rank dependence, the aggregate choices of these subjects would be insensitive
to probability distributions. At the individual level, we would again find wide heterogeneity
in the log difference, ∆log(k), providing apparent evidence of substantial rank dependence for
many subjects. These implied patterns at the aggregate and individual levels clearly differ from
the observed data. Our subjects respond to changes in probability distribution across tasks and
exhibit subject-level log differences in equalizing reductions tightly centered around zero.

E Proofs and Proposition 3

E.1 Proofs of Propositions 1 and 2

Proof of Proposition 1 : Noting that k and k converge to zero as m→ 0, we apply l’Hospital’s
rule (along with continuity of the log function) to obtain

72Where the simulated log difference exceeded the bounds of +/- 3, we put the value at the boundary,
including values of +/- ∞ when simulated as such.
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Figure A3: Individual Data With Random Response
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lim
m→0

∆ log(k) = ∆ log

(
lim
m→0

dk

dm

)
Fixing any value of X 6= Y, Z and choosing m sufficiently small so that the orderings of X, Y, Z
and X, Y + m,Z − k (and hence the decision weights wX , wY , and wZ) are the same, we see
from equation (2) that

dk

dm
=
wY
wZ

(
u′(Y +m)

u′(Z − k)

)
Because u is continuously differentiable at Y and Z, we have:

lim
m→0

dk

dm
=
wY
wZ

(
u′(Y )

u′(Z)

)
.

But then

∆ log

(
lim
m→0

dk

dm

)
= log

(
wY
wZ

(
u′(Y )

u′(Z)

))
− log

(
wY
wZ

(
u′(Y )

u′(Z)

))
= ∆ log

(
wY
wZ

)
Q.E.D.

Proof of Proposition 2 : As in the proof of Proposition 1,

lim
m→0

∆ log(k) = ∆ log

(
lim
m→0

dk

dm

)
Choosing m sufficiently small so that the orderings of the payoffs (and hence the decision
weights wX , wY , and wZ) are the same, we implicitly differentiate the indifference condition,
equation (2), using u1 and u2 to stand for the partial derivates of the utility function with
respect to the payoff and the reference point, respectively, to obtain:

dk

dm
=
wY
[
u1(Y +m, r) + (u2(Y +m,R)− u2(Y,R)) dR

dm

]
+ wZ (u2(Z − k,R)− u2(Z,R)) dR

dm

wZ
[
u1(Z − k, r) + (u2(Z,R)− u2(Z − k,R)) dR

dk

]
+ wY (u2(Y,R)− u2(Y +m,R)) dR

dk

Given the (local) continuous differentiability of u and R, it follows that

lim
m→0

dk

dm
=
wY
wZ

(
u1(Y,R)

u1(Z,R)

)
But then, for fixed n,

∆ log

(
lim
m→0

dk

dm

)
= log

(
wY
wZ

(
u′(Y,Rn)

u′(Z,Rn)

))
− log

(
wY
wZ

(
u′(Y,R

n
)

u′(Z,R
n
)

))
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= ∆ log

(
wY
wZ

)
+ log

((
u′(Y,Rn)

u′(Y,R
n
)

)(
u′(Z,R

n
)

u′(Z,Rn)

))
Using the local continuity of R and the local continuous differentiability of u, we have

lim
n→∞

log

((
u′(Y,Rn)

u′(Y,R
n
)

)(
u′(Z,R

n
)

u′(Z,Rn)

))
= 0.

The desired conclusion follows immediately.
Q.E.D.

E.2 Proposition 3: Opposing Discontinuities

Define the (marginal) modified equalizing reduction as e = dk
dm

∣∣
m=0

. In this appendix section,
we establish that e exhibits two discontinuities in X, of opposite signs, at X = Y and X = Z.

Proposition 3: Suppose u is continuously differentiable and (weakly) concave, π(p) >
π(p+ q)− π(q), and 1− π(1− p) > π(p+ q)− π(q).

(i) Consider two infinite sequences X1
n ↓ Y and X2

n ↑ Y . Then limn→∞
e1n
e2n
> 1.

(ii) Consider two infinite sequences X3
n ↓ Z and X4

n ↑ Z. Then limn→∞
e3n
e4n
< 1.

Proof: We begin with part (i). Define

J(θ) =

(
π(q)

π(p+ q)− π(q)

)
du

dY
+

(
1− π(p+ q)

π(p+ q)− π(q)

)
θ,

K(θ) =

(
π(p+ q)− π(p)

π(p)

)
du

dY
+

(
1− π(p+ q)

π(p)

)
θ,

and
DH(θ) ≡ J(θ)

K(θ)
.

Because u is continuously differentiable (so that, in the limit, we can cancel terms involving
du
dX1

n
and du

dX2
n
), we have DH( du

dZ
) ≡ limn→∞

e1n
e2n
. Notice that DH( du

dY
) > 0, and that du

dY
≤ du

dZ
(due

to the concavity of u). If du
dY

= du
dZ
, then the conclusion is immediate, so we will assume in what

follows that du
dY

< du
dZ
.

Suppose contrary to the claim that DH( du
dZ

) 5 1. Then, because DH is continuous in θ
on the pertinent domain, there exists some value θH ∈

(
du
dY
, du
dZ

]
for which DH(θH) = 1 and

DH(θ) > 1 for all θ ∈
[
du
dY
, θH

)
. Moreover, because DH is continuously differentiable in θ on

the pertinent domain, we must also have D′
H(θH) ≤ 0. Observe that

D
′

H(θ) =
1− π(p+ q)

(K(θ))2

[
K(θ)

(
1

π(p+ q)− π(q)

)
− J(θ)

(
1

π(p)

)]
Noting that J(θH) = K(θH), we have

D
′

H(θH) =
1− π(p+ q)

K(θH)

[(
1

π(p+ q)− π(q)

)
−
(

1

π(p)

)]
> 0,
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which is a contradiction.
Now turn to part (ii). Define

M(θ) =

(
π(q)

1− π(1− p)

)
θ +

(
π(1− p)− π(q)

1− π(1− p)

)
du

dZ
,

N(θ) =

(
π(q)

π(p+ q)− π(q)

)
θ +

(
1− π(p+ q)

π(p+ q)− π(q)

)
du

dZ

and
DL(θ) ≡ M(θ)

N(θ)
.

Because u is continuously differentiable (so that, in the limit, we can cancel terms involving
du
dX3

n
and du

dX4
n
), we have DL( du

dY
) ≡ limn→∞

e3n
e4n
. Notice that DL( du

dZ
) < 0. Once again, concavity

of u ensures that du
dY
≤ du

dZ
, and if du

dY
= du

dZ
the conclusion is immediate, so we will assume in

what follows that du
dY

< du
dZ
.

Suppose contrary to the claim that DL( du
dY

) ≥ 1. Then, because DL is continuous in θ on the
pertinent domain, there exists some value θL ∈

[
du
dY
, du
dZ

)
for which DL(θL) = 1 and DL(θ) < 1

for all θ ∈
(
θL, du

dZ

]
. Moreover, because DL is continuously differentiable in θ on the pertinent

domain, we must also have D′
L(θL) ≤ 0. Observe that

D
′

L(θ) =
π(q)

(N(θ))2

[
N(θ)

(
1

π(p+ q)− π(q)

)
−M(θ)

(
1

1− π(1− p)

)]
Noting that M(θL) = N(θL), we have

D
′

H(θL) =
π(q)

N(θL)

[(
1

π(p+ q)− π(q)

)
−
(

1

1− π(1− p)

)]
> 0,

which is a contradiction. Q.E.D.

F Additional Tables and Figures
The following tables and figures are referenced in the main text and Appendix G
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Figure A4: Sample Modified Equalizing Reduction

TASK 1
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $40, a 30 in 100 chance of receiving $36 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $44, a 30 in 100 chance of receiving $36 and 30
in 100 chance of receiving $18. As you proceed, Option B will change. For each row, decide whether you
prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $40 $36 $18 2 or $44 $36.00 $18.00 2
2) $40 $36 $18 2 or $44 $35.75 $17.75 2
3) $40 $36 $18 2 or $44 $35.50 $17.50 2
4) $40 $36 $18 2 or $44 $35.25 $17.25 2
5) $40 $36 $18 2 or $44 $35.00 $17.00 2
6) $40 $36 $18 2 or $44 $34.75 $16.75 2
7) $40 $36 $18 2 or $44 $34.50 $16.50 2
8) $40 $36 $18 2 or $44 $34.25 $16.25 2
9) $40 $36 $18 2 or $44 $34.00 $16.00 2
10) $40 $36 $18 2 or $44 $33.75 $15.75 2
11) $40 $36 $18 2 or $44 $33.50 $15.50 2
12) $40 $36 $18 2 or $44 $33.25 $15.25 2
13) $40 $36 $18 2 or $44 $33.00 $15.00 2
14) $40 $36 $18 2 or $44 $32.75 $14.75 2
15) $40 $36 $18 2 or $44 $32.50 $14.50 2
16) $40 $36 $18 2 or $44 $32.25 $14.25 2
17) $40 $36 $18 2 or $44 $32.00 $14.00 2
18) $40 $36 $18 2 or $44 $31.75 $13.75 2
19) $40 $36 $18 2 or $44 $31.50 $13.50 2
20) $40 $36 $18 2 or $44 $31.25 $13.25 2
21) $40 $36 $18 2 or $44 $31.00 $13.00 2
22) $40 $36 $18 2 or $44 $30.75 $12.75 2
23) $40 $36 $18 2 or $44 $30.50 $12.50 2
24) $40 $36 $18 2 or $44 $30.25 $12.25 2
25) $40 $36 $18 2 or $44 $30.00 $12.00 2
26) $40 $36 $18 2 or $44 $29.75 $11.75 2
27) $40 $36 $18 2 or $44 $29.50 $11.50 2
28) $40 $36 $18 2 or $44 $29.25 $11.25 2
29) $40 $36 $18 2 or $44 $29.00 $11.00 2
30) $40 $36 $18 2 or $44 $28.75 $10.75 2
31) $40 $36 $18 2 or $44 $28.50 $10.50 2
32) $40 $36 $18 2 or $44 $28.25 $10.25 2
33) $40 $36 $18 2 or $44 $28.00 $10.00 2
34) $40 $36 $18 2 or $44 $27.75 $9.75 2
35) $40 $36 $18 2 or $44 $27.50 $9.50 2
36) $40 $36 $18 2 or $44 $27.25 $9.25 2
37) $40 $36 $18 2 or $44 $27.00 $9.00 2
38) $40 $36 $18 2 or $44 $26.75 $8.75 2
39) $40 $36 $18 2 or $44 $26.50 $8.50 2
40) $40 $36 $18 2 or $44 $26.25 $8.25 2
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Table A2: Certainty Equivalents

Certainty Equivalents Risk Premia
(1) (2)

p = 0.05 2.88 1.63***
(0.19) (0.19)

p = 0.10 3.83 1.33***
(0.19) (0.19)

p = 0.25 6.45 0.20
(0.17) (0.17)

p = 0.50 10.72 -1.78***
(0.23) (0.23)

p = 0.75 15.44 -3.31***
(0.31) (0.31)

p = 0.90 19.83 -2.67***
(0.29) (0.29)

p = 0.95 21.63 -2.12***
(0.24) (0.24)

Notes: Coefficients for certainty equivalents and risk pre-
mia calculated from interval regression of certainty equiva-
lent on indicators for probability. Standard errors clustered
on individual level in parentheses. Result of χ2(1) test for
the null hypothesis of risk neutrality (risk premium equal
to zero) presented in column (2). Levels of significance: *
0.10, ** 0.05, *** 0.01.
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Table A3: Equalizing Reductions Within and Between Subjects

(1) (2) (3) (4) (5) (6)

{p, q, 1− p− q} = {0.4, 0.3, 0.3} -4.72*** -4.72*** -5.03*** -5.13*** -5.13*** -5.13***
(0.31) (0.17) (0.60) (0.60) (0.60) (0.60)

{p, q, 1− p− q} = {0.1, 0.3, 0.6} -6.40*** -6.40*** -6.65*** -6.77*** -6.77*** -6.77***
(0.37) (0.18) (0.68) (0.68) (0.68) (0.68)

(X > Y ) 0.26 0.26 -1.10 -0.93 -0.64 -0.74
(0.17) (0.22) (0.85) (0.87) (0.83) (0.83)

(X > Y ) × {0.4, 3, 0.3} -0.22 -0.22 0.73 0.60 0.60 0.60
(0.16) (0.24) (0.75) (0.76) (0.76) (0.76)

(X > Y ) × {0.1, 3, 0.6} -0.33 -0.33 0.82 0.71 0.71 0.71
(0.18) (0.26) (0.88) (0.89) (0.89) (0.89)

19 < Age < 22 -0.10 -0.24
(0.41) (0.43)

Age ≥ 22 -0.33 -0.46
(0.45) (0.46)

Male 0.89** 0.98**
(0.39) (0.39)

Cognitve Reflect Test 0.41** 0.40**
(0.17) (0.17)

Avg. Certainty Equivalent 0.19**
(0.08)

Constant 9.02 7.44 9.81 9.92 6.37 8.73
(0.39) (0.59) (0.65) (0.65) (1.17) (0.77)

Predicted {0.6, 3, 0.1} 9.02 9.02 9.81 9.92 9.77 9.82
(0.39) (0.16) (0.65) (0.65) (0.60) (0.60)

H0: No Rank Dependence χ2(3) = 4.50 χ2(3) = 1.82 χ2(3) = 3.76 χ2(3) = 2.50 χ2(3) = 0.64 χ2(3) = 0.86
(p = 0.21) (p = 0.61) (p = 0.29) (p = 0.47) (p = 0.89) (p = 0.84)

Fixed Effects No Yes No No No No
First Block of Tasks Only No No Yes Yes Yes Yes
Demographic Controls No No No No Yes Yes
# Observations 2574 2574 429 405 405 405
# Subjects 143 143 143 135 135 135
Log-Likelihood -8891.80 -8191.34 -1481.49 -1393.60 -1379.56 -1382.05

Notes: Coefficients from interval regression of equalizing reduction on indicators for probability series {p, q, 1−p−q} and order of outcome X > Y .
Standard errors clustered on individual level in columns (1), (3), (4), (5), (6). Robust standard errors in parentheses in column (2). Column
(4) restricts Column (3) sample to 135 Individuals with full control information. Constant, omitted category, is {p, q, 1 − p − q} = {0.6, 3, 0.1}
with X < Y . Predicted average for {p, q, 1− p− q} = {0.6, 3, 0.1} in (2), (5), (6) calculated as average of of fixed effects or at the average level
of controls. Tested null hypothesis of no rank dependence corresponds to test that coefficients (X > Y ), (X > Y ) × {0.4, 3, 0.3}, (X > Y ) ×
{0.1, 3, 0.6} all equal zero. Levels of significance: * 0.10, ** 0.05, *** 0.01.
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Table A4: Equalizing Reductions for All Conditions

k k
(1) (2) (3) (4) (5) (6) (7) (8)

{p, q, 1− p− q} X = 19 X = 21 X = 23 X < Y X = 30 X = 32 X = 34 X > Y

{0.6, 0.3, 0.1} 9.03 9.03 9.02 9.02 9.24 9.44 9.17 9.28
(0.41) (0.40) (0.42) (0.39) (0.41) (0.42) (0.40) (0.38)

{0.4, 0.3, 0.3} 4.33 4.22 4.37 4.31 4.30 4.34 4.38 4.34
(0.14) (0.13) (0.14) (0.12) (0.14) (0.15) (0.13) (0.12)

{0.1, 0.3, 0.6} 2.65 2.60 2.64 2.63 2.58 2.52 2.57 2.56
(0.09) (0.11) (0.11) (0.08) (0.08) (0.08) (0.09) (0.07)

Notes: Coefficients calculated from interval regression of equalizing reduction on indicators for probability set,
value of X/X and all interactions. Standard errors clustered on individual level in parentheses. Columns (4) and
(8) provide estimated averages for k and k for columns (1)-(3) and (5)-(7), respectively.

Table A5: Equalizing Reductions with Fixed Effects

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

)
[95% Conf.]

{0.6, 0.3, 0.1} 9.02 (0.16) 9.28 (0.16) 0.03 (0.02)
[-0.02,0.08]

{0.4, 0.3, 0.3} 4.31 (0.07) 4.34 (0.07) 0.01 (0.02)
[-0.04,0.05]

{0.1, 0.3, 0.6} 2.63 (0.09) 2.56 (0.09) -0.03 (0.05)
[-0.12,0.07]

Notes: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimental response
on indicators for probability vector interacted with indicator for whether X > Y with individual fixed effects.
Constant taken as mean of fixed effects. Robust standard errors parentheses.
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Table A6: Equalizing Reductions Between Subjects Alternate Controls
Panel A: First Task Block (without Controls) Panel B: First Task Block (with Alternate Controls)

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

)
k k

̂
∆log

(
wY
wZ

)
[95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 9.81 (0.65) 8.71 (0.56) -0.12 (0.09) 9.82 (0.60) 9.09 (0.56) -0.08 (0.09)
[-0.30,0.06] [-0.25,0.09]

{0.4, 0.3, 0.3} 4.78 (0.19) 4.41 (0.19) -0.08 (0.06) 4.70 (0.22) 4.56 (0.20) -0.03 (0.07)
[-0.20,0.04] [-0.16,0.10]

{0.1, 0.3, 0.6} 3.16 (0.16) 2.88 (0.12) -0.09 (0.07) 3.06 (0.19) 3.03 (0.15) -0.01 (0.08)
[-0.22,0.04] [-0.17,0.15]

Notes: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimental response
on indicators for probability vector interacted with indicator for whether X > Y . Estimated change in
relative decision weights, ̂∆log (wY /wZ), calculated as ∆log(k). Standard errors clustered at individual level
and calculated using the delta method, in parentheses. See Appendix Table A3, columns (3) and (5) for
detail. Panel A: No controls; 143 total subjects. Panel B: controls include age, gender, Cognitive Reflection
Task score; 135 total subjects.

Table A7: Equalizing Reductions with Multiple Switchers

k k
(1) (2) (3) (4) (5) (6) (7) (8)

{p, q, 1− p− q} X = 19 X = 21 X = 23 X < Y X = 30 X = 32 X = 34 X > Y

{0.6, 0.3, 0.1} 8.72 8.78 8.69 8.73 8.92 9.09 8.76 8.93
(0.41) (0.38) (0.41) (0.38) (0.40) (0.42) (0.40) (0.38)

{0.4, 0.3, 0.3} 4.31 4.17 4.29 4.26 4.24 4.32 4.28 4.28
(0.14) (0.12) (0.14) (0.12) (0.14) (0.15) (0.14) (0.12)

{0.1, 0.3, 0.6} 2.62 2.56 2.58 2.59 2.59 2.55 2.59 2.58
(0.09) (0.11) (0.11) (0.08) (0.09) (0.08) (0.09) (0.07)

Notes: Coefficients calculated from interval regression of equalizing reduction on indicators for probability set,
value of X/X and all interactions. Standard errors clustered on individual level in parentheses. Columns (4) and
(8) provide estimated averages for k and k for columns (1)-(3) and (5)-(7), respectively.
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Table A8: Equalizing Reductions First/Last Task Block

k k
(1) (2) (3) (4) (5) (6) (7) (8)

{p, q, 1− p− q} X = 19 X = 21 X = 23 X < Y X = 30 X = 32 X = 34 X > Y

Panel A: First Task Block

{0.6, 0.3, 0.1} 11.10 8.01 10.49 9.81 7.87 9.39 8.85 8.71
(1.14) (0.99) (1.13) (0.65) (1.12) (1.21) (0.72) (0.56)

{0.4, 0.3, 0.3} 4.89 4.24 5.27 4.78 4.02 4.61 4.54 4.41
(0.32) (0.34) (0.30) (0.19) (0.48) (0.29) (0.24) (0.19)

{0.1, 0.3, 0.6} 3.17 3.08 3.24 3.16 2.62 2.89 3.03 2.88
(0.25) (0.25) (0.35) (0.16) (0.20) (0.11) (0.20) (0.12)

Panel B: Last Task Block

{0.6, 0.3, 0.1} 9.46 11.37 6.85 9.12 8.09 8.53 9.72 8.75
(0.77) (0.93) (0.95) (0.54) (0.93) (1.11) (1.24) (0.64)

{0.4, 0.3, 0.3} 4.27 4.59 3.84 4.22 4.07 4.15 4.16 4.13
(0.25) (0.31) (0.31) (0.17) (0.24) (0.51) (0.42) (0.23)

{0.1, 0.3, 0.6} 2.63 2.37 2.60 2.55 2.51 2.56 2.37 2.48
(0.19) (0.23) (0.28) (0.13) (0.14) (0.34) (0.17) (0.14)

Notes: Coefficients calculated from interval regression of equalizing reduction on indicators for probability set,
value of X/X and all interactions. Standard errors clustered on individual level in parentheses. Columns (4) and
(8) provide estimated averages for k and k for columns (1)-(3) and (5)-(7), respectively.
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G Additional Robustness Exercises

G.1 Alternative CPT Formulations

Up to this point, we have focused exclusively on the Tversky and Kahneman (1992) parame-
terization of CPT. Others have proposed alternative functional forms. One leading alternative
is due to Prelec (1998), who posits a probability weighting function of the form

π(p) = exp(−(−ln(p))γ).

To explore whether our conclusions are sensitive to functional form, we repeat our analysis for
Prelec’s specification. Using our data on certainty equivalents for binary lotteries, we arrive
at the following estimates: weighting parameter γ̂ = 0.665 (clustered s.e. = 0.021) and utility
parameter α̂ = 0.928 (0.019). We then use the parameterized model to predict k and k as
before. Results appear in Table A9, Panel A. For convenience, we reproduce our results for
Tversky and Kahneman’s specification in Panel B. Note that the predicted discontinuities are
even larger, and hence less consistent with actual behavior, with the Prelec specification.

Table A9: Equalizing Reduction Predictions for Alternative Functional Forms
Panel A: Prelec Weighting Panel B: Tversky Kahneman Weighting

{p, q, 1− p− q} k k ∆log(k)
̂

∆log
(
wY
wZ

)
k k ∆log(k)

̂
∆log

(
wY
wZ

)
[95% Conf.] [95% Conf.] [95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 8.77 (0.27) 6.50 (0.38) -0.30 (0.03) -0.30 (0.03) 7.58 (0.36) 6.06 (0.35) -0.22 (0.01) -0.23 (0.01)
[-0.35,-0.24] [-0.36,-0.25] [-0.25,-0.21] [-0.24,-0.20]

{0.4, 0.3, 0.3} 4.81 (0.05) 2.63 (0.12) -0.60 (0.04) -0.61 (0.04) 4.01 (0.10) 2.52 (0.13) -0.46 (0.03) -0.47 (0.03)
[-0.69,-0.52] [-0.70,-0.52] [-0.52,-0.41] [-0.52,-0.41]

{0.1, 0.3, 0.6} 2.95 (0.04) 1.70 (0.05) -0.55 (0.04) -0.56 (0.04) 2.65 (0.03) 1.87 (0.06) -0.35 (0.03) -0.35 (0.03)
[-0.64,-0.47] [-0.64,-0.47] [-0.40,-0.30] [-0.40,-0.30]

Notes: Panel A: Predicted behavior and change in decision weights calculated from equation (3) for Prelec
CPT decisionmaker with parameters α̂ = 0.928 (s.e. = 0.019) and γ̂ = 0.665 (0.021). Standard errors
clustered at individual level and calculated using the delta method, in parentheses. Panel B: Predicted
behavior and change in decision weights calculated from equation (3) for Kahneman and Tversky CPT
decisionmaker with parameters α̂ = 0.965 (s.e. = 0.021) and γ̂ = 0.703 (0.015). Standard errors clustered at
individual level and calculated using the delta method, in parentheses.

G.2 Using Explicit Rank Changes

The last task block in each session featured X = $25 and Y = $24, so that adding m = $5
to Y changes its rank. Using the estimated aggregate CPT parameter values, one predicts
equalizing reductions of 7.28, 3.71, and 2.49 for {p, q, 1− p− q} = {0.6, 0.3, 0.1}, {0.4, 0.3, 0.3}
and {0.1, 0.3, 0.6}, respectively. Note that these values are close to the CPT predictions of k
reported in Table 3, Panel B and are substantially higher than those of k.
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For {p, q, 1 − p − q} = {0.6, 0.3, 0.1}, the mean equalizing reduction is 8.94 (clustered s.e.
= 0.41). This value is statistically indistinguishable from the actual value of k for X ′ < Y
reported in Table 3, Panel A, χ2(1) = 0.27, (p = 0.61), and is significantly lower than the value
of k for X > Y , χ2(1) = 3.44, (p = 0.06). For {p, q, 1 − p − q} = {0.4, 0.3, 0.3}, the mean
equalizing reduction is 4.12 (0.13), significantly lower than the values of both k and k reported
in Table 3, Panel A, χ2(1) = 4.19, (p = 0.04) and χ2(1) = 5.36, (p = 0.02), respectively. For
{p, q, 1−p−q} = {0.1, 0.3, 0.6}, the mean equalizing reduction is 2.34 (0.08), significantly lower
than the values of both k and k reported in Table 3, Panel A, χ2(1) = 18.82, (p < 0.01) and
χ2(1) = 11.55, (p < 0.01), respectively.

The pattern described in the previous paragraph is, on its face, somewhat puzzling. If
the equalizing reduction does not depend on the ranking of the payoff Y , it is difficult to see
why it should be systematically lower in the transitional region. Certainly, that implication is
inconsistent not only with CPT, but also with PT and EUT. A possible explanation is that
the X = 25 task block always comes last, and equalizing reductions decline as the experiment
progresses from the first task block to the last (see Table A8, Panel B). Consistent with this
hypothesis, the equalizing reductions in the X = $25 tasks are quite close to the values reported
for the those for last task block (see Table A8, Panel B).

G.3 Multiple Switching

Our main results are derived from the choices of 143 subjects who did not exhibit multiple
switching in any task. For Table A10, we include the remaining subjects, each of whom exhib-
ited multiple switching at least once. The results are qualitatively unchanged. As in Table 3,
we predict substantial differences between k and k but observe none.73 Thus our conclusions
are robust with respect to the inclusion or exclusion of potentially confused subjects.

73Appendix Table A7 provides estimates of equalizing reductions for each value ofX andX ′, and demonstrates
the stability of equalizing reductions across these values.
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Table A10: Equalizing Reductions with Multiple Switchers
Panel A: Mean Behavior and Estimated Rank Dependence Panel B: CPT Estimates and Predicted Rank Dependence

Certainty Equivalents Equalizing Reductions Equalizing Reductions
X > Y > Z, Y > X > Z

γ = 0.703 (0.015) γ = 0.813 (0.023) γ = 0.776 (0.020)

{p, q, 1− p− q} k k
̂

∆log
(
wY
wZ

) ̂
∆log

(
wY
wZ

) ̂
∆log

(
wY
wZ

) ̂
∆log

(
wY
wZ

)
[95% Conf.] [95% Conf.] [95% Conf.] [95% Conf.]

{0.6, 0.3, 0.1} 8.73 (0.38) 8.93 (0.38) 0.02 (0.02) -0.23 (0.01) -0.16 (0.02) -0.19 (0.01)
[-0.01,0.06] [-0.25,-0.22] [-0.19,-0.12] [-0.21,-0.16]

{0.4, 0.3, 0.3} 4.26 (0.12) 4.28 (0.12) 0.01 (0.02) -0.49 (0.03) -0.30 (0.04) -0.36 (0.03)
[-0.03,0.04] [-0.54,-0.44] [-0.37,-0.22] [-0.43,-0.29]

{0.1, 0.3, 0.6} 2.59 (0.08) 2.58 (0.07) -0.00 (0.02) -0.37 (0.03) -0.21 (0.03) -0.26 (0.03)
[-0.05,0.04] [-0.42,-0.32] [-0.26,-0.15] [-0.31,-0.20]

Notes: Panel A: Mean behavior for k and k estimated from interval regression (Stewart, 1983) of experimental
response on indicators for probability vector interacted with indicator for whether X > Y . Estimated change
in relative decision weights, ̂∆log (wY /wZ), calculated as ∆log(k). Standard errors clustered at individual
level and calculated using the delta method, in parentheses. See Appendix Table A3, column (1) and Appendix
Table A4 for detail. Panel B: Predicted change in probability weight for CPT decisionmaker with probability
weighting estimated solely from certainty equivalents data, from equalizing reductions with X > Y > Z,
or from equalizing reductions with Y > X > Z. Estimated probability weighting parameter noted for each
prediction. Estimated change in relative decision weights, ̂∆log (wY /wZ), calculated as log(π(p+q)−π(p))−
log(π(q)) for estimated weighting function. Standard errors clustered at individual level and calculated using
the delta method, in parentheses.
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Hello and Welcome.

ELIGIBILITY FOR THIS STUDY: To be in this study, you must be a

Stanford student. There are no other requirements. The study will be completely

anonymous. We will not collect your name, student ID or any other identifying

information. You have been assigned a participant number and it is on the note

card in front of you. This number will be used throughout the study. Please inform

us if you do not know or cannot read your participant number.

Participant Number:



EARNING MONEY: Whatever you earn from the study today will be paid in cash at the end of the

study today. In addition to your earnings from the study, you will receive a $5 participation payment. This $5

participation payment will also be paid to you at the end of the study today.

In this study you will complete 28 tasks, each of which asks you to make a series of decisions between two options.

The first option will always be called OPTION A. The second option will always be called OPTION B. Each decision

you make is a choice. For each decision, all you have to do is decide whether you prefer OPTION A or OPTION B.

Once all of the decision tasks have been completed, we will randomly select one decision as the decision-that-

counts. This will done in two steps. First, we will randomly select one of the 28 tasks, and, second, we will randomly

select a decision from that task to be the decision-that-counts. Each decision has an equal chance of being the

decision-that-counts. So, it is in your interest to treat each decision as if it could be the one that determines your

payments.

If you prefer OPTION A in the decision-that-counts, then OPTION A will be implemented. If you prefer

OPTION B, then OPTION B will be implemented.

Throughout the tasks, either OPTION A, OPTION B or both will involve chance. You will be fully informed

of the chance involved for every decision. Once we know which is the decision-that-counts, and whether you prefer

OPTION A or OPTION B, we will then determine the value of your payments.

For example, OPTION A could be a 10 in 100 chance of receiving $20, a 30 in 100 chance of receiving $14 and

60 in 100 chance of receiving $8. This might be compared to OPTION B of a 10 in 100 chance of receiving $20, a

30 in 100 chance of receiving $19 and 60 in 100 chance of receiving $8. Imagine for a moment which one you would

prefer. You have been provided with a calculator should you like to use it in making your decisions.

If this was chosen as the decision-that-counts, and you preferred OPTION A, we would then randomly choose

a number from 1 to 100. This would be done by throwing two ten-sided die: one for the tens digit and one for the

ones digit (0-0 will be 100). If the chosen number was between 1 and 10 (inclusive) you would receive $20. If the

number was between 11 and 40 (inclusive) you would receive $14 . If the number was between 41 and 100 (inclusive)

you would receive $8.

If, instead, you preferred OPTION B, we would randomly choose another number from 1 to 100. This random

number would be completely independent of the random number previously described. If the chosen number was

between 1 and 10 (inclusive) you would receive $20. If the number was between 11 and 40 (inclusive) you would

receive $19. If the number was between 41 and 100 (inclusive) you would receive $8 .

In this example, if you preferred OPTION B and the die read 6-8, how much would you receive (don’t forget

your participation payment!):

In this example, if you preferred OPTION A and the die read 0-9, how much would you receive (don’t forget

your participation payment!):

The tasks are presented in eight separate blocks. In a moment we will begin the first block of tasks.



TASK BLOCK 1

Participant Number:



TASKS 1-3

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 1 Option

A will be a 10 in 100 chance of receiving $34, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $34, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 1 is reproduced

as an example.

EXAMPLE

Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $34 $24 $18 2 or $34 $29 $18.00 2
If your prefer Option A, check the green box...

1) $34 $24 $18 2� or $34 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $34 $29 $18 2 or $34 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 1
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $34, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $34, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $34 $24 $18 2 or $34 $29 $18.00 2
2) $34 $24 $18 2 or $34 $29 $17.75 2
3) $34 $24 $18 2 or $34 $29 $17.50 2
4) $34 $24 $18 2 or $34 $29 $17.00 2
5) $34 $24 $18 2 or $34 $29 $16.75 2
6) $34 $24 $18 2 or $34 $29 $16.50 2
7) $34 $24 $18 2 or $34 $29 $16.25 2
8) $34 $24 $18 2 or $34 $29 $16.00 2
9) $34 $24 $18 2 or $34 $29 $15.75 2
10) $34 $24 $18 2 or $34 $29 $15.50 2
11) $34 $24 $18 2 or $34 $29 $15.25 2
12) $34 $24 $18 2 or $34 $29 $15.00 2
13) $34 $24 $18 2 or $34 $29 $14.50 2
14) $34 $24 $18 2 or $34 $29 $14.00 2
15) $34 $24 $18 2 or $34 $29 $13.50 2
16) $34 $24 $18 2 or $34 $29 $13.00 2
17) $34 $24 $18 2 or $34 $29 $12.50 2
18) $34 $24 $18 2 or $34 $29 $12.00 2
19) $34 $24 $18 2 or $34 $29 $11.50 2
20) $34 $24 $18 2 or $34 $29 $11.00 2
21) $34 $24 $18 2 or $34 $29 $10.50 2
22) $34 $24 $18 2 or $34 $29 $10.00 2
23) $34 $24 $18 2 or $34 $29 $9.50 2
24) $34 $24 $18 2 or $34 $29 $9.00 2
25) $34 $24 $18 2 or $34 $29 $8.50 2
26) $34 $24 $18 2 or $34 $29 $8.00 2
27) $34 $24 $18 2 or $34 $29 $7.50 2
28) $34 $24 $18 2 or $34 $29 $7.00 2
29) $34 $24 $18 2 or $34 $29 $6.50 2
30) $34 $24 $18 2 or $34 $29 $6.00 2
31) $34 $24 $18 2 or $34 $29 $5.50 2
32) $34 $24 $18 2 or $34 $29 $5.00 2
33) $34 $24 $18 2 or $34 $29 $4.50 2
34) $34 $24 $18 2 or $34 $29 $4.00 2
35) $34 $24 $18 2 or $34 $29 $3.50 2
36) $34 $24 $18 2 or $34 $29 $3.00 2
37) $34 $24 $18 2 or $34 $29 $2.50 2
38) $34 $24 $18 2 or $34 $29 $2.00 2



TASK 2
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $34, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $34, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $34 $24 $18 2 or $34 $29 $18.00 2
2) $34 $24 $18 2 or $34 $29 $17.75 2
3) $34 $24 $18 2 or $34 $29 $17.50 2
4) $34 $24 $18 2 or $34 $29 $17.00 2
5) $34 $24 $18 2 or $34 $29 $16.75 2
6) $34 $24 $18 2 or $34 $29 $16.50 2
7) $34 $24 $18 2 or $34 $29 $16.25 2
8) $34 $24 $18 2 or $34 $29 $16.00 2
9) $34 $24 $18 2 or $34 $29 $15.75 2
10) $34 $24 $18 2 or $34 $29 $15.50 2
11) $34 $24 $18 2 or $34 $29 $15.25 2
12) $34 $24 $18 2 or $34 $29 $15.00 2
13) $34 $24 $18 2 or $34 $29 $14.50 2
14) $34 $24 $18 2 or $34 $29 $14.00 2
15) $34 $24 $18 2 or $34 $29 $13.50 2
16) $34 $24 $18 2 or $34 $29 $13.00 2
17) $34 $24 $18 2 or $34 $29 $12.50 2
18) $34 $24 $18 2 or $34 $29 $12.00 2
19) $34 $24 $18 2 or $34 $29 $11.50 2
20) $34 $24 $18 2 or $34 $29 $11.00 2
21) $34 $24 $18 2 or $34 $29 $10.50 2
22) $34 $24 $18 2 or $34 $29 $10.00 2
23) $34 $24 $18 2 or $34 $29 $9.50 2
24) $34 $24 $18 2 or $34 $29 $9.00 2
25) $34 $24 $18 2 or $34 $29 $8.50 2
26) $34 $24 $18 2 or $34 $29 $8.00 2
27) $34 $24 $18 2 or $34 $29 $7.50 2
28) $34 $24 $18 2 or $34 $29 $7.00 2
29) $34 $24 $18 2 or $34 $29 $6.50 2
30) $34 $24 $18 2 or $34 $29 $6.00 2
31) $34 $24 $18 2 or $34 $29 $5.50 2
32) $34 $24 $18 2 or $34 $29 $5.00 2
33) $34 $24 $18 2 or $34 $29 $4.50 2
34) $34 $24 $18 2 or $34 $29 $4.00 2
35) $34 $24 $18 2 or $34 $29 $3.50 2
36) $34 $24 $18 2 or $34 $29 $3.00 2
37) $34 $24 $18 2 or $34 $29 $2.50 2
38) $34 $24 $18 2 or $34 $29 $2.00 2



TASK 3
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $34, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $34, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $34 $24 $18 2 or $34 $29 $18.00 2
2) $34 $24 $18 2 or $34 $29 $17.75 2
3) $34 $24 $18 2 or $34 $29 $17.50 2
4) $34 $24 $18 2 or $34 $29 $17.00 2
5) $34 $24 $18 2 or $34 $29 $16.75 2
6) $34 $24 $18 2 or $34 $29 $16.50 2
7) $34 $24 $18 2 or $34 $29 $16.25 2
8) $34 $24 $18 2 or $34 $29 $16.00 2
9) $34 $24 $18 2 or $34 $29 $15.75 2
10) $34 $24 $18 2 or $34 $29 $15.50 2
11) $34 $24 $18 2 or $34 $29 $15.25 2
12) $34 $24 $18 2 or $34 $29 $15.00 2
13) $34 $24 $18 2 or $34 $29 $14.50 2
14) $34 $24 $18 2 or $34 $29 $14.00 2
15) $34 $24 $18 2 or $34 $29 $13.50 2
16) $34 $24 $18 2 or $34 $29 $13.00 2
17) $34 $24 $18 2 or $34 $29 $12.50 2
18) $34 $24 $18 2 or $34 $29 $12.00 2
19) $34 $24 $18 2 or $34 $29 $11.50 2
20) $34 $24 $18 2 or $34 $29 $11.00 2
21) $34 $24 $18 2 or $34 $29 $10.50 2
22) $34 $24 $18 2 or $34 $29 $10.00 2
23) $34 $24 $18 2 or $34 $29 $9.50 2
24) $34 $24 $18 2 or $34 $29 $9.00 2
25) $34 $24 $18 2 or $34 $29 $8.50 2
26) $34 $24 $18 2 or $34 $29 $8.00 2
27) $34 $24 $18 2 or $34 $29 $7.50 2
28) $34 $24 $18 2 or $34 $29 $7.00 2
29) $34 $24 $18 2 or $34 $29 $6.50 2
30) $34 $24 $18 2 or $34 $29 $6.00 2
31) $34 $24 $18 2 or $34 $29 $5.50 2
32) $34 $24 $18 2 or $34 $29 $5.00 2
33) $34 $24 $18 2 or $34 $29 $4.50 2
34) $34 $24 $18 2 or $34 $29 $4.00 2
35) $34 $24 $18 2 or $34 $29 $3.50 2
36) $34 $24 $18 2 or $34 $29 $3.00 2
37) $34 $24 $18 2 or $34 $29 $2.50 2
38) $34 $24 $18 2 or $34 $29 $2.00 2



TASK BLOCK 2

Participant Number:



TASKS 4-6

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 4 Option

A will be a 10 in 100 chance of receiving $32, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $32, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 4 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $32 $24 $18 2 or $32 $29 $18.00 2
If your prefer Option A, check the green box...

1) $32 $24 $18 2� or $32 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $32 $29 $18 2 or $32 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 4
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $32, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $32, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $32 $24 $18 2 or $32 $29 $18.00 2
2) $32 $24 $18 2 or $32 $29 $17.75 2
3) $32 $24 $18 2 or $32 $29 $17.50 2
4) $32 $24 $18 2 or $32 $29 $17.00 2
5) $32 $24 $18 2 or $32 $29 $16.75 2
6) $32 $24 $18 2 or $32 $29 $16.50 2
7) $32 $24 $18 2 or $32 $29 $16.25 2
8) $32 $24 $18 2 or $32 $29 $16.00 2
9) $32 $24 $18 2 or $32 $29 $15.75 2
10) $32 $24 $18 2 or $32 $29 $15.50 2
11) $32 $24 $18 2 or $32 $29 $15.25 2
12) $32 $24 $18 2 or $32 $29 $15.00 2
13) $32 $24 $18 2 or $32 $29 $14.50 2
14) $32 $24 $18 2 or $32 $29 $14.00 2
15) $32 $24 $18 2 or $32 $29 $13.50 2
16) $32 $24 $18 2 or $32 $29 $13.00 2
17) $32 $24 $18 2 or $32 $29 $12.50 2
18) $32 $24 $18 2 or $32 $29 $12.00 2
19) $32 $24 $18 2 or $32 $29 $11.50 2
20) $32 $24 $18 2 or $32 $29 $11.00 2
21) $32 $24 $18 2 or $32 $29 $10.50 2
22) $32 $24 $18 2 or $32 $29 $10.00 2
23) $32 $24 $18 2 or $32 $29 $9.50 2
24) $32 $24 $18 2 or $32 $29 $9.00 2
25) $32 $24 $18 2 or $32 $29 $8.50 2
26) $32 $24 $18 2 or $32 $29 $8.00 2
27) $32 $24 $18 2 or $32 $29 $7.50 2
28) $32 $24 $18 2 or $32 $29 $7.00 2
29) $32 $24 $18 2 or $32 $29 $6.50 2
30) $32 $24 $18 2 or $32 $29 $6.00 2
31) $32 $24 $18 2 or $32 $29 $5.50 2
32) $32 $24 $18 2 or $32 $29 $5.00 2
33) $32 $24 $18 2 or $32 $29 $4.50 2
34) $32 $24 $18 2 or $32 $29 $4.00 2
35) $32 $24 $18 2 or $32 $29 $3.50 2
36) $32 $24 $18 2 or $32 $29 $3.00 2
37) $32 $24 $18 2 or $32 $29 $2.50 2
38) $32 $24 $18 2 or $32 $29 $2.00 2



TASK 5
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $32, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $32, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $32 $24 $18 2 or $32 $29 $18.00 2
2) $32 $24 $18 2 or $32 $29 $17.75 2
3) $32 $24 $18 2 or $32 $29 $17.50 2
4) $32 $24 $18 2 or $32 $29 $17.00 2
5) $32 $24 $18 2 or $32 $29 $16.75 2
6) $32 $24 $18 2 or $32 $29 $16.50 2
7) $32 $24 $18 2 or $32 $29 $16.25 2
8) $32 $24 $18 2 or $32 $29 $16.00 2
9) $32 $24 $18 2 or $32 $29 $15.75 2
10) $32 $24 $18 2 or $32 $29 $15.50 2
11) $32 $24 $18 2 or $32 $29 $15.25 2
12) $32 $24 $18 2 or $32 $29 $15.00 2
13) $32 $24 $18 2 or $32 $29 $14.50 2
14) $32 $24 $18 2 or $32 $29 $14.00 2
15) $32 $24 $18 2 or $32 $29 $13.50 2
16) $32 $24 $18 2 or $32 $29 $13.00 2
17) $32 $24 $18 2 or $32 $29 $12.50 2
18) $32 $24 $18 2 or $32 $29 $12.00 2
19) $32 $24 $18 2 or $32 $29 $11.50 2
20) $32 $24 $18 2 or $32 $29 $11.00 2
21) $32 $24 $18 2 or $32 $29 $10.50 2
22) $32 $24 $18 2 or $32 $29 $10.00 2
23) $32 $24 $18 2 or $32 $29 $9.50 2
24) $32 $24 $18 2 or $32 $29 $9.00 2
25) $32 $24 $18 2 or $32 $29 $8.50 2
26) $32 $24 $18 2 or $32 $29 $8.00 2
27) $32 $24 $18 2 or $32 $29 $7.50 2
28) $32 $24 $18 2 or $32 $29 $7.00 2
29) $32 $24 $18 2 or $32 $29 $6.50 2
30) $32 $24 $18 2 or $32 $29 $6.00 2
31) $32 $24 $18 2 or $32 $29 $5.50 2
32) $32 $24 $18 2 or $32 $29 $5.00 2
33) $32 $24 $18 2 or $32 $29 $4.50 2
34) $32 $24 $18 2 or $32 $29 $4.00 2
35) $32 $24 $18 2 or $32 $29 $3.50 2
36) $32 $24 $18 2 or $32 $29 $3.00 2
37) $32 $24 $18 2 or $32 $29 $2.50 2
38) $32 $24 $18 2 or $32 $29 $2.00 2



TASK 6
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $32, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $32, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $32 $24 $18 2 or $32 $29 $18.00 2
2) $32 $24 $18 2 or $32 $29 $17.75 2
3) $32 $24 $18 2 or $32 $29 $17.50 2
4) $32 $24 $18 2 or $32 $29 $17.00 2
5) $32 $24 $18 2 or $32 $29 $16.75 2
6) $32 $24 $18 2 or $32 $29 $16.50 2
7) $32 $24 $18 2 or $32 $29 $16.25 2
8) $32 $24 $18 2 or $32 $29 $16.00 2
9) $32 $24 $18 2 or $32 $29 $15.75 2
10) $32 $24 $18 2 or $32 $29 $15.50 2
11) $32 $24 $18 2 or $32 $29 $15.25 2
12) $32 $24 $18 2 or $32 $29 $15.00 2
13) $32 $24 $18 2 or $32 $29 $14.50 2
14) $32 $24 $18 2 or $32 $29 $14.00 2
15) $32 $24 $18 2 or $32 $29 $13.50 2
16) $32 $24 $18 2 or $32 $29 $13.00 2
17) $32 $24 $18 2 or $32 $29 $12.50 2
18) $32 $24 $18 2 or $32 $29 $12.00 2
19) $32 $24 $18 2 or $32 $29 $11.50 2
20) $32 $24 $18 2 or $32 $29 $11.00 2
21) $32 $24 $18 2 or $32 $29 $10.50 2
22) $32 $24 $18 2 or $32 $29 $10.00 2
23) $32 $24 $18 2 or $32 $29 $9.50 2
24) $32 $24 $18 2 or $32 $29 $9.00 2
25) $32 $24 $18 2 or $32 $29 $8.50 2
26) $32 $24 $18 2 or $32 $29 $8.00 2
27) $32 $24 $18 2 or $32 $29 $7.50 2
28) $32 $24 $18 2 or $32 $29 $7.00 2
29) $32 $24 $18 2 or $32 $29 $6.50 2
30) $32 $24 $18 2 or $32 $29 $6.00 2
31) $32 $24 $18 2 or $32 $29 $5.50 2
32) $32 $24 $18 2 or $32 $29 $5.00 2
33) $32 $24 $18 2 or $32 $29 $4.50 2
34) $32 $24 $18 2 or $32 $29 $4.00 2
35) $32 $24 $18 2 or $32 $29 $3.50 2
36) $32 $24 $18 2 or $32 $29 $3.00 2
37) $32 $24 $18 2 or $32 $29 $2.50 2
38) $32 $24 $18 2 or $32 $29 $2.00 2



TASK BLOCK 3

Participant Number:



TASKS 7-9

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 7 Option

A will be a 10 in 100 chance of receiving $30, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $30, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 7 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $30 $24 $18 2 or $30 $29 $18.00 2
If your prefer Option A, check the green box...

1) $30 $24 $18 2� or $30 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $30 $29 $18 2 or $30 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 7
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $30, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $30, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $30 $24 $18 2 or $30 $29 $18.00 2
2) $30 $24 $18 2 or $30 $29 $17.75 2
3) $30 $24 $18 2 or $30 $29 $17.50 2
4) $30 $24 $18 2 or $30 $29 $17.00 2
5) $30 $24 $18 2 or $30 $29 $16.75 2
6) $30 $24 $18 2 or $30 $29 $16.50 2
7) $30 $24 $18 2 or $30 $29 $16.25 2
8) $30 $24 $18 2 or $30 $29 $16.00 2
9) $30 $24 $18 2 or $30 $29 $15.75 2
10) $30 $24 $18 2 or $30 $29 $15.50 2
11) $30 $24 $18 2 or $30 $29 $15.25 2
12) $30 $24 $18 2 or $30 $29 $15.00 2
13) $30 $24 $18 2 or $30 $29 $14.50 2
14) $30 $24 $18 2 or $30 $29 $14.00 2
15) $30 $24 $18 2 or $30 $29 $13.50 2
16) $30 $24 $18 2 or $30 $29 $13.00 2
17) $30 $24 $18 2 or $30 $29 $12.50 2
18) $30 $24 $18 2 or $30 $29 $12.00 2
19) $30 $24 $18 2 or $30 $29 $11.50 2
20) $30 $24 $18 2 or $30 $29 $11.00 2
21) $30 $24 $18 2 or $30 $29 $10.50 2
22) $30 $24 $18 2 or $30 $29 $10.00 2
23) $30 $24 $18 2 or $30 $29 $9.50 2
24) $30 $24 $18 2 or $30 $29 $9.00 2
25) $30 $24 $18 2 or $30 $29 $8.50 2
26) $30 $24 $18 2 or $30 $29 $8.00 2
27) $30 $24 $18 2 or $30 $29 $7.50 2
28) $30 $24 $18 2 or $30 $29 $7.00 2
29) $30 $24 $18 2 or $30 $29 $6.50 2
30) $30 $24 $18 2 or $30 $29 $6.00 2
31) $30 $24 $18 2 or $30 $29 $5.50 2
32) $30 $24 $18 2 or $30 $29 $5.00 2
33) $30 $24 $18 2 or $30 $29 $4.50 2
34) $30 $24 $18 2 or $30 $29 $4.00 2
35) $30 $24 $18 2 or $30 $29 $3.50 2
36) $30 $24 $18 2 or $30 $29 $3.00 2
37) $30 $24 $18 2 or $30 $29 $2.50 2
38) $30 $24 $18 2 or $30 $29 $2.00 2



TASK 8
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $30, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $30, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $30 $24 $18 2 or $30 $29 $18.00 2
2) $30 $24 $18 2 or $30 $29 $17.75 2
3) $30 $24 $18 2 or $30 $29 $17.50 2
4) $30 $24 $18 2 or $30 $29 $17.00 2
5) $30 $24 $18 2 or $30 $29 $16.75 2
6) $30 $24 $18 2 or $30 $29 $16.50 2
7) $30 $24 $18 2 or $30 $29 $16.25 2
8) $30 $24 $18 2 or $30 $29 $16.00 2
9) $30 $24 $18 2 or $30 $29 $15.75 2
10) $30 $24 $18 2 or $30 $29 $15.50 2
11) $30 $24 $18 2 or $30 $29 $15.25 2
12) $30 $24 $18 2 or $30 $29 $15.00 2
13) $30 $24 $18 2 or $30 $29 $14.50 2
14) $30 $24 $18 2 or $30 $29 $14.00 2
15) $30 $24 $18 2 or $30 $29 $13.50 2
16) $30 $24 $18 2 or $30 $29 $13.00 2
17) $30 $24 $18 2 or $30 $29 $12.50 2
18) $30 $24 $18 2 or $30 $29 $12.00 2
19) $30 $24 $18 2 or $30 $29 $11.50 2
20) $30 $24 $18 2 or $30 $29 $11.00 2
21) $30 $24 $18 2 or $30 $29 $10.50 2
22) $30 $24 $18 2 or $30 $29 $10.00 2
23) $30 $24 $18 2 or $30 $29 $9.50 2
24) $30 $24 $18 2 or $30 $29 $9.00 2
25) $30 $24 $18 2 or $30 $29 $8.50 2
26) $30 $24 $18 2 or $30 $29 $8.00 2
27) $30 $24 $18 2 or $30 $29 $7.50 2
28) $30 $24 $18 2 or $30 $29 $7.00 2
29) $30 $24 $18 2 or $30 $29 $6.50 2
30) $30 $24 $18 2 or $30 $29 $6.00 2
31) $30 $24 $18 2 or $30 $29 $5.50 2
32) $30 $24 $18 2 or $30 $29 $5.00 2
33) $30 $24 $18 2 or $30 $29 $4.50 2
34) $30 $24 $18 2 or $30 $29 $4.00 2
35) $30 $24 $18 2 or $30 $29 $3.50 2
36) $30 $24 $18 2 or $30 $29 $3.00 2
37) $30 $24 $18 2 or $30 $29 $2.50 2
38) $30 $24 $18 2 or $30 $29 $2.00 2



TASK 9
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $30, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $30, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $30 $24 $18 2 or $30 $29 $18.00 2
2) $30 $24 $18 2 or $30 $29 $17.75 2
3) $30 $24 $18 2 or $30 $29 $17.50 2
4) $30 $24 $18 2 or $30 $29 $17.00 2
5) $30 $24 $18 2 or $30 $29 $16.75 2
6) $30 $24 $18 2 or $30 $29 $16.50 2
7) $30 $24 $18 2 or $30 $29 $16.25 2
8) $30 $24 $18 2 or $30 $29 $16.00 2
9) $30 $24 $18 2 or $30 $29 $15.75 2
10) $30 $24 $18 2 or $30 $29 $15.50 2
11) $30 $24 $18 2 or $30 $29 $15.25 2
12) $30 $24 $18 2 or $30 $29 $15.00 2
13) $30 $24 $18 2 or $30 $29 $14.50 2
14) $30 $24 $18 2 or $30 $29 $14.00 2
15) $30 $24 $18 2 or $30 $29 $13.50 2
16) $30 $24 $18 2 or $30 $29 $13.00 2
17) $30 $24 $18 2 or $30 $29 $12.50 2
18) $30 $24 $18 2 or $30 $29 $12.00 2
19) $30 $24 $18 2 or $30 $29 $11.50 2
20) $30 $24 $18 2 or $30 $29 $11.00 2
21) $30 $24 $18 2 or $30 $29 $10.50 2
22) $30 $24 $18 2 or $30 $29 $10.00 2
23) $30 $24 $18 2 or $30 $29 $9.50 2
24) $30 $24 $18 2 or $30 $29 $9.00 2
25) $30 $24 $18 2 or $30 $29 $8.50 2
26) $30 $24 $18 2 or $30 $29 $8.00 2
27) $30 $24 $18 2 or $30 $29 $7.50 2
28) $30 $24 $18 2 or $30 $29 $7.00 2
29) $30 $24 $18 2 or $30 $29 $6.50 2
30) $30 $24 $18 2 or $30 $29 $6.00 2
31) $30 $24 $18 2 or $30 $29 $5.50 2
32) $30 $24 $18 2 or $30 $29 $5.00 2
33) $30 $24 $18 2 or $30 $29 $4.50 2
34) $30 $24 $18 2 or $30 $29 $4.00 2
35) $30 $24 $18 2 or $30 $29 $3.50 2
36) $30 $24 $18 2 or $30 $29 $3.00 2
37) $30 $24 $18 2 or $30 $29 $2.50 2
38) $30 $24 $18 2 or $30 $29 $2.00 2



TASK BLOCK 4

Participant Number:



TASKS 10-12

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 10 Option

A will be a 10 in 100 chance of receiving $23, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $23, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 10 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $23 $24 $18 2 or $23 $29 $18.00 2
If your prefer Option A, check the green box...

1) $23 $24 $18 2� or $23 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $23 $29 $18 2 or $23 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 10
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $23, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $23, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $23 $24 $18 2 or $23 $29 $18.00 2
2) $23 $24 $18 2 or $23 $29 $17.75 2
3) $23 $24 $18 2 or $23 $29 $17.50 2
4) $23 $24 $18 2 or $23 $29 $17.00 2
5) $23 $24 $18 2 or $23 $29 $16.75 2
6) $23 $24 $18 2 or $23 $29 $16.50 2
7) $23 $24 $18 2 or $23 $29 $16.25 2
8) $23 $24 $18 2 or $23 $29 $16.00 2
9) $23 $24 $18 2 or $23 $29 $15.75 2
10) $23 $24 $18 2 or $23 $29 $15.50 2
11) $23 $24 $18 2 or $23 $29 $15.25 2
12) $23 $24 $18 2 or $23 $29 $15.00 2
13) $23 $24 $18 2 or $23 $29 $14.50 2
14) $23 $24 $18 2 or $23 $29 $14.00 2
15) $23 $24 $18 2 or $23 $29 $13.50 2
16) $23 $24 $18 2 or $23 $29 $13.00 2
17) $23 $24 $18 2 or $23 $29 $12.50 2
18) $23 $24 $18 2 or $23 $29 $12.00 2
19) $23 $24 $18 2 or $23 $29 $11.50 2
20) $23 $24 $18 2 or $23 $29 $11.00 2
21) $23 $24 $18 2 or $23 $29 $10.50 2
22) $23 $24 $18 2 or $23 $29 $10.00 2
23) $23 $24 $18 2 or $23 $29 $9.50 2
24) $23 $24 $18 2 or $23 $29 $9.00 2
25) $23 $24 $18 2 or $23 $29 $8.50 2
26) $23 $24 $18 2 or $23 $29 $8.00 2
27) $23 $24 $18 2 or $23 $29 $7.50 2
28) $23 $24 $18 2 or $23 $29 $7.00 2
29) $23 $24 $18 2 or $23 $29 $6.50 2
30) $23 $24 $18 2 or $23 $29 $6.00 2
31) $23 $24 $18 2 or $23 $29 $5.50 2
32) $23 $24 $18 2 or $23 $29 $5.00 2
33) $23 $24 $18 2 or $23 $29 $4.50 2
34) $23 $24 $18 2 or $23 $29 $4.00 2
35) $23 $24 $18 2 or $23 $29 $3.50 2
36) $23 $24 $18 2 or $23 $29 $3.00 2
37) $23 $24 $18 2 or $23 $29 $2.50 2
38) $23 $24 $18 2 or $23 $29 $2.00 2



TASK 11
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $23, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $23, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $23 $24 $18 2 or $23 $29 $18.00 2
2) $23 $24 $18 2 or $23 $29 $17.75 2
3) $23 $24 $18 2 or $23 $29 $17.50 2
4) $23 $24 $18 2 or $23 $29 $17.00 2
5) $23 $24 $18 2 or $23 $29 $16.75 2
6) $23 $24 $18 2 or $23 $29 $16.50 2
7) $23 $24 $18 2 or $23 $29 $16.25 2
8) $23 $24 $18 2 or $23 $29 $16.00 2
9) $23 $24 $18 2 or $23 $29 $15.75 2
10) $23 $24 $18 2 or $23 $29 $15.50 2
11) $23 $24 $18 2 or $23 $29 $15.25 2
12) $23 $24 $18 2 or $23 $29 $15.00 2
13) $23 $24 $18 2 or $23 $29 $14.50 2
14) $23 $24 $18 2 or $23 $29 $14.00 2
15) $23 $24 $18 2 or $23 $29 $13.50 2
16) $23 $24 $18 2 or $23 $29 $13.00 2
17) $23 $24 $18 2 or $23 $29 $12.50 2
18) $23 $24 $18 2 or $23 $29 $12.00 2
19) $23 $24 $18 2 or $23 $29 $11.50 2
20) $23 $24 $18 2 or $23 $29 $11.00 2
21) $23 $24 $18 2 or $23 $29 $10.50 2
22) $23 $24 $18 2 or $23 $29 $10.00 2
23) $23 $24 $18 2 or $23 $29 $9.50 2
24) $23 $24 $18 2 or $23 $29 $9.00 2
25) $23 $24 $18 2 or $23 $29 $8.50 2
26) $23 $24 $18 2 or $23 $29 $8.00 2
27) $23 $24 $18 2 or $23 $29 $7.50 2
28) $23 $24 $18 2 or $23 $29 $7.00 2
29) $23 $24 $18 2 or $23 $29 $6.50 2
30) $23 $24 $18 2 or $23 $29 $6.00 2
31) $23 $24 $18 2 or $23 $29 $5.50 2
32) $23 $24 $18 2 or $23 $29 $5.00 2
33) $23 $24 $18 2 or $23 $29 $4.50 2
34) $23 $24 $18 2 or $23 $29 $4.00 2
35) $23 $24 $18 2 or $23 $29 $3.50 2
36) $23 $24 $18 2 or $23 $29 $3.00 2
37) $23 $24 $18 2 or $23 $29 $2.50 2
38) $23 $24 $18 2 or $23 $29 $2.00 2



TASK 12
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $23, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $23, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $23 $24 $18 2 or $23 $29 $18.00 2
2) $23 $24 $18 2 or $23 $29 $17.75 2
3) $23 $24 $18 2 or $23 $29 $17.50 2
4) $23 $24 $18 2 or $23 $29 $17.00 2
5) $23 $24 $18 2 or $23 $29 $16.75 2
6) $23 $24 $18 2 or $23 $29 $16.50 2
7) $23 $24 $18 2 or $23 $29 $16.25 2
8) $23 $24 $18 2 or $23 $29 $16.00 2
9) $23 $24 $18 2 or $23 $29 $15.75 2
10) $23 $24 $18 2 or $23 $29 $15.50 2
11) $23 $24 $18 2 or $23 $29 $15.25 2
12) $23 $24 $18 2 or $23 $29 $15.00 2
13) $23 $24 $18 2 or $23 $29 $14.50 2
14) $23 $24 $18 2 or $23 $29 $14.00 2
15) $23 $24 $18 2 or $23 $29 $13.50 2
16) $23 $24 $18 2 or $23 $29 $13.00 2
17) $23 $24 $18 2 or $23 $29 $12.50 2
18) $23 $24 $18 2 or $23 $29 $12.00 2
19) $23 $24 $18 2 or $23 $29 $11.50 2
20) $23 $24 $18 2 or $23 $29 $11.00 2
21) $23 $24 $18 2 or $23 $29 $10.50 2
22) $23 $24 $18 2 or $23 $29 $10.00 2
23) $23 $24 $18 2 or $23 $29 $9.50 2
24) $23 $24 $18 2 or $23 $29 $9.00 2
25) $23 $24 $18 2 or $23 $29 $8.50 2
26) $23 $24 $18 2 or $23 $29 $8.00 2
27) $23 $24 $18 2 or $23 $29 $7.50 2
28) $23 $24 $18 2 or $23 $29 $7.00 2
29) $23 $24 $18 2 or $23 $29 $6.50 2
30) $23 $24 $18 2 or $23 $29 $6.00 2
31) $23 $24 $18 2 or $23 $29 $5.50 2
32) $23 $24 $18 2 or $23 $29 $5.00 2
33) $23 $24 $18 2 or $23 $29 $4.50 2
34) $23 $24 $18 2 or $23 $29 $4.00 2
35) $23 $24 $18 2 or $23 $29 $3.50 2
36) $23 $24 $18 2 or $23 $29 $3.00 2
37) $23 $24 $18 2 or $23 $29 $2.50 2
38) $23 $24 $18 2 or $23 $29 $2.00 2



TASK BLOCK 5

Participant Number:



TASKS 13-15

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 13 Option

A will be a 10 in 100 chance of receiving $21, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $21, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 13 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $21 $24 $18 2 or $21 $29 $18.00 2
If your prefer Option A, check the green box...

1) $21 $24 $18 2� or $21 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $21 $29 $18 2 or $21 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 13
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $21, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $21, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $21 $24 $18 2 or $21 $29 $18.00 2
2) $21 $24 $18 2 or $21 $29 $17.75 2
3) $21 $24 $18 2 or $21 $29 $17.50 2
4) $21 $24 $18 2 or $21 $29 $17.00 2
5) $21 $24 $18 2 or $21 $29 $16.75 2
6) $21 $24 $18 2 or $21 $29 $16.50 2
7) $21 $24 $18 2 or $21 $29 $16.25 2
8) $21 $24 $18 2 or $21 $29 $16.00 2
9) $21 $24 $18 2 or $21 $29 $15.75 2
10) $21 $24 $18 2 or $21 $29 $15.50 2
11) $21 $24 $18 2 or $21 $29 $15.25 2
12) $21 $24 $18 2 or $21 $29 $15.00 2
13) $21 $24 $18 2 or $21 $29 $14.50 2
14) $21 $24 $18 2 or $21 $29 $14.00 2
15) $21 $24 $18 2 or $21 $29 $13.50 2
16) $21 $24 $18 2 or $21 $29 $13.00 2
17) $21 $24 $18 2 or $21 $29 $12.50 2
18) $21 $24 $18 2 or $21 $29 $12.00 2
19) $21 $24 $18 2 or $21 $29 $11.50 2
20) $21 $24 $18 2 or $21 $29 $11.00 2
21) $21 $24 $18 2 or $21 $29 $10.50 2
22) $21 $24 $18 2 or $21 $29 $10.00 2
23) $21 $24 $18 2 or $21 $29 $9.50 2
24) $21 $24 $18 2 or $21 $29 $9.00 2
25) $21 $24 $18 2 or $21 $29 $8.50 2
26) $21 $24 $18 2 or $21 $29 $8.00 2
27) $21 $24 $18 2 or $21 $29 $7.50 2
28) $21 $24 $18 2 or $21 $29 $7.00 2
29) $21 $24 $18 2 or $21 $29 $6.50 2
30) $21 $24 $18 2 or $21 $29 $6.00 2
31) $21 $24 $18 2 or $21 $29 $5.50 2
32) $21 $24 $18 2 or $21 $29 $5.00 2
33) $21 $24 $18 2 or $21 $29 $4.50 2
34) $21 $24 $18 2 or $21 $29 $4.00 2
35) $21 $24 $18 2 or $21 $29 $3.50 2
36) $21 $24 $18 2 or $21 $29 $3.00 2
37) $21 $24 $18 2 or $21 $29 $2.50 2
38) $21 $24 $18 2 or $21 $29 $2.00 2



TASK 14
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $21, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $21, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $21 $24 $18 2 or $21 $29 $18.00 2
2) $21 $24 $18 2 or $21 $29 $17.75 2
3) $21 $24 $18 2 or $21 $29 $17.50 2
4) $21 $24 $18 2 or $21 $29 $17.00 2
5) $21 $24 $18 2 or $21 $29 $16.75 2
6) $21 $24 $18 2 or $21 $29 $16.50 2
7) $21 $24 $18 2 or $21 $29 $16.25 2
8) $21 $24 $18 2 or $21 $29 $16.00 2
9) $21 $24 $18 2 or $21 $29 $15.75 2
10) $21 $24 $18 2 or $21 $29 $15.50 2
11) $21 $24 $18 2 or $21 $29 $15.25 2
12) $21 $24 $18 2 or $21 $29 $15.00 2
13) $21 $24 $18 2 or $21 $29 $14.50 2
14) $21 $24 $18 2 or $21 $29 $14.00 2
15) $21 $24 $18 2 or $21 $29 $13.50 2
16) $21 $24 $18 2 or $21 $29 $13.00 2
17) $21 $24 $18 2 or $21 $29 $12.50 2
18) $21 $24 $18 2 or $21 $29 $12.00 2
19) $21 $24 $18 2 or $21 $29 $11.50 2
20) $21 $24 $18 2 or $21 $29 $11.00 2
21) $21 $24 $18 2 or $21 $29 $10.50 2
22) $21 $24 $18 2 or $21 $29 $10.00 2
23) $21 $24 $18 2 or $21 $29 $9.50 2
24) $21 $24 $18 2 or $21 $29 $9.00 2
25) $21 $24 $18 2 or $21 $29 $8.50 2
26) $21 $24 $18 2 or $21 $29 $8.00 2
27) $21 $24 $18 2 or $21 $29 $7.50 2
28) $21 $24 $18 2 or $21 $29 $7.00 2
29) $21 $24 $18 2 or $21 $29 $6.50 2
30) $21 $24 $18 2 or $21 $29 $6.00 2
31) $21 $24 $18 2 or $21 $29 $5.50 2
32) $21 $24 $18 2 or $21 $29 $5.00 2
33) $21 $24 $18 2 or $21 $29 $4.50 2
34) $21 $24 $18 2 or $21 $29 $4.00 2
35) $21 $24 $18 2 or $21 $29 $3.50 2
36) $21 $24 $18 2 or $21 $29 $3.00 2
37) $21 $24 $18 2 or $21 $29 $2.50 2
38) $21 $24 $18 2 or $21 $29 $2.00 2



TASK 15
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $21, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $21, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $21 $24 $18 2 or $21 $29 $18.00 2
2) $21 $24 $18 2 or $21 $29 $17.75 2
3) $21 $24 $18 2 or $21 $29 $17.50 2
4) $21 $24 $18 2 or $21 $29 $17.00 2
5) $21 $24 $18 2 or $21 $29 $16.75 2
6) $21 $24 $18 2 or $21 $29 $16.50 2
7) $21 $24 $18 2 or $21 $29 $16.25 2
8) $21 $24 $18 2 or $21 $29 $16.00 2
9) $21 $24 $18 2 or $21 $29 $15.75 2
10) $21 $24 $18 2 or $21 $29 $15.50 2
11) $21 $24 $18 2 or $21 $29 $15.25 2
12) $21 $24 $18 2 or $21 $29 $15.00 2
13) $21 $24 $18 2 or $21 $29 $14.50 2
14) $21 $24 $18 2 or $21 $29 $14.00 2
15) $21 $24 $18 2 or $21 $29 $13.50 2
16) $21 $24 $18 2 or $21 $29 $13.00 2
17) $21 $24 $18 2 or $21 $29 $12.50 2
18) $21 $24 $18 2 or $21 $29 $12.00 2
19) $21 $24 $18 2 or $21 $29 $11.50 2
20) $21 $24 $18 2 or $21 $29 $11.00 2
21) $21 $24 $18 2 or $21 $29 $10.50 2
22) $21 $24 $18 2 or $21 $29 $10.00 2
23) $21 $24 $18 2 or $21 $29 $9.50 2
24) $21 $24 $18 2 or $21 $29 $9.00 2
25) $21 $24 $18 2 or $21 $29 $8.50 2
26) $21 $24 $18 2 or $21 $29 $8.00 2
27) $21 $24 $18 2 or $21 $29 $7.50 2
28) $21 $24 $18 2 or $21 $29 $7.00 2
29) $21 $24 $18 2 or $21 $29 $6.50 2
30) $21 $24 $18 2 or $21 $29 $6.00 2
31) $21 $24 $18 2 or $21 $29 $5.50 2
32) $21 $24 $18 2 or $21 $29 $5.00 2
33) $21 $24 $18 2 or $21 $29 $4.50 2
34) $21 $24 $18 2 or $21 $29 $4.00 2
35) $21 $24 $18 2 or $21 $29 $3.50 2
36) $21 $24 $18 2 or $21 $29 $3.00 2
37) $21 $24 $18 2 or $21 $29 $2.50 2
38) $21 $24 $18 2 or $21 $29 $2.00 2



TASK BLOCK 6

Participant Number:



TASKS 16-18

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 16 Option

A will be a 10 in 100 chance of receiving $19, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $19, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 16 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $19 $24 $18 2 or $19 $29 $18.00 2
If your prefer Option A, check the green box...

1) $19 $24 $18 2� or $19 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $19 $29 $18 2 or $19 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 16
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $19, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $19, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $19 $24 $18 2 or $19 $29 $18.00 2
2) $19 $24 $18 2 or $19 $29 $17.75 2
3) $19 $24 $18 2 or $19 $29 $17.50 2
4) $19 $24 $18 2 or $19 $29 $17.00 2
5) $19 $24 $18 2 or $19 $29 $16.75 2
6) $19 $24 $18 2 or $19 $29 $16.50 2
7) $19 $24 $18 2 or $19 $29 $16.25 2
8) $19 $24 $18 2 or $19 $29 $16.00 2
9) $19 $24 $18 2 or $19 $29 $15.75 2
10) $19 $24 $18 2 or $19 $29 $15.50 2
11) $19 $24 $18 2 or $19 $29 $15.25 2
12) $19 $24 $18 2 or $19 $29 $15.00 2
13) $19 $24 $18 2 or $19 $29 $14.50 2
14) $19 $24 $18 2 or $19 $29 $14.00 2
15) $19 $24 $18 2 or $19 $29 $13.50 2
16) $19 $24 $18 2 or $19 $29 $13.00 2
17) $19 $24 $18 2 or $19 $29 $12.50 2
18) $19 $24 $18 2 or $19 $29 $12.00 2
19) $19 $24 $18 2 or $19 $29 $11.50 2
20) $19 $24 $18 2 or $19 $29 $11.00 2
21) $19 $24 $18 2 or $19 $29 $10.50 2
22) $19 $24 $18 2 or $19 $29 $10.00 2
23) $19 $24 $18 2 or $19 $29 $9.50 2
24) $19 $24 $18 2 or $19 $29 $9.00 2
25) $19 $24 $18 2 or $19 $29 $8.50 2
26) $19 $24 $18 2 or $19 $29 $8.00 2
27) $19 $24 $18 2 or $19 $29 $7.50 2
28) $19 $24 $18 2 or $19 $29 $7.00 2
29) $19 $24 $18 2 or $19 $29 $6.50 2
30) $19 $24 $18 2 or $19 $29 $6.00 2
31) $19 $24 $18 2 or $19 $29 $5.50 2
32) $19 $24 $18 2 or $19 $29 $5.00 2
33) $19 $24 $18 2 or $19 $29 $4.50 2
34) $19 $24 $18 2 or $19 $29 $4.00 2
35) $19 $24 $18 2 or $19 $29 $3.50 2
36) $19 $24 $18 2 or $19 $29 $3.00 2
37) $19 $24 $18 2 or $19 $29 $2.50 2
38) $19 $24 $18 2 or $19 $29 $2.00 2



TASK 17
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $19, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $19, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $19 $24 $18 2 or $19 $29 $18.00 2
2) $19 $24 $18 2 or $19 $29 $17.75 2
3) $19 $24 $18 2 or $19 $29 $17.50 2
4) $19 $24 $18 2 or $19 $29 $17.00 2
5) $19 $24 $18 2 or $19 $29 $16.75 2
6) $19 $24 $18 2 or $19 $29 $16.50 2
7) $19 $24 $18 2 or $19 $29 $16.25 2
8) $19 $24 $18 2 or $19 $29 $16.00 2
9) $19 $24 $18 2 or $19 $29 $15.75 2
10) $19 $24 $18 2 or $19 $29 $15.50 2
11) $19 $24 $18 2 or $19 $29 $15.25 2
12) $19 $24 $18 2 or $19 $29 $15.00 2
13) $19 $24 $18 2 or $19 $29 $14.50 2
14) $19 $24 $18 2 or $19 $29 $14.00 2
15) $19 $24 $18 2 or $19 $29 $13.50 2
16) $19 $24 $18 2 or $19 $29 $13.00 2
17) $19 $24 $18 2 or $19 $29 $12.50 2
18) $19 $24 $18 2 or $19 $29 $12.00 2
19) $19 $24 $18 2 or $19 $29 $11.50 2
20) $19 $24 $18 2 or $19 $29 $11.00 2
21) $19 $24 $18 2 or $19 $29 $10.50 2
22) $19 $24 $18 2 or $19 $29 $10.00 2
23) $19 $24 $18 2 or $19 $29 $9.50 2
24) $19 $24 $18 2 or $19 $29 $9.00 2
25) $19 $24 $18 2 or $19 $29 $8.50 2
26) $19 $24 $18 2 or $19 $29 $8.00 2
27) $19 $24 $18 2 or $19 $29 $7.50 2
28) $19 $24 $18 2 or $19 $29 $7.00 2
29) $19 $24 $18 2 or $19 $29 $6.50 2
30) $19 $24 $18 2 or $19 $29 $6.00 2
31) $19 $24 $18 2 or $19 $29 $5.50 2
32) $19 $24 $18 2 or $19 $29 $5.00 2
33) $19 $24 $18 2 or $19 $29 $4.50 2
34) $19 $24 $18 2 or $19 $29 $4.00 2
35) $19 $24 $18 2 or $19 $29 $3.50 2
36) $19 $24 $18 2 or $19 $29 $3.00 2
37) $19 $24 $18 2 or $19 $29 $2.50 2
38) $19 $24 $18 2 or $19 $29 $2.00 2



TASK 18
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $19, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $19, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $19 $24 $18 2 or $19 $29 $18.00 2
2) $19 $24 $18 2 or $19 $29 $17.75 2
3) $19 $24 $18 2 or $19 $29 $17.50 2
4) $19 $24 $18 2 or $19 $29 $17.00 2
5) $19 $24 $18 2 or $19 $29 $16.75 2
6) $19 $24 $18 2 or $19 $29 $16.50 2
7) $19 $24 $18 2 or $19 $29 $16.25 2
8) $19 $24 $18 2 or $19 $29 $16.00 2
9) $19 $24 $18 2 or $19 $29 $15.75 2
10) $19 $24 $18 2 or $19 $29 $15.50 2
11) $19 $24 $18 2 or $19 $29 $15.25 2
12) $19 $24 $18 2 or $19 $29 $15.00 2
13) $19 $24 $18 2 or $19 $29 $14.50 2
14) $19 $24 $18 2 or $19 $29 $14.00 2
15) $19 $24 $18 2 or $19 $29 $13.50 2
16) $19 $24 $18 2 or $19 $29 $13.00 2
17) $19 $24 $18 2 or $19 $29 $12.50 2
18) $19 $24 $18 2 or $19 $29 $12.00 2
19) $19 $24 $18 2 or $19 $29 $11.50 2
20) $19 $24 $18 2 or $19 $29 $11.00 2
21) $19 $24 $18 2 or $19 $29 $10.50 2
22) $19 $24 $18 2 or $19 $29 $10.00 2
23) $19 $24 $18 2 or $19 $29 $9.50 2
24) $19 $24 $18 2 or $19 $29 $9.00 2
25) $19 $24 $18 2 or $19 $29 $8.50 2
26) $19 $24 $18 2 or $19 $29 $8.00 2
27) $19 $24 $18 2 or $19 $29 $7.50 2
28) $19 $24 $18 2 or $19 $29 $7.00 2
29) $19 $24 $18 2 or $19 $29 $6.50 2
30) $19 $24 $18 2 or $19 $29 $6.00 2
31) $19 $24 $18 2 or $19 $29 $5.50 2
32) $19 $24 $18 2 or $19 $29 $5.00 2
33) $19 $24 $18 2 or $19 $29 $4.50 2
34) $19 $24 $18 2 or $19 $29 $4.00 2
35) $19 $24 $18 2 or $19 $29 $3.50 2
36) $19 $24 $18 2 or $19 $29 $3.00 2
37) $19 $24 $18 2 or $19 $29 $2.50 2
38) $19 $24 $18 2 or $19 $29 $2.00 2



TASK BLOCK 7

Participant Number:



TASKS 19-25

On the following pages you will complete 7 tasks. In each task you are asked to make a series of

decisions between two options: Option A and Option B. You may complete the tasks in any order

you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 19 Option

A will be a 5 in 100 chance of receiving $25 and a 95 in 100 chance of receiving $0. This will remain

the same for all decisions in the task. Option B will vary across decisions. Initially Option B will

be a 100 in 100 chance of receiving $25. As you proceed, Option B will change. The amount you

receive with 100 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box.

The first question from Task 19 is reproduced as an example.

EXAMPLE
Option A or Option B

5 in 100 Chance 95 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
If your prefer Option A, check the green box...

1) $25 $0 2� or $25.00 2
If your prefer Option B, check the blue box...

1) $25 $0 2 or $25.00 2�

The other tasks in this block will involve the same payment amounts for Option

A, but the chance of receiving the payments will change. Please take a look at all

the tasks and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 19
On this page you will make a series of decisions between two options. Option A will be a 5 in 100

chance of receiving $25 and a 95 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
5 in 100 Chance 95 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 20
On this page you will make a series of decisions between two options. Option A will be a 10 in 100

chance of receiving $25 and a 90 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 Chance 90 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 21
On this page you will make a series of decisions between two options. Option A will be a 25 in 100

chance of receiving $25 and a 75 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
25 in 100 Chance 75 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 22
On this page you will make a series of decisions between two options. Option A will be a 50 in 100

chance of receiving $25 and a 50 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
50 in 100 Chance 50 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 23
On this page you will make a series of decisions between two options. Option A will be a 75 in 100

chance of receiving $25 and a 25 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
75 in 100 Chance 25 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 24
On this page you will make a series of decisions between two options. Option A will be a 90 in 100

chance of receiving $25 and a 10 in 100 chance of receiving $0. Initially Option B will be a 100 in 100
chance of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100
chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
90 in 100 Chance 10 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK 25
On this page you will make a series of decisions between two options. Option A will be a 95 in 100

chance of receiving $25 and a 5 in 100 chance of receiving $0. Initially Option B will be a 100 in 100 chance
of receiving $25. As you proceed, Option B will change. The amount you receive with 100 in 100 chance
will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
95 in 100 Chance 5 in 100 Chance 100 in 100 Chance

1) $25 $0 2 or $25.00 2
2) $25 $0 2 or $24.00 2
3) $25 $0 2 or $23.00 2
4) $25 $0 2 or $22.00 2
5) $25 $0 2 or $21.00 2
6) $25 $0 2 or $20.00 2
7) $25 $0 2 or $19.00 2
8) $25 $0 2 or $18.00 2
9) $25 $0 2 or $17.00 2
10) $25 $0 2 or $16.00 2
11) $25 $0 2 or $15.00 2
12) $25 $0 2 or $14.00 2
13) $25 $0 2 or $13.00 2
14) $25 $0 2 or $12.00 2
15) $25 $0 2 or $11.00 2
16) $25 $0 2 or $10.00 2
17) $25 $0 2 or $9.00 2
18) $25 $0 2 or $8.00 2
19) $25 $0 2 or $7.00 2
20) $25 $0 2 or $6.00 2
21) $25 $0 2 or $5.00 2
22) $25 $0 2 or $4.00 2
23) $25 $0 2 or $3.00 2
24) $25 $0 2 or $2.00 2
25) $25 $0 2 or $1.00 2
26) $25 $0 2 or $0.00 2



TASK BLOCK 8

Participant Number:



TASKS 26-28

On the following pages you will complete 3 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B. You may complete the tasks in

any order you wish.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 26 Option

A will be a 10 in 100 chance of receiving $25, a 30 in 100 chance of receiving $24 and 60 in 100

chance of receiving $18. This will remain the same for all decisions in the task. Option B will vary

across decisions. Initially Option B will be a 10 in 100 chance of receiving $25, a 30 in 100 chance

of receiving $29 and 60 in 100 chance of receiving $18. As you proceed, Option B will change. The

amount you receive with 60 in 100 chance will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. The first question from Task 26 is reproduced

as an example.

EXAMPLE
Option A or Option B

10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $25 $24 $18 2 or $25 $29 $18.00 2
If your prefer Option A, check the green box...

1) $25 $24 $18 2� or $25 $29 $18.00 2
If your prefer Option B, check the blue box...

1) $25 $29 $18 2 or $25 $29 $18.00 2�

The other tasks in this block will involve the same payment amounts, but the

chance of receiving the payments will change. Please take a look at all the tasks

and raise your hand if you have any questions.

Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 26
On this page you will make a series of decisions between two uncertain options. Option A will be a 10

in 100 chance of receiving $25, a 30 in 100 chance of receiving $24 and 60 in 100 chance of receiving $18.
Initially Option B will be a 10 in 100 chance of receiving $25, a 30 in 100 chance of receiving $29 and 60 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
60 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
10 in 100 30 in 100 60 in 100 10 in 100 30 in 100 60 in 100
Chance Chance Chance Chance Chance Chance

1) $25 $24 $18 2 or $25 $29 $18.00 2
2) $25 $24 $18 2 or $25 $29 $17.75 2
3) $25 $24 $18 2 or $25 $29 $17.50 2
4) $25 $24 $18 2 or $25 $29 $17.00 2
5) $25 $24 $18 2 or $25 $29 $16.75 2
6) $25 $24 $18 2 or $25 $29 $16.50 2
7) $25 $24 $18 2 or $25 $29 $16.25 2
8) $25 $24 $18 2 or $25 $29 $16.00 2
9) $25 $24 $18 2 or $25 $29 $15.75 2
10) $25 $24 $18 2 or $25 $29 $15.50 2
11) $25 $24 $18 2 or $25 $29 $15.25 2
12) $25 $24 $18 2 or $25 $29 $15.00 2
13) $25 $24 $18 2 or $25 $29 $14.50 2
14) $25 $24 $18 2 or $25 $29 $14.00 2
15) $25 $24 $18 2 or $25 $29 $13.50 2
16) $25 $24 $18 2 or $25 $29 $13.00 2
17) $25 $24 $18 2 or $25 $29 $12.50 2
18) $25 $24 $18 2 or $25 $29 $12.00 2
19) $25 $24 $18 2 or $25 $29 $11.50 2
20) $25 $24 $18 2 or $25 $29 $11.00 2
21) $25 $24 $18 2 or $25 $29 $10.50 2
22) $25 $24 $18 2 or $25 $29 $10.00 2
23) $25 $24 $18 2 or $25 $29 $9.50 2
24) $25 $24 $18 2 or $25 $29 $9.00 2
25) $25 $24 $18 2 or $25 $29 $8.50 2
26) $25 $24 $18 2 or $25 $29 $8.00 2
27) $25 $24 $18 2 or $25 $29 $7.50 2
28) $25 $24 $18 2 or $25 $29 $7.00 2
29) $25 $24 $18 2 or $25 $29 $6.50 2
30) $25 $24 $18 2 or $25 $29 $6.00 2
31) $25 $24 $18 2 or $25 $29 $5.50 2
32) $25 $24 $18 2 or $25 $29 $5.00 2
33) $25 $24 $18 2 or $25 $29 $4.50 2
34) $25 $24 $18 2 or $25 $29 $4.00 2
35) $25 $24 $18 2 or $25 $29 $3.50 2
36) $25 $24 $18 2 or $25 $29 $3.00 2
37) $25 $24 $18 2 or $25 $29 $2.50 2
38) $25 $24 $18 2 or $25 $29 $2.00 2



TASK 27
On this page you will make a series of decisions between two uncertain options. Option A will be a 40

in 100 chance of receiving $25, a 30 in 100 chance of receiving $24 and 30 in 100 chance of receiving $18.
Initially Option B will be a 40 in 100 chance of receiving $25, a 30 in 100 chance of receiving $29 and 30 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
30 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
40 in 100 30 in 100 30 in 100 40 in 100 30 in 100 30 in 100
Chance Chance Chance Chance Chance Chance

1) $25 $24 $18 2 or $25 $29 $18.00 2
2) $25 $24 $18 2 or $25 $29 $17.75 2
3) $25 $24 $18 2 or $25 $29 $17.50 2
4) $25 $24 $18 2 or $25 $29 $17.00 2
5) $25 $24 $18 2 or $25 $29 $16.75 2
6) $25 $24 $18 2 or $25 $29 $16.50 2
7) $25 $24 $18 2 or $25 $29 $16.25 2
8) $25 $24 $18 2 or $25 $29 $16.00 2
9) $25 $24 $18 2 or $25 $29 $15.75 2
10) $25 $24 $18 2 or $25 $29 $15.50 2
11) $25 $24 $18 2 or $25 $29 $15.25 2
12) $25 $24 $18 2 or $25 $29 $15.00 2
13) $25 $24 $18 2 or $25 $29 $14.50 2
14) $25 $24 $18 2 or $25 $29 $14.00 2
15) $25 $24 $18 2 or $25 $29 $13.50 2
16) $25 $24 $18 2 or $25 $29 $13.00 2
17) $25 $24 $18 2 or $25 $29 $12.50 2
18) $25 $24 $18 2 or $25 $29 $12.00 2
19) $25 $24 $18 2 or $25 $29 $11.50 2
20) $25 $24 $18 2 or $25 $29 $11.00 2
21) $25 $24 $18 2 or $25 $29 $10.50 2
22) $25 $24 $18 2 or $25 $29 $10.00 2
23) $25 $24 $18 2 or $25 $29 $9.50 2
24) $25 $24 $18 2 or $25 $29 $9.00 2
25) $25 $24 $18 2 or $25 $29 $8.50 2
26) $25 $24 $18 2 or $25 $29 $8.00 2
27) $25 $24 $18 2 or $25 $29 $7.50 2
28) $25 $24 $18 2 or $25 $29 $7.00 2
29) $25 $24 $18 2 or $25 $29 $6.50 2
30) $25 $24 $18 2 or $25 $29 $6.00 2
31) $25 $24 $18 2 or $25 $29 $5.50 2
32) $25 $24 $18 2 or $25 $29 $5.00 2
33) $25 $24 $18 2 or $25 $29 $4.50 2
34) $25 $24 $18 2 or $25 $29 $4.00 2
35) $25 $24 $18 2 or $25 $29 $3.50 2
36) $25 $24 $18 2 or $25 $29 $3.00 2
37) $25 $24 $18 2 or $25 $29 $2.50 2
38) $25 $24 $18 2 or $25 $29 $2.00 2



TASK 28
On this page you will make a series of decisions between two uncertain options. Option A will be a 60

in 100 chance of receiving $25, a 30 in 100 chance of receiving $24 and 10 in 100 chance of receiving $18.
Initially Option B will be a 60 in 100 chance of receiving $25, a 30 in 100 chance of receiving $29 and 10 in
100 chance of receiving $18. As you proceed, Option B will change. The lowest amount you receive with
10 in 100 chance will decrease. For each row, decide whether you prefer Option A or Option B.

Option A or Option B
60 in 100 30 in 100 10 in 100 60 in 100 30 in 100 10 in 100
Chance Chance Chance Chance Chance Chance

1) $25 $24 $18 2 or $25 $29 $18.00 2
2) $25 $24 $18 2 or $25 $29 $17.75 2
3) $25 $24 $18 2 or $25 $29 $17.50 2
4) $25 $24 $18 2 or $25 $29 $17.00 2
5) $25 $24 $18 2 or $25 $29 $16.75 2
6) $25 $24 $18 2 or $25 $29 $16.50 2
7) $25 $24 $18 2 or $25 $29 $16.25 2
8) $25 $24 $18 2 or $25 $29 $16.00 2
9) $25 $24 $18 2 or $25 $29 $15.75 2
10) $25 $24 $18 2 or $25 $29 $15.50 2
11) $25 $24 $18 2 or $25 $29 $15.25 2
12) $25 $24 $18 2 or $25 $29 $15.00 2
13) $25 $24 $18 2 or $25 $29 $14.50 2
14) $25 $24 $18 2 or $25 $29 $14.00 2
15) $25 $24 $18 2 or $25 $29 $13.50 2
16) $25 $24 $18 2 or $25 $29 $13.00 2
17) $25 $24 $18 2 or $25 $29 $12.50 2
18) $25 $24 $18 2 or $25 $29 $12.00 2
19) $25 $24 $18 2 or $25 $29 $11.50 2
20) $25 $24 $18 2 or $25 $29 $11.00 2
21) $25 $24 $18 2 or $25 $29 $10.50 2
22) $25 $24 $18 2 or $25 $29 $10.00 2
23) $25 $24 $18 2 or $25 $29 $9.50 2
24) $25 $24 $18 2 or $25 $29 $9.00 2
25) $25 $24 $18 2 or $25 $29 $8.50 2
26) $25 $24 $18 2 or $25 $29 $8.00 2
27) $25 $24 $18 2 or $25 $29 $7.50 2
28) $25 $24 $18 2 or $25 $29 $7.00 2
29) $25 $24 $18 2 or $25 $29 $6.50 2
30) $25 $24 $18 2 or $25 $29 $6.00 2
31) $25 $24 $18 2 or $25 $29 $5.50 2
32) $25 $24 $18 2 or $25 $29 $5.00 2
33) $25 $24 $18 2 or $25 $29 $4.50 2
34) $25 $24 $18 2 or $25 $29 $4.00 2
35) $25 $24 $18 2 or $25 $29 $3.50 2
36) $25 $24 $18 2 or $25 $29 $3.00 2
37) $25 $24 $18 2 or $25 $29 $2.50 2
38) $25 $24 $18 2 or $25 $29 $2.00 2
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