Falsiability, Identification and Rationality Discussion

Alvaro J. Riascos Villegas

May 22, 2013

Universidad de los Andes and Quantil Falsiability, Identification and Rationality

() < </p>

Three Ideas

Falsiability (exteding Chambers et.al) Identification (identifying the right problem) Logic of games (what to do about this?)

Contenido

1 Three Ideas

- Palsiability (exteding Chambers et.al)
- 3 Identification (identifying the right problem)
- 4 Logic of games (what to do about this?)

(a)

Three Ideas

Falsiability (exteding Chambers et.al) Identification (identifying the right problem) Logic of games (what to do about this?)

Falsiability, Identification and Rationality Discussion

- Falsiability (exteding Chambers et.al)
- Identification (identifying the right problem)
- Logic of games (what to do about this?).

• • • • • • • • • • • •

Contenido

2 Falsiability (exteding Chambers et.al)

3 Identification (identifying the right problem)

4 Logic of games (what to do about this?)

(a)

Falsiability (exteding Chambers et.al)

Definition (Data Sets)

Let L' be a language with a finite number of constants and relation symbols such that $L' \subseteq L$. An L'-data set \mathfrak{D} is a finite L'-structure.

() < </p>

Definition (Consistency of Data Sets)

A data set \mathfrak{D} is consistent with an *L*-structure $\mathfrak{M} = (M, (\mathbb{R}^M)_{R \in L}, (\mathbb{C}^M)_{\mathbb{C} \in L})$ if there is an inyective homomorphism of \mathfrak{D} into \mathfrak{M} . We denote this by $\mathfrak{D} \to_{1-1} \mathfrak{M}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition (Falsiability)

Let ${\mathfrak T}$ be a class of strutures and ${\mathfrak M}$ any L-struture.

- M is falsified by the data set D (i.e., D falsifies M) if there is no inyective homomorphism of D into M.
- **2** \mathfrak{T} is falsified by the data set \mathfrak{D} (i.e., \mathfrak{D} falsifies \mathfrak{T}) if \mathfrak{D} falsifies \mathfrak{M} for all $\mathfrak{M} \in \mathfrak{T}$.
- $\odot \mathfrak{T}$ is falsifiable if there is some data set \mathfrak{D} that falsifies \mathfrak{T} .

< □ > < @ > < 注 > < 注 > ... 注

Definition (Empirical Content)

The empirical content $ec(\mathfrak{T})$ of theory \mathfrak{T} , is the class of all structures \mathfrak{M} such that \mathfrak{T} is not falsified by any data set \mathfrak{D} consistent with \mathfrak{M} .

(日) (四) (문) (문) (문)

SQC

Falsiability (exteding Chambers et.al)

Theorem (Syntactic Characterization of Empirical Content)

For every class of L-strutures \mathfrak{T} , $ec(\mathfrak{T}) = {\mathfrak{M} : \mathfrak{M} \models UNCAF(\mathfrak{T})}.$

(日) (四) (포) (포) (포)

990

• We provide a structural characterization that motivates several generalizations and synthactic characterizations

Theorem

If $\ensuremath{\mathfrak{T}}$ is axiomatizable in a logic that satisfies the compacteness theorem then

$$ec(\mathfrak{T}) = \{\mathfrak{M} : \exists \mathfrak{A} \in \mathfrak{T}, \mathfrak{M} \to_{1-1} \mathfrak{A}\}$$
 (1)

Contenido

Three Ideas

Palsiability (exteding Chambers et.al)

3 Identification (identifying the right problem)

4 Logic of games (what to do about this?)

(a)

Identification (identifying the right problem)

Definition (Data Sets)

Let L' be a language with a finite number of constants, functions and relation symbols such that $L' \subseteq L$. An L'-data set \mathfrak{D} is a set $\mathfrak{D} = \{D, (R^{\mathfrak{D}})_{R \in L'}, (f^{\mathfrak{D}})_{f \in L'}, (c^{\mathfrak{D}})_{c \in L'}\}$ such that:

- D is a finite non-empty set.
- **2** $R^{\mathfrak{D}}$ is an n-ary relation on *D* for every *R* n-ary relation symbol in *L'*.
- If \$\vec{p}\$ is an n-ary partial function on D for every f n-ary function symbol in L'.
- $c^{\mathfrak{D}}$ is an element of D for every constant symbol c in L.

() < </p>

Identification (identifying the right problem)

Definition (Consistency of Data Sets)

A data set \mathfrak{D} is consistent with an *L*-structure $\mathfrak{M} = \{M, (R^{\mathfrak{M}})_{R \in L}, (f^{\mathfrak{M}})_{f \in L}, (c^{\mathfrak{M}})_{c \in L}\}$ if:

$$D \subseteq M$$

f^D = f^M | dom(f^D) where dom(f^D) is the domain of function f^D.

(日) (四) (문) (문) (문)

•
$$c^{\mathfrak{D}} = c^{\mathfrak{M}}$$
 for every constant symbol c in L' .

Identification (identifying the right problem)

Definition (Identification)

We say \mathfrak{D} identifies \mathfrak{T} over the universe $\widehat{D} \supseteq D$, if for any $\mathfrak{M} = \{M, (R^{\mathfrak{M}})_{R \in L}, (f^{\mathfrak{M}})_{f \in L}, (c^{\mathfrak{M}})_{c \in L}\}$ and $\mathfrak{N} = \{N, (R^{\mathfrak{N}})_{R \in L}, (f^{\mathfrak{N}})_{f \in L}, (c^{\mathfrak{M}})_{c \in L}\}$ in \mathfrak{T} , such $\widehat{D} \subseteq M \cap N$ we have:

•
$$R^{\mathfrak{M}} \mid \widehat{D} = R^{\mathfrak{N}} \mid \widehat{D}$$
, for every *R* relation symbol in *L*'

2
$$f^{\mathfrak{M}} \mid D = f^{\mathfrak{N}} \mid D$$
, for every f funtion symbols in L' .

3
$$c^{\mathfrak{M}} = c^{\mathfrak{N}}$$
 for every constant symbol c in L' .

Identification (identifying the right problem): Example

• Consider the following theory.

A formula that expresses Walras law $\forall x \forall x' (\overline{I}(x) = \overline{I}(x') \rightarrow \overline{Z}(x) = \overline{Z}$ (2)

This theory is satisfiable: consider aggregate demand Z of a Neoclassical economy, $M = R_{++}^l \times R_{+}^{ln}$, l is the number of commodities in the economy, n is the number of agents and:

Z^m: M → M, defined by Z̄(p, w) = (p, max{Z,0}, ..., max{Z,0}) where Z is the excess demand function of a neoclassical exchange economy and max{Z,0} ≡ (max{Z₁,0}, ..., max{Z_l,0}).
I^m: M → M, defined by Ī(p, w) = (p, p ⊙ w, ..., 0, p ⊙ w) where p ⊙ w = (p ⋅ w₁, ..., p ⋅ w_p)

Identification (identifying the right problem): Example

• Let \mathfrak{T} be the class of all models of ϕ . Now consider the following data set. $\mathfrak{D} = \left\{ D, \overline{Z}^{\mathfrak{D}}, \overline{I}^{\mathfrak{D}}, \overline{P}^{\mathfrak{D}}, \cdot, 0 \right\}$ where $D \subseteq M$ and: • $\overline{Z}^{\mathfrak{D}}(p, w) = (p, 0)$ • $\overline{I}^{\mathfrak{D}} = \overline{I}^{\mathfrak{M}} \mid D$

Clearly \mathfrak{D} is consistent with \mathfrak{T} . Observability of data set \mathfrak{D} represents the partial observability of the equilibrium manifold.

(日) (四) (포) (포) (포)

Identification (identifying the right problem): Example

• Consider the following universe:

$$\widehat{D} = \{ (\widehat{p}, \widehat{w}) \in M : \exists (p, w) \in D \text{ such that } \overline{I}^{\mathfrak{M}}(p, w) = \overline{I}^{\mathfrak{M}}(\widehat{p}, \widehat{w}) \}$$
(3)

(日) (四) (문) (문) (문)

Then \mathfrak{D} identifies \mathfrak{T} over \widehat{D} .

Contenido

1 Three Ideas

- Palsiability (exteding Chambers et.al)
- 3 Identification (identifying the right problem)
- 4 Logic of games (what to do about this?)

(a)

Logic of games (what to do about this?)

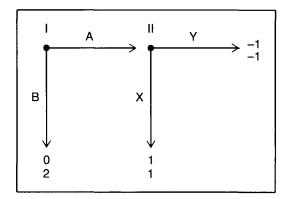
- Motivating idea: The Logic of Rational Play in Games of Perfect Information. Bonanno, G. 1991.
- Noncooperative games literature has studied estensively how to model the idea of rational behaviour in iunterative enviorments.
- An important result that motivtes a large literature is that not all Nash equilibrium ae acceptable: for example because of non credible threats.
- An axiomatization of what it means to be rational is most welcome.

<ロ> (四) (四) (三) (三)

- In my view there are three interesting ideas in this paper (most of them not the same as to what motivates the paper).
 - I teaches how to represent n-person perfect information games as a set of propostions in propostional logic.
 - An attempt is made to capture axiomatically, in this type of games with a few other restrictions, the notion of rationality.
 - This is done so by avoiding modelling players beliefs. Therefore, in a sense it provides a different and probably very simplistic view on the question, what do we gain by modelling agents knowledge?

(日) (四) (문) (문) (문)

• Leading example (entry of a firm).



- Representing a game a perfect information game in propostional logic.
- Propositions: A (player I takes action A), X (player II takes action X), B (player I takes action B), Y (player II takes action Y), π_i = t (players i payoff is t, t ∈ mathcalR).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Representing the game in propositional logic.

 $(\Gamma_{i}) A \lor B$ $(\Gamma_2^1) \neg (A \land B)$ (Γ_3^1) $(X \lor Y) \Leftrightarrow A$ $(\Gamma_4^1) \neg (X \land Y)$ (Γ_5^1) $B \Rightarrow ((\pi_1 = 0) \land (\pi_1 = 2))$ (Γ_6^1) $X \Rightarrow ((\pi_1 = 1) \land (\pi_{11} = 1))$ $(\Gamma_{7}^{1}) \quad \Upsilon \Rightarrow ((\pi_{1} = -1) \land (\pi_{11} = -1))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- Stratgies:
 - 1 Player I: $(A \lor B) \Rightarrow A, (A \lor B) \Rightarrow B$
 - 2 Player II: $(X \lor Y) \Rightarrow X, (X \lor Y) \Rightarrow Y$

• Strategy profiles are conjuctions f such formulas.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Rational solution.
- Let R_i be the propostion *i* is rational.
- A strategy profile S is a rational solution of the game described by previous set of propositions Γ iff:

$$\Gamma \wedge R_1 \wedge R_2 \vdash S \tag{4}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Charcaterizing rationality.
- Let $A_{i,h}$ player *i* takes action h.
- $\pi_i \ge t$ (players *i* payoff is at least *t*).
- $\pi_i \leq t$ (players *i* payoff is at most *t*).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where Γ is the description of the game-tree, R_k is the proposition "player k is rational" (with $k \neq i$), and A_{ih} has the usual meaning ("player i takes action A_{kr} " $h = 1, \ldots, m; m \geq 1$).

Rule of inference of individual rationality (NERD):10 If

$$H_{i} \Rightarrow [(A_{i1} \lor A_{i2} \lor \ldots \lor A_{im}) \land (A_{ij} \Rightarrow \pi_{i} \le \alpha) \land (A_{ik} \Rightarrow \pi_{i} \ge \beta) \land (\alpha < \beta)]$$
(8)

is a theorem, then the following is a theorem

$$H_i \Rightarrow [A_u \Rightarrow \neg R_i]$$
 (9)

イロト イヨト イヨト イヨト

크

- Each formula i the proof cannot contain R_i .
- Rationality characterizes choice in decision theory (one player, finite information games with a unique solution).
- Al rational solutions are equivalent (same play, same outcome).
- For nonrecursive games if there is a unique SPE it is rational.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?