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e Falsiability (exteding Chambers et.al)
e Identification (identifying the right problem)
e Logic of games (what to do about this?).
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Falsiability (exteding Chambers et.al)

Falsiability (exteding Chambers et.al)

Definition (Data Sets)

Let L’ be a language with a finite number of constants and relation
symbols such that L’ C L. An L’-data set © is a finite L’-structure.
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Falsiability (exteding Chambers et.al)

Definition (Consistency of Data Sets)

A data set © is consistent with an L-structure
M = (M, (RM)geL, (cM)cer) if there is an inyective
homomorphism of ® into 2. We denote this by © —;_1 9.




Falsiability (exteding Chambers et.al)

Definition (Falsiability)

Let ¥ be a class of strutures and 9 any L-struture.

Q@ M is falsified by the data set © (i.e., © falsifies ) if there is
no inyective homomorphism of ® into 9.

@ T is falsified by the data set © (i.e., © falsifies T) if ©
falsifies 201 for all M € .

© < is falsifiable if there is some data set ® that falsifies <.




Falsiability (exteding Chambers et.al)

Definition (Empirical Content)

The empirical content ec(¥) of theory T, is the class of all
structures 901 such that ¥ is not falsified by any data set ©

consistent with 1.




Falsiability (exteding Chambers et.al)

Theorem (Syntactic Characterization of Empirical Content)
For every class of L-strutures ¥, ec(T) = {9M : M = UNCAF(%)}.




Falsiability (exteding Chambers et.al)

@ We provide a structural characterization that motivates
several generalizations and synthactic characterizations

If T is axiomatizable in a logic that satisfies the compacteness
theorem then

ec(‘I) = {f)ﬁ AR e T IM —1 1 Q[} (1)
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Identification (identifying the right problem)

|dentification (identifying the right problem)

Definition (Data Sets)

Let L’ be a language with a finite number of constants, functions
and relation symbols such that L’ C L. An [’-data set D is a set
D = {D,(R®)rerr, (F°)rerr, (¢®)cers} such that:
@ D is a finite non-empty set.
@ R? is an n-ary relation on D for every R n-ary relation symbol
in L.
© f? is an n-ary partial function on D for every f n-ary function
symbol in L.

Q c® is an element of D for every constant symbol ¢ in L.
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Identification (identifying the right problem)

Definition (Consistency of Data Sets)

A data set ® is consistent with an L-structure
M = {M, (R™)reL, (F)reL, (™)cer} if:
@ DCM
@ R C R™
Q@ ° = | dom(f®) where dom(f*) is the domain of
function 2.

Q ® = ™ for every constant symbol ¢ in L.




Identification (identifying the right problem)

Definition (Identification)

We say © identifies ¥ over the universe D D D, if for any
M = {M7(Rm)R€L7(f9n)f€L7(cm)C€L} and 5%
N = {N, (Rm)REL, (fm)fEL, (Cm)ceL} in‘T, such DC MN N we
have:
Q R™| D = R ] D, for every R relation symbol in L.
Q M| D=f% | D, for every f funtion symbols in L.

O ™ = ™ for every constant symbol ¢ in L.




|dentification (identifying the right problem): Example

o Consider the following theory.

A formula that expresses Walras lawVxVx'(1(x) = I(x') — Z(x)
()

This theory is satisfiable: consider aggregate demand Z of a
Neoclassical economy, M = F\’J’FJr X ij, | is the number of
commodities in the economy, n is the number of agents and:

Q@ Z" M — M, defined by
Z(p,w) = (p, max{Z,0}, ..., max{Z,0}) where Z is the
excess demand function of a neoclassical exchange economy

and max{Z,0} = (max{Z;,0}, ..., max{Z;,0}).

@ 77" . M — M, defined by T(p, w) = (p,p ® w,...,0, p® w)
where pOw = (p- wi,...,p wy)

Nl



|dentification (identifying the right problem): Example

@ Let T be the class of all models of ¢. Now consider the
following data set.

D= {D,?Q,Tg,ﬁ©,~,0} where D C M and:

© Z7(p,w) = (p.0)

@7 =1"|D
Clearly ® is consistent with T. Observability of data set ©
represents the partial observability of the equilibrium manifold.



|dentification (identifying the right problem): Example

@ Consider the following universe:
=~ ~ -m M
D= {(p,w) € M:3(p,w) € D such that I (p,w) = 1" (p,w)}
3

Then ® identifies T over D.
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Logic of games (what to do about this?)

Logic of games (what to do about this?)

@ Motivating idea: The Logic of Rational Play in Games of
Perfect Information. Bonanno, G. 1991.

@ Noncooperative games literature has studied estensively how
to model the idea of rational behaviour in iunterative
enviorments.

@ An important result that motivtes a large literature is that not
all Nash equilibrium ae acceptable: for example because of
non credible threats.

@ An axiomatization of what it means to be rational is most
welcome.
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Logic of games (what to do about this?)

@ In my view there are three interesting ideas in this paper
(most of them not the same as to what motivates the paper).

© | teaches how to represent n-person perfect information games
as a set of propostions in propostional logic.

@ An attempt is made to capture axiomatically, in this type of
games with a few other restrictions, the notion of rationality.

© This is done so by avoiding modelling players beliefs.
Therefore, in a sense it provides a different and probably very
simplistic view on the question, what do we gain by modelling
agents knowledge?



Logic of games (what to do about this?)

@ Leading example (entry of a firm).

| It
A Y
> ¢ -1
-1
B X
\2
0 1
2 1




Logic of games (what to do about this?)

@ Representing a game a perfect information game in
propostional logic.

@ Propostions: A (player | takes action A), X (player Il takes

action X), B (player | takes action B), Y (player Il takes
action Y), m; = t (players i payoff is t, t € mathcalR).



Logic of games (what to do about this?)

@ Representing the game in propositional logic.
) AvB
) -~(ANB)
) (XvY)eA
) ~(XAY)
M) B=>((m =0 A (m = 2)
T) X=>(m=DA@m=1)

(l‘;) Y= (m= -1 N (my = —1))



Logic of games (what to do about this?)

@ Stratgies:
Q Player I: (AVvB)=A,(AvB)=B
@ Player Il (XVY)= X, (XVY)=Y

@ Strategy profiles are conjnctions f such formulas.



Logic of games (what to do about this?)

@ Rational solution.
@ Let R; be the propostion i is rational.

@ A strategy profile S is a rational solution of the game
described by previous set of propositions I iff:

FTRINRES (4)



Logic of games (what to do about this?)

@ Charcaterizing rationality.

o Let A, player /i takes action h.
e m; >t (players i payoff is at least t).
<

e 7; <t (players i payoff is at most t).



hat to do ab

t this?)

DEFINITION OF PLAYER-i-ADMISSIBLE HYPOTHESIS. A for-
mula of the form
TA(AiV A2V - .-V Ai),  or (7a)
TARN (A A2V ...V An)
(for some orall k € {1, . . ., n}\{i}) (7b)
where T is the description of the game-tree, Ry is the proposition “player k

is rational” (with k # i), and Ay, has the usual meaning (“player i takes
action A, h =1,...,m;m=1).

Rule of inference of individual rationality (NERD): 1

H > [(AaV A2V - ..V An)
NA>m=a) N\ (Ar>m = B) N (< B)] ®

is a theorem, then the following is a theorem

H;= [4,> ~R) ©




Logic of games (what to do about this?)

@ Each formula i the proof cannot contain R;.

e Rationality characterizes choice in decision theory (one player,
finite information games with a unique solution).

@ Al rational solutions are equivalent (same play, same
outcome).

@ For nonrecursive games if there is a unique SPE it is rational.
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