Dynamic Mechanism Design:

Revenue Equivalence, Profit Maximization, and Information Disclosure

Alessandro Pavan, Ilya Segal, Juuso Toikka

May 2008

Motivation

- Mechanism Design: auctions, taxation, etc...
- Standard model: one-time information, one-time decisions
- Many real-world settings
 - Information arrives over time (serially correlated)
 - Sequence of decisions
 - Non-time-separable technology/preferences

troduction Model FOC for IC Independent-shock Representation Payoff Equivalence Profit Maximization Sufficient Conditions Applications

Examples

- Sequential procurement auctions
 - bidders acquire information, invest, learn by doing...
 - intertemporal capacity constraints
- New "experience goods"
 - valuation dynamics driven by consumption ("experimentation")
 - price discrimination by menu of price paths
- Advance sales (e.g., flight tickets)
 - buyers receive information, make investments over time
 - · price discrimination on early info. by menu of price-refund options

Introduction Model FOC for IC Independent-shock Representation Payoff Equivalence Profit Maximization Sufficient Conditions Applications

State of the Literature

- Efficient dynamic mechanisms:
 - Athey-Segal, Bergemann-Valimaki ...
- Special cases of profit-maximization: typically one agent, Markov process
 - Baron-Besanko: two-period monopoly regulation
 - Courty-Li: two-period advance ticket sales
 - Eso-Szentes: two-period, one decision
 - Battaglini: infinite horizon with 2 types in each period
- Hanging questions:
 - Necessary + sufficient conditions for incentive compatibility with many agents, many periods, non-Markov processes, continuous types
 - Properties of profit-maximizing mechanisms
 - Important technical assumptions

What's Different about Dynamic Mechanisms?

- How to derive transfers, payoffs from nonmonetary allocations ("revenue equivalence")?
- → Must control for multi-period contingent deviations

Payoff Non-equivalence with Discrete Future Types

• What assumptions on type-process are needed?

Example

Payoff: $\theta_2 x_2 - p_1 - p_2$

- \bullet 2^{nd} period consumption: $x_2 \in \{0,1\}$, no consumption in 1^{st} period
- Types: $\theta_2 \in \{H, L\}$ and $\theta_1 = \Pr\{\theta_2 = H\} \in [0, 1]$
- Mechanism:
- 1st period: nothing
- 2nd period: post price q, with $L \leq q \leq H$
- Allocation $x_2(H)=1$, $x_2(L)=0$ for any θ_1 , regardless of q!
- Equilibrium payoff: $V(\theta_1) = \theta_1(H q)$
- Revenue Equivalence at t=1 fails because of disconnected type space at t=2 (despite connected type-space at t=1)

Payoff Non-equivalence with Discontinuous Transitions

Example (continued)

- Payoff: $\theta_2 x_2 p_1 p_2$
- Types: $\theta_1, \theta_2 \in [0, 1]$ with

$$f_2(\theta_2|\theta_1) = \begin{cases} 1 & \text{if } \theta_1 < \frac{1}{2} \\ 2\theta_2 & \text{if } \theta_1 \ge \frac{1}{2} \end{cases}$$

- Mechanism:
 - 1st period: advance contract with posted price q with $q \in (\frac{1}{2}, \frac{2}{3})$
 - 2nd period: execute contract
- Allocation $x_2(\theta_1) = 1$ iff $\theta_1 \geq \frac{1}{2}$ regardless of θ_2 , regardless of q!
- Eq. payoff: $V(\theta_1) = 0$ if $\theta_1 < \frac{7}{2}$, and $V(\theta_1) = \frac{2}{2} q$ if $\theta_1 \ge \frac{1}{2}$
- E.g., if V(0) = 0, then $V(1) \in \left[0, \frac{1}{6}\right]$
- \bullet Revenue Equivalence at t=1 fails because of discontinuous transitions

ntroduction Model FOC for IC Independent-shock Representation Payoff Equivalence Profit Maximization Sufficient Conditions Applications

Results of this Paper

- Incentive compatibility ⇒ Formula expressing agents' eq. payoffs
 - Summarizes "first-order" multi-period IC (cf. Mirrlees)
 - Technical "smoothness" conditions for this to hold
- Sufficient conditions for "global" incentive compatibility
- In quasilinear multi-agent environments, with statistically independent types across agents:
 - Revenue Equivalence Theorem
 - Principal's expected profits = expected "dynamic virtual surplus"
 - Profit-maximizing mechanisms
 - Dynamics of distortions
- Applications: sequential auctions, mechanisms for selling new goods, etc

Environment (as seen by one agent)

- In each period $t = 1, \ldots, T$
 - Agent privately observes $\theta_t \in \Theta_t \subset \mathbb{R}$
 - Decision $y_t \in Y_t$
- Histories:

$$y^{t} = (y_{1}, \dots, y_{t}) \in Y^{t} = \prod_{\tau=1}^{t} Y_{\tau},$$

$$\theta^{t} = (\theta_{1}, \dots, \theta_{t}) \in \Theta^{t} = \prod_{\tau=1}^{t} \Theta_{\tau}$$

full histories: $y = y^T \in Y = Y^T$, $\theta = \theta^T \in \Theta = \Theta^T$

Technology:

$$\tilde{\theta}_t \sim F_t(\cdot | \theta^{t-1}, y^{t-1})$$

- allows learning-by-doing, information acquisition, etc.
- Agent's payoff: $U(\theta, y)$

- Revelation principle (Myerson 86) ⇒ direct mechanisms:
- In each period t
 - Agent observes $\theta_t \in \Theta_t$
 - Agent submits report $m_t \in \Theta_t$
 - Mechanism draws $y_t \in Y_t$ from probability distribution $\Omega_t(\cdot | m^t, y^{t-1})$
 - Randomization allows e.g. dependence on other agents' messages
- (Randomized direct) mechanism:

$$\Omega = \left\langle \Omega_t : \Theta^t \times Y^{t-1} \to \Delta \left(Y_t \right) \right\rangle_{t=1}^T$$

Agent's reporting strategy:

$$\sigma = \left\langle \sigma_t : \Theta^t \times \Theta^{t-1} \times Y^{t-1} \to \Theta_t \right\rangle_{t=1}^T$$

Truthful strategy:

$$\sigma_t(\theta^t, m^{t-1}, y^{t-1}) \equiv \theta_t$$
 for all t , all $(\theta^t, m^{t-1}, y^{t-1})$

Histories:

$$H = \left\{ (\theta^s, m^t, y^u) : \quad s \ge t \ge u \ge t - 1 \right\}$$

- Technology F, mechanism Ω , strategy σ , and history $h \in H \Longrightarrow$ probability measure $\mu[\Omega, \sigma]|h$ on $\Theta \times \Theta \times Y$
 - $\mu[\Omega]|h$ if σ is truthful
 - $\mu[\Omega, \sigma]$ if h is null history
- $\mathbb{E}^{\mu[\Omega,\sigma]|h}[U(\tilde{\theta},\tilde{y})] = \text{resulting exppayoff}$
- Value function:

$$V(h) = \sup_{\sigma} \mathbb{E}^{\mu[\Omega,\sigma]|h}[U(\tilde{\theta},\tilde{y})]$$

Incentive Compatibility

Definition

Mechanism Ω is incentive compatible at history h (IC at h) if

$$\mathbb{E}^{\mu[\Omega]|h}[U(\tilde{\theta},\tilde{y})] = V(h)$$

• Focus on ex ante rationality:

Definition

Mechanism Ω is ex-ante incentive compatible (ex-ante IC) if it is IC at \varnothing

• Ex-ante IC implies IC at truthful histories (i.e., on eqpath) with $\mu[\Omega]$ -prob. 1

First-Order IC in Static Model (Mirrlees, Myerson)

- Assume T=1
- Mechanism Ω is IC at each θ :

$$V(\theta) \equiv \sup_{m \in \Theta} \int_{Y} U(\theta, y) d\Omega(y|m) = \int_{Y} U(\theta, y) d\Omega(y|\theta)$$

• Envelope Theorem:

$$V'(\theta) = \int_{Y} \frac{\partial U(\theta, y)}{\partial \theta} d\Omega(y|\theta)$$

- Quasilinear setting:
 - $U(\theta, (x, p)) = u(\theta, x) + p$
 - Revenue Equivalence, characterization of optimal mechanisms

First-Order IC in Dynamic Model: Heuristic Derivation

• Mechanism Ω is IC at (truthful) history $h = (\theta^t, \theta^{t-1}, y^{t-1})$:

$$V(h) = \mathbb{E}^{\mu[\Omega]|h}[U(\tilde{\theta}, \tilde{y})]$$

$$= \int U(\theta, y) \prod_{\tau=t}^{T} \left[d\Omega_{\tau}(y_{\tau}|m^{\tau}, y^{\tau-1}) dF_{\tau+1}(\theta_{\tau+1}|\theta^{\tau}, y^{\tau}) \right] \Big|_{m=0}$$

- Differentiate wrt current type θ_t :
 - $\bullet \quad \text{in } U(\theta, y) \Rightarrow \mathbb{E}^{\mu[\Omega]|h} \left[\partial U(\tilde{\theta}, \tilde{y}) / \partial \theta_t \right]$
 - ② in $F_{\tau+1}(\theta_{\tau+1}|\theta^{\tau},y^{\tau}) \Rightarrow$ integrate by parts, differ. within integral:

$$-\mathbb{E}^{\mu[\Omega]|h} \left[\int \frac{\partial V((\tilde{\boldsymbol{\theta}}^{\tau}, \boldsymbol{\theta}_{\tau+1}), \tilde{\boldsymbol{\theta}}^{\tau}, \tilde{\boldsymbol{y}}^{\tau})}{\partial \boldsymbol{\theta}_{\tau+1}} \frac{\partial F_{\tau+1}(\boldsymbol{\theta}_{\tau+1}|\tilde{\boldsymbol{\theta}}^{\tau}, \tilde{\boldsymbol{y}}^{\tau})}{\partial \boldsymbol{\theta}_{t}} d\boldsymbol{\theta}_{\tau+1} \right]$$

Derivatives wrt report $m_t = \theta_t$: vanish by (appropriate version of) Envelope Thm

Technical Assumptions

- Don't want to impose "smoothness" on mechanism
- "Smooth" environment needed to iterate Envelope Thm backward
- Ensure one can differentiate totally and under expectations
 - ullet Need new assumptions on kernels F_t

- $\Theta_t = (\theta_t, \overline{\theta}_t) \text{ with } -\infty \leq \theta_t \leq \overline{\theta}_t < +\infty$
- $Oldsymbol{0} \partial U(\theta,y)/\partial \theta_t$ exists and bounded uniformly in (θ,y)
- "Full Support": $F_t(\theta_t|\theta^{t-1}, y^{t-1})$ strictly increasing in θ_t
- For $\tau < t$, $\partial F_t(\theta_t | \theta^{t-1}, y^{t-1}) / \partial \theta_\tau$ exists and bounded in abs. value by an integrable function $B_t(\theta_t)$
- $F_t(\cdot|\theta^{t-1},y^{t-1})$ continuous in θ^{t-1} in total variation metric
- $F_t(\cdot|\theta^{t-1},y^{t-1})$ abs. continuous, with density $f_t(\cdot|\theta^{t-1},y^{t-1})$ (only to simplify formulas)

Payoff via FOC: Formal Result

$\mathsf{Theorem}$

Under Assumptions 1-7, if Ω is IC at $h^{t-1} = (\theta^{t-1}, \theta^{t-1}, y^{t-1})$, then $V(\theta_t, h^{t-1})$ is Lipschitz continuous in θ_t , and for a.e. θ_t ,

$$\frac{\partial V(\theta_t, h^{t-1})}{\partial \theta_t} = \mathbb{E}^{\mu[\Omega]|(\theta_t, h^{t-1})} \left[\sum_{\tau=t}^T J_t^{\tau}(\tilde{\theta}, \tilde{y}) \frac{\partial U(\tilde{\theta}, \tilde{y})}{\partial \theta_{\tau}} \right]$$
 (IC-FOC)

where

$$\underbrace{J_t^{\tau}(\theta,y)}_{\text{``Total information index''}} = \sum_{K \in \mathbb{N}, \ l \in \mathbb{N}^K: t = l_0 < \ldots < l_K = \tau} \prod_{k=1}^K I_{l_{k-1}}^{l_k}(\theta,y)$$

$$\underbrace{J_t^{\tau}(\theta,y)}_{\text{``Direct information index''}} = -\frac{\partial F_{\tau}(\theta_{\tau}|\theta^{\tau-1},y^{\tau-1})/\partial \theta_t}{f_{\tau}(\theta_{\tau}|\theta^{\tau-1},y^{\tau-1})}$$

$$\theta_t = \sum_{l=1}^k \phi_l \theta_{t-l} + \varepsilon_t$$

- $\varepsilon_t \sim G_t$, independent across t; θ_t public for t < 0
- $F_{\tau}(\theta_{\tau}|\theta^{\tau-1}, y^{\tau-1}) = G_{\tau}\left(\theta_{\tau} \sum_{l=1}^{k} \phi_{l}\theta_{\tau-l}\right)$
- $I_t^{\tau}(\theta, y) = -\frac{\partial F_{\tau}(\theta_{\tau}|\theta^{\tau-1}, y^{\tau-1})/\partial \theta_t}{f_{\tau}(\theta_{\tau}|\theta^{\tau-1}, y^{\tau-1})} = \phi_{\tau-t}$
- $J_t^{\tau}(\theta, y) = \sum_{l} \phi_{l_k l_{k-1}}$ "impulse $K \in \mathbb{N}$ $l \in \mathbb{N}^K : t = l_0 < \dots < l_K = \tau k = 1$ response" constants
- AR(1):

$$I_{t}^{\tau}\left(\theta,y\right)=\left\{\begin{array}{ll}\phi_{1} & \text{if } \tau=t+1\\ 0 & \text{otherwise}\end{array}\right. \quad \text{and} \quad J_{t}^{\tau}\left(\theta,y\right)=\left(\phi_{1}\right)^{\tau-t}.$$

Alternative Approach: Independent-shock Representation

- $\theta_t = z(\varepsilon^t; y^{t-1})$ where $\varepsilon_t \sim G_t$, support in $\mathbb{R},$ independent across t
- E.g. AR(k): $\theta_t = \sum_{k=0}^{k} \phi_l \theta_{t-l} + \varepsilon_t$
- Two representations are equivalent: Given mechanism Ω for F, there exists Ω for (G,z) that induces same distribution on $\Theta \times Y$ as Ω . And vice versa.
- Alternative route: have agent report $(\varepsilon_t)_{t=1}^T \longrightarrow \text{mechanism } \hat{\Omega}$
- Redefine utility in terms of ε : $\hat{U}(\varepsilon, y) \equiv U(z(\varepsilon; y), y)$
- With serially independent shocks, IC-FOC formula simplifies to

$$\frac{\partial \hat{V}\left(\varepsilon_{t}, h^{t-1}\right)}{\partial \varepsilon_{t}} = \mathbb{E}^{\mu[\hat{\Omega}] | (\varepsilon_{t}, h^{t-1})} \left[\frac{\partial \hat{U}(\tilde{\varepsilon}, \tilde{y})}{\partial \varepsilon_{t}} \right]$$

where
$$h^{t-1} = (\varepsilon^{t-1}, \varepsilon^{t-1}, y^{t-1})$$

• Simpler proof: sufficient to consider period-t deviations

Independent Shocks: Results

Theorem

Any F admits "canonical" independent-shock representation in which for all t, $\tilde{\varepsilon}_t \sim \mathcal{U}(0,1)$.

ullet Proof by induction on t using "prob. integral transform thm":

$$z_t(\varepsilon^t; y^{t-1}) = F_t^{-1}(\varepsilon_t | z^{t-1}(\varepsilon^{t-1}; y^{t-2}), y^{t-1})$$

- Given model specified in terms of F, two routes to payoff equivalence:
 - lacktriangle Work with F and impose Assumptions 1-7 from above
 - ② Convert F into independent shocks (G,z) and identify assumptions on F,U that ensure \hat{U} is "smooth"
- Turns out that assumptions required for 1 and 2 are not nested:
 - 1 rules out "shifting atoms" (e.g., fully persistent types)
 - 2 rules out "growing atoms" but allows for shifting atoms

- New conditions:
 - (a) $U(\cdot,y)$ equi-Lipschitz and continuously differentiable in θ
 - (b) $F_t^{-1}(\varepsilon|\cdot, y^{t-1})$ equi-Lipschitz and continuously diff in θ^{t-1}
 - (c) $F_{\star}^{-1}(\cdot|\theta^{t-1},y^{t-1})$ equi-Lipschitz and continuously diff. in ε .

Theorem

Suppose (U,F) satisfies assumptions (1)-(2) + (a)-(c). Then $U(\varepsilon,y)$ is equi-Lipschitz continuous and differentiable in ε . It follows that if $\hat{\Omega}$ is IC at history $h^{t-1} = (\varepsilon^{t-1}, \varepsilon^{t-1}, u^{t-1})$, then

$$\frac{\partial \hat{V}\left(\varepsilon_{t},h^{t-1}\right)}{\partial \varepsilon_{t}} = \mathbb{E}^{\mu[\hat{\Omega}]|(\varepsilon_{t},h^{t-1})} \left[\frac{\partial \hat{U}(\check{\varepsilon},\check{y})}{\partial \varepsilon_{t}} \right] \quad \textit{a.e.}$$

- Agents i = 1, ..., N
- (x_t, p_t) , where $p_t \in \mathbb{R}^N$, $x_t = (x_{1t}, ..., x_{Nt}) \in X_t \subset \prod X_{it}$
- $U_i(\theta, (x, p)) = u_i(\theta, x) + \sum_i p_{it}$
- Assumption: $F_{it}(\theta_{it}|\theta^{t-1},(x^{t-1},p^{t-1})) = F_{it}(\theta_{it}|\theta^{t-1},x^{t-1})$
- Independent Types: $\tilde{\theta}_{i,t} \sim F_{i,t}(\cdot|\theta_i^{t-1}, x_i^{t-1})$, independent across i
- BNE
- Revelation Principle: truthful + minimal disclosure
 - postponed payments
- Deterministic direct mechanisms: $\langle \chi_t : \Theta^t \to X_t \rangle_{t=1}^T \quad \psi : \Theta \to \mathbb{R}^N$
- $\mu_i[\chi,\psi]|(\theta_i^s,m_i^t,x_i^u)$: process as viewed by i

Payoff Equivalence

 \bullet IC-FOC: For all t, all $h_i^{t-1} = (\theta_i^{t-1}, \theta_i^{t-1}, x_i^{t-1})$

$$\frac{\partial V_i(\theta_{it}, h_i^{t-1})}{\partial \theta_{it}} = \mathbb{E}^{\mu_i[\chi, \psi] | (\theta_{it}, h_i^{t-1})} \left[\sum_{\tau=t}^T J_{it}^\tau(\tilde{\theta}, \tilde{x}) \frac{\partial u_i(\tilde{\theta}, \tilde{x})}{\partial \theta_{i\tau}} \right]$$

- Pins down $V_i(\theta_{it}, h_i^{t-1})$ as function of χ and θ_{it} up to $K_i(h_i^{t-1})$
- ullet Iterated expectations \longrightarrow get rid of dependence of $K_i(h_i^{t-1})$ on h_i^{t-1}

Theorem

Let (χ, ψ) and $(\chi, \hat{\psi})$ be any two ex-ante IC mechanisms that implement same χ . For all t, i, with prob. 1,

$$\mathbb{E}^{\mu[\chi,\psi]}[U_i(\tilde{\theta},\tilde{y}) \mid \theta_i^t] - \mathbb{E}^{\mu[\chi,\hat{\psi}]}[U_i(\tilde{\theta},\tilde{y}) \mid \theta_i^t] = K_i$$

- Single agent $\Rightarrow \chi$ pins down payoff and transfer
- Many agents ⇒ expectation of payoff and transfer over others' types pinned down as function of own type
- E.g., different dynamic mechanisms implementing efficiency (Athey-Segal, Bergemann-Valimaki,...) are "equivalent" in this sense

Participation Constraint and Relaxed Problem

- Agents can quit in any period
- Agents can post bonds \Rightarrow only $\mathbf{1}^{st}$ -period participation constraints bind:

$$V_i(\theta_{i1}) \ge 0$$
 (IR_i(\theta_{i1}))

- ullet "Relaxed Program": max profits subject to IC-FOC and $\mathsf{IR}_i(\underline{ heta}_{i1})$

 - Sufficient conditions for "IC-FOC \Rightarrow IC" later

$$\eta_{i1}\left(\theta_{i1}\right) \equiv \frac{f_{i1}\left(\theta_{i1}\right)}{1 - F_{i1}\left(\theta_{i1}\right)}$$

Agent i's ex-ante expected information rent (using IC-FOC)

$$\mathbb{E}\left[V_{i}(\tilde{\theta}_{i1})\right] = \mathbb{E}\left[\frac{1}{\eta_{i1}\left(\tilde{\theta}_{i1}\right)} \frac{\partial V_{i}(\tilde{\theta}_{i1})}{\partial \theta_{i1}}\right]$$
$$= \mathbb{E}\left[\frac{1}{\eta_{i1}\left(\tilde{\theta}_{i1}\right)} \sum_{\tau=1}^{T} J_{i1}^{\tau}(\tilde{\theta}, \tilde{x}) \frac{\partial u_{i}(\tilde{\theta}, \tilde{x})}{\partial \theta_{i\tau}}\right]$$

Profit-Maximizing Multi-Agent Mechanisms

• Principal \longrightarrow agent 0

Theorem

Let \mathcal{X}^* denote set of allocation rules that maximize "expected virtual surplus"

$$\mathbb{E}\Bigg[\underbrace{\sum_{i=0}^{N}u_{i}(\tilde{\boldsymbol{\theta}},\chi(\tilde{\boldsymbol{\theta}}))}_{\textit{Total Expected Surplus}} - \sum_{i=1}^{N}\underbrace{\frac{1}{\eta_{i1}\left(\tilde{\boldsymbol{\theta}}_{i1}\right)}\sum_{t=1}^{T}J_{i1}^{t}(\tilde{\boldsymbol{\theta}}_{i},\chi(\tilde{\boldsymbol{\theta}}))\frac{\partial u_{i}(\tilde{\boldsymbol{\theta}},\chi(\tilde{\boldsymbol{\theta}}))}{\partial \boldsymbol{\theta}_{it}}}_{\textit{Captures agent i's information rents}}\Bigg],$$

<u>and</u> arise in an IC and IR mechanism (χ, ψ) . If \mathcal{X}^* is non-empty, then \mathcal{X}^* is set of profit-maximizing allocation rules.

- Assume N=1, $u_{i}\left(\theta,x\right)=\sum_{t}u_{it}\left(\theta_{t},x_{t}\right)$, $i=0,1,\,J_{1}^{t}\left(\theta\right)$
- \Rightarrow Maximize virtual surplus for each t, θ :

$$\max_{x_{t} \in X_{t}} \left[\underbrace{u_{0t}\left(\theta_{t}, x_{t}\right) + u_{1t}\left(\theta_{t}, x_{t}\right)}_{\text{Total Surplus in } t} - \underbrace{\frac{J_{1}^{t}\left(\theta\right)}{\eta_{1}\left(\theta_{1}\right)} \frac{\partial u_{1t}\left(\theta_{t}, x_{t}\right)}{\partial \theta_{t}}}_{\text{Agent's information rent in } t} \right],$$

- Distort x_t to reduce info. rents based on θ_1 and its effect on period t
- E.g., for t>1: If $\theta_t=\bar{\theta}_t$ or $=\theta_t$, then $F_t(\theta_t|\theta^{t-1})\equiv 1$ or $\equiv 0$ $\Rightarrow J_1^t(\theta) \equiv 0 \Rightarrow \text{implement efficient } x_t$
- $F_{\tau}(\theta_{\tau}|\theta^{\tau-1}, x^{\tau-1})$ decreasing in $\theta^{\tau-1}$ (FOSD) $\Rightarrow I_{\tau}^{\tau}, J_{\tau}^{\tau} > 0 \Rightarrow$ distort x_t to reduce $\partial u_{1t} (\theta_t, x_t) / \partial \theta_{\tau}$
 - ullet E.g. $rac{\partial^2 u_{1t}(heta_t,x_t)}{\partial a_t.a_{mt}}>0$ (SCP) \Rightarrow distort x_t below efficient level
- Note: distortion in x_t is nonmonotonic in θ_t for t>1 (unlike in static model, or in Battaglini)

 $oldsymbol{artheta}$: set of all (measurable) allocation rules. \mathcal{X}^0 : set of allocation rules solving Relaxed Program. \mathcal{X}^E : set of allocation rules maximizing expected total surplus.

Theorem

Suppose each X_t is lattice and

- (i) decisions don't affect types: $F_{i,t}\left(\theta_{it}|\theta_{i}^{t-1}\right)$
- (ii) FOSD: $F_{i,t}(\theta_{it}|\theta_i^{t-1})$ nondecreasing in θ_i^{t-1}
- (iii) SCP: $u_i(\theta, x)$ supermodular in (x, θ_i)
- (iv) $u_i(\theta, x)$ supermodular in x
- $(v) \frac{\partial u_i(\theta,x)}{\partial \theta}$ submodular in x

Then $\mathcal{X}^0 < \mathcal{X}^E$ in strong set order.

Proof: Topkis Thm applied to

$$g(\chi, z) \equiv \mathbb{E}\left[\sum_{i=0}^{N} u_i(\tilde{\theta}, \chi(\tilde{\theta})) + z \sum_{i=1}^{N} \frac{1}{\eta_{i1}(\tilde{\theta}_{i1})} \sum_{t=1}^{T} J_{i1}^t(\tilde{\theta}_i) \frac{\partial u_i(\tilde{\theta}, \chi(\tilde{\theta}))}{\partial \theta_{it}}\right]$$

Sufficient Condition for Implementable Allocation Rules

• Characterization hard due to multidimensional strategies, decisions

Theorem

Suppose mechanism (χ, ψ) is IC at any (possibly non-truthful) period t+1 history. If for all i, all (θ_i^t, x_i^{t-1})

$$\mathbb{E}^{\mu_i[\chi,\psi]|\theta_i^t,(\theta_i^{t-1},m_{it}),x_i^{t-1}} \left[\sum_{\tau=t}^T J_{it}^{\tau}(\tilde{\theta},\tilde{x}_i) \frac{\partial u_i(\tilde{\theta}_i,\tilde{x}_i)}{\partial \theta_{i\tau}} \right].$$

is nondecreasing in m_{it} , then there exists transfer rule $\hat{\psi}$ s.t. mechanism $(\chi, \hat{\psi})$ is IC at (a) any truthful period-t history, (b) at any period t+1 history.

- Markov process: IC at truthful histories

 ⇔ IC at all histories,
 - ullet can iterate backward to show that χ is implementable in mechanism that is IC at *all* histories
 - truthful strategies form weak PBE (with beliefs that other agents are truthful at all histories)

Sufficient Condition - Intuition

- ullet IC at all period t+1 histories \Rightarrow suffices to prevent single lie m_{it}
- $\Psi_t\left(\theta_{it}, m_{it}\right)$: agent i's expected utility at history $(\theta_i^{t-1}, \theta_i^{t-1}, x_i^{t-1})$
- ullet Think of m_{it} as 1-dimensional "allocation" chosen by agent i
- Condition says that $\partial \Psi_t \left(\theta_{it}, m_{it} \right) / \partial \theta_{it}$ (evaluated using IC-FOC at period t+1 histories) is nondecreasing in m_{it}, \longrightarrow i.e., Ψ_t has SCP
- \Rightarrow monotonic "allocation rule" $m_{it}\left(\theta_{it}\right)$ is implementable (using transfers constructed from IC-FOC)

A Set of (Stronger) Sufficient Conditions

- Decisions don't affect types: $F(\theta_{it}|\theta_i^{t-1})$
- **②** FOSD: $F(\theta_{it}|\theta_i^{t-1})$ is nonincreasing in θ_i^{t-1} ($\Rightarrow J_{it}^{\tau}(\theta) \geq 0$)
- **SCP**: $\partial u_i(\theta, x_i)/\partial \theta_{it}$ nondecreasing in x_i
- $\mathbf{Q} \quad \chi_i(\theta)$ nondecreasing in θ_i ("Strong" Monotonicity)

- (1)-(4) imply monotonicity condition in theorem
- χ implementable with mechanism that is IC even if i is shown θ_{-i} (both past and future)

Application: Linear AR(k) values

$$u_{i}(\theta, x) = \sum_{t=1}^{T} \theta_{it} x_{it} - c_{i}(x_{i}^{T}); \qquad X_{t} \subset \mathbb{R}^{N};$$
$$\theta_{it} = \sum_{l=1}^{k} \phi_{il} \theta_{i,t-l} + \varepsilon_{it} \text{ for } t > 1.$$

- Total information indices $J_{i1}^{t}\left(\theta,x\right)=J_{i1}^{t}$ "impulse responses constant"
- Expected virtual surplus:

$$\mathbb{E}\left[u_0\left(\tilde{\theta},x\right) - \sum_{i=1}^{N} \sum_{t=1}^{T} J_{i1}^t \eta_{i1}^{-1}(\tilde{\theta}_{i1}) x_{it} + \sum_{i=1}^{N} u_i\left(\tilde{\theta},x\right)\right]$$
Agent *i*'s "info rents"

- Optimal mechanism: "Handicapped" efficient mechanism (with extra costs $J_{i1}^t \eta_{i1}^{-1}(\theta_{i1})$ of giving objects to agents)
- Incentives from t=2 onward ensured using e.g. "Team Transfers" (Athey-Segal) following truthtelling in t=1
- Incentives at t=1 must be checked application-by-application

Auctions with AR(k) values

- Time-separable payoffs: $u_i\left(\theta,x\right) = \sum_{t=1}^{I} \theta_{it} x_{it}$ (thus $c_i\left(x_i\right) \equiv 0$)
- ullet Can maximize virtual surplus separately for each t, θ :

$$\chi_t(\theta) \in \arg\max_{x \in X_t} \left[\theta_{0t} x_{0t} + \sum_{i=1}^{N} \left(\theta_{it} - J_{i1}^t / \eta_{i1} \left(\theta_{i1} \right) \right) x_{it} \right]$$

- ullet $\chi_{t}\left(heta
 ight)$ depends only on $\mathbf{1}^{st}$ -period types and current types!
- Implementation: Each i makes a 1^{st} -period payment determining his "handicap." Then each period, a "handicapped" VCG auction is played
- Truthtelling is IC at any $h_i^t, \quad t \geq 2$ (actually ex post IC)
- Assume $\phi_{il} \geq 0 \ (\Rightarrow J_{i1}^t \geq 0)$ and $\eta_{i1}' \ (\cdot) \geq 0 \Rightarrow \chi_{it} \ (\theta)$ nondecreasing in $\theta_{i1} \Rightarrow$ IC at t=1 as well

Other Applications

- Agents learn values by consuming experimentation
- Principal or agents have intertemporal costs/capacity constraints
 - In all these settings profit-maximizing mechanisms can again be viewed as "handicapped" version of corresponding efficient mechanism
- Non-quasilinear payoffs: wealth effects, cash constraints, or intertemporal consumption smoothing/risk sharing
 - "Bonding" is not optimal/feasible ⇒ participation constraints may bind in all periods
 - ullet \Rightarrow 1^{st} period is not as prominent \longrightarrow analysis more difficult
 - cf. Hendel-Lizzeri paper on optimal long-term life insurance contracts with consumption smoothing

troduction Model FOC for IC Independent-shock Representation Payoff Equivalence Profit Maximization Sufficient Conditions Applications

Summary

- Methodological contributions:
 - "Smoothness" conditions for environment (not mechanisms)
 - Formula for payoffs via IC-FOC from incentive compatibility
 - Revenue equivalence
 - Profit-maximizing mechanisms
- Sufficient conditions for IC
- Applications
 - Handicapped-efficient mechanisms
 - Optimal sequential auctions
 - Experimentation