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Introduction

Motivation

@ Mechanism Design: auctions, taxation, etc...

@ Standard model: one-time information, one-time decisions

@ Many real-world settings

o Information arrives over time (serially correlated)
o Sequence of decisions

o Non-time-separable technology/preferences



Introduction

Examples

@ Sequential procurement auctions

o bidders acquire information, invest, learn by doing...

e intertemporal capacity constraints

@ New “experience goods”

e valuation dynamics driven by consumption (“experimentation”)

o price discrimination by menu of price paths

o Advance sales (e.g., flight tickets)

o buyers receive information, make investments over time

e price discrimination on early info. by menu of price-refund options



Introduction

State of the Literature

o Efficient dynamic mechanisms:

o Athey-Segal, Bergemann-Valimaki ...

@ Special cases of profit-maximization: typically one agent, Markov
process

o Baron-Besanko: two-period monopoly regulation

o Courty-Li: two-period advance ticket sales

o Eso-Szentes: two-period, one decision

e Battaglini: infinite horizon with 2 types in each period

@ Hanging questions:

o Necessary + sufficient conditions for incentive compatibility with
many agents, many periods, non-Markov processes, continuous types

o Properties of profit-maximizing mechanisms

o Important technical assumptions
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What's Different about Dynamic Mechanisms?

@ How to derive transfers, payoffs from nonmonetary allocations
(“revenue equivalence”)?

@ — Must control for multi-period contingent deviations
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Payoff Non-equivalence with Discrete Future Types

@ What assumptions on type-process are needed?

Payoff: fsxo — p1 — po

o 2" period consumption: zy € {0,1}, no consumption in 1% period
o Types: 0 € {H,L} and 61 = Pr{0> = H} € [0, 1]

o Mechanism:

o 1st period: nothing

o 2nd period: post price q, with L. < ¢ < H

o Allocation z2(H) =1, z2(L) = 0 for any 61, regardless of ¢!

o Equilibrium payoff: V(61) = 61(H — q)

@ Revenue Equivalence at ¢t = 1 fails because of disconnected type
space at ¢ = 2 (despite connected type-space at t = 1)
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Payoff Non-equivalence with Discontinuous Transitions

Example (continued)
o Payoff: Osxo — p1 — po
e Types: 61,05 € [0, 1] with

1 if 67 <

05]6,) =
F2(02161) {292 if 6, >

N[— D=

Mechanism:

o 1st period: advance contract with posted price g with ¢ € (%7 %)
o 2nd period: execute contract
Allocation z5(61) = 1 iff 8; > = regardless of 05, regardless of ¢!
Eq. payoff: V(61) =0if 61 < 5, and V(0:) = % —qiff, > %

E.g., if V(0) =0, then V(1) € [0, 1]

1
2
1

@ Revenue Equivalence at ¢t = 1 fails because of discontinuous
transitions



Introduction

Results of this Paper

@ Incentive compatibility = Formula expressing agents' eq. payoffs

e Summarizes “first-order” multi-period IC (cf. Mirrlees)
o Technical "smoothness" conditions for this to hold

e Sufficient conditions for “global” incentive compatibility

@ In quasilinear multi-agent environments, with statistically
independent types across agents:

o Revenue Equivalence Theorem

e Principal’'s expected profits = expected “dynamic virtual surplus”
o Profit-maximizing mechanisms

o Dynamics of distortions

@ Applications: sequential auctions, mechanisms for selling new goods,
etc.



Model

Environment (as seen by one agent)

@ In each periodt =1,...,T

o Agent privately observes 0, € ©, C R
o Decision y; € Y;
@ Histories:

yt = (yla"'7yt eyt HY‘H
0 = (01,...,0,) €O = H@

full histories: y =yT €Y =YT, 0 =0T c© =0T
@ Technology: ~
et ~ Ft(_‘etfljyt—l)

o allows learning-by-doing, information acquisition, etc.

e Agent's payoff: U (,y)



Model

Mechanisms

@ Revelation principle (Myerson 86) = direct mechanisms:

In each period ¢

o Agent observes 0; € ©;
o Agent submits report m; € ©;
o Mechanism draws y: € Y; from probability distribution Q;(-|m®, y*™1)

@ Randomization allows e.g. dependence on other agents' messages

o (Randomized direct) mechanism:

Q=(2:0' x Y S AW,

Agent's reporting strategy:

o= <O’t et x el x vyt o @t>tT=1

o Truthful strategy:

o (0, mL i) =6, forallt, all (6", m!~t ¢yt 1)



Mode

Stochastic Process and Expected Payoffs

@ Histories:

H:{(Gs,mt,y“): sEtZuZt—l}

@ Technology F', mechanism (2, strategy o, and history h €¢ H =
probability measure p[Q2,c]|h on © x O x Y

o u[Qlh if o is truthful
o [, o] if his null history

o Er[2alIn[1/ (0, )] = resulting exppayoff

e Value function:

V(h) = sup E* MU (9, )]



Mode

Incentive Compatibility

Definition

Mechanism € is incentive compatible at history h (IC at h) if

EAINU (8, )] = V(R)

@ Focus on ex ante rationality:

Definition

Mechanism Q is ex-ante incentive compatible (ex-ante IC) if it is IC at &

@ Ex-ante IC implies IC at truthful histories (i.e., on eqpath) with
w[S2-prob. 1



FOC for IC

First-Order IC in Static Model (Mirrlees, Myerson)

@ Assume T =1
@ Mechanism € is IC at each 6:

V(o) = sup/ U(0,y)dQ(ylm) = / U(8,y)dQ(y|0)

meo

@ Envelope Theorem:

vio) = [ 25 a0

@ Quasilinear setting:

° U(Qv (:E,p)) = u(@, x)+p
N

Y
o = Revenue Equivalence, characterization of optimal mechanisms



FOC for IC

First-Order IC in Dynamic Model: Heuristic Derivation

o Mechanism Q is IC at (truthful) history h = (%, 6"~ %, ¢t~ 1):

V(h) = EMU©,7)]

T
[vew ) LT 40 el 7= 2 0l

m=0

o Differentiate wrt current type 6;:

Q in U(8,y) = B [aU(é,g) /aet]

Q in Fr11(0-41]607,y") = integrate by parts, differ. within integral:

ulQ]|h

OV ((0,0711),0",57) OFr41(0 T+1|éT’gT)d9
aem 90, T

© Derivatives wrt report m; = 6;: vanish by (appropriate version of )
Envelope Thm



FOC for IC

Technical Assumptions

@ Don’t want to impose “smoothness” on mechanism
@ “Smooth” environment needed to iterate Envelope Thm backward
@ Ensure one can differentiate totally and under expectations

o Need new assumptions on kernels F}



FOC for IC
Technical Assumptions

Q@ 0; = (0,,0;) with —00 <8, <0; < +o0

@ 0U(0,y)/00; exists and bounded uniformly in (6,y)

@ "Full Support”: F,(6,]6"",y*~1) strictly increasing in 6,
Q [0 dF,(0,]6" ",y 1) < +o0

Q For T < t, BFt(Ht\Htfl,yt_l)/aﬁT exists and bounded in abs. value
by an integrable function By(6;)

Q F,(-|0"",y* 1) continuous in "~ in total variation metric

Q@ F,(-|0"* y'~1) abs. continuous, with density f,(-]0""", 5~ 1)
(only to simplify formulas)



FOC for IC

Payoff via FOC: Formal Result

Under Assumptions 1-7, if Q is IC at h*=1 = (0"~1, 0" yt=1), then
V (8¢, ht=1) is Lipschitz continuous in 0, and for a.e. 0y,

(IC-FOC)

OV (0, h* ™) _ uial0mt1) ~ o 0U(B,9)
00, E ZJt (972/)8797

7=t

where

oy = 2. I

KeN, leNK:t=lp<...<lg=7 k=1
COF (6,107 gt /06,
f‘r(e‘er_layT*l)

“Total information index”

17 (6,y)
~——

“Direct information index”




FOC for IC

Example: AR(k) Process

k
0y = Z G101 + &4
=1

e; ~ Gy, independent across t; 6; public for t <0

k
FT(0T|97'—17yT71) = GT (07_ — Z ¢197—l>
=1

AF, (0,107 1 y" 1) /80,
Ig- (9,;1/) = - fE_(g‘_rwr—ly’y'r—)l/) L= ¢7——t

K
JI(0,y) = Z H DLt s “impulse

KeN, leNK it=]p<..<lg=T1 k=1
response” constants

AR(1):

¢, ifr=t+1

T — T _ T—t
FO0={ G e 0 IO = ()



Independent: ck Representation

Alternative Approach: Independent-shock Representation

e 0; = z(el;y' 1) where ; ~ G, support in R, independent across t

k
o Eg AR(K): 0, = ¢0: 1 + &
=1

@ Two representations are equivalent: Given mechanism {2 for F', there
exists  for (G, z) that induces same distribution on © x Y as €.
And vice versa.

o Alternative route: have agent report (¢);_, — mechanism Q
o Redefine utility in terms of &: U(e,y) = U(z(e;9),v)

e With serially independent shocks, IC-FOC formula simplifies to
U (E,7)

5V (€t7 htfl) _ EM[Q”(Ehht—l)
85t

85t

where =1 = (gl=1 gt=1 41

Simpler proof: sufficient to consider period-t deviations



Independent-shock Representation

Independent Shocks: Results

Any F' admits “canonical” independent-shock representation in which for
all t, & ~U(0,1).

@ Proof by induction on ¢ using "prob. integral transform thm":
2(ehy ) = F a2 T E Ty ),y

o Given model specified in terms of F', two routes to payoff
equivalence:

@ Work with F' and impose Assumptions 1-7 from above
@ Convert F into independent shocks (G, z) and identify assumptions
on F,U that ensure U is “smooth”

@ Turns out that assumptions required for 1 and 2 are not nested:

o 1 rules out "shifting atoms" (e.g., fully persistent types)

o 2 rules out "growing atoms" but allows for shifting atoms



Independent: cl presentation

Independent Shocks: Assumptions for IC-FOC

@ New conditions:
(a) U(+,y) equi-Lipschitz and continuously differentiable in 6
(b) F;*(e|-,4*~") equi-Lipschitz and continuously diff in "~

(c) F 1 (0", 4*~ 1) equi-Lipschitz and continuously diff. in e.

Theorem

Suppose (U, F) satisfies assumptions (1)-(2) + (a)-(c). Then U(aly) s
equi-Lipschitz continuous and differentiable in €. It follows that if Q is IC
at history h'=1 = (et=1,&!=1 y'=1), then

oV (Et, ht_l) _ EH[Q”(Et’ht—l)
86,5

&st

aﬁ(ag)] e




Payoff Equivalence

Quasilinear Settings with multiple agents

o Agentsi=1,....N

o (w4,ps), where py € RN, 2y = (214, ..., xn¢) € Xy C [[ Xit

o U;(0,(x,p)) =ui(0,2) + >, pit

o Assumption: Fy;(0:|0°7", (a1, pt=1)) = Fj (0500, 2t ™)

o Independent Types: éiﬂg ~ F,»7t(~|0§71,x'?—

; 1), independent across i

e BNE

@ Revelation Principle: truthful + minimal disclosure

e postponed payments
e Deterministic direct mechanisms: (y, : ©! — Xt)thl ¥:0 — RN

o [, ¥]|(0;,mt, x%): process as viewed by i



Payoff Equivalence

Payoff Equivalence

o IC-FOC: For all ¢, all AI=! = (011,011 2t 1)

8‘/7;(0217 hi_ )

. -1 o (0, &)
) b0 Z 77 (6,5 240 2)

98z

T=t
o Pins down V;(6;¢, hi™1) as function of x and 6;; up to K;(hi™")

o lterated expectations — get rid of dependence of Ki(hﬁ_l) on hﬁ_l

Let (x,%) and (x, 121) be any two ex-ante IC mechanisms that implement
same x. For all t,, with prob. 1,

B8, 9) | 6] - B XPU;8,5) | 0F) = K

@ Single agent = x pins down payoff and transfer

e Many agents = expectation of payoff and transfer over others’ types
pinned down as function of own type

e E.g., different dynamic mechanisms implementing efficiency
(Athey-Segal, Bergemann-Valimaki,...) are “equivalent” in this sense



Profit Maximization

Participation Constraint and Relaxed Problem

@ Agents can quit in any period

@ Agents can post bonds = only 1%¢-period participation constraints
bind:
Vi(0i1) >0 (IR; (6i1))

o "Relaxed Program”: max profits subject to IC-FOC and IR;(8;;)

e Sufficient conditions for “IC-FOC + IR;(8,;) = IR;":
Ou; (0,x) /00 > 0 and I, (0,2) > 0 (= J (6,2) > 0)
= by IC-FOC, 9V; (6:1) /06:1 > 0
= only IR; (8,;) binds

o Sufficient conditions for “IC-FOC = IC" — later



Information Rents

o Let
fir (0i1)
1— Fin (0i1)

@ Agent i's ex-ante expected information rent (using IC-FOC)

N (0i1) =

S P v
_ < 5.3y 20.3)
- | i1 (1 11) ZJH o uae”x ]



Profit Maximization

Profit-Maximizing Multi-Agent Mechanisms

@ Principal — agent 0

Let X* denote set of allocation rules that maximize ‘“expected virtual
surplus”

ol ol =2 6ui é, é
E ; Z ( 11) Z “X (80;:( ) ,

i=1 151 t=1

Total Expected Surplus M i
Captures agent i's information rents

and arise in an IC and IR mechanism (x, ). If X* is non-empty, then X*
is set of profit-maximizing allocation rules.

v




Profit Maximization

Intuition for Allocative Distortions

Assume N =1, u; (6, z) Zuzt 0:,2¢),1=0,1, Jf (0)

@ = Maximize virtual surplus for each t,0 :

Jt (0) 6’U,1t (Gt I’t)
0 0 o 1 ’
Jnax | Uot (0r, ¢) + e (01, w1) T (01) 20,

Total Surplus in ¢

Agent's information rent in ¢

Distort x; to reduce info. rents based on 0, and its effect on period ¢
Eg.,fort>1:1f, =0, or =0, then F, (0,0 ') =10or=0

= J} (0) = 0 = implement efficient z;

F (0,107, 27~1) decreasing in 67" (FOSD) = I7,J7 >0 =
distort x; to reduce duqy (0, x¢) /00,

o Eg. % > 0 (SCP) = distort z; below efficient level

@ Note: distortion in z; is nonmonotonic in 6; for ¢ > 1 (unlike in
static model, or in Battaglini)



Profit Maximization

Conditions for Downward Distortions

@ X : set of all (measurable) allocation rules. X : set of allocation
rules solving Relaxed Program. X'F : set of allocation rules
maximizing expected total surplus.

Theorem

Suppose each X; is lattice and

(i) decisions don’t affect types: Fi; (0:0;")
(ii) FOSD: F; ; (0¢t|0§_1) nondecreasing in 02_1
(i) SCP: w; (6, x) supermodular in (z,0;)

(iv) w; (0, ) supermodular in z

ou;i(0,x) ;
(v) =3¢, submodular in x

Then X° < X in strong set order.

@ Proof: Topkis Thm applied to

N -

- N
y =E i 07 0 + = ) —————————
9(x, 2) gou (0, x(6)) ZL; o) a0,




Sufficient Conditions

Sufficient Condition for Implementable Allocation Rules

@ Characterization hard due to multidimensional strategies, decisions

Suppose mechanism (x, ) is IC at any (possibly non-truthful) period
t+ 1 history. If for all i, all (6%, z:™")

T =
e boloL 0 ma et | § e ii)augzi’ zi)
T=1 (g

is nondecreasing in m;¢, then there exists transfer rule @7} s.t. mechanism
(x, ) is IC at (a) any truthful period-t history, (b) at any period t + 1
history.

@ Markov process: IC at truthful histories < IC at all histories,

e can iterate backward to show that x is implementable in mechanism
that is IC at all histories

o truthful strategies form weak PBE (with beliefs that other agents are
truthful at all histories)



Sufficient Conditions

Sufficient Condition - Intuition

IC at all period ¢ + 1 histories = suffices to prevent single lie my;

o U, (0;;,m;) : agent i's expected utility at history (02_1,02_1,1:2_1)

@ Think of m;; as 1-dimensional “allocation” chosen by agent ¢

Condition says that O, (0;:,m;;) /00, (evaluated using IC-FOC at
period ¢ + 1 histories) is nondecreasing in m;;, — i.e., ¥; has SCP

@ = monotonic “allocation rule” my; (0;4) is implementable
(using transfers constructed from IC-FOC)



Sufficient Conditions

A Set of (Stronger) Sufficient Conditions

O Decisions don't affect types: F(6;:0: ")
@ FOSD: F(0;;]0™") is nonincreasing in 0" (= J7, (6) > 0)
@ SCP: Ju; (0, x;) /004 nondecreasing in x;

@ x; (6) nondecreasing in 6; (“Strong” Monotonicity)

@ (1)-(4) imply monotonicity condition in theorem

@ x implementable with mechanism that is IC even if i is shown 6_;
(both past and future)



Applications

Application: Linear AR(k) values

r) = Zeitﬂﬁit — ¢ («F); X; CRV;

k
Oi = Z ¢il9i,t—l + &4 for t > 1.
=1
e Total information indices Jf (0, z) = J}; “impulse responses

constant”
@ Expected virtual surplus:

o (:2) 303 bt Mﬁzuz(ax)]

i=1 t=1 i=1

Agent i's "info rents”

@ Optimal mechanism: “Handicapped” efficient mechanism
(with extra costs J# n;;" (0;1) of giving objects to agents)

@ Incentives from ¢t = 2 onward ensured using e.g. “Team Transfers”
(Athey-Segal) following truthtelling in ¢ = 1

@ Incentives at ¢ = 1 must be checked application-by-application



Applications

Auctions with AR(k) values

T

o Time-separable payoffs: wu; (6, z) ZQM“ (thus ¢; (z;) =0)
t=1

o Can maximize virtual surplus separately for each ¢, 6:

N

x; (0) € arg max Oorzor + Y (0ir — Jhy /nia (031)) i
=1

@ x, (0) depends only on 1*!-period types and current types!

@ Implementation: Each i makes a 1%*-period payment determining his
“handicap.” Then each period, a “handicapped” VCG auction is
played

e Truthtelling is IC at any hf, t > 2 (actually ex post IC)

o Assume ¢;; >0 (= J} >0) and n}, () > 0 = x;, (6)
nondecreasing in 6,1 = IC at t = 1 as well



Applications

Other Applications

@ Agents learn values by consuming — experimentation
@ Principal or agents have intertemporal costs/capacity constraints

o In all these settings profit-maximizing mechanisms can again be
viewed as “handicapped” version of corresponding efficient
mechanism

@ Non-quasilinear payoffs: wealth effects, cash constraints, or
intertemporal consumption smoothing/risk sharing

e “Bonding” is not optimal/feasible = participation constraints may
bind in all periods

o = 15 period is not as prominent — analysis more difficult

o cf. Hendel-Lizzeri paper on optimal long-term life insurance
contracts with consumption smoothing



Applications

Summary

@ Methodological contributions:

e “Smoothness” conditions for environment (not mechanisms)
e Formula for payoffs via IC-FOC from incentive compatibility
o Revenue equivalence

o Profit-maximizing mechanisms

e Sufficient conditions for IC

@ Applications

o Handicapped-efficient mechanisms
o Optimal sequential auctions
o Experimentation
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