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Motivation

Mechanism Design: auctions, taxation, etc...

Standard model: one-time information, one-time decisions

Many real-world settings

Information arrives over time (serially correlated)

Sequence of decisions

Non-time-separable technology/preferences
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Examples

Sequential procurement auctions

bidders acquire information, invest, learn by doing...

intertemporal capacity constraints

New �experience goods�

valuation dynamics driven by consumption (�experimentation�)

price discrimination by menu of price paths

Advance sales (e.g., �ight tickets)

buyers receive information, make investments over time

price discrimination on early info. by menu of price-refund options
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State of the Literature

E¢ cient dynamic mechanisms:

Athey-Segal,Bergemann-Valimaki ...

Special cases of pro�t-maximization: typically one agent, Markov
process

Baron-Besanko: two-period monopoly regulation
Courty-Li: two-period advance ticket sales
Eso-Szentes: two-period, one decision
Battaglini: in�nite horizon with 2 types in each period

Hanging questions:

Necessary + su¢ cient conditions for incentive compatibility with
many agents, many periods, non-Markov processes, continuous types

Properties of pro�t-maximizing mechanisms

Important technical assumptions
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What�s Di¤erent about Dynamic Mechanisms?

How to derive transfers, payo¤s from nonmonetary allocations
(�revenue equivalence�)?

,! Must control for multi-period contingent deviations
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Payo¤ Non-equivalence with Discrete Future Types

What assumptions on type-process are needed?

Example

Payo¤: �2x2 � p1 � p2
2nd period consumption: x2 2 f0; 1g, no consumption in 1st period
Types: �2 2 fH;Lg and �1 = Prf�2 = Hg 2 [0; 1]
Mechanism:

1st period: nothing

2nd period: post price q, with L � q � H
Allocation x2(H) = 1, x2(L) = 0 for any �1, regardless of q!

Equilibrium payo¤: V (�1) = �1(H � q)

Revenue Equivalence at t = 1 fails because of disconnected type
space at t = 2 (despite connected type-space at t = 1)
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Payo¤ Non-equivalence with Discontinuous Transitions

Example (continued)

Payo¤: �2x2 � p1 � p2
Types: �1; �2 2 [0; 1] with

f2(�2j�1) =
(
1 if �1 < 1

2

2�2 if �1 � 1
2

Mechanism:

1st period: advance contract with posted price q with q 2 ( 1
2
; 2
3
)

2nd period: execute contract

Allocation x2(�1) = 1 i¤ �1 � 1
2 regardless of �2, regardless of q!

Eq. payo¤: V (�1) = 0 if �1 < 1
2 , and V (�1) =

2
3 � q if �1 �

1
2

E.g., if V (0) = 0, then V (1) 2
�
0; 16
�

Revenue Equivalence at t = 1 fails because of discontinuous
transitions
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Results of this Paper

Incentive compatibility ) Formula expressing agents�eq. payo¤s

Summarizes ��rst-order�multi-period IC (cf. Mirrlees)
Technical "smoothness" conditions for this to hold

Su¢ cient conditions for �global� incentive compatibility

In quasilinear multi-agent environments, with statistically
independent types across agents:

Revenue Equivalence Theorem
Principal�s expected pro�ts = expected �dynamic virtual surplus�
Pro�t-maximizing mechanisms
Dynamics of distortions

Applications: sequential auctions, mechanisms for selling new goods,
etc.
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Environment (as seen by one agent)

In each period t = 1; : : : ; T

Agent privately observes �t 2 �t � R
Decision yt 2 Yt

Histories:

yt = (y1; : : : ; yt) 2 Y t =
tY

�=1

Y� ;

�t = (�1; : : : ; �t) 2 �t =
tY

�=1

��

full histories: y = yT 2 Y = Y T , � = �T 2 � = �T
Technology:

~�t � Ft(�j�t�1; yt�1)

allows learning-by-doing, information acquisition, etc.

Agent�s payo¤: U (�; y)
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Mechanisms

Revelation principle (Myerson 86) ) direct mechanisms:

In each period t

Agent observes �t 2 �t
Agent submits report mt 2 �t
Mechanism draws yt 2 Yt from probability distribution 
t(�jmt; yt�1)

Randomization allows e.g. dependence on other agents�messages

(Randomized direct) mechanism:


 =



t : �

t � Y t�1 ! �(Yt)
�T
t=1

Agent�s reporting strategy:

� =


�t : �

t ��t�1 � Y t�1 ! �t
�T
t=1

Truthful strategy:

�t(�
t;mt�1; yt�1) � �t for all t, all (�t;mt�1; yt�1)
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Stochastic Process and Expected Payo¤s

Histories:

H =
�
(�s;mt; yu) : s � t � u � t� 1

	

Technology F , mechanism 
, strategy �, and history h 2 H =)
probability measure �[
; �]jh on ���� Y

�[
]jh if � is truthful
�[
; �] if h is null history

E�[
;�]jh[U(~�; ~y)] = resulting exp.payo¤

Value function:

V (h) = sup
�
E�[
;�]jh[U(~�; ~y)]
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Incentive Compatibility

De�nition

Mechanism 
 is incentive compatible at history h (IC at h) if

E�[
]jh[U(~�; ~y)] = V (h)

Focus on ex ante rationality:

De�nition

Mechanism 
 is ex-ante incentive compatible (ex-ante IC) if it is IC at ?

Ex-ante IC implies IC at truthful histories (i.e., on eq.path) with
�[
]-prob. 1
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First-Order IC in Static Model (Mirrlees, Myerson)

Assume T = 1

Mechanism 
 is IC at each �:

V (�) � sup
m2�

Z
Y

U(�; y)d
(yjm) =
Z
Y

U(�; y)d
(yj�)

Envelope Theorem:

V 0(�) =

Z
Y

@U(�; y)

@�
d
(yj�)

Quasilinear setting:

U(�; (x; p)| {z }
y

) = u(�; x) + p

) Revenue Equivalence, characterization of optimal mechanisms
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First-Order IC in Dynamic Model: Heuristic Derivation

Mechanism 
 is IC at (truthful) history h = (�t; �t�1; yt�1):

V (h) = E�[
]jh[U(~�; ~y)]

=

Z
U(�; y)

TY
�=t

�
d
� (y� jm� ; y��1)dF�+1 (��+1j�� ; y� )

������
m=�

Di¤erentiate wrt current type �t:

1 in U(�; y) ) E�[
]jh
h
@U(~�; ~y)=@�t

i
2 in F�+1(��+1j�� ; y� ) ) integrate by parts, di¤er. within integral:

�E�[
]jh
"Z

@V ((~�
�
; ��+1); ~�

�
; ~y� )

@��+1

@F�+1(��+1j~�
�
; ~y� )

@�t
d��+1

#
3 Derivatives wrt report mt = �t: vanish by (appropriate version of )
Envelope Thm
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Technical Assumptions

Don�t want to impose �smoothness�on mechanism

�Smooth� environment needed to iterate Envelope Thm backward

Ensure one can di¤erentiate totally and under expectations

Need new assumptions on kernels Ft
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Technical Assumptions

1 �t = (�t; �t) with �1 � �t � �t � +1

2 @U(�; y)=@�t exists and bounded uniformly in (�; y)

3 �Full Support�: Ft(�tj�t�1; yt�1) strictly increasing in �t

4
R
j�tj dFt(�tj�t�1; yt�1) < +1

5 For � < t, @Ft(�tj�t�1; yt�1)=@�� exists and bounded in abs. value
by an integrable function Bt(�t)

6 Ft(�j�t�1; yt�1) continuous in �t�1 in total variation metric

7 Ft(�j�t�1; yt�1) abs. continuous, with density ft(�j�t�1; yt�1)
(only to simplify formulas)
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Payo¤ via FOC: Formal Result

Theorem

Under Assumptions 1-7, if 
 is IC at ht�1 = (�t�1; �t�1; yt�1), then
V (�t; h

t�1) is Lipschitz continuous in �t, and for a.e. �t,

@V (�t; h
t�1)

@�t
= E�[
]j(�t;h

t�1)

"
TX
�=t

J�t (
~�; ~y)

@U(~�; ~y)

@��

#
(IC-FOC)

where

J�t (�; y)| {z }
�Total information index�

=
X

K2N, l2NK :t=l0<:::<lK=�

KY
k=1

I lklk�1 (�; y)

I�t (�; y)| {z }
�Direct information index�

= �@F� (�� j�
��1; y��1)=@�t

f� (�� j���1; y��1)
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Example: AR(k) Process

�t =
kX
l=1

�l�t�l + "t

"t � Gt, independent across t; �t public for t � 0

F� (�� j���1; y��1) = G�

 
�� �

kX
l=1

�l���l

!
I�t (�; y) = �

@F� (�� j���1;y��1)=@�t
f� (�� j���1;y��1) = ���t

J�t (�; y) =
X

K2N, l2NK :t=l0<:::<lK=�

KY
k=1

�lk�lk�1 �impulse

response� constants

AR(1):

I�t (�; y) =

�
�1 if � = t+ 1
0 otherwise

and J�t (�; y) = (�1)
��t

:
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Alternative Approach: Independent-shock Representation

�t = z("t; yt�1) where "t � Gt, support in R; independent across t

E.g. AR(k): �t =
kX
l=1

�l�t�l + "t

Two representations are equivalent: Given mechanism 
 for F , there
exists 
̂ for (G; z) that induces same distribution on �� Y as 
.
And vice versa.

Alternative route: have agent report ("t)
T
t=1 �! mechanism 
̂

Rede�ne utility in terms of ": Û("; y) � U(z("; y); y)

With serially independent shocks, IC-FOC formula simpli�es to

@V̂
�
"t; h

t�1�
@"t

= E�[
̂]j("t;h
t�1)

"
@Û(~"; ~y)

@"t

#

where ht�1 = ("t�1; "t�1; yt�1)

Simpler proof: su¢ cient to consider period-t deviations
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Independent Shocks: Results

Theorem

Any F admits �canonical� independent-shock representation in which for
all t, ~"t � U(0; 1).

Proof by induction on t using "prob. integral transform thm":

zt("
t; yt�1) = F�1t ("tjzt�1("t�1; yt�2); yt�1)

Given model speci�ed in terms of F , two routes to payo¤
equivalence:

1 Work with F and impose Assumptions 1-7 from above
2 Convert F into independent shocks (G; z) and identify assumptions
on F;U that ensure Û is �smooth�

Turns out that assumptions required for 1 and 2 are not nested:

1 rules out "shifting atoms" (e.g., fully persistent types)

2 rules out "growing atoms" but allows for shifting atoms
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Independent Shocks: Assumptions for IC-FOC

New conditions:

(a) U(�; y) equi-Lipschitz and continuously di¤erentiable in �

(b) F�1t ("j�; yt�1) equi-Lipschitz and continuously di¤ in �t�1

(c) F�1t (�j�t�1; yt�1) equi-Lipschitz and continuously di¤. in ":

Theorem

Suppose (U;F ) satis�es assumptions (1)-(2) + (a)-(c). Then Û("; y) is
equi-Lipschitz continuous and di¤erentiable in ": It follows that if 
̂ is IC
at history ht�1 = ("t�1; "t�1; yt�1), then

@V̂
�
"t; h

t�1�
@"t

= E�[
̂]j("t;h
t�1)

"
@Û(~"; ~y)

@"t

#
a.e.
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Quasilinear Settings with multiple agents

Agents i = 1; :::; N

(xt; pt), where pt 2 RN , xt = (x1t; :::; xNt) 2 Xt �
Q
Xit

Ui(�; (x; p)) = ui(�; x) +
P
t pit

Assumption: Fit(�itj�t�1; (xt�1; pt�1)) = Fit(�itj�t�1i ; xt�1i )

Independent Types: ~�i;t � Fi;t(�j�t�1i ; xt�1i ), independent across i

BNE

Revelation Principle: truthful + minimal disclosure
postponed payments

Deterministic direct mechanisms: h�t : �t ! XtiTt=1  : �! RN

�i[�;  ]j(�si ;mt
i; x

u
i ): process as viewed by i
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Payo¤ Equivalence

IC-FOC: For all t, all ht�1i = (�t�1i ; �t�1i ; xt�1i )

@Vi(�it; h
t�1
i )

@�it
= E�i[�; ]j(�it;h

t�1
i )

"
TX
�=t

J�it(
~�; ~x)

@ui(~�; ~x)

@�i�

#
Pins down Vi(�it; h

t�1
i ) as function of � and �it up to Ki(h

t�1
i )

Iterated expectations �! get rid of dependence of Ki(h
t�1
i ) on ht�1i

Theorem

Let (�;  ) and (�;  ̂) be any two ex-ante IC mechanisms that implement
same �. For all t; i, with prob. 1,

E�[�; ][Ui(~�; ~y) j �ti]� E�[�; ̂][Ui(~�; ~y) j �ti] = Ki

Single agent ) � pins down payo¤ and transfer

Many agents ) expectation of payo¤ and transfer over others�types
pinned down as function of own type

E.g., di¤erent dynamic mechanisms implementing e¢ ciency
(Athey-Segal, Bergemann-Valimaki,...) are �equivalent� in this sense
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Participation Constraint and Relaxed Problem

Agents can quit in any period

Agents can post bonds ) only 1st-period participation constraints
bind:

Vi (�i1) � 0 (IRi (�i1))

�Relaxed Program�: max pro�ts subject to IC-FOC and IRi(�i1)

Su¢ cient conditions for �IC-FOC + IRi(�i1) ) IRi�:

@ui (�; x) =@�it � 0 and I�it (�; x) � 0 () J�it (�; x) � 0)

) by IC-FOC, @Vi (�i1) =@�i1 � 0

) only IRi (�i1) binds

Su¢ cient conditions for �IC-FOC ) IC�� later
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Information Rents

Let

�i1 (�i1) �
fi1 (�i1)

1� Fi1 (�i1)
Agent i�s ex-ante expected information rent (using IC-FOC)

E
h
Vi(~�i1)

i
= E

24 1

�i1

�
~�i1

� @Vi(~�i1)
@�i1

35
= E

24 1

�i1

�
~�i1

� TX
�=1

J�i1(
~�; ~x)

@ui(~�; ~x)

@�i�

35
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Pro�t-Maximizing Multi-Agent Mechanisms

Principal �! agent 0

Theorem

Let X � denote set of allocation rules that maximize �expected virtual
surplus�

E

"
NX
i=0

ui(~�; �(~�))| {z }
Total Expected Surplus

�
NX
i=1

1

�i1

�
~�i1

� TX
t=1

J ti1(
~�i; �(~�))

@ui(~�; �(~�))

@�it| {z }
#

Captures agent i�s information rents

,

and arise in an IC and IR mechanism (�;  ). If X � is non-empty, then X �

is set of pro�t-maximizing allocation rules.
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Intuition for Allocative Distortions

Assume N = 1, ui (�; x) =
X
t

uit (�t; xt), i = 0; 1; J t1 (�)

) Maximize virtual surplus for each t; � :

max
xt2Xt

"
u0t (�t; xt) + u1t (�t; xt)| {z }

Total Surplus in t

� J t1 (�)

�1 (�1)

@u1t (�t; xt)

@�t| {z }
#

Agent�s information rent in t

,

Distort xt to reduce info. rents based on �1 and its e¤ect on period t

E.g., for t > 1: If �t = ��t or = �t, then Ft(�tj�t�1) � 1 or � 0
) J t1 (�) � 0) implement e¢ cient xt
F� (�� j���1; x��1) decreasing in ���1 (FOSD) ) I�t ; J

�
t � 0 )

distort xt to reduce @u1t (�t; xt) =@��

E.g. @2u1t(�t;xt)
@�t@xt

> 0 (SCP) ) distort xt below e¢ cient level

Note: distortion in xt is nonmonotonic in �t for t > 1 (unlike in
static model, or in Battaglini)
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Conditions for Downward Distortions

X : set of all (measurable) allocation rules. X 0 : set of allocation
rules solving Relaxed Program. XE : set of allocation rules
maximizing expected total surplus.

Theorem

Suppose each Xt is lattice and

(i) decisions don�t a¤ect types: Fi;t
�
�itj�t�1i

�
(ii) FOSD: Fi;t

�
�itj�t�1i

�
nondecreasing in �t�1i

(iii) SCP: ui (�; x) supermodular in (x; �i)

(iv) ui (�; x) supermodular in x

(v) @ui(�;x)@�it
submodular in x

Then X 0 � XE in strong set order.

Proof: Topkis Thm applied to

g(�; z) � E
"
NP
i=0

ui(~�; �(~�)) + z
NP
i=1

1

�i1(
~�i1)

TP
t=1

J ti1(
~�i)

@ui(~�; �(~�))

@�it

#
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Su¢ cient Condition for Implementable Allocation Rules

Characterization hard due to multidimensional strategies, decisions

Theorem

Suppose mechanism (�;  ) is IC at any (possibly non-truthful) period
t+ 1 history. If for all i, all (�ti; x

t�1
i )

E�i[�; ]j�
t
i;(�

t�1
i ;mit);x

t�1
i

"
TX
�=t

J�it(
~�; ~xi)

@ui(~�i; ~xi)

@�i�

#
:

is nondecreasing in mit, then there exists transfer rule  ̂ s.t. mechanism
(�;  ̂) is IC at (a) any truthful period-t history, (b) at any period t+ 1
history.

Markov process: IC at truthful histories , IC at all histories,

can iterate backward to show that � is implementable in mechanism
that is IC at all histories
truthful strategies form weak PBE (with beliefs that other agents are
truthful at all histories)



Introduction Model FOC for IC Independent-shock Representation Payo¤ Equivalence Pro�t Maximization Su¢ cient Conditions Applications

Su¢ cient Condition - Intuition

IC at all period t+ 1 histories ) su¢ ces to prevent single lie mit

	t (�it;mit) : agent i�s expected utility at history (�
t�1
i ; �t�1i ; xt�1i )

Think of mit as 1-dimensional �allocation� chosen by agent i

Condition says that @	t (�it;mit) =@�it (evaluated using IC-FOC at
period t+ 1 histories) is nondecreasing in mit, �! i.e., 	t has SCP

) monotonic �allocation rule�mit (�it) is implementable
(using transfers constructed from IC-FOC)
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A Set of (Stronger) Su¢ cient Conditions

1 Decisions don�t a¤ect types: F (�itj�t�1i )

2 FOSD: F (�itj�t�1i ) is nonincreasing in �t�1i () J�it (�) � 0)

3 SCP: @ui (�; xi) =@�it nondecreasing in xi

4 �i (�) nondecreasing in �i (�Strong�Monotonicity)

(1)-(4) imply monotonicity condition in theorem

� implementable with mechanism that is IC even if i is shown ��i
(both past and future)
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Application: Linear AR(k) values

ui (�; x) =
TX
t=1

�itxit � ci
�
xTi
�
; Xt � RN ;

�it =
kX
l=1

�il�i;t�l + "it for t > 1:

Total information indices J ti1 (�; x) = J ti1 �impulse responses
constant�
Expected virtual surplus:

E

"
u0

�
~�; x
�
�

NX
i=1

TX
t=1

J ti1�
�1
i1 (
~�i1)xit| {z }

Agent i�s �info rents�

+

NX
i=1

ui

�
~�; x
�#

Optimal mechanism: �Handicapped� e¢ cient mechanism
(with extra costs J ti1�

�1
i1 (�i1) of giving objects to agents)

Incentives from t = 2 onward ensured using e.g. �Team Transfers�
(Athey-Segal) following truthtelling in t = 1
Incentives at t = 1 must be checked application-by-application
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Auctions with AR(k) values

Time-separable payo¤s: ui (�; x) =
TX
t=1

�itxit (thus ci (xi) � 0)

Can maximize virtual surplus separately for each t; �:

�t (�) 2 arg max
x2Xt

"
�0tx0t +

NX
i=1

�
�it � J ti1=�i1 (�i1)

�
xit

#

�t (�) depends only on 1
st-period types and current types!

Implementation: Each i makes a 1st-period payment determining his
�handicap.�Then each period, a �handicapped�VCG auction is
played

Truthtelling is IC at any hti; t � 2 (actually ex post IC)
Assume �il � 0 () J ti1 � 0) and �0i1 (�) � 0 ) �it (�)
nondecreasing in �i1 ) IC at t = 1 as well
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Other Applications

Agents learn values by consuming �experimentation

Principal or agents have intertemporal costs/capacity constraints

In all these settings pro�t-maximizing mechanisms can again be
viewed as �handicapped� version of corresponding e¢ cient
mechanism

Non-quasilinear payo¤s: wealth e¤ects, cash constraints, or
intertemporal consumption smoothing/risk sharing

�Bonding� is not optimal/feasible ) participation constraints may
bind in all periods
) 1st period is not as prominent �! analysis more di¢ cult
cf. Hendel-Lizzeri paper on optimal long-term life insurance
contracts with consumption smoothing
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Summary

Methodological contributions:

�Smoothness� conditions for environment (not mechanisms)
Formula for payo¤s via IC-FOC from incentive compatibility
Revenue equivalence
Pro�t-maximizing mechanisms

Su¢ cient conditions for IC

Applications

Handicapped-e¢ cient mechanisms
Optimal sequential auctions
Experimentation
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