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Abstract

We characterize belief-free equilibria in infinitely repeated games with incomplete

information with N ≥ 2 players and arbitrary information structures. This char-

acterization involves a new type of individual rational constraint linking the lowest

equilibrium payoffs across players. The characterization is tight: we define a set

of payoffs that contains all the belief-free equilibrium payoffs; conversely, any point

in the interior of this set is a belief-free equilibrium payoff vector when players are

sufficiently patient. Further, we provide necessary and sufficient conditions on the

information structure for this set to be non-empty, both for the case of known-own

payoffs, and for arbitrary payoffs.
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1 Introduction

This paper characterizes the set of payoffs achieved by equilibria that are robust to

the specification of beliefs, and provides necessary and sufficient conditions for its non-

emptiness. We consider n-player repeated games with incomplete information and low

discounting. This class of equilibria has been introduced by Hörner and Lovo (2009)

in two-player games with incomplete information, as defined by Aumann and Maschler

(1995). A strategy profile is a belief-free equilibrium if, after every history, every player’s

continuation strategy is optimal, given his information, and independently of the infor-

mation held by the other players. That is, it must be a subgame-perfect equilibrium for

every game of complete information that is consistent with the player’s information.

Such equilibria offer several advantages. From a practical point of view, they do not

require the specification of beliefs after all possible histories, and the verification of their

consistency with Bayes’ rule. From a theoretical point of view, they represent a stringent

refinement, in the sense that such equilibrium outcomes are also equilibrium outcomes for

every Bayesian solution concept, such as sequential equilibrium, for instance. But more

importantly, these equilibria do not rely on the Bayesian paradigm. To predict behavior

in environments with unknown parameters, a model typically includes a specification of

the players’ subjective probability distributions over these unknowns, following Harsanyi

(1967–1968). Since beliefs are irrelevant here, belief-free equilibria do not require that

players share a common prior, or that they update their beliefs according to Bayes’ rule;

and they remain equilibria even if players receive additional information as the game

unfolds.

Nevertheless, as in the case of games with complete information, players may ran-
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domize, and they maximize their expectation with respect to such lotteries.1 Belief-free

equilibria require precisely as much probabilistic sophistication as is usually assumed in

games with complete information.

In Hörner and Lovo (2009), the analysis is restricted to two-player games, and the

players’ private information has a “product” structure. That is, the information structure

can be represented as a matrix. Each state of nature corresponds to a cell in this matrix.

Player 1 is informed of the true row, while player 2 is informed of the true column. This

paper generalizes these results to the most general setting:

1. There are N ≥ 2 players, rather than only two players;

2. Arbitrary finite information structures are considered. In particular, the players’

combined information may not pin down the state of nature. That is, the state of

the world need not be distributed knowledge.

This latter generalization requires an appropriate extension of the definition of belief-

free equilibrium. We choose the most restrictive version, and require players to use strate-

gies that are best-replies independently of the state of nature, even for those states that

cannot be identified by the players’ combined information. Clearly, such an equilibrium

remains an equilibrium for weaker versions of this definition. For instance, one may wish

to assume instead that each player has a subjective probability distribution over those

states of nature that the players’ combined information cannot distinguish, and use this

distribution to treat each such set as a singleton. We do so for both practical and theo-

retical reasons. From a practical point of view, it is immediate to modify our results to

cope with less restrictive definitions, by replacing for instance such collections of states

1This is also the standard assumption used in the literature on “non-Bayesian” equilibria (see, for
instance, Monderer and Tennenholtz, 1999).
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by a single state, and payoffs in that state by the relevant expectations.2 From a the-

oretical point of view, it is unclear to us why an optimality criterion used by a single

decision-maker should depend on whether those states that he cannot distinguish can be

distinguished collectively or not.

The focus of the analysis is on the set of belief-free equilibrium payoff vectors as the

discount factor tends to one. We provide a set of necessary conditions defining a closed,

convex, and possibly empty set. These necessary conditions have simple interpretations in

terms of incentive compatibility, individual rationality in every state, and joint rationality,

an additional requirement absent from the earlier analysis for two-player games, and that

is related to the fact that, because strategies depend on private information, there might

be histories after which it is not be possible to uniquely identify the deviator. Conversely,

we prove that every payoff vector in the interior of this set is a belief-free equilibrium

payoff vector provided that the discount factor is sufficiently close to one.

As mentioned, this set of payoffs might be empty, and therefore, belief-free equilibria

need not exist. We provide necessary and sufficient conditions on the information structure

for non-emptiness of this set for different classes of payoff functions. With two players,

for instance, non-emptiness was already known to obtain if there are two states only, or

if each player knows his own payoff, and one player is informed of the state. For general

payoff functions, the necessary and sufficient condition is that no two players are essential

(as defined in Section five) in distinguishing between any two states. This result is due to

Renault and Tomala (2004) for undiscounted games and we adapt it to our setup. Our

main result is a necessary and sufficient condition for the important case of known-own

payoffs (KOP). In that case, non-emptiness obtains for all payoff functions satisfying KOP

2Note that in this case the payoff function will depend on the beliefs used to compute such expectations.
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if and only if a given information structure satisfies the following. Divide the states into

the finest partition with the property that for any two states lying in distinct cells of this

partition, at least three players distinguish them (i.e. get different signals for those two

states), and restrict attention to the projection of the information partition on any given

cell. Then for each state k, there must exist a player i who is as well informed as all others

at that state. Further, either there is a second player j 6= i who is as well informed as all

players but i at that state, or no player can distinguish any two states for which he is not

the best informed player (if he ever is). Our next result states that, if the payoff functions

are such that some action profile yields a payoff no larger than the individually rational

payoff (the bad outcome property), for all players and for all states simultaneously, then it

must be that no single player is essential to distinguish between any two states. Finally,

for the class of payoff function that satisfy both KOP and the bad outcome property, we

show that there must be at most one essential player per state.

A special class of games covered by these conditions is the class of “reputation” games

in which there is exactly one player whose payoff type is unknown. We identify the value

of reputation for such games. Consider the lowest belief-free equilibrium payoff that this

player can guarantee for a given set of alternative payoff types he might be. We identify

the highest such payoff, across all sets of alternative types, and identify a set of types

achieving this maximum.

The set of belief-free equilibrium payoffs has already appeared in the literature, most

notably (but not only) for two players, in the context of undiscounted Nash equilibrium

payoffs for games with one-sided incomplete information. See, among others, Cripps and

Thomas (2003), Forges and Minelli (1997), Koren (1992) and Shalev (1994). The most

general characterization of Nash equilibrium payoffs is obtained by Hart (1985) for the
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case of one-sided incomplete information. A survey is provided by Forges (1992). For more

than two players, Renault (2001) studies three-player games with two informed players

and one uninformed player, and introduces the joint rationality condition in this context.

Renault and Tomala (2004a) study existence for all payoff functions in the n-player case.

Our work is also related to the literature on existence of equilibria for non-zero-sum

undiscounted games with incomplete information. It is known since Aumann and Maschler

(1995) that some conditions on information structures are required to get existence. Sorin

(1983) shows existence of belief-based equilibrium in two-player games with one-sided

incomplete information and two states of nature. Simon, Spież and Toruńczyk (1995)

extend this result to an arbitrary number of states. For more than two players, no

general result is known. See for instance Renault (2001) for 3-player games with lack of

information on one-side.

Israeli (1999) provides an analysis of reputation in two-player undiscounted games, to

which our own analysis of reputation owes a great deal. Further references to non-Bayesian

studies can be found in Hörner and Lovo (2009). Finally, Pęski (2008) considers discounted

games with known-own payoffs, two states of the world, and one informed player. He

defines the set of payoffs that satisfy both individually rationality after every history, and

incentive compatibility, and shows that its closure is equal to the limit set (as the discount

factor tends to one) of the Nash equilibrium payoffs, under full dimensionality. Therefore,

his result shows that, at least in his set-up, the notion of individual rationality that

captures Nash equilibrium is expected individual rationality after every history (where

the expectation is, for the uninformed player, with respect to his beliefs about the state).

In contrast, the notion of individual rationality that captures belief-free equilibrium is

individual rationality for every state (what he calls IR-in-every-state.) The equivalence
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of those two notions of individual rationality in the case of undiscounted payoffs is the

main reason why the characterization of belief-free equilibrium payoffs is reminiscent of

some of the results in the literature on Nash equilibrium payoffs of undiscounted games.

Understanding the relationship between the two payoff sets in general environments is an

important open question.

Belief-free equilibrium is also related to ex post equilibrium, used in mechanism design

(see Crémer and McLean, 1985) as well as in large games (see Kalai, 2004). A recent study

of ex post equilibria and related belief-free solution concepts in the context of static games

of incomplete information is provided by Bergemann and Morris (2007).

The notion of belief-free equilibria has been introduced in games with imperfect mon-

itoring. See Piccione (2002), Ely and Välimäki (2002) and Ely, Hörner and Olszewski

(2005), among others. In this literature, belief-free equilibria are defined as equilibria for

which continuation strategies are optimal independently of the private history observed

by the other players, and has allowed the construction of equilibria in cases in which only

trivial equilibria were known so far.

The most closely related papers are Hörner and Lovo (2009), already discussed, and

Fudenberg and Yamamoto (2009a, 2009b). Fudenberg and Yamamoto (2009b), which

itself generalizes Fudenberg and Yamamoto (2009a), is complementary to this paper. By

combining belief-free equilibrium with perfect public equilibrium, they extend the analysis

to the case of repeated games with incomplete information, and imperfect and unknown

monitoring. That is, players receive imperfect public signals and the map from actions into

signal distributions is itself unknown. Their contribution is two-fold. First, they develop

linear algebraic techniques to study the limit payoff set, whose usefulness is illustrated via

examples. Second, they use these techniques to provide sufficient conditions for the folk
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theorem to hold. The latter contribution is especially important, as it provides conditions

under which, as far as limit payoffs are concerned, the restriction to these equilibria is

without loss of generality.

The paper is related more broadly to the literature on the robustness of equilibrium in

repeated games. Miller (2009) develops a related notion, in which the ex post requirement

is imposed in each period, but players’ continuation payoffs are evaluated according to

their beliefs. Chassang and Takahashi (2009) examine the robustness of equilibria to

incomplete information that is modelled by payoff shocks that are independent across

periods. Wiseman (2008) considers the case in which the payoff matrix is unknown, but

players learn over time, and provides conditions under which a folk theorem obtains.

Section two introduces the notation and defines belief-free equilibria. Section three

gives necessary conditions that belief-free equilibrium payoffs must satisfy. Section four

shows that every payoff vector in the interior of the set defined by the necessary conditions

is indeed a belief-free equilibrium payoff vector for low enough discounting. Section five

provides necessary and sufficient conditions for non-emptiness of this set. Section six

applies the previous results to games of reputation with one informed player.

2 Notations

The finite set of players is N := {1, . . . , N}. Player i chooses action ai from a finite

set Ai, and a ∈ A :=
∏

i Ai is an action profile. The finite state space is K := {1, . . . , K}.

Given a set S, let △S denote the probability simplex over S, 1{S} the indicator function

of S, |S| the cardinality of S, int S the interior of S, and co S the convex hull of S. To

avoid trivialities, assume that |Ai| ≥ 2, all i ∈ N .

Player i’s reward function is a map ui : K×A → R. Let M := maxi∈N,k∈K,a∈A |ui(k, a)|.
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A reward profile is denoted u := (u1, . . . , uN). Mixed actions of player i are denoted αi.

The definition of rewards is extended to mixed, possibly correlated, action profiles µ ∈ △A

in the usual way.

At the beginning of the game, each player receives once and for all a signal that

allows him to narrow down the set of possible states of nature. Without loss of generality

(see Aumann, 1976), this process can be represented by an information structure I :=

(I1, . . . , IN ), where Ii denotes player i’s information partition of K. We let Ii(k) denote

the element of Ii containing k. We refer to Ii(k) =: θi ∈ Θi as player i’s type, and write

Θ :=
∏

i Θi, and Θ−i :=
∏

j 6=i Θj. Given θ ∈ Θ, κ(θ) :=
⋂

i∈N θi denote the set of states

that are consistent with type profile θ. Also, for θ−i ∈ Θ−i, we write κ(θ−i) :=
⋂

j 6=i θj

for the set of states that are consistent with a type profile of all players but i. We do

not require that κ(θ) 6= ∅: it might be that some type profile cannot arise. Similarly, it

might be that |κ(θ)| > 1: the join of the players’ information partitions need not reduce

to the state. The information partitions are common knowledge, but the realized signal

is private information.

The game is infinitely repeated, with periods t = 0, 1, 2, . . .. A history of length t is

a vector ht ∈ H t := At (H0 := {∅}). An outcome is an infinite history h ∈ H := A∞.

Neither mixed actions nor realized payoffs are observed. On the other hand, realized

actions are perfectly observed. A behavior strategy for player i’s type θi is a mapping

σi,θi
: ∪t∈NH t → △Ai. We write σi := {σi,θi

}θi∈Θi
for player i’s strategy, and σ :=

(σ1, . . . , σN) for a strategy profile.

Players use a common discount factor δ < 1. The payoff of player i in state k is the

expected average discounted sum of rewards, where the expectation is taken with respect

to mixed action profiles. That is, given some outcome h = (a0, . . . , at, . . .), player i’s
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payoff in state k is
∑

t≥0
(1 − δ)δtui(k, at).

As usual, the domain of rewards is extended to mixed action profiles and strategy profiles.

Given a strategy profile σ, let µk ∈ △A denote the occupation measure over action profiles

induced by σ when the state is k, that is, for every a ∈ A,

µk(a) := (1 − δ) Eσ

[∑
t≥0

δt1{at = a}
]
.

Let u(k, µk) ∈ R
N denote the players’ payoff vector in state k under the occupation

measure µk:

u(k, µk) :=
∑

a∈A
µk(a)u(k, a).

Definition: A belief-free equilibrium (hereafter, an equilibrium) is a strategy profile

σ such that, for every state k, σ is a subgame-perfect Nash equilibrium of the game

with rewards u(k, ·). A vector v ∈ R
NK is an equilibrium payoff vector if there exists an

equilibrium σ such that v = u(σ).

In what follows, we write vk for the payoff vector in state k. Let Bδ be the set of belief

free equilibrium (BFE) payoff vectors of the δ-discounted game. The purpose of this

paper is to characterize limδ→1 Bδ (a limit that is shown to be well-defined) and establish

conditions under which this limit set is non-empty.
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3 Necessary Conditions

We first derive necessary conditions for a vector v ∈ R
NK to be an equilibrium pay-

off vector. These conditions can be divided into three categories: feasibility, incentive

compatibility, and (individual and joint) rationality.

3.1 Feasibility

Definition: The payoff vector v ∈ R
NK is feasible if there exists (µk)k∈K ∈ (△A)K

such that

1. ∀k ∈ K : vk = u(k, µk);

2. ∀k, k′: Ii (k) = Ii (k
′) ∀i ∈ N ⇒ µk = µk′.

The first condition is the obvious feasibility condition. That is, there exists an occu-

pation measure µk that yields the payoff vector vk.

The second condition is rather a measurability restriction. It states that, if players

cannot collectively distinguish two states, then the equilibrium occupation measures over

action profiles must be the same in both states. Given the second condition, we may

alternatively write µθ for the occupation measure. Conversely, throughout the paper, the

notation (µθ)θ∈Θ implies that the set (µk)k∈K satisfies the second condition.

3.2 Incentive Compatibility

If two signals θi and θ′i are both consistent with a signal profile θ−i of the other players,

it must be the case that player i weakly prefers the occupation measure µθi,θ−i
to µθ′i,θ−i

in

every state that is possible given (θi, θ−i). Therefore, if v is an equilibrium payoff vector,
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then it must be feasible for some probability distributions satisfying a set of incentive

compatibility conditions.

To introduce those, define UDi (for unilateral deviation) as the set of triples (θi, θ
′
i, θ−i) ∈

Θi × Θi × Θ−i such that κ(θi, θ−i) 6= ∅ and κ(θ′i, θ−i) 6= ∅. The incentive compatibility

conditions can be written as

∀i, (θi, θ
′
i, θ−i) ∈ UDi, k ∈ κ (θi, θ−i) : ui(k, µθi,θ−i

) ≥ ui(k, µθ′i,θ−i
). (IC(i, θi, θ

′
i, θ−i))

Lemma 3.1 If v ∈ Bδ, then v is feasible for some (µθ)θ∈Θ that satisfy IC(i, θi, θ
′
i, θ−i)

for all i ∈ N and (θi, θ
′
i, θ−i) ∈ UDi.

Proof: Suppose for the sake of contradiction that for some i ∈ N and (θi, θ
′
i, θ−i) ∈

UDi, the reverse inequality holds. Consider now the game of complete information in

which the state is k, and consider player i of type θi. By playing as if his type were

θ′i, player i can guarantee ui(k, µθ′i,θ−i
), which exceeds his equilibrium payoff ui(k, µθi,θ−i

).

This is a profitable deviation. �

3.3 Individual and Joint Rationality

A deviating player might be easy to identify or not. For instance, if player i chooses an

action that is inconsistent with all his types’ equilibrium strategies, then it is immediately

common knowledge among players that i deviated. Since we seek to identify here a nec-

essary condition that player i’s equilibrium payoff vector must satisfy, the more effective

the punishment, the weaker the condition. Therefore, we may start by assuming that,

if player i deviates, all other players commonly know the information that is distributed

among them, as these are the most favorable conditions for a punishment. This is also
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Figure 1: Players −i must have a strategy that guarantees that i’s payoff lies in W .

the reason why we may assume that player i’s deviation is common knowledge, even if,

for some deviations by i, this need not be.

Still, if the set of states κ(θ−i) is not a singleton, players −i cannot tailor the punish-

ment strategy to the actual state of the world. Suppose, for instance, that κ(θ−i) = {1, 2},

as illustrated in Figure 1. Because player −i’s strategy, after such a deviation, must be

effective in both games of complete information simultaneously, it must guarantee that

player i’s payoff is lower than vi in both its coordinates, independently of what strategy

player i uses. Note that it is irrelevant whether player i can distinguish these two states

himself.

Determining for which values of the vector vi players −i have such a strategy available

may appear a formidable task, but as is well-known, this is by definition equivalent (at

least in the undiscounted case) to the orthant W := {vi}−R
2
+ being an approachable set,

and necessary and sufficient conditions for this are provided by Blackwell (1956).
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To this end, define, for θ−i ∈ Θ−i,

ϕi,θ(q) := min
α−i∈

Q

j 6=i △Aj

max
ai∈Ai

∑
k∈κ(θ−i)

q(k)ui(k, α−i, ai).

For each player i and each θ−i ∈ Θ−i, consider the set of inequalities

∀q ∈ △κ(θ−i) :
∑

k∈κ(θ−i)
q(k)vk

i ≥ ϕi,θ(q). (IR(i, θ−i))

These inequalities are the immediate generalizations of the individual rationality condi-

tions for the two-player case. Note that if κ(θ−i) = ∅, the inequality is vacuously satisfied.

If κ(θ−i) is a singleton set {k}, the inequality reduces to the familiar definition of individ-

ual rationality under complete information, i.e. vk
i ≥ val ui(k, ·), where val ui(k, ·) denotes

player i’s minmax payoff in state k. In the definition of ϕi,θ, note that the action of players

−i are statistically independent.

Lemma 3.2 If v ∈ Bδ, it satisfies the inequalities (IR(i, θ−i)) for each player i and θ−i.

Proof: If one of these conditions is violated, there necessarily exists one player, a type

profile θ−i and q ∈ △κ(θ−i) such that the reverse inequality holds. This implies that for

every α−i, there exists ai(α−i) ∈ Ai such that

∑
k∈κ(θ−i)

q(k)ui(k, α−i, ai(α−i)) >
∑

k∈κ(θ−i)
q(k)vk

i . (1)

Assume instead that v is in Bδ and let σ be the corresponding equilibrium. Note that

players −i play the same strategy in each state k ∈ κ(θ−i). Consider thus the strategy

τi of player i that plays ai(α−i) after a history ht such that σ−i(h
t) = α−i. The reward

of player i under (τi, σ−i) satisfies the inequality (1) and therefore, so does the payoff. It
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follows that there exists a state k ∈ κ(θ−i) at which τ is a profitable deviation. �

Under these conditions, following Blackwell (1956), players −i can devise a punishing

strategy against player i. Given θ−i, and any payoff vector v that satisfies these inequalities

strictly, there exists ε > 0 and a strategy profile ŝ
θ−i

−i for players −i such that, if players

−i use ŝ
θ−i

−i , then player i’s undiscounted payoff in any state k that is consistent with θ−i

is less than vk
i − ε in any sufficiently long finite-horizon version of the game, no matter i’s

strategy. By continuity, this also holds true for sufficiently long finite-horizon versions of

the game when payoffs are discounted, provided the discount factor is high enough, fixing

the length of the game. When players −i use ŝ
θ−i

−i , players −i are said to minmax player

i. Player i is the punished player, and players −i are the punishing players.

While individual rationality is a necessary condition, it is not the only one. There are

other conceivable deviations, leading to an additional necessary condition. In particular,

even if a deviation gets detected, it might not be possible to identify the deviator. It

might be that i’s action is consistent with some of his types’ strategies, and so is player

j’s action, but no pair of types for which both actions would be simultaneously consistent

exists. Then it is common knowledge among all players that some player deviated, but

not necessarily whether it is player i or j. With two players, of course, the identity of the

deviator is always common knowledge.

To be more formal, let D be the set of type profiles that are inconsistent, but could

arise if there was a unilateral deviation. That is, θ is in D if κ(θ) = ∅ and Ωθ := {(i, θ′i) |

i ∈ N, κ(θ′i, θ−i) 6= ∅} 6= ∅. In other words, if players were to report their types, and the

reported profile was in D, all players would know that one player must have lied. The set

Ωθ is the set of pairs (player, type) that could have caused the problematic announcement

θ.
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For each θ ∈ D, consider the condition

∃µ ∈ △A, ∀(i, θ′i) ∈ Ωθ, ∀k ∈ κ (θ′i, θ−i) : vk
i ≥ ui(k, µ). (JR (θ))

These inequalities are called Joint Rationality (JR), since they involve payoffs of different

players simultaneously.3 Note that joint rationality does not imply individual rationality

(there is no requirement that player i’s action be a best-reply), nor is it implied by it.

Lemma 3.3 Every v ∈ Bδ satisfies all constraints (JR (θ))θ∈D.

Proof: Let v ∈ Bδ be an equilibrium payoff vector and σ be the corresponding equi-

librium. Let θ = (θi)i ∈ D and consider for each (i, θ′i) ∈ Ωθ the deviation τ i of player

i such that, if his type is θ′i, player i plays as if he were of type θi, i.e. τi,θ′i
= σi,θi

, and

which coincides with σi for all other types. Take two elements (i, θ′i) and (j, θ′j) in Ωθ.

The distribution over outcomes under (τi,θ′i
, σ−i,θ−i

) and (τj,θ′j
, σ−j,θ−j

) are the same, i.e.

this is the distribution under σθ = (σl,θl
)l∈N . In words, there is no way to distinguish

the situation in which player i consistently mimics type θi and the one in which player j

consistently mimics type θj . Let µ ∈ △A denote the occupation measure generated by

σθ. If JR (θ) is violated, there exists a player i and a state k ∈ κ (θ−i) such that player

i’s equilibrium payoff in state k, vk
i , is strictly lower than his payoff if he were to follow

σθi
, a contradiction. �

To conclude this section, we note that the conditions JR (θ) are closely related to the

conditions IR(i, θ). Indeed, using the minmax theorem, we may write those inequalities

3Joint Rationality has been first introduced in Renault (2001) in a three-player setup.
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in the following alternative and compact way

∀q ∈ △{(i, k) : k ∈ κ(θ−i)} :
∑

i,k
q(i, k)vk

i ≥ min
a∈A

∑
i,k

q (i, k) ui (k, a) ,

which suggests interpreting the identity of the deviator as part of the uncertainty itself.

For the sake of brevity, we often omit arguments and refer to each type of condition simply

as IC, IR, or JR.

4 Sufficient Conditions

Let V ∗ ⊂ R
KN denote the set of feasible payoff vectors that satisfy IC, IR, and JR.

We show that this set characterizes the set of belief-free equilibrium payoff vectors, up to

its boundary points.

Let K̂ :=
{
k ∈ K :

⋂
i∈N Ii(k) 6= {k}

}
be the set of states that cannot be distinguished

by the join of the players’ information partitions. Let û be the matrix (uk
i (a)) with N×|K̂|

rows and |A| columns, where k belongs to K̂. The reward function u is generic if the

matrix û has rank N × |K̂|. Indeed, viewing any such matrix as an element of R
N |K̂||A|,

this condition is generically satisfied whenever |A| ≥ N |K̂|. The first main result of this

paper is the following.

Theorem 4.1 If v ∈ int V ∗ and u is generic, there exists δ̄ < 1, ∀δ > δ̄, v ∈ Bδ.

The interiority assumption is rather standard in the literature on repeated games

with discounting, and has been first introduced by Fudenberg and Maskin (1986). In the

next subsection, we provide a proof under the additional assumptions that there exists

a public randomization device in every period (an independent draw from the uniform
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distribution on the unit interval), and that players can send costless messages, or reports,

at the end of every period, as well as before the first period of the game. The proof in

the appendix dispenses with these assumptions. (The proof of the dispensability of the

public randomization follows ideas of Fudenberg and Maskin (1991) and Sorin (1986) and

is only sketched.)

The rank assumption serves a similar purpose, as it allows players to provide appro-

priate incentives in states that cannot be distinguished.

Before turning to the proof, it is worth making the following two remarks. First, if

I and I ′ are two different information structures for the same game, and V ∗, V ′∗ are

the corresponding sets of feasible, incentive compatible, individually and jointly rational

payoff vectors, observe that V ∗ ⊆ V ′∗ if I ′
i is finer than Ii for all i ∈ N . That is, the

limit set of belief-free equilibrium payoffs is monotonic with respect to the information

structure, under the natural ordering on such structures. Second, note that the IC, IR

and JR conditions remain necessary even if we drop the sequential rationality constraint

imposed by subgame-perfection. That is, the same characterization would hold if belief-

free equilibria was defined with respect to Nash equilibria of the underlying complete

information game.

Simplified Proof

Player i’s message set is Θi. The timing in a given period is as follows.

1. A draw from the uniform distribution on [0, 1] is publicly observed;

2. Actions are simultaneously chosen;

3. Messages are simultaneously chosen.
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As far as messages go, players always report their types truthfully in equilibrium. We

refer to the event in which one player does not report truthfully as misreporting by this

player. A type profile is inconsistent if κ(θ) = ∅, and it is consistent otherwise.

As far as actions go, equilibrium play can be divided into three phases: regular phases,

penitence phases and punishment phases. Regular and penitence phases last one period.

Punishment phases last T period, for some T ∈ N to be defined.

In regular and penitence phases, players use an action profile that is coordinated by

the public randomization device. In a punishment phase, a player is minmaxed by his

opponents, in the sense of Blackwell described above.

To ensure that the strategy profile is belief-free, we must make sure that the punished

player is playing the same way independently of the state, and that the punishing players

have incentives to carry out the minmax strategy, even when this strategy calls for mixed

actions. This complicates somewhat the description of the equilibrium strategies.

There are two kinds of deviations. The punishment phase is triggered if a player

deviates in his choice of an action (“deviation in action”), and deters him from making such

deviations. The penitence phase is triggered only if an inconsistent type profile is observed,

and deters players from misreporting (“deviation in report”) to induce an inconsistent type

profile. Incentive compatibility of payoffs deters players from misreporting to induce a

false but consistent type profile.

The equilibrium path consists of an infinite repetition of the regular phases.

Regular phases are denoted Rθ (ε), with κ (θ) 6= ∅ and ε ∈ R
N |κ(θ)|. Penitence phases

are denoted Eθ (ε), where κ (θ) = ∅ and ε ∈ R
NK . Punishment phases are denoted P θ−i,

with κ (θ−i) 6= ∅.
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Actions and Messages

(i) Regular phase: In a regular phase, actions are determined by the outcome of the

public randomization device. In phase Rθ (ε), action profiles are selected according to a

probability distribution µθ (ε) in such a way that

ui(k, µθ (ε)) = vk
i + εi

for k ∈ κ (θi, θ−i), and

ui(k, µθi,θ−i
(ε)) > ui(k, µθ′i,θ−i

(ε′)) (2)

for all i, all εi ∈ [−ε, ε], all ε′i ∈ [−ε, ε], all (θi, θ−i) and (θ′i, θ−i) such that κ (θi, θ−i) 6= ∅

and κ (θ′i, θ−i) 6= ∅. Such a distribution exists for sufficiently small ε > 0 given that

v ∈ int V ∗ is strictly incentive compatible.

At the end of a regular phase, all players truthfully report their types.

(ii) Penitence phase: In a penitence phase, actions are determined by the outcome of

the public randomization device. Consider penitence phase Eθ (ε). Recall that κ (θ) = ∅.

We distinguish two cases.

1. θ ∈ D: by definition, there exist a set Ωθ of players and types (i, θ
′

i) such that

κ
(
θ
′

i, θ−i

)
6= ∅. Action profiles are selected according to a probability distribution

µθ (ε) in such a way that

ui(k, µθ (ε)) < vk
i + εi (3)

for all (i, θ
′

i) ∈ Ωθ, k ∈ κ
(
θ
′

i, θ−i

)
and all εi ∈ [−ε, ε]. Such a distribution exists for

sufficiently small ε > 0 given that v ∈ int V ∗ satisfies (JR) with strict inequality.
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2. θ /∈ D (i.e., at least two players misreported): Players use some fixed, but arbitrary

action profile a := {ai}
N
i=1 ∈ A.

At the end of a penitence phase, all players truthfully report their types.

(iii) Punishment phase: A punishment phase lasts T periods. In P θ−i, players −i use

ŝ
θ−i

−i . For some action ai ∈ Ai, let s
ai

i denote the strategy of playing ai after all histories

within the punishment phase.4 Player i plays s
ai

i throughout the phase.

We pick T ∈ N, δ < 1 and ε > 0 such that, for all δ > δ and all k ∈ κ (θ−i), player i’s

average discounted payoff over the T periods is no larger than vk
i − 2ε. This is possible

since v satisfies (IR) with strict inequality.

At the end of each period of a punishment phase, all players truthfully report their

types.

Initial phase

All players truthfully report their types at the beginning of the game. Given report

profile θ, the initial phase is Rθ(0).

Transitions

(i) From a regular phase Rθ (ε): Let a denote the (pure) action profile determined by

the public randomization device, a′ the realized action profile, and θ′ the report of types

at the end of the phase.

1. (Unilateral deviation) a′
i 6= ai for some i ∈ N and a′

−i = a−i:

4To avoid introducing additional notation, we have used here the same notation (i.e., a
i
) than in one

of the specifications for the penitence phase. It is irrelevant whether these are the same actions or not.
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(a) κ(θ′−i) 6= ∅: the next phase is P θ′−i;

(b) κ(θ′−i) = ∅: the next phase is Eθ′ (ε′), where ε′j = −ε if (j, θ′′j ) ∈ Ωθ′ for some

θ′′j ∈ Θj, and ε′j = εj otherwise.

2. (Multilateral deviations, or no deviation) a′
i 6= ai for some i ∈ N and a′

−i 6= a−i, or

a′ = a:

(a) κ(θ′) 6= ∅:

i. θ′ = (θ−i, θ
′
i) for some i ∈ N and θ′i 6= θi: the next phase is Rθ′(−ε, ε−i);

ii. otherwise, the next phase is Rθ(ε);

(b) κ(θ′) = ∅: the next phase is Eθ′ (ε′), where ε′i = −ε if (i, θ′′i ) ∈ Ωθ′ for some

θ′′i ∈ Θi, and ε′i = εi otherwise.

(ii) From a penitence phase Eθ (ε): Let a denote the (pure) action profile determined

by the public randomization device, a′ the realized action profile, and θ′ the report of

types at the end of the phase.

1. (Unilateral deviations) a′
i 6= ai for some i ∈ N and a′

−i = a−i:

(a) κ(θ′−i) 6= ∅: the next phase is P θ′−i;

(b) κ(θ′−i) = ∅: the next phase is Eθ′ (ε′), where ε′j = −ε if (j, θ′′j ) ∈ Ωθ′ for some

θ′′j ∈ Θj, and ε′j = εj otherwise.

2. (Multilateral deviations, or no deviation) a′
i 6= ai for some i ∈ N and a′

−i 6= a−i, or

a′ = a:

(a) κ(θ′) 6= ∅: the next phase is Rθ(ε);
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(b) κ(θ′) = ∅: the next phase is Eθ′ (ε′), where ε′i = −ε if (i, θ′′i ) ∈ Ωθ′ for some

θ′′i ∈ Θi, and ε′i = εi otherwise.

(iii) From a punishment phase P θ−i: The punishment phase lasts T periods. Let hT

denote an arbitrary history of length T . Let θ′ denote the reported type profile in the

T -th period. Then

1. (a) κ(θ′) = ∅: the next phase is Eθ′ (ε′), where ε′i = −ε if (i, θ′′i ) ∈ Ωθ′ for some

θ′′i ∈ Θi, and ε′i = εi otherwise;

(b) κ(θ′) 6= ∅: the next phase is Rθ′(εi(h; P θ−i), ε−i(h; P θ−i)), with εj(h; P θ−i) ∈

[−ε̄, ε̄], all j. The values εj(h; P θ−i) are such that:

(4) for all k ∈ κ (θ′), and conditional on any history h ∈ HT , playing s
ai

i

in the punishment phase is an optimal continuation strategy for player i,

given ŝ
θ−i

−i ; further, if θ′−i = θ−i, player i’s expected payoff, evaluated at the

beginning of the punishment phase, from playing s
ai

i given ŝ
θ−i

−i (and given

that θ′ is truthfully reported), is equal to
(
1 − δT

)
(vk

i − 2ε) + δT
(
vk

i − ε
)
,

for all k ∈ κ (θ′). That this is possible follows from inequality (6) below.

(5) for all k ∈ κ (θ′), and conditional on any history h ∈ HT , playing ŝ
θ−i

j is

an optimal continuation strategy for player j 6= i, given (s
ai

i , (ŝ
θ−i

j′ )j′ 6=j); In

addition εj

(
·; P θ−i

)
is in [ε/3, ε] if θ′j = θj , and it is in [−ε,−ε/3] otherwise

(recall that h specifies θ′). That this is possible follows from inequality (6)

below.

It is clear that these strategies do not depend on players’ beliefs, but only on past

history.
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Optimality Verification

Given v ∈ int V ∗, we now pick ε > 0 small to ensure that the probability distributions

introduced above exist, and δ, and T such that the payoff of a punished player is low

enough, as specified above for the punishment phase (see ‘Actions and Messages’). In

addition, we take these values to satisfy

−
(
1 − δT

)
M + δT

(
vk

j + ε/3
)

>
(
1 − δT

)
M + δT

(
vk

j − ε/3
)
, (6)

− (1 − δ) M + δ
(
vk

j − ε
)

> (1 − δ) M + δ
((

1 − δT
)
(vk

j − 2ε) + δT
(
vk

j − ε
))

. (7)

Given v and ε > 0, these are all satisfied as δT → 1 and T → ∞, so they are also

satisfied for values of T and δ that are large enough. Inequality (6) guarantees that a

variation of 2ε̄/3 in continuation payoffs at the end of a punishment phase dominates any

gains/losses that could be incurred during such a phase. Inequality (7) guarantees that

the punishment phase is long enough to deter deviations in action.

Regular Phase: Rθ (ε) and penitence phases Eθ (ε): Let a denote the (pure) action

profile determined by the public randomization device, a′ the realized action profile, and

θ′ the report of types at the end of the phase.

Actions: Suppose that a′ = (a−i, a
′
i) for some i and a′

i 6= ai, i.e., player i unilaterally

deviates from the prescribed action profile. Then, provided players −i truthfully report,

the punishment phase P θ′−i starts. The maximum that player i can obtain by deviating

is the right-hand side of (7), while by conforming to the prescribed action he gets at least

as much as the left-hand side of (7).

Messages: let θi be player i’s type. We distinguish two cases.

1. Either no or more than one player deviated in action:
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If player i reports truthfully, he gets at least vk
i −ε, where k ∈ κ (θ′). If he misreports,

we further distinguish two cases:

(a) κ (θ′) = ∅: assuming the other players report truthfully, the next phase is

Eθ′ (ε′) with ε′i = −ε. So player i’s payoff is at most maxθ′i 6=θi
(1 − δ)ui(k, µθ′i,θ

′
−i

(ε))+

δ
(
vk

i − ε
)
, which is less than vk

i − ε, because of (3).

(b) κ (θ′) 6= ∅: Player i gets at most maxθ′i 6=θi
(1 − δ)ui

(
k, µθ′i,θ

′
−i

(ε)
)

+δ
(
vk

i − ε
)
,

which is less than
(
vk

i − ε
)
, because of (2).

2. a′ = (a−j, a
′
j) for some j and a′

j 6= aj (i.e., player j deviated in action):

Player j’s report is irrelevant and he can as well report truthfully.

If player i 6= j reports truthfully his type, he gets at least −
(
1 − δT

)
M+δT

(
vk

i + ε/3
)
.

If he misreports, there are two cases:

(a) κ (θ′) = ∅: the next phase is Eθ′ (ε′) with ε′i = −ε, so his payoff is smaller

than (1 − δ)M + δ
(
vk

i − ε
)

<
(
1 − δT

)
M + δT

(
vk

i − ε/3
)
, which is less than

−
(
1 − δT

)
M + δT

(
vk

j + ε/3
)

because of (6).

(b) κ (θ′i, θ−i) 6= ∅: Player i gets at most
(
1 − δT

)
M + δT

(
vk

i − ε/3
)

(assuming he

reports truthfully at the end), which is less than −
(
1 − δT

)
M + δT

(
vk

i + ε/3
)

because of (6).

Punishment phase P θ−i: Let θ′ denote the reported type profile in the T -th period.

Actions: We consider first player i, then Player j 6= i.

1. Player i: as mentioned, inequality (6) guarantees that we can specify εi

(
h; P θ−i

)

such that s
ai

i is optimal after every history in the punishment phase, given ŝ
θ−i

j 6=i.
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2. Player j 6= i: similarly, inequality (6) guarantees that we can specify εj

(
h; P θ−i

)

such that ŝ
θ−i

j is optimal after every history in the punishment phase, given ŝ
θ−i

j′ 6=i,j.

Messages: The only payoff relevant message is the one at the end of the punishment

phase. Let θ′ denote the reported type profile in the T -th period. If player i ∈ N reports

truthfully his type, he gets at least vk
i − ε. If he misreports, we distinguish two cases:

1. (a) κ (θ′) = ∅: the next phase is Eθ′ (ε′) with ε′i = −ε, so player i’s payoff is

at most maxθ′i 6=θi
(1 − δ)ui(k, µθ′i,θ

′
−i

(ε)) + δ
(
vk

i − ε
)
, which is less than vk

i − ε

because of (3).

(b) κ (θ′) 6= ∅ : player i gets at most maxθ′i 6=θi
(1 − δ)ui(k, µθ′i,θ

′
−i

(ε)) + δ
(
vk

i − ε
)
,

which is less than vk
i − ε because of (2).

5 Existence

Our main theorem states that, given V ∗ 6= ∅, all points in the interior of V ∗ are BFE

payoffs if δ is large enough. However, achieving incentive compatibility together with

individual rationality and joint rationality might not be possible, as is already known

from the two-player case, and some conditions are required. In this section, we give

necessary and sufficient conditions for non-emptiness of V ∗. We shall not address the

issue of whether boundary points of V ∗ are themselves equilibria or not. Even in the

case of complete information, it is not known under which conditions minmax payoffs are

equilibrium payoffs themselves (this is the case, generically, when attention is restricted

to pure strategies and there exist points in the feasible payoff set that give each player

his minmax payoff (Thomas, 1995)), and such conditions appear all the more elusive
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here given that both IR and JR are multi-dimensional versions of individual rationality.

Incentive compatibility, however, is an additional condition, and we will comment on

when it can be made strict (this is the case, for instance, for our first set of results). As

a practical matter, it is immediate to apply the characterization of V ∗ to verify that the

set has non-empty interior. Note that Fudenberg and Yamamoto (2009b) provide useful

sufficient conditions for this to be the case. Note also that, as mentioned, V ∗ has been

shown to play an important role in the study of Nash equilibria in repeated games without

discounting, for those special cases in which such a characterization has been obtained so

far.

More precisely, we consider different classes of games each characterized by some

properties of the reward functions and/or of the information structure. For each one

of these classes we prove that V ∗ is not empty by identifying payoffs vectors satisfying

IC, IR and JR, and provide counter-examples within those classes for the necessity

part. Given the set of players N , the set of states K and the set of actions profiles

A, let U := (RK×A)N be the set of all reward functions and Y be the set of information

structures. For an information structure I and a reward function u, we denote by V ∗(I, u)

the set of payoff vectors that satisfy IC, IR and JR.

We might wish to examine for which information structures non-emptiness obtains

for all reward functions, or for all reward functions within some class S ⊆ U . We shall

consider this first. Second, we examine for which reward functions non-emptiness obtains

independently of the information structure. This, in particular, will ensure existence for

the applications in which the assumption that the information partitions are common

knowledge appears exorbitant. We shall address this next. Proofs are outlined in the text

and, when necessary, detailed in the appendices B–E.
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5.1 Majority Components

It is useful to identify the information that can be readily disclosed either because it

is shared by sufficiently many players or, for 2-player games, because it is common knowl-

edge. For instance, if three (or more) players know the state of nature, it is straightforward

to provide those players with strict incentives to disclose it: each informed player reports

the true state (through an appropriate choice of actions); under any unilateral deviation,

there are still at least two players (a majority) among informed players who report it

truthfully. Truth-telling is thus optimal, and the state is revealed.

More generally, we shall make precise the information about the state that can be made

common knowledge among players even under unilateral deviations. This will define a

partition over the set of states K. An element of this partition is a majority component.

That is, if the true state k belongs to the majority component A, then under strategies

that ask players to report whether the state is in A or not, it becomes common knowledge

that the true state lies in A once the reports are made, and even if a player unilaterally

deviates.

This requires that, for every k′′ ∈ K \ A, at least three players know that the state

is not k′′, so that, even if one of them deviates, at least two players’ reports rule out

k′′. Conversely, if two states k and k′ belong to the same majority component A, then,

for some report of some player, there are no two other players who could, by reporting

truthfully, distinguish between k and k′. To define a majority component formally, we

introduce the following equivalence relation.

Definition 5.1 Fix an information structure I.

- For each pair of states a, b, let ν(a, b) be the number of players who distinguish a

from b. Define the binary relation R by aRb iff ν(a, b) ≤ min{2, N − 1}.
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- Let a ∼ b if and only if there is a chain of states a = a1, a2, ..., an = b such that

amRam+1 for each m. A majority component of K is an equivalence class of this

relation.

Note that R is symmetric but not necessarily transitive, and ∼ is the transitive closure

of R (i.e. the smallest transitive extension of R), thus it is an equivalence relation.

If A, B are two distinct majority components of K, then for each a ∈ A and each b

in B, ν(a, b) ≥ 3. Otherwise, there would exist a link (for the relation R) between some

point in A and some point in B, and thus a chain linking any point in A to any point

in B. Note that, for 2-player games, two states belong to the same majority component

only if they can be distinguished by at most one player.

The study of belief-free equilibria can be made on each majority component separately.

Given A ⊆ K, let IA denote the information structure on A induced by I:

IA,i(k) = Ii(k) ∩ A, ∀i ∈ N, ∀k ∈ A.

Note that, by definition, a BFE given K and I must induce a BFE given A and IA. If A

is a majority component, the discussion above can be summarized in the following lemma.

Lemma 5.2 V ∗(u, I) 6= ∅ iff for each majority component A, V ∗(u, IA) 6= ∅.

5.2 Existence for Various Reward Functions

In this subsection, we focus on information structures such that for each k, ∩i∈NIi(k) =

{k}. In this instance, K̂ = ∅ and the reward function u trivially satisfy the genericity

condition of Theorem 4.1.5

5This is without loss of generality when players have known-own payoffs. If no such restriction is
imposed on rewards, then it is also necessary for non-emptiness of V ∗. For example, if each player’s
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5.2.1 No restriction on rewards: S = U

The following result identifies the restriction on the information structure that ensures

that BFE exists for all reward functions (see also Renault and Tomala, 2004a).

Theorem 5.3 V ∗(I, u) 6= ∅, ∀u ∈ U , if and only if all majority components are single-

tons.

The proof is straightforward and follows the theorems 3.2. and 3.3. in Renault and

Tomala (2004a). The condition is obviously sufficient. If all majority components are

singletons, then the true state k can be identified by truthful announcements. Unilateral

deviations are disregarded. Then a feasible and individually rational payoff vector in

the revealed state k is implemented. For the necessity part we provide an example in

Appendix B.

This condition is obviously very demanding, but then again, so is the requirement that

BFE exist for the given information structure for all reward functions simultaneously. For

a fixed reward function, or for classes of reward functions, BFE might exist under much

weaker conditions. The remainder of this section examines how the condition is relaxed

once restrictions are imposed on the reward function. Without loss of generality, given

Lemma 5.2, we assume hereafter that there is a single majority component, with at least

two states (if there is a single state, existence is immediate).

5.2.2 Known-own payoffs

In this subsection we characterize the set of information structures for which V ∗(I, u) 6=

∅ in games with known-own payoffs.

reward function depends only on his own action and on the state, and the optimal action is not the same
in two states that no player distinguishes, then BFE do not exist.
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Definition 5.4 The game has known-own payoffs (KOP) if the reward function ui of

each player i depends only on the action profile and on his type. That is, for each action

profile a, and each pair of states k, k′:

Ii(k) = Ii(k
′) =⇒ ui(k, a) = ui(k

′, a).

Let SI be the set of reward functions of games with KOP, given the information structure

I.

Note that, given the definition of known-own payoffs, it is without loss of generality

that we assume
⋂

i∈N Ii(k) = {k}. In two-player games with KOP, existence obtains

whenever information is one-sided, that is, whenever player 1 has more information than

player 2 (Shalev, 1994). These conditions are also necessary in two-player games: Hörner

and Lovo (2009) and Koren (1992) provide examples in which existence fails if information

is two-sided. One might then expect that this result might generalize to N -player games

with KOP. However, the following example shows that having one fully informed player

does not ensure existence.

Example 5.5 There are three states k, k′, k′′. The information of player 1 is I1(k) =

I1(k
′′) = {k, k′′}, I1(k

′) = {k′}. The information of player 2 is I2(k) = I2(k
′) = {k, k′},

I2(k
′′) = {k′′}. Player 3 knows the state. The payoff matrix is as follows.

L R

T 3, 1, 0 0, 0, 0

B 0, 0, 0 1, 3, 0

state k

L R

T 3, 0, 3 0, 1, 3

B 0, 0, 3 1, 1, 0

state k′′

L R

T 1, 1, 0 1, 0, 3

B 0, 0, 3 0, 3, 3

state k′
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In this game, V ∗ is empty.6 Assume for the sake of contradiction that there is a point v in

V ∗. Individual rationality of players 1 and 2 imply that in state k′, T is always played, and

(T, R) is played with a (discounted) frequency no greater than 1/4. The payoff of player

3 in state k′ is thus vk′

3 ≤ 3/4. Similarly, in state k′′, R is always played, and (T, R) with

frequency no greater than 1/4. The payoff of player 3 in state k′′ is thus vk′′

3 ≤ 3/4.

Consider now the inconsistent reports in which player 1 claims that the state is k′,

while player 3 claims that the state is k. Continuation play must “punish” player 1 in

state k, and player 3 in state k′. Note that, for every action profile a, uk
1(a) + uk′

3 (a) ≥ 3.

Now, assume that the payoff of player 1 in state k is such that: vk
1 ≤ 11

16
3. It follows that

v1
k + v3

k′ ≤
11

16
3 + 3/4 = 45/16 < 3.

This latter inequality is impossible. From JR, there must exist a distribution α of action

profiles such that vk
1 ≥ uk

1(α) and vk′

3 ≥ uk′

3 (α) and uk
1(α) + uk′

3 (α) ≥ 3. We conclude

that vk
1 > 11

16
3. A similar argument (considering the inconsistent reports in which player 2

claims that the state is k′′ and player 3 claims that the state is k) yields vk
2 > 11

16
3. Thus

v1
k + v2

k > 66/16 = 4 + 1/8, which is impossible, since no action profile in state k yields

uk
1 + uk

2 > 4.

In what follow we show that V ∗ is nonempty in games with KOP if and only if, for

each state k, first, there exists a player i who is as well-informed as all others at that state,

and second, either there is a second player j 6= i who is as well-informed as all players but

i at that state, or no player can distinguish any two states for which he is not the best

informed player (if he ever is).

6Note that player 3 has only one action in this game, which violates our maintained assumptions, and
requires us to assume that players can directly communicate. It is straightforward to modify the example
so that player 3 has two actions.
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More formally, we say that player i has more information than player j at k if player

i can deduce player j’s type from his own type, i.e. if Ii(k) ⊆ Ij(k).

Definition 5.6 1. The information structure is locally weakly embedded (LWE) if

for each state k, there exists a pair of players i, j, such that player i has more

information than any other player, and player j has more information than any

player other than i. Note that i, j may depend on the state.7

2. The information structure has the all-or-nothing property if there exists a partition

of K, K = ∪i=1,...,NKi with Ki possibly empty, such that for each i, Ii(k) = {k} if

k ∈ Ki, Ii(k) = K \ Ki otherwise.

We have the following result (recall that attention is restricted, without loss of gener-

ality, to a single component).

Theorem 5.7 V ∗(I, u) 6= ∅, ∀u ∈ SI , if and only if the information structure is locally

weakly embedded, or has the all-or-nothing property.

The proof is rather involved and deferred to Appendix C. First, we show that the condition

is sufficient by exhibiting a point in V ∗(I, u). To this purpose, we introduce an auxiliary

game (inspired by Hart and Schmeidler, 1989, and Renault and Tomala, 2004b) that

consists of a two-player (player I and player II) zero-sum repeated game with one-sided

incomplete information. The state of nature in the auxiliary game is a couple (i, k) ∈

N×K. Player II is not informed and has the role of a mediator: he recommends a strategy

to all players, for each possible type profile, in the original N -player game. Player I is

the maximizer. He knows the state (i, k) and chooses the strategy of player i in state

7It is not difficult to check that the pair (i, j) must be the same for all states in the same majority
component.
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k of the original game. Player I’s payoff is given by the difference between the payoff

of player i in state k in the original game when using the strategy chosen by player I

and the same (original game) player’s payoff when following player II’s recommendation.

This difference is computed assuming that all players different from i follow player II’s

recommendation. The proof consists in showing that the value of the auxiliary game is

zero, for all prior beliefs on N × K, and that an optimal strategy for player II in the

auxiliary game induces a point in V ∗(I, u). In order to prove necessity, we establish

a structural result on information structures with a single majority component. This

reduces the number of configurations for which counter-examples (in which V ∗(I, u) = ∅

for some u ∈ SI) must be provided whenever the information structure is neither LWE

nor has the all-or-nothing property.

5.2.3 Bad outcome

In this subsection, we consider a class of reward functions in which there is a dis-

tribution of action profiles which yields a low payoff to all players simultaneously. This

encompasses many economic settings, e.g. environments with quasi-linear utilities.

Definition 5.8 The reward function has a bad outcome if there exists a distribution over

action profiles that provides each player with no more than his minmax payoff in each

state:

∃µo ∈ △A, ∀i ∈ N, ∀k ∈ K, ui(k, µo) ≤ uk
i ,

with uk
i := minα−i∈

Q

j 6=i △Aj
maxai∈Ai

ui(k, ai, α−i). Let B be the set of payoff functions that

have a bad outcome.

For each player i and state k, denote by I−i(k) := ∩l 6=iIl(k) the combined information

of the other players at k. We say that player i is essential at k if I−i(k) 6= {k}. The
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information structure I has no essential player if, for each state k, no player is essential

at k.

Theorem 5.9 V ∗(I, u) 6= ∅, ∀u ∈ B, if and only if I has no essential player.

The proof is straightforward and the intuition is as follows. Let players report their

type. Then either a state is identified, or there is an inconsistency in the reports. In

that case, the bad outcome is played long enough to deter such deviations. Details are

provided in Appendix D.

5.2.4 Known-own payoffs and bad outcome

Assuming both known-own payoffs and bad outcome yields existence for a broader set

of information structures.

Theorem 5.10 V ∗(I, u) 6= ∅, ∀u ∈ SI ∩ B, if and only if I has at most one essential

player in each state.

The proof of this result can be found in Appendix E.

5.3 Existence for all Information Structures

Our objective is to find conditions on the reward function u such that V ∗ is non-

empty independently of the information structure. Note first that V ∗(I, u) is non-empty

for all information structure I ∈ Y if and only if V ∗(I, u) is non-empty for the coarser

information structure I, i.e. for Ii(k) = K for all i ∈ N and all k ∈ K. Necessity is

trivial. Sufficiency follows from our earlier observation that, for any pair of comparable

information structures I and I ′, with I ′ finer than I (i.e., I ′
i finer than Ii for all i), if
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V ∗(I, u) is non-empty, then V ∗(I ′, u) is also non-empty. Let

ϕi(q) := min
α−i∈

Q

j 6=i △Aj

max
ai∈Ai

∑
k∈K

q(k)ui(k, α−i, ai).

Proposition 5.11 The set V ∗(I, u) is non-empty for all I if and only if there exists a

distribution over action profile µ∗ ∈ △A such that, for each i ∈ N ,

∀q ∈ △K :
∑

k∈K
q(k)ui(k, µ∗) ≥ ϕi(q).

Proof. It is sufficient to show that when I satisfies Ii(k) = K for all i ∈ N and all k ∈ K,

then the conditions of the proposition are necessary and sufficient for V ∗(I, u) 6= ∅.

Sufficiency: Consider the payoff vector v∗ obtained by implementing the distribution

µ∗ independently of the state. This payoff is clearly IC and JR since it is achieved by a

strategy that is independent of the state. This payoff vector satisfies IR since the condition

on µ∗ states that, in any state k, no player i can guarantee more than vk∗
i when the other

players use the punishment strategy for the case in which player i knows the state and

the other players do not. Necessity: Note first that equilibrium play must be independent

of the state because of the second condition imposed by feasibility. Second, suppose that

there exists no µ∗ satisfying the condition of the proposition. In other words, for each

µ ∈ △A, there exists a player i and qµ ∈ △K such that

∑
k∈K

qµ(k)ui(k, µ) < ϕi(q
µ).

This implies that, for any candidate equilibrium payoff achieved by some distribution

over action profiles µ that is independent of the state, there exists a player i that finds it
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profitable to deviate in some state. �

The condition of proposition 5.11 is trivially satisfied when it is possible to find a

pooling equilibrium distribution µ∗ and a punishment strategy that is independent of the

state. This is the case, for instance, in most auction formats and oligopoly games (take a

very high and a very low price, or quantity).

When focusing on finer information structures in which players have non-degenerate

types, punishment strategies sustaining an equilibrium can depend on types. There are

some obvious properties of the reward functions ensuring existence, if one gives up the

requirement that existence obtains for all information structures. Proposition 5.12 pro-

vides a useful criterion, which is the N -player counterpart of condition 4 in Hörner and

Lovo (2009). Let D̂ be the set of type profiles that are consistent with some state after

deletion of some player’s type. That is,

D̂ := {θ ∈
∏

i∈N
Θi : ∃i ∈ N, κ(θ−i) 6= ∅}.

The following condition guarantees that V ∗ is non-empty.

Proposition 5.12 If there exists a distribution over action profile µ∗ ∈ △A, and for all

θ ∈ D̂,a profile µθ ∈ △A such that for all i, k ∈ κ(θ−i),

max
ai∈Ai

ui(k, ai, µ
θ
−i) ≤ ui(k, µ∗),

then V ∗ is non-empty.

Proof. It is sufficient to show that v := (ui(k, µ∗))i∈N,k∈K is in V ∗. IC: The payoff

vector v can be achieved by implementing the occupation measure µ∗ irrespective of the
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announcements, hence it is incentive compatible. IR and JR: the condition on µθ implies

that when the distribution over action profile µθ is implemented, in all possible states a

player cannot gain more than v even if he unilaterally deviates or makes a report leading

to an inconsistent report profile. Thus, µθ can be used to deter unilateral deviations or

misreports, guaranteeing that v is individually and jointly rational. �

6 Reputations

It follows from the previous section that V ∗ is non-empty when players know their

own payoffs, and the incomplete information concerns one player’s payoff only, so that

the payoffs of all players but one are commonly known. Formally, for every player i,

ui(k, ·) = ui(θi, ·), and for all i 6= 1, |Θi| = 1. This environment with one-sided incomplete

information is the focus of a large literature on “reputations,” starting with Fudenberg

and Levine (1989), and is assumed throughout this section. While there exists a large

literature on reputation in two-player games, Fudenberg and Kreps (1987) and Ghosh

(2007) are, to the best of our knowledge, the only other papers considering reputations

when the informed player faces multiple opponents. In Hörner and Lovo (2009), it was

shown how results by Israeli (1999) for the set of undiscounted Nash equilibrium payoffs

in two-player games with such information structures could be applied with hardly any

change to the set of belief-free equilibrium payoffs as the discount factor tends to one.

In this section, the generalization of those results to N players is presented. Proofs are

generalizations of those by Israeli.

Fix one (payoff) type of player 1, the rational type. The purpose of this section is to

identify how much the rational type is guaranteed to get in equilibrium, as the discount

factor tends to one, as a function of his other possible payoff types. The rational type’s
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reward is denoted u1, while his other possible payoff types are denoted uk
1, k = 2, . . . , K.

We fix throughout the reward functions (u2, . . . , uN) of players i = 2, . . . , N . Given some

reward function uk
1, ui, let uk

1, ui denote the corresponding minmax payoffs val uk
1 and

val ui.

Given any vector uK := (u2
1, . . . , u

K
1 ) such that V ∗ is non-empty, let v1(u

K) be the

infimum of the payoff of player 1’s rational type over V ∗. We define the reputation payoff

of player 1’s rational type as

u∗
1 := sup

{uK :K≥2}

v1(u
K).

Observe that the rational type’s equilibrium payoff must be at least equal to

min
µ∈△A

u1(µ) such that uk
1(µ) ≥ uk

1, ui(µ) ≥ ui, ∀i, k ≥ 2.

Indeed, if the state is k, the play specified by the equilibrium strategies must be an

equilibrium of the game with complete information in state k, and therefore this play

must be such that all players get at least their minmax payoff in that state. Since player

1’s rational type can always follow the strategy of player 1’s type k, he must receive at

least as much as he would get from following this play. Therefore, it must be that

u∗
1 ≥ sup

{uK :K≥2}

{
min
µ∈△A

u1(µ) : uk
1(µ) ≥ uk

1, ui(µ) ≥ ui, ∀i, k ≥ 2

}
.

Focusing on K = 2, the dual problem is

sup
u2
1

max
{pi≥0:i=1,...,N}

p1u
2
1 +

∑N

i=2
piui such that p1u

2
1 +

∑N

i=2
piui ≤ u1.
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Since the constraint must bind, the reputation payoff is at least

sup
{pi≥0:i=2,...,N}

val (u1 −
∑N

i=2
pi(ui − ui1)),

where 1 is a vector in R
|A| with all entries equal to one. Note that this lower bound is

always larger than u1 (take (p2, . . . , pN) = 0). The following theorem shows that this

lower bound is actually achieved, and provides an alternative characterization of it. The

proof of it can be found in Appendix F.

Theorem 6.1 The reputation payoff is equal to

u∗
1 = sup

{pi≥0:i=2,...,N}

val (u1 −
∑N

i=2
pi(ui − ui1)) = sup

α1∈△A1

min
α−1∈Y (α1)

u1(α1, α−1),

where Y (α1) := {α−1 ∈ △A−1 : ui(α1, α−1) ≥ ui, ∀i = 2, . . . , N}. The reputation payoff

is achieved if K = N and uk
1 = −uk, ∀k = 2, . . . , N :

u∗
1 = v1(−u2, . . . ,−uN).8

As is clear from the alternative characterization, the reputation payoff is lower than the

usual Stackelberg payoff

sup
α1∈△A1

min
α−1∈B(α1)

u1(α1, α−1),

where B(α1) is the set of Nash equilibria in the one-shot game between players i =

2, . . . , N , given α1. A Stackelberg sequence is any sequence {an
1}n∈N achieving the supre-

mum.

8Note that zero-sum games violate the interiority assumption. However, as in Hörner and Lovo (2009,
online appendix), it is straightforward to approach this reputation payoff by considering payoff matrices
satisfying the interiority assumption, which are arbitrarily close to the zero-sum game.
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A game has conflicting interest if, for some Stackelberg sequence {an
1}n∈N, all Nash

equilibria in B(an
1 ) yield players i 6= 1 exactly their minmax payoff, for all n ∈ N. It follows

immediately from the theorem that player 1’s rational type can secure the Stackelberg

payoff in all games of conflicting interest.

7 Conclusion

This paper provides a characterization of the set of belief-free equilibrium payoffs

in games with perfect monitoring. Further, necessary and sufficient conditions on the

information structure are identified for non-emptiness of this set.

As discussed, belief-free equilibria have appealing properties. However, because they

do not rely on beliefs, they are silent on how beliefs actually shape play. Game theory

has played an important role in providing insights about when and how agents learn,

whether it is advantageous to hide or disclose private information, or how fast to reveal

it. This provides a useful perspective on the existence or non-existence results of belief-free

equilibria. In an environment in which such equilibria do not exist, play must necessarily

reflect beliefs, and this opens the door for robust findings on this dependence. This is

the case, for instance, in zero-sum games with incomplete information on one-side, in

which the speed of convergence can be determined (Mertens, 1998). On the other hand,

if one attempts to address such issues in an environment in which belief-free equilibria

exist, it becomes more important to stress why the choice of the particular equilibrium

is compelling. This could be, for instance, because the equilibrium that is considered

is efficient (see, however, the folk theorems established by Fudenberg and Yamamoto,

1999b). Alternatively, one must invoke considerations that are external to the repeated

game, such as those involving measures of complexity, for instance.
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Appendix A: Proof of Theorem 4.1 without

communication device

Actions are periodically used as messages. Because players might have as few as two

actions, each such communication phase might require several periods. As the actions

played during this phase affect payoffs, communication phases must be short relative to

regular phases. We shall not dispense with the randomization device altogether, as this

allows us to achieve exactly the desired continuation payoff. Details on how to eliminate

the public randomization device might be omitted altogether since they are the same as

in the two-player case, following ideas introduced by Sorin (1986) and Fudenberg and

Maskin (1991), and we refer the reader to Hörner and Lovo (2009).

Because communication requires several periods, strategies must also specify how a

player plays within a communication phase if his own previous action, or his opponent’s

previous action already precludes him from reporting correctly his private information.

The construction must ensure that continuation strategies remain optimal for all states

after such histories, and this explains why the construction that follows is more involved

than one might have guessed. (In particular, it is the cause for the different kinds of

communication phase described below.)

Play is divided into phases (or classes of phases): Communication phases, regular

phases, penitence phases, and punishment phases.

Actions

Communication Phase

The communication phase replaces the communication stage. There are different ver-

sions of communication phase, denoted C, Ci, or C∗
i . (Roughly, a phase is indexed by
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player i if i’s report during this phase is essentially ignored.9) A communication phase

lasts c periods, where

c ≥ 1 + max
i∈N

ln |Θi|

ln |Ai|
,

so that |Ai|
c−1 ≥ |Θi|, all i ∈ N . We fix two arbitrary but distinct actions for each player,

denoted U and B, and a mapping

mi : Θi → Ac−1
i ,

from his set of types into sequences of actions of length c−1. Player i (or his play) reports

θi if his play in the communication phase is equal to (mi(θi), B) (so B is the action that

he takes in the last period of this phase.) For any other play, he reports (U, nU
i ) where nU

i

is the number of periods in the communication phase in which ai = U . We also write U

rather than (U, nU
i ) whenever convenient, and let

θ ∈
∏

i∈N
Θi ∪ ∪c

l=0(U, l)

denote a report, or message profile. For k ∈ K, let uC
i (k, θ) denote player i’s average

payoff from the communication phase if the state is k and the report is θ.10

In a communication phase C, player j’s type θj plays the sequence mi(θj , B), as long as

his previous play in the phase does not preclude him from doing so. In a communication

phase Ci so does player j 6= i, while player i plays (U, c). If a player’s past play prevents

him from reporting his type θi, he plays U in every remaining period of the phase.

9It cannot be entirely ignored, since we must give i incentives that do not depend on his type.
10This is an abuse of terminology, as payoffs are not uniquely identified by the report profile whenever

a player reports U , since there might be many sequences of actions corresponding to this report. What
is meant is the payoff given the actual sequence of action profiles.
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Transitions are described below.

Regular Phase

A regular phase is denoted R(θ, ε), where κ(θ) 6= ∅, and ε ∈ [−ε, ε]N , for some ε > 0

to be specified.

A regular phase lasts at most n periods (to be specified), where n > c. We fix a

(possibly correlated) mixed action profile µ(θ, ε) ∈ △A such that, ∀k ∈ κ(θ), ∀i ∈ N ,

∀ε, ε′ ∈ [−ε, ε]N and ∀θ′i ∈ Θi, θ
′
i 6= θi, such that κ(θ′i, θ−i) 6= ∅,

uR
i (k, µ(θ, ε)) := (1 − δn)ui(k, µ(θ, ε)) + δnuC

i (k, θ) = vk
i + εi,

and

uR
i (k, µ(θ, ε)) > uR

i (k, µ(θ′i, θ−i, ε
′)),

and

uR
i (k, µ(θ′i, θ−i, ε

′)) ≤ vk
i − 2ε.

The strict inequalities can be satisfied for δ close enough to 1 and ε close enough to 0,

since v is strictly incentive compatible.

In any period of the regular phase, players play µ(θ, ε). The regular phase R(θ, ε)

stops immediately after a unilateral deviation from µ(θ, ε), or if not, after n periods.

Transitions are described below.

Penitence Phase

A penitence phase is denoted E(θ, ε), where ε ∈ [−ε, ε]N , θ ∈ Θ, κ(θ) = ∅, and

θ ∈ D. A penitence phase lasts at most n periods. We fix a sequence a(θ, ε) ∈ An such
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that ∀(i, θ′i) ∈ Ωθ, k ∈ κ(θ′i, θ−i), ε ∈ [−ε, ε]N ,

uE
i (k, a(θ, ε)) :=

1 − δ

1 − δn

∑n−1

t=0
δtui(k, at(θ, ε)) < vk

i − 2ε.

Such a penitence phase E(θ, ε) stops immediately after a unilateral deviation from the

sequence a(θ, ε), or if not, after n periods. In period t of the penitence phase, players play

at(θ, ε).

Transitions are described below.

Punishment Phase

A punishment phase, indexed by i, is denoted Pi(θ−i, t), where θ−i ∈ Θ−i is such that

κ(θ−i) 6= ∅ and t = n or T (to be defined) denotes the length of the punishment phase.

As before, we fix an action ai ∈ Ai and let s
ai

i denote the strategy of playing ai in

every period, independently of the history. In the punishment phase, player i uses s
ai

i ,

and players −i use s
θ−i

−i .

We pick n, T, δ < 1 and ε such that, ∀δ > δ, ∀k ∈ κ(θ−i), player i’s average discounted

payoff over the t periods in state k is no larger than vk
i − 2ε, and that it is sufficiently

larger when t = n than when t = T , as explained below. This is possible since v satisfies

individual rationality strictly.

We shall write C, R, E, P for a communication, regular, penitence and punishment

phase without further argument when there is no risk of confusion.

Transitions

Given any message θ, define
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- whenever θ ∈ Θ, ∀θ ∈ Θ, ∆I(θ, θ) := {i ∈ N |θi 6= θi};

- whenever θ ∈ Θ, θ ∈ D, ∆D(θ) := {i ∈ N |(i, θ′i) ∈ Ωθ for some θ′i ∈ Θi};

- whenever θ /∈ Θ, ∆U(θ) := {i ∈ N |θi /∈ Θi}.

Given a unilateral deviation from a sequence a(θ, ε), or from a mixed action µ(θ, ε),

let ∆A denote the index of the player who deviated.11 Finally, given a set ∆ ⊂ N , let

−∆ := N \ ∆.

From a communication phase

The transition depends on the message θ during C, the phase Φ ∈ {R, P, E, C} imme-

diately preceding C, and the play during Φ. Roughly speaking, if there is no unilateral

deviation during Φ, and if θ ∈ Θ, a regular or a penitence phase follows, while if θ /∈ Θ,

either a punishment or a communication phase follows. If there is a unilateral deviation

during Φ by player i, then if θ−i ∈ Θ−i, a punishment phase follows. More precisely, if

there is a unilateral deviation from Φ = E, R, with ∆A = {i}, then the next phase is

1. if θ−i ∈ Θ−i, κ(θ−i) 6= ∅: Pi(θ−i, T );

2. otherwise, it is C.

On the other hand, if there is no unilateral deviation from Φ, or if Φ = P, C, and

1. Φ equals R(θ, ε) or E(θ, ε), the next phase is:

(a) if θ ∈ Θ, κ(θ) 6= ∅: R(θ, ε−∆I(θ,θ),−ε∆I(θ,θ));

(b) if θ ∈ Θ, θ ∈ D: E(θ, ε−∆D(θ),−ε∆D(θ));

11Recall that there is a public randomization device, so that we always assume that players use a pure
action profile, as a function of the realization of the public randomization device, so that the mixed action
profile obtains in expectations.
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(c) if ∆U(θ) = {i}, κ(θ−i) 6= ∅: Pi(θ−i, n);

(d) otherwise, C;

2. Φ equals Pi(θ−i, t), t = n, T , the next phase is:

(a) if θ ∈ Θ, κ(θ) 6= ∅: R(θ, ε̃(θ, θ)), where ε̃i(θ, θ) ∈ [−ε, ε] is chosen so that,

given θ and s
θ−i

−i , using s
ai

i is optimal in the punishment phase for player i;

and further, if θ−i = θ−i, player i’s continuation payoff in the repeated game,

evaluated at the beginning of the punishment phase, is equal to, for all k ∈ κ(θ),

(1 − δt)(vk
i − 2ε) + δt(vk

i − ε);

and for j 6= i, ε̃j(θ, θ) is chosen so that, given θ, s
θ−j

−j and s
ai

i , s
θj

j is optimal for

player j in the punishment phase. Further ε̃j(θ, θ) ∈ [ε/4, 3ε/4] if θj = θj and

ε̃j(θ, θ) ∈ [−3ε/4,−ε/4] otherwise;

(b) if θ ∈ Θ, θ ∈ D: E(θ, 0−∆D(θ),−ε∆D(θ));

(c) otherwise, C.

3. Φ equals C, or Ci and θ is the report during Φ, the next phase is:

(a) if θ ∈ Θ, κ(θ) 6= ∅: R(θ, ε̂(θ, θ)), where, if Φ = C, or j 6= i,

ε̂j(θ, θ) =






0 : θj = θj ,

−ε/4 + ρnU : θj = (U, nU),

−ε : otherwise,
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and if Φ = Ci,

ε̂i(θ, θ) =






−ε + ρnU : θi = (U, nU),

−ε : otherwise,

for some ρ > 0 to be defined;

(b) if θ ∈ Θ, θ ∈ D: E(θ, 0−∆D(θ),−ε∆D(θ));

(c) if ∆U(θ) = {i}, κ(θ−i) 6= ∅: Pi(θ−i, n);

(d) otherwise, C.

From any other phase

Any other phase is followed by a communication phase. If there is a unilateral deviation

from a phase Φ = R, E, with ∆A = {i}, it is a communication phase Ci; otherwise, it is

a communication phase C.

Initial phase

The game starts with a communication phase, at the end of which transitions occur

as if the previous phase had been C, with θ = θ, and ε ∈ [−ε, ε] is such that the payoff

(inclusive of the initial communication phase) is equal to v.

Verification of optimality

Consider first the incentives of player i to deviate during a regular phase. If he does so,

a punishment phase Pi will start after the communication phase. Player i expects the type

profile θ−i reported by the other players after the deviation and before the punishment
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phase to be correct; since his payoff at the beginning of the punishment phase is

(1 − δT )(vk
i − 2ε) + δT (vk

i − ε),

then he has no incentive to deviate in this case, as whether or not his own report was

correct, his payoff from following the equilibrium strategies is higher.12

Consider next a punishment phase Pi. The definition of ε̃i guarantees that s
ai

i is

optimal for player i. Similarly, the definition of ε̃j ensures that player j 6= i has no

incentive to deviate. This is true whether the punishment phase lasts n or T periods.

Consider next a possible deviation during the penitence phase. While the average

payoff from the penitence phase is low, observe that it lasts only n periods (and, given

the equilibrium strategies, the ensuing communication phase will be followed by a regular

phase if the player refrains from deviating, independently of the history up to the con-

templated deviation), while the punishment phase that the deviation would trigger lasts

T periods. We pick T and n so as to ensure that no such deviation is profitable.

Consider finally a possible deviation during a communication phase. Start with a

communication phase C.

1. Assume first that the history in the communication phase is consistent with (possi-

bly, among others) some type profile θ ∈ Θ (i.e., the history in the communication phase

is an initial segment of (m1(θ1), . . . , mN(θN))), and θi is indeed player i’s type. If the true

state is θ, then by reporting U , a punishment phase Pi of length n will be entered, the

expected payoff of which ensures that it is better not to do so. If the true state is not

θ, then according to the equilibrium strategies, some player j 6= i will report U in this

12Note that the situation where the reported type profile by −i is incorrect is not relevant for verifying
that player i does not deviate during the regular phase. This is because, at the time of the deviation, he
expects the other player to report correctly their type during the communication phase.
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communication phase. If player i reports U , a communication phase C will be entered,

at the end of which a regular phase will be started, for which εi < 0 (pick ρ such that

−ε/4+ ρc < 0); by sticking to the report of θi, either a communication phase C will start

(in case θj and θj′ differ from the true state for two players j, j′), in which case, in the

ensuing regular phase, player i’s εi is zero, or a punishment phase of length n will start,

at the end of which, in the ensuing regular phase, player i’s εi is at least ε/4; of course, i’s

payoff during the n periods can be very low, but we can deter such deviations by picking

ρ sufficiently small (but not too small, see below).

2. Assume next that the history in the communication phase is consistent with some

type profile θ ∈ Θ, but θi is not player i’s type. Thus, the equilibrium strategy calls for

player i to report U (if there is at least one period; otherwise, there is nothing to show).

Suppose first that the other players’ type profile is indeed θ−i. By reporting U , player i

triggers a punishment phase Pi of length n, but by failing to do so, he triggers the play

of a regular phase for which the play does not correspond to the true type profile. We

can pick n small enough to guarantee that, since the payoff during such a regular phase is

less that vi −ε, player i prefers not to deviate. Suppose next that there exists exactly one

other player j for which θj is not the true type. By reporting U , a second communication

phase starts, but player i is guaranteed at least a value of εi ≥ −ε/4 in the regular phase

at the end of it; if player i persists in reporting the incorrect type, a punishment phase

Pj of length n follows, at the end of which player i’s ε is strictly less than −ε/4; finally,

if there are two or more other players for which θj is incorrect, and if player i reports U ,

he also guarantees that, in the regular phase that will follow the second communication

phase, εi ≥ −ε/4; if he reports differently, in the regular phase that will follow the second

communication phase, εi = −ε.
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3. Assume finally that the history in the communication phase is not consistent with

some type profile θ ∈ Θ, i.e. some player reports U already. The same arguments as before

apply almost verbatim, since in the previous arguments, if θj was not the true type for one

or more players, those players j were about to report U anyway. Note that postponing

a report of U by one or more periods within a communication phase is suboptimal, since

the argument εi from the relevant ensuing regular phase is increasing in the number of

times player i choose U . (This is where we need that ρ be not too small, more precisely,

it must be at least (1 − δ)M).

These arguments are readily adapted to the case in which the communication phase is

Ci. Consider first the case in which the previous phase was E or R (i.e., player i deviated

in actions). Suppose first that the other players’ type profile θ−i is consistent with the

history in the communication phase. Since the equilibrium calls for a punishment phase

to follow, the specification of ε̃j, ε̃i ensures that no player gains from deviating: i.e.,

player i benefits from playing U as often as possible, and other players gain by reporting

their type truthfully. Suppose now that the history in the communication phase is not

consistent with some type profile θi ∈ Θi, then some player −i will play U and a new

communication phase C will follow. Also in this case player i benefits from playing U

since εi = −ε + ρnU in the regular phase that will follow the new communication C .
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Appendix B: Proof of Theorem 5.3

Sufficiency is outlined in the Section 5. For the necessity part, assume that there are

two states k, ℓ such at most players 1 and 2 distinguish these two states. Consider the

following example, due to Renault (2001). There are three players 1, 2, 3, and we consider

only the states k, ℓ. Other players have no influence on rewards, and rewards in other

states do not depend on actions.

The payoff matrix in state k is the following:

L R

T 1, 1, 0 1, 1, 0

B 1, 1, 0 1, 1, 0

W

L R

T 0, 0, 1 0, 0, 1

B 0, 0, 1 0, 0, 1

E

The payoff matrix in state ℓ is:

L R

T 0, 0, 1 0, 0, 1

B 0, 0, 1 0, 0, 1

W

L R

T 1, 1, 0 1, 1, 0

B 1, 1, 0 1, 1, 0

E

First, assume that only player 1 knows the state and assume that V ∗(I, u) is non-

empty. The IR condition for player 3 implies that he plays E in state k and W in state

ℓ. Since the preference ordering of player 1 is the opposite of the one of player 3, this

violates the IC condition.

Assume now that players 1 and 2 know the state. Suppose that there exists a payoff

vector in V ∗(I, u). If players 1 and 2 both announce k, individual rationality implies that
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player 3 plays E. The payoff vector in state k is thus (0, 0, 1). Similarly, if players 1 and

2 announce ℓ, player 3 plays W and the payoff vector in state ℓ is (0, 0, 1).

Now, suppose that player 1 announces k and player 2 announces ℓ: either the true state

is k and player 2 is misreporting or the true state is ℓ and player 1 is misreporting. The JR

condition implies that there exists a distribution of action profiles α such that u1(ℓ, α) ≤ 0

and u2(k, α) ≤ 0. This is impossible since for each action profile a, u1(ℓ, a)+u2(k, a) = 1.

�
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Appendix C: Proof of Theorem 5.7

Sufficiency

In this section, we prove non-emptiness of V ∗ for all-or-nothing and LWE informa-

tion structures. To show non-emptiness of V ∗, we use well-known results (Aumann and

Maschler, 1995, and Kohlberg, 1975) on undiscounted zero-sum repeated games with in-

complete information and state-dependent signalling. We shall define an auxiliary game,

show that its value is 0, and that a strategy of the uninformed player that guarantees zero

induces a point in V ∗. First, some notation must be introduced.

• AΘ :=
∏

i∈N,θi∈Θi
Ai: the set of profiles specifying an action for each player and each

type, with generic element: a = (ai,θi
)i,θi

.

• For a ∈ AΘ, let a(k) := (ai,Ii(k))i∈N (the profile at state k) and a(i) = (ai,θi
)θi∈Θi

(the components concerning player i). Recall that Ii(k) is the type of player i at

state k and hence Ii(k) ∈ Θi. We denote by πi,θi
the projection mapping from AΘ

onto the θi component.

• We choose and fix a Banach limit L, that is, a linear mapping on the set of bounded

real-valued sequences such that lim inf x ≤ Lx ≤ lim sup x for each bounded se-

quence x. For each bounded sequence x, we denote by LAx the Banach limit of the

arithmetic mean of x.

• For a sequence x = (xt) in a finite set A, we denote by LADx the limit average

distribution induced by x. That is, LADx ∈ △A and for each a ∈ A, LADx(a)

is the limit average number of times that a appears in the sequence: LADx(a) =

LA1{xt = a}.
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The auxiliary game. Consider the following two-player repeated game with incomplete

information, lack of information on one side and state-dependent signalling, henceforth

denoted Γ(p). Player I is maximizing the payoff, and player II is minimizing it.

• The state space is Ω = N×K. The state is drawn according to the prior distribution

p ∈ △Ω. Player I is informed of the state, player II is not.

• The action set of player II is AΘ. The action set of player I in state ω = (i, k) is the

set of mappings βi :
∏

θi∈Θi
Ai → Ai.

• When the state is (i, k), player II chooses a = (ai,θi
)i,θi

, and player I chooses βi, the

payoff is

ui(k, βi(a(i)), a−i(k)) − ui(k, a(k)).

Recall that KOP implies that whenever Ii(k) = Ii(k
′), we have ui(k, .) = ui(k

′, .).

• The action a of player II and f(i, k, a, β) := (βi(a(i)), a−i(k)) are observed by both

players.

A rough interpretation is as follows. Player II is a mediator who prescribes actions.

Player I in state (i, k) chooses actions for player i and receives the payoff of player i in

state k. Player II wants to minimize the gap between the actual payoff and the payoff

under the obedient strategies. The information that player II gets between stages is the

actions profile actually played, which may convey information about the state of nature

k in the original game and the identity of the deviating player (if any). This auxiliary

game is inspired by Hart and Schmeidler (1989) and Renault and Tomala (2004b).

A strategy in the repeated game Γ(p) is:

• For player II: a mapping σ from public histories to ∆(AΘ).
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• For player I: a family of mappings (τ i,k)i,k (one for each state), with τ i,k a mapping

from public histories to probability distributions over βi’s as described above.

If the initial state is selected according to a common prior p, the zero-sum criterion of

the repeated game is:

∑
i,k

p(i, k)E(i,k),σ,τ i,kLA[ui(k, βi(a(i)), a−i(k)) − ui(k, a(k))],

where the actions appearing inside the bracket is a sequence indexed by time (omitted for

simplicity), and LA is the Banach limit of the arithmetic mean. E(i,k),σ,τ i,k denotes the

expectation with respect to the probability measure induced by the state (i, k) and the

strategies used by the players. Our goal is to prove that the value of the game is 0.

Player I can guarantee 0. This is clear by considering the obedient strategy. That is,

irrespective of the state and of the public history, player I in state (i, k) always selects the

projection mapping πi,Ii(k) :
∏

θi∈Θi
Ai → Ai onto the Ii(k) component. Then the payoff

is identically 0.

The value of the game. The work of Aumann and Maschler gives us a tool for com-

puting the value. Let U(p) be the value of the one-shot zero-sum game where player I is

informed of the state but constrained to reveal no information to player II. A one-shot

strategy for player I is a tuple β = (βi,k)i,k, with βi,k a feasible strategy for player I in

state (i, k). (In full generality, these mappings should range into mixed actions to account

for the randomizations of player I, but this generates no difference in what follows).
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Let NR(p) be the set of strategies of player I such that:

(βi(a(i)), a−i(k)) = (βi′(a(i′)), a−i′(k
′)),

for all a and all (i, k), (i′, k′) in the support of p. Namely, these are the strategies of player

I that yield the same (distributions of) signals for player II, no matter what he plays and

for all states in the support of p. Then U(p) is the value of the game where player I is

restricted to NR(p):

U(p) = min
µ

max
β∈NR(p)

Eµ[ui(k, βi(a(i)), a−i(k)) − ui(k, a(k))].

Note that NR(p) could well be empty and in such case, U(p) = −∞.

By Aumann and Maschler, the value of Γ(p) exists and is cav U(p), the least concave

function pointwise greater than or equal to U . Since player I guarantees 0, proving that

the value is zero amounts to proving that U(p) ≤ 0 for each p. We thus need to compute

U(p). Let us now further specify the auxiliary game in the all-or-nothing case.

All-or-nothing

Let us assume that K = ∪i=1,...,mKi and for each i ≤ m, Ii(k) = {k} if k ∈ Ki,

Ii(k) = K \ Ki otherwise. For i > m, Ii(k) = K. Denote by Θi = Ki ∪ {∗} the set of

types of player i ≤ m, with ∗ standing for K \Ki. The single type of player i > m is also

denoted ∗. Call the diagonal of Ω the set of (i, k) such that k ∈ Ki.

Proposition 7.1 If NR(p) is not empty, then either:

1. the support of p is a subset of the diagonal, or
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2. the support of p is reduced to two points of the type (i, kj), (j, ki) with ki ∈ Ki,

kj ∈ Kj, or

3. there exists i ∈ N , li ∈ Ki such that the support of p is a subset of

{(i, ki) : ki ∈ Ki} ∪ {(j, li) : j ∈ N}.

Proof. Assume that the support of p contains at least two points off the diagonal: (i, kj),

(m, kn). Then for all a,

(βi,kj
(·), aj,kj

, a−ij,∗) = (βm,kn
(·), an,kn

, a−mn,∗).

If j is neither m nor n, then aj,kj
= aj,∗ for all a, which is not possible. Similarly, n is

either i or j.

Assume j = m, and thus n = i. We are in then in case 2. Indeed, the support contains

only two points in this case as the above reasoning can be applied to any pair of points

in the support.

If j = n, then aj,kj
= an,kn

for all a, thus kn = kj and we are in case 3. This shows

that if there are at least two points in the support off the diagonal, then only cases 2 and

3 are possible.

Assume now that the support of p contains exactly one point off the diagonal (j, li)

with li ∈ Ki, and that p is not a Dirac measure. We claim that each other point in the

support is (i, ki) with ki ∈ Ki, i.e. this is case 3. Assume that (n, kn) is in the support

with n 6= i. Then we have for all a:

(ai,li, βj,li(·), an,∗, . . .) = (ai,∗, aj,∗, βn,kn
(·), . . .)

63



which is not possible (i component). �

Corollary 7.2 For all p, U(p) ≤ 0.

Proof. We prove this by computing NR(p) in the cases listed above. In each case, we

shall exhibit µ = α = (αi,θi
) ∈

∏
i,θi

△Ai such that for all β ∈ NR(p),

Eµ[ui(k, βi(a(i)), a−i(k)) − ui(k, a(k))] ≤ 0.

1. If NR(p) is empty, U(p) = −∞.

2. p is a Dirac measure. Assume the support of p is (i, kj). Any βi,kj
is in NR(p). So

we must find α such that, for all βi, ui(∗, βi, αj,kj
, α−ij,∗)−ui(∗, αi,∗, αj,kj

, α−ij,∗) ≤ 0.

One just has to pick αi,∗ as a best-reply of player i to (αj,kj
, α−ij,∗).

3. (a) The support of p is a subset of the diagonal, first case. Assume that the support

of p is {(i, ki) : ki ∈ Li} for some i and Li ⊆ Ki. Elements in NR(p) satisfy:

(βi,ki
(·), a−i,∗) = (βi,k′

i
(·), a−i,∗). Thus, βi,ki

(·) does not depend on ki. We need

to find α such that, for each βi,

∑
ki∈Li

p(i, ki)[ui(ki, βi, α−i,∗) − ui(ki, αi,ki
, α−i,∗)] ≤ 0.

Picking αi,ki
as a best-reply of player i of type ki to α−i,∗ is enough.

(b) The support of p is a subset of the diagonal, second case. Assume now that the

support of p is ∪i∈M{(i, ki) : ki ∈ Li}, with M ⊆ N and Li ⊆ Ki. Elements

in NR(p) satisfy (βi,ki
(·), a−i,∗) = (βj,kj

(·), a−j,∗) for all a, all i, j in M , ki ∈ Li

and kj ∈ Lj . This implies that βi,ki
(·) = ai,∗ for all (i, ki) in the support. We

64



thus need to find α such that

∑
i

∑
ki∈Li

p(i, ki)[ui(ki, α(∗)) − ui(ki, αi,ki
, α−i,∗)] ≤ 0,

which is satisfied by any pooling profile in which αi,θi
does not depend on θi.

4. The support of p is reduced to two points of the type (i, kj), (j, ki) with ki ∈ Ki,

kj ∈ Kj. An element in NR(p) satisfies (βi,kj
(·), aj,kj

, a−ij,∗) = (ai,ki
, βj,ki

(·), a−ij,∗)

for all a. Thus the only NR strategy satisfies βi,kj
(a(i)) = ai,ki

and βj,ki
(a(j)) =

aj,kj
. Note that in both cases, the distribution of the action profile implemented is

(αi,ki
, αj,kj

, α−ij,∗). So we need to show that there exists α such that:

p(i, kj)[ui(∗, αi,ki
, αj,kj

, α−ij,∗) − ui(∗, αi,∗, αj,kj
, α−ij,∗)]+

p(j, ki)[uj(∗, αi,ki
, αj,kj

, α−ij,∗) − uj(∗, αi,ki
, αj,∗, α−ij,∗)] ≤ 0.

It is enough to choose α such that αi,ki
= αi,∗ and αj,kj

= αj,∗.

5. The support of p is {(i, ki) : ki ∈ Li} ∪ {(j, li) : j ⊂ M} for some i ∈ N , Li ⊆ Ki,

li ∈ Ki and M ⊆ N . An element in NR(p) satisfies:

(βi,ki
(·), aj,∗, a−ij,∗) = (ai,li, βj,li(·), a−ij,∗) for all a, all ki ∈ Li and all j ∈ M . This

implies that for j ∈ M , βj,li(·) = aj,∗ and βi,ki
(·) = ai,li. We must thus find α such

that:

∑
j∈M

p(j, li)0 +
∑

ki∈Li

p(i, ki)[ui(ki, αi,li, α−i,∗) − ui(ki, αi,ki
, α−i,∗) ≤ 0.

This is satisfied if αi,ki
does not depend on ki.

�
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From an optimal strategy to V ∗ 6= ∅. By definition, V ∗ is the intersection of the

IC, IR and JR constraints. In the all-or-nothing information structure, JR constraints

are of two kinds. Either all players declare to be uninformed, i.e. each player announces

the type ∗. Or two players i, j simultaneously declare to be informed: i announces a state

ki ∈ Ki and j announces a state kj ∈ Kj . A point in V ∗ is thus given by a family of

measures (mk)k∈K , m∗, (mijkikj
)i,j,ki,kj

such that:

• IC: ui(k, mk) ≥ ui(k, ml) for all i and k, l ∈ Ki.

• IR (informed player):
∑

k∈Ki
q(k)ui(k, mk) ≥ minα−i

maxαi
q · ui(αi, α−i) for all

q ∈ △Ki, with q · ui :=
∑

k∈Ki
q(k)ui(k, ·).

• IR (uninformed player): ui(∗, mk) ≥ ui for all i and k ∈ K \ Ki, where ui is the

minmax of the uninformed player i (by convention, Ki is empty for i > m).

• JR (1st case): ui(ki, mki
) ≥ ui(ki, m∗) for all i ≤ m and ki ∈ Ki.

• JR (2nd case): ui(∗, mkj
) ≥ ui(∗, mijkikj

) for all i ≤ m and all ki ∈ Ki, kj ∈ Kj.

So far, we have proved that the value of Γ(p) is zero, and we know that both players

have optimal strategies. Note that player II has a strategy σ such that, for all states (i, k)

and all strategies τ i,k, E(i,k),σ,τ i,kLA[ui(k, βi(a(i)), a−i(k)) − ui(k, a(k))] ≤ 0. (Otherwise,

the left-hand side term would be strictly positive in some state and thus in expectation

as well). Given such a strategy σ, let us define the following occupation measures (Recall

that we denote by f the signal, i.e. the action profile effectively played in the n-player

game as a result of the two-player game. The sequence of signals is denoted (ft).):

• mk = E(i,k),σ,πi,Ii(k)
LADft. This does not depend on i (recall that π denotes the

projection, i.e. the obedient strategy).
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• m∗ = E(i,ki),σ,πi,∗
LADft. This does not depend on i and represents what is played

when all players play their uninformed actions.

• mijkikj
= E(i,kj)σ,πi,ki

LADft. This is player i pretending that the state is ki, knowing

that it is kj. This is symmetric with respect to i and j.

Proposition 7.3 The occupation measures (mk)k, m∗, (mijkikj
)ijkikj

define a point in V ∗

(which is thus non-empty).

Proof.

• IC. Consider player I in state (i, ki) with ki ∈ Ki. Playing πi,ki
(at all stages, after

all history) guarantees him a payoff of 0. Assumes that he plays πi,k′
i
instead (again,

at all stages, after all histories). The distribution of signals to player II is then the

one induced by the obedient strategies in state (i, k′
i). The limiting average payoff

is thus

ui(ki, mk′
i
) − ui(ki, mki

) ≤ 0,

since σ is an optimal strategy of player II.

• IR (informed). Fix q ∈ △Ki. For each history h (of the two-player game), denote by

σ−i,∗(h) the marginal of σ(h) on
∏

l 6=i,θl(ki)=∗ Al. This is the distribution of actions

recommended to the uninformed players. Let τi(h) be a best-reply to σ−i,∗(h), for

the payoff function q · ui :=
∑

ki∈Ki
q(ki)u

ki

i . Let player I play τi in all states (i, ki),

ki ∈ Ki. This implies that

min max q · ui ≤
∑

ki∈Ki

q(ki)E(i,ki),σ,τi
ui(ki, βi(a(i)), a−i(∗)).

Now,
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∑
ki∈Ki

q(ki)E(i,ki),σ,τi
ui(ki, βi(a(i)), a−i(∗)) ≤

∑
ki∈Ki

q(ki)E(i,ki),σ,πi,ki
ui(ki, βi(a(i)), a−i(∗)) =

∑
ki∈Ki

q(ki)u
ki

i (mki
),

since otherwise, there would exists ki such that

E(i,ki),σ,τi
ui(ki, βi(a(i)), a−i(∗)) > E(i,ki),σ,πi,ki

ui(ki, βi(a(i)), a−i(∗)),

and player I would get a positive payoff in state (i, ki).

• IR (uninformed). Consider player I in state (i, kj), with kj /∈ Ki. For each history

h, let σ(h) ∈ △AΘ be the mixed action of player II and σ−i,kj
(h) the marginal on

∏
l 6=i,θl(kj)

Al. This is the distribution of the moves recommended to all players but

i in state kj . Define then τi,kj
(h) ∈ △Ai as a best-reply to σ−i,kj

(h), for the payoff

function u∗
i . One has

ui ≤
(1)

E(i,kj),σ,τi,kj
ui(∗, βi(a(i)), a−i(kj)) ≤

(2)
E(i,kj),σ,πi,kj

ui(∗, βi(a(i)), a−i(kj)) = u∗
i (mkj

),

where (1) follows from the construction of τi,kj
and (2) from the optimality of σ.

• JR (1st case). Assume that in state (i, ki), with ki ∈ Ki, player I plays πi,∗ instead

of πi,ki
. The signals received by player II are then given by m∗. The limit average

payoff is non-positive because σ is optimal. Thus,

ui(ki, m∗) − ui(ki, mki
) ≤ 0.

• JR (2nd case). Assume that in state (i, kj), with kj /∈ Ki, player I plays πi,ki
instead

of πi,∗. The signals received by player II are then given by mijkikj
. The limit average
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payoff is non-positive because σ is optimal. Thus,

ui(∗, mijkikj
) − ui(∗, mkj

) ≤ 0.

�

Independent vs. correlated strategies. In the above construction, all minmax lev-

els are implicitly defined with respect to correlated actions profiles of the opponents. If

player II can guarantee 0 using independent lotteries only (his action set comes as a

product of various factors), the correlated minmax payoffs can be replaced by the inde-

pendent minmax payoffs. Let Gi,k(a, β) := ui(k, βi(a(i)), a−i(k)) − ui(k, a(k)), so that

U(p) = minµ maxβ∈NR(p)

∑
i,k p(i, k)Gi,k(µ, β). In Corollary 7.2, we have proved some-

thing stronger than U(p) ≤ 0. Namely, minα∈
Q

i,θi
△Ai

maxβ∈NR(p)

∑
i,k p(i, k)Gi,k(α, β) ≤

0 for all p.

In Kohlberg (1975), it is proved that if U(p) ≤ 0 for all p, there exists a strategy σ

of player II such that, for all strategies of the informed player I, the long-run average

payoff is non-positive in each state. One can check, by looking at Kohlberg’s proof,

that the result can be extended to encompass restrictions on the randomizations allowed

to player II. Assume that player II can only choose mixed actions in a closed set C of

distributions, which contains all Dirac measures (pure actions), some completely mixed

strategies, and such that completely mixed distributions (of C) are dense in C. Then, if

minµ∈C maxβ∈NR(p)

∑
i,k p(i, k)Gi,k(µ, β) ≤ 0 for all p, there exists a strategy of player II,

with mixed actions in C, such that for all strategies of the informed player I, the long-run

average payoff is non-positive in each state.
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LWE

The proof in the locally weakly embedded case is very similar to the previous one and

we explain now how to adapt it. Consider a LWE information with a single majority

component. One can check that the pair of best informed players does not depend on the

state and these players are henceforth called 1 and 2. We may find a partition of the set

of states K = K1 ∪ K2 such that:

• Il(k) = K for each k and each l 6= 1, 2;

• I1(k) = {k} for each k ∈ K1;

• I2(k) = {k} for each k ∈ K2.

For the sake of simplicity, we assume that there are three players only, so that player 3

is the only player with trivial information. The first task is to adapt Proposition 7.1 and

Corollary 7.2. Given p ∈ △Ω, let us write the support of p as

{(1, k) : k ∈ A} ∪ {(2, k) : k ∈ B} ∪ {(3, k) : k ∈ C},

with A, B, C subsets of K, possibly empty.

Proposition 7.4 If NR(p) is non-empty then:

1. The type of player 2 is the same for all k ∈ A;

2. The type of player 1 is the same for all k ∈ B;

3. The types of players 1 and 2 are the same for all k ∈ C, thus C contains at most

one point.
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Proof. Assume that the support of p contains (1, k) and (1, l) such that I2(k) 6= I2(l). An

element of NR(p) must satisfy (β1,k(·), a2,I2(k), a3) = (β1,l(·), a2,I2(l), a3) for all a, which is

not possible when I2(k) 6= I2(l). This proves point 1, points 2 and 3 being similar. �

Corollary 7.5 For all p, U(p) ≤ 0.

Proof.

1. A 6= ∅, B = C = ∅. Let θ2 = I2(k) for (any) k ∈ A. Elements of NR(p) are such

that, for all k, l ∈ A, (β1,k(·), a2,θ2, a3) = (β1,l(·), a2,θ2, a3) for all a, so that β1,k(·)

does not depend on k ∈ A. We need to find α such that for each β1,

∑
k∈A

p(1, k)[u1(k, β1, α2,θ2, α3) − u1(k, α1,k, α2,θ2, α3)] ≤ 0.

Picking α1,k as a best-reply of player i of type k to (α2,θ2 , α3) is enough. The case

B 6= ∅, A = C = ∅ is obtained by exchanging players 1 and 2.

2. A, B, C 6= ∅. An element of NR(p) satisfies, for all k ∈ A, l ∈ B, m ∈ C,

(β1,k(·), a2,I2(k), a3) = (a1,I1(l), β2,l(·), a3) = (a1,I1(m), a2,I2(m), β3,m(·)).

Necessarily, I1(l) = I1(m) and I2(k) = I2(m). Without loss of generality, assume

m ∈ K1, so that m = l and k ∈ I2(m) for each k ∈ A and l ∈ B. We thus have

β1,k(·) = a1,m, β2,l(·) = a2,I2(l) and β3,m(·) = a3. We must find α such that

∑
k∈I2(m)

p(1, k)[u1(k, α1,m, α2,I2(m), α3)−u1(k, α1,k, α2,I2, α3)]+p(2, m)0+p(3, m)0 ≤ 0,

which is true when α1,k does not depend on k ∈ I2(m).
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3. A, B 6= ∅, C = ∅. An element of NR(p) satisfies for all k ∈ A, l ∈ B,

(β1,k(·), a2,I2(k), a3) = (a1,I1(l), β2,l(·), a3).

Necessarily, I1(l) = θ1 does not depend on l ∈ B and I2(k) = θ2 does not depend on

k ∈ A. We have then β1,k(·) = a1,θ1 and β2,l(·) = a2,θ2 . We must find α such that:

∑
k∈A

p(1, k)[u1(k, α1,θ1, α2,θ2, α3) − u1(k, α1,k, α2,θ2, α3)] +

∑
l∈B

p(2, l)[u2(l, α1,θ1, α2,θ2 , α3) − u2(l, α1,θ1, α2,l, α3)] ≤ 0.

This is satisfied when α1,θ1 = α1,k and α2,θ2 = α2,l.

4. A, C 6= ∅, B = ∅. An element of NR(p) satisfies for all k ∈ A, m ∈ C,

(β1,k(·), a2,I2(k), a3) = (a1,I1(m), a2,θ2, β3,m(·)).

Necessarily, I2(k) = I2(m) = θ2 and I1(m) = m so that β1,k(·) = a1,m and β3,m(·) =

a3. We must find α such that

∑
k∈I2(m)

p(1, k)[u1(k, α1,m, α2,I2(m), α3) − u1(k, α1,k, α2,θ2 , α3)] + p(3, m)0 ≤ 0,

which is true when α1,k does not depend on k ∈ I2(m).

5. The case where p is a Dirac measure is solved as in the all-or-nothing case.

�
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From an optimal strategy to V ∗ 6= ∅. In the LWE case, JR constraints are as

follows. On the equilibrium path, one player (1 or 2) should announce a state k and the

other one a type θ containing k. There is a unilateral deviation when: - both players

1 and 2 announce a state, - both players 1 and 2 announce a type, - player 1 (resp. 2)

announces k, player 2 (resp. 1) announces θ but k /∈ θ. A point in V ∗ is thus given by a

family of measures (mk)k∈K , (mk1k2)k1,k2, (mθ1θ2)θ1,θ2, (mk1θ2)k1,θ2, (mθ1k2)θ1k2 such that:

• IC: ui(k, mk) ≥ ui(k, ml) for all i = 1, 2 and l ∈ Ij(k) (j = 3 − i).

• IR (informed player):
∑

k∈Ij(l)
q(k)ui(k, mk) ≥ minα−i

maxαi
q · ui(αi, α−i) for all l

in Ki, all q ∈ △Ij(l).

• IR (uninformed player): ui(k, mk) ≥ ui(k) for all i = 1, 2 and k ∈ K3−i, where ui(θi)

is the minmax of player i of type θi.

• IR player 3: u3(mk) ≥ u3.

• JR1: ui(kj, mkj
) ≥ ui(kj, mkikj

) for i = 1, 2, j = 3 − i, ki ∈ Ki, kj ∈ Kj .

• JR2: ui(ki, mki
) ≥ ui(ki, mθiIj(ki)) for i = 1, 2, j = 3 − i, ki ∈ Ki, θi ∈ Θi.

• JR3: ui(kj, mkj
) ≥ ui(kj, mθ′ikj

) for i = 1, 2, j = 3 − i, kj ∈ Kj , θ′i ∈ Θi.

Given an optimal strategy σ of player II, let us define the following occupation mea-

sures:

• mk = E(i,k),σ,πi,k
LADft for i = 1, 2, k ∈ Ki.

• mkikj
= E(i,kj),σ,πi,ki

LADft. This is what is played when player i plays his ki-action

in state kj.
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• mθiθj
= E(i,ki),σ,πi,θi

LADft, with ki such that Ij(ki) = θj . This is what is played

when player i plays his θi-action in state ki.

• mθi,kj
= E(i,kj),σ,πi,θi

LADft with θi 6= Ii(kj). This is what happens when player i

lies on his type in state kj.

Proposition 7.6 These occupation measures define a point in V ∗.

The proof is similar to the all-or-nothing case and details are omitted. As in this

previous case, one can easily see that a violation of one inequality yields a way for player

I to secure a payoff > 0 in Γ(p), which is a contradiction.

Necessity

In this part, we prove that if an information structure has a single majority component

and is neither LWE nor has the all-or-nothing property, then there is a reward function

(which satisfies KOP) such that V ∗ is empty. We first study some counter-examples and

then show how the general case boils down to these.

Counter-examples

In this part, we list four information structures that satisfy neither LWE nor the all-

or-nothing property, and provide for each a counter-example, i.e. a reward function for

which V ∗(u, I) = ∅.

A: a two-sided battle of the sexes We start by a counter-example due to Koren

(1992), see also Hörner and Lovo (2009). There are three states k, k′, k′′. The information
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of player 1 is I1(k) = {k, k′′}, I1(k
′) = {k′}. The information of player 2 is I2(k) = {k, k′},

I2(k
′′) = {k′′}. Player 1 chooses rows and player 2 chooses columns.

L R

T 3, 1 0, 0

B 0, 0 1, 3

state k

L R

T 3, 0 0, 1

B 0, 0 1, 1

state k′′

L R

T 1, 1 1, 0

B 0, 0 0, 3

state k′

The proof that V ∗ = ∅ for this game is in Hörner and Lovo (2009). The main argument

is the following. In state k′, player 1 has a dominant strategy, and individual rationality

requires T to be played with frequency 1 in that state. Now, in state k, player 1 may

claim that the state is k′. Incentive compatibility requires thus (T, L) to be played with

frequency at least 3/4 in state k. A symmetric argument for player 2 shows that (B, R)

must be played with frequency at least 3/4 in state k. These two requirements are

mutually incompatible.

B: Adding a fully informed player Consider example 5.5. This corresponds to the

previous game with the addition of a third player, player 3, who knows the state.

C: Adding a partially informed player Consider the game of case A again, and

assume that there is a player 3 who has the same information as player 2. The payoff of

player 3 does not depend on the state and is:

L R

T 3 3 − ε

B 3 0

u3

In this game, V ∗ is empty. Assume for the sake of contradiction that there is a point
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v in V ∗. Individual rationality of players 1 and 2 implies that in state k′, T is played with

frequency 1, and (T, R) with frequency no more than 1/4. Then, since player 1 is the

only player to distinguish k and k′, incentive compatibility requires that the payoff vk
1 of

player 1 in state k satisfies: vk
1 ≥ 3× 3

4
. Since the sum of players 1 and 2’s payoffs in state

k is at most 4, this implies vk
2 ≤ 7

4
. Individual rationality of players 1 and 2 also implies

that in state k′′, R is played with frequency 1, and (T, R) with frequency no more than

1/4. This implies that the payoff of player 3 in state k′′ is such that: vk′′

3 ≤ (3 − ε)/4.

Consider now the following inconsistent reports: player 2 claims that the state is

k′′ and player 3 claims that the state is k. Joint rationality requires that there exists a

distribution α of action profiles such that vk
2 ≥ uk

2(α) and vk′′

3 ≥ u3(α). This is impossible,

because vk
2 + vk′′

3 ≤ 7/4 + (3 − ε)/4 < 3 − ε for ε small and since for every action profile,

uk
2 + u3 ≥ 3 − ε.

D: Adding two partially informed player Consider once again the game of case A,

and assume that there is a third player, player 3, who has the same information as player

2, and a fourth player, player 4, who has the same information as player 1. The payoff of

player 3 is as in case C. The payoff of player 4 does not depend on the state and is:

L R

T 0 3 − ε

B 3 3

u4

In this game, V ∗ is empty. Assume for the sake of contradiction that there is a point

v in V ∗. As in the previous example, individual rationality of players 1 and 2 in state k′′

implies vk′′

3 ≤ (3− ε)/4. Consider again the inconsistent reports in which player 2 claims

that the state is k′′, while player 3 claims that the state is k. Since for every action profile
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uk
2 + u3 ≥ 3 − ε, joint rationality implies vk

2 + vk′′

3 ≥ 3 − ε and thus vk
2 ≥ (3 − ε)3/4.

By a symmetric argument, considering the inconsistent reports in which player 1 claims

that the state is k′ and player 4 claims that the state is k, we find vk
1 ≥ (3 − ε)3/4. This

implies that vk
1 + vk

2 ≥ (3 − ε)3/2 > 4 for small ε, which is impossible.

A structural result

In this part, we show that an information structure with a single majority component,

that is neither LWE nor has the all-or-nothing property necessarily contains a subset of

three states listed in the previous section. These are summarized now. In these matrices,

players are rows and states are columns. The entries are the types, or signals, of the

players. It is understood that other players have no information on those states.

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

A

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

3 k1 k2 k3

B

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

3 k1 ∗ ∗

C

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

3 k1 ∗ ∗

4 ∗ k2 ∗

D

Take an information structure I with a single majority component and say that player

i is trivial if Ii(k) = K for all k; player i is non-trivial otherwise.

Lemma 7.7 If there are at most two non-trivial players, then either I is LWE or there

is a subset of three states, such that the restriction of I to this subset is of type A.

Proof. Let 1, 2 be the two non-trivial players. If it holds for each k that I1(k) ⊆ I2(k)

or I2(k) ⊆ I1(k), then it is LWE. Otherwise there exists a state c such that the two sets

77



I1(c), I2(c) are not comparable. That is, there exists c′ and c′′ such that c′ ∈ I1(c) \ I2(c)

and c′′ ∈ I2(c) \ I1(c). The subset {c, c′, c′′} is as required. �

Proposition 7.8 If there are at least three non-trivial players, then either I has the all-

or-nothing property, or there is a subset of three states such that the restriction of I to

this subset is of type A, B, C or D.

Proof. The proof is by induction on the number of states. First, assume that there

are only three states. We denote by E the 3-state, 3-player, all-or-nothing information

structure:

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

3 ∗ ∗ k3

E

Lemma 7.9 A 3-state information structure which has only one majority component and

which is not LWE is A, B, C, D or E.

Proof. We prove this by enumeration.

First, because the information is not LWE, there must exist 2 players, say player 1,

2, and three states, denoted k1, k2, k3, such that k1 /∈ I1(k3), k2 ∈ I1(k3), k2 /∈ I2(k3),

k1 ∈ I2(k3). That is, there must exist two players with non-comparable information at

some state. We discuss the information of the other players.

1. If all other players have no information, this is A. Otherwise:

2. If some player (player 3) is fully informed:
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(a) If all other players have no information, this is B.

(b) If player 4 has some information, there is more than one majority component.

For instance, if player 4 has the same information as player 1, {k3} is a majority

component. The reasoning is the same if player 4 has the same information as

player 2. If the information of player 4 is I4(k3) 6= I4(k1) = I4(k2), we have the

same conclusion: three players (1, 3, 4) can distinguish k1 and k3, and three

players (2, 3, 4) can distinguish k2 and k3, so {k3} is a majority component.

3. If no player is fully informed, but some player (player 3) is partially informed:

(a) If all other players have no information, this is C (up to a relabelling of players)

or E.

(b) If player 4 also has partial information, all other players being uninformed, then

it is either D or there is more than one majority component. By symmetry we

may assume that players 3 and 4 have the same information. If it is the same as

that of player 1 (resp. player 2) then {k3} is a majority component. Otherwise,

it is equivalent to E, with a fourth player having the same information as 1,

2 or 3. In this case, one sees easily that if the fourth player has the same

information as (e.g.) player 1, {k1} is a majority component.

(c) Finally, if players 4 and 5 have partial information, there is more than one

majority component. There are three types of partial information and five

players. Either three of them have the same information and they can then

distinguish states. Or the information structure is the symmetric one, with

two duplicated players, which leads back to the previous case. �
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Let us do now the induction step. Take |K| > 3 and assume that the statement of

Proposition 7.8 holds for |K| − 1. We consider an information structure with |K| states

which has only one majority component, at least three non-trivial players and which is

not all-or-nothing.

Consider the relation on states defined as aRb iff ν(a, b) ≤ 2, and consider also the

graph of this relation. I has only one majority component means that this graph is

connected. Note that if we delete a state and all its adjacent edges, we obtain the graph

of the relation on the restricted set of states. Take now two states a and b such that

there is a path in the graph from a to b with maximal length among the paths in this

graph. The graph obtained by suppressing a (resp. b) is still connected. Indeed, any

other point c is connected to b (resp. a) by a path that does not go through a (resp. b),

since otherwise, this would contradict the maximality of the path from a to b. It follows

that IK\{a} (resp. IK\{b}) has only one majority component.

If IK\{a} or IK\{b} has at least three non-trivial players and is not symmetric, we are

done by induction. Assume otherwise.

Case A. Both IK\{a} and IK\{b} have at least three non-trivial players and are all-or-

nothing. First, the non-trivial players are the same for IK\{a} and IK\{b}. Indeed, let i

be non-trivial for IK\{a}. There exists k 6= a such that Ii(k) ∩ K \ {a} = {k}, so that

Ii(k) ⊆ {k, a}. Then i cannot be trivial in IK\{b}: for a trivial player Ii,K\{b}(k) contains

at least three states. Let now 1, . . . , m be these non-trivial players.

Let K1, . . . , Km be the partition induced by IK\{a} on K \ {a}. Since IK\{b} is all-

or-nothing, there is a unique player, say player 1, such that I1,K\{b}(a) = {a}. So that

I1(a) ⊆ {a, b}.

• If b ∈ K1, consider two other non-trivial players j, l and c′ ∈ Kl. By the all-or-

80



nothing property of IK\{a} and IK\{b}, one has a ∈ Ij(c
′) and b ∈ Ij(c

′). So that

j does not distinguish a and b. Now, either I1(a) 6= I1(b) and I is all-or-nothing,

or I1(a) = I1(b) and no player distinguishes a from b. In both cases, this is a

contradiction.

• If b /∈ K1, say b ∈ K2. If I1(a) = I1(b), take c in K3. By the all-or-nothing property

of IK\{a} and IK\{b}, c ∈ I1(b) contradicting I1(a) ⊆ {a, b}. Thus I1(a) 6= I1(b), that

is I1(a) = {a} and by the all-or-nothing property of IK\{a}, I1(b) = K \ (K1 ∪ {a}).

By the all-or-nothing property of IK\{a}, no player, except player 2, distinguishes

b from other states in K2 and by the all-or-nothing property of IK\{b}, no player,

except player 1, distinguishes a from other states in K1. Thus I has the all-or-

nothing property, a contradiction.

Case B. Both IK\{a} and IK\{b} have at most two non-trivial players. If IK\{a} or

IK\{b} is not LWE, we are done by lemma 7.7. Assume to the contrary that both are

LWE. Then IK\{a,b} is LWE as well which implies that the two non-trivial players are

the same in IK\{a} and IK\{b}, say players 1 and 2. This implies that suppressing a or b

changes some player, say player 3, from non-trivial to trivial, which is not possible.

Case C. IK\{b} has at least three non-trivial players and has the all-or-nothing property

and IK\{a} has at most two non-trivial players. If IK\{a} is not LWE, we are done by

lemma 7.7. Assume the contrary and consider IK\{a,b}. This is both all-or-nothing and

LWE. This shows that the non-trivial players from IK\{a} are non-trivial in IK\{b} as well,

and that IK\{b} has exactly three non-trivial players called henceforth 1, 2, 3. Suppressing

a transforms, say player 1, from non-trivial to trivial. So it must be the case that I1(a) =

{a} and I1(k) = K \ {a} for k 6= a.
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Let us choose now c 6= a such that I2(c) = I2(a) (which exists, because player 1 is the

only informed player at a) and assume that I3(c) ⊂ I2(c). Take d ∈ I2(c) \ I3(c). The

information structure on {a, c, d} is of type C or D, depending on whether player 3 can

distinguish a from c or not. If it is not the case that one can choose such a d (even by

exchanging the roles of 2 and 3), it means that players 2 and 3 have the same information

structure. One just has to choose a, c 6= a such that I2(c) = I3(c) = I2(a) and d 6= a

outside of I2(c), to end up with a type C. This concludes the proof. �
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Appendix D: Proof of Theorem 5.9

Sufficiency: For each state k, fix a vector vk that is individually rational in the complete

information game corresponding to state k, i.e., vk ≥ uk. We show that v :=
{
vk

}
is in V ∗.

This profile is chosen to be individually rational. IC and JR: when there is no essential

player, the information held by players other than i is sufficient to reveal the state. Thus,

player i has no choice but to be inconsistent with the other players, or go along with the

identification of the state. The distribution corresponding to the bad outcome can be

used to deter a player from deviating.

Necessity: Consider the following game that has a bad outcome and where player 1 is

essential to identify the state. For this game, V ∗(I, u) = ∅.

Example 7.10 (This example is adapted from Hörner and Lovo, 2009). There are two

states k, k′, and two players. Player 1 is informed of the state, player 2 is not. The payoff

matrix in state k is the following:

L M R

T 10,−4 1, 1 10,−4

B 1, 1 0, 0 −1,−4

The payoff matrix in state k′ is:

L M R

T 0, 0 1, 1 10,−4

B 1, 1 10,−4 −1,−4
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Action profile {B, R} is the bad outcome. Player 1 can guarantee a payoff of at least 3

in one of the states by randomizing equally between U and D and player 2 can guarantee

at least 0 in each state. This implies that the equilibrium distribution over action profiles

cannot assign probability more than 1/5 to action profiles yielding −4 to player 2. In turn,

this implies that player 1’s payoff is at most 14/5 in each state, a contradiction. �

Appendix E: Proof of Theorem 5.10

Necessity can be shown by considering a two-player two-sided game where both players

are essential. In this context a counter-example is found in Koren (1992) and in Hörner

and Lovo (2009). This example is also in appendix C (example A). To prove sufficiency,

consider a game with known-own payoffs and a bad outcome, and an information structure

with at most one essential player per state. Partition the set of states as

K = K0 ∪ K1 ∪ · · · ∪ KS,

where for each k ∈ K0, there is no essential player at k, and for each s = 1, . . . , S, there

exists a unique player is who is essential at states in Ks. That is,

a) for all k, k′ in Ks, Iis(k) 6= Iis(k
′),

b) for all k, k′ in Ks and all players j 6= is, Ij(k) = Ij(k
′),

c) for all k ∈ Ks, k′ /∈ Ks, there exists j 6= is such that Ij(k) 6= Ij(k
′).

To construct one cell Ks of this partition, consider a state k such that some player i is

essential at this state. This means that I−i(k) 6= {k}. Set then Ks = I−i(k) and is = i.

Property b) is clearly satisfied. Property a) holds since I−i(k) ∩ Ii(k) = {k}. Property c)

holds since if k′ /∈ Ks = I−i(k), there must exist j 6= is such that Ij(k) 6= Ij(k
′).
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Choose, for each k ∈ K0, an individually rational payoff vk in state k. For each

s = 1, . . . , S, consider the game with incomplete information Γs where:

• It is common knowledge that the state belongs to Ks,

• Player is knows the state and other players have no information.

Let V ∗
s be the set of IC, IR and JR payoffs of this game. The information structure of Γs

is locally weakly imbedded. Thus, from Theorem 5.7, V ∗
s is non-empty. Let us choose a

payoff array in this set, for each s. We construct the overall equilibrium as follows. Let

players announce their information:

• If the announcements identify a state k ∈ K0, vk is implemented.

• If after the announcements, the set Ks is common knowledge, the chosen equilibrium

of Γs is played.

• If the announcements are inconsistent, the bad outcome is played.

The induced payoff array is individually rational. We argue now that no player has

an incentive to misreport. Player i who is not essential at state k has no other choice

than letting the state be revealed or being inconsistent with the other players. The bad

outcome ensures that he weakly prefers to tell the truth. Consider player is at some state

k ∈ Ks. If he announces Iis(k
′) for some k′ ∈ Ks, the announcements are consistent. Each

player is now aware that the true state may be any k in Ks and the equilibrium of Γs can

be played. If player is announces Iis(k
′) for some k′ /∈ Ks, property c) above says that

this announcement is inconsistent with some other player’s report. Player is has thus no

other choice than letting Ks be revealed or inducing the bad outcome. This provides a

weak incentive to tell the truth. �
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Appendix F: Proof of Theorem 6.1

Define

u′
1 := sup

{pi≥0:i=2,...,N}

val (u1 −
∑N

i=2
pi(ui − ui1)),

and

u′′
1 := sup

α1∈△A1

min
α−1∈Y (α1)

u1(α1, α−1).

We have already argued that u∗
1 ≥ u′

1. Let us first show that u′
1 ≥ u′′

1. By definition, for

all ε > 0, there exists (p2, . . . , pN) ≥ 0 and α1 ∈ △A1 such that

u′
1 − ε ≤ val (u1 −

∑N

i=2
pi(ui − ui1))

≤ min
α−1

{u1(α1, α−1) −
∑N

i=2
pi(ui(α1, α−1) − ui)}

≤ min
α−1

{u1(α1, α−1) −
∑N

i=2
pi(ui(α1, α−1) − ui1) : α−1 ∈ Y (α1)}

≤ min
α−1

{u1(α1, α−1) : α−1 ∈ Y (α1)} ≤ u′′
1.

Conversely, for every ε > 0, there exists α1 ∈ △A1 such that minα−1∈Y (α1) u1(α1, α−1) ≥

u′′
1 − ε. Therefore, fixing α1 ∈ △A1, for every α−1 ∈ R

|A−1|
+ ,

(
ui(α1, α−1) − ui

∑|A−1|

a=1
α−1,a

)

i6=1

≥ 0 ⇒ u1(α1, α−1) − (u′′
1 − ε)

∑|A−1|

a=1
α−1,a ≥ 0.

By Farkas’ Lemma, there exists (p2, . . . , pN) ≥ 0 and a constant γ ∈ R
|A−1|
+ such that, for

every α−1 ∈ △A−1,

u1(α1, α−1) − u′′
1 + ε =

∑N

i=2
pi(ui(α1, α−1) − ui) + γ · α−1

≥
∑N

i=2
pi(ui(α1, α−1) − ui).
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Therefore,

u′
1 + ε ≥ val (u1 −

∑N

i=2
pi(ui − ui1)) + ε ≥ u′′

1.

We now show that the bound is attained by uk
1 = −uk, ∀k = 2, . . . , N . Given some equilib-

rium, let µi ∈ △A be the occupation measure when player 1 is of type i (the rational type

is type 1). Player i’s individual rationality is equivalent to, for all i, ui(µ
i) ≥ ui. Further,

player 1’s individuality rationality condition states that, for every p ∈ △{1, . . . , N},

p1u1(µ
1) +

∑N

i=2
pi(−ui(µ

i)) ≥ val (p1u1 −
∑N

i=2
piui),

and therefore, for the choice pi = 1, pj = 0, all j 6= i, it follows that −ui(µ
i) ≥ val (−ui) =

−ui. Hence, ui(µ
i) = ui. Thus, we can rewrite the individual rationality condition as

u1(µ
1) ≥ val (u1 −

∑N

i=2

pi

p1
(ui − ui1)),

i.e. u1(µ
1) ≥ u′

1. Incentive compatibility of (µi)i is obvious.

It remains to show that, for every choice of K and uK, there always exists an equilib-

rium in which player 1’s rational type does not exceed u′
1. Pick any such game. Let

vk
1 := max

µ∈△A
{uk

1(µ) : u1(µ) ≤ u′
1, ui(µ) ≥ ui, ∀i ≥ 2},

for all k = 1, . . . , K, with u1
1 = u1. Since u′

1 ≥ u1, the folk theorem under complete

information ensures that the set on the right-hand side is non-empty, so that vk
1 is well-

defined. Clearly, the action profiles αk are incentive compatible, and individually rational

for all players i ≥ 2. It remains to show that it is incentive compatible for player 1, i.e.,
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that for all p ∈ △{1, . . . , K},

∑K

k=1
pkv

k
1 ≥ val (

∑K

k=1
pku

k
1).

From the definition of vk
1 , it follows that for every k = 1, . . . , K and α ∈ R

|A|
+ ,

ui(α) ≥ ui1 · α, u′
11 · α ≥ u1(α) ⇒ vk

11 · α ≥ uk
1(α).

By Farkas’ Lemma, for every k = 1, . . . , K, there exists γk ≥ 0, λk
i ≥ 0 such that vk

11−uk
1 ≤

γk(u′
11 − u1) +

∑N

i=2 λk
i (ui − ui1). Therefore, for all p ∈ △{1, . . . , K},

val (
∑K

k=1
pku

k
1) ≤

∑K

k=1
pkv

k
1−

∑K

k=1
pkγ

ku′
1+val (

∑K

k=1
pk(γ

ku1−
∑N

i=2
λk

i (ui−ui1))),

and so individual rationality for player 1 is satisfied if

∑K

k=1
pkγ

ku′
1 ≥ val (

∑K

k=1
pk(γ

ku1 −
∑N

i=2
λk

i (ui − ui1))).

This is satisfied if
∑K

k=1 pkγ
k = 0, and if not, defining

νi := (
∑K

k=1
λk

i pk)/(
∑K

k=1
pkγ

k) ≥ 0,

it is equivalent to

u′
1 ≥ val (u1 −

∑N

i=2
νi(ui − ui1))),

which is satisfied by definition of u′
1. �
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