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MOTIVATION

• Many markets are characterized by sorting (e.g., production
factors to workers)

• Many interesting implications: non-linear wage patterns,
inequality,...

• Much of the existing work: one-to-one matching (Kontorovich 42, Shapley &

Shubik 71, Becker 73,...)

• Problem: How to capture factor intensity

• Example: Boom/bust in productivity (recession, globalization, trade...)

• Concentrate resources on more/less workers?
• How does that effect factor productivity?
• How does that affect unemployment?

Research Questions:

1 How to capture factor intensity in a tractable manner?

2 What are the sorting conditions?

3 What are the conditions for factor allocations?

4 How to tie it in with frictional theories of hiring?
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MOTIVATION

The existing one-on-one matching framework:

• f (x , y) when firm hires worker

• tractable sorting condition: supermodularity

• trivial firm-worker ratio: unity; trivial assignment: µ(x) = x

Here: allowing for an intensive margin.

• f (x , y , l) when firm hires l workers

• F (x , y , l , r) when firm devotes fraction r of resources to l workers

• tractable sorting condition: cross-margin-supermodularity
within-margin supermodularity larger than cross-margin supermodularity (F12F34 > F14F23)

• capital-labor (worker-firm) ratio: type-dependent but tractable

• assignment: depends on how many workers each firm absorbs

• extensions: frictional hiring, mon. competition, general capital
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MOTIVATION
We consider competitive market. But welfare theorems hold. So
consider planner’s choices (two types):

• rij resources of firm type i devoted to worker type j , ri1 + ri2 ≤ hf
i

• lji labor of worker type j deployed at firm type i , lj1 + lj2 ≤ hw
j

worker / firms hf
1 hf

2
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Literature. Models following the tradition of:

• Becker 73: lji = rij (or F (x , y ,min{l, r},min{l, r}))

• Sattinger 75: lji ≤ rij/t(xi , yi) (or F = min{l , r
t(x,y)})

• Rosen 74: more general, little characterization (Kelso-Crawford 82...)

• Roy 51: lji = rij & hf
1 = hf

2 =∞ (no factor intensity)

• Roy 51+CES: particular functional form for decreasing return
(F (x1, y1..) & F (x2, y2, ..) linked, mon. comp.)

• Frictional Markets: one-on-one matching, but similar flavor under comp.
search (Shimer-Smith 00, Atakan 06, Mortensen-Wright 03, Shi 02, Shimer 05, Eeckhout-Kircher 10)
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MOTIVATION

Characterize assignments when factor intensity choices are feasible.

Future:

1 How does the intensive margin adjust with economic conditions?

2 How does it integrate into macro/trade models?



THE MODEL

• Population

• Workers of type x ∈ X = [x , x ], distribution Hw (x)
• Firms of types y ∈ Y = [y , y ], distribution H f (y)

• Production of firm y

• F (x , y , lx , rx) , where lx workers of type x,
rx fraction of firm’s resources

• F increasing in all arguments
• F str. concave in each of the last two arguments
• F constant returns to scale in last two arguments
• Total output of the firm:

∫
F (x , y , lx , rx)dx

• Production with one worker type: f (x , y , l) = F (x , y , l ,1)

• Preferences

• additive in output goods and numeraire

Different resource levels: F (x , y , l, r) = F̃ (x , y , l, rT (y)).

Generic capital: F (x , y , l, r) = maxk F̃ (x , y , l, r , k)− ik .

Competitive search: F (x , y , l, r) = maxv F̃ (x , y , vm(l/v), r)− vc
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THE MODEL
Hedonic wage schedule w(x) taken as given.

• Optimization:

• Firms maximize: maxlx ,rx

∫
[F (x , y , lx , rx )− w(x)lx ]dx

• Equivalent to: maxrx
∫

rx maxlx [F (x , y , lx
rx
, 1)− w(x) lx

rx
]dx

• Implies: rx > 0 only if (x , lx
rx

) = arg max f (x , y , θ)− θw(x) (∗)

• Feasible Resource Allocation:

• R(x , y , θ): resources to any x ′ ≤ x by any y ′ ≤ y with lx′
rx′
≤ θ.

1 Firm scarcity: R(y |X ,Θ) ≤ H f (y) for all y .

2 Worker scarcity:
∫
θ∈Θ

∫
x′≤x θdR(θ, x ′|Y ) ≤ Hw (x) for all x .

• Equilibrium

is a tuple (w ,R) s.t.

1 Optimality: (x , y , θ) ∈suppR only if it satisfies (∗).
2 Market Clearing:

∫
θdR(θ|x ,Y ) ≤ hw (x), “=” if w(x) > 0.
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ASSORTATIVE MATCHING

DEFINITION (ASSORTATIVE MATCHING)
A resource allocation R entails sorting if its support only entails
points (x , µ(x)) for some monotone µ(x).
Sorting is positive if µ′ > 0, it is negative if µ′ < 0.

PROPOSITION (CONDITION FOR ASSORTATIVE MATCHING)
A necessary condition for positive assortative matching in
equilibrium is

F12F34 ≥ F23F14

along the equilibrium path. The opposite inequality is
necessary for negative assortative matching.

Next: Proof, Examples, Graph, Resource Allocation
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PROOF OF ASSORTATIVE MATCHING CONDITION
Assume assortative matching on (x , µ(x)) with associated θ(x). Must be
optimal, i.e., maximizes:

max
x,θ

f (x , µ(x), θ)− θw(x).

First order conditions:

fθ(x , µ(x), θ(x))− w(x) = 0 (1)

fx (x , µ (x) , θ(x))− θ(x)w ′(x) = 0, (2)

The Hessian is

Hess =

(
fθθ fxθ − w ′(x)

fxθ − w ′(x) fxx − θw ′′(x)

)
.

Second order condition requires |Hess| ≥ 0:

fθθ[fxx − θw ′′(x)]− (fxθ − w ′(x))2 ≥ 0. (3)

Differentiate (1) and (2) with respect to x , substitute:

−µ′(x)[fθθfxy − fyθfxθ + fyθfx/θ] ≥ 0

Positive sorting means µ′(x) > 0, requiring [...] < 0 and after rearranging:

F12F34 ≥ F23F14. (4)
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SPECIAL CASES
Efficiency Units of Labor

• Skill equivalently to quantity: F (x , y , l, r) = F̃ (y , xl, r)

• In this case no sorting: F12F34 = F23F14

Multiplicative Separability

• F (x , y , l, r) = A(x , y)B(l, r). Sorting: [AA12/(A1A2)][BB12/(B1B2)] ≥ 1

• If B is CES with substitution ε: [AA12/(A1A2)] ≥ ε.
• Implies that root-supermodularity in qualities needed (Eeckhout-Kircher 10).

Becker’s one-on-one matching

• F (x , y ,min{l, r},min{r , l}) = F (x , y , 1, 1) min{l, r},
• Like inelastic CES (ε→ 0), so sorting if F12 ≥ 0

Sattinger’s span of control model

• F (x , y , l, r) = min{ r
t(x,y)

, l},

• Write as CES between both arguments

• Our condition converges for inelastic case to log-supermod. in qualities



ILLUSTRATION OF STRENGTH OF SORTING

Example: F (x , y , l, r) = A(x , y)B(l, r)

Budget Set: D = {(x , l)|lw(x) ≤ M}
Isoprofit Curve: iy = {(x , l)|A(x , y)B(l, r) = Π}

ll

D iyy

x

Slope of Isoprofit Curve: ∂l
∂x = −Ax (x,y)B(l,1)

A(x,y)B1(l,1)
.

If Axy = 0: higher y has flatter slope as only denominator moves.
If Axy > 0: higher y can have steeper slope.
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EQUILIBRIUM FACTOR INTENSITY

PROPOSITION (FACTOR INTENSITY AND ASSIGNMENT)
If sorting condition holds, then the equilibrium assignment and factor
intensity are determined by the system of differential equations:

µ′(x) =
hw (x)

θ(x)hf (x)
, θ′(x) =

1
fθθ

[
1
θ

fx −
hw

θhf
fyθ − fxθ

]

Proof: µ′ from market clearing: Hw (x)− Hw (x) =
∫ y
µ(x)

θ(x̃)hf (x̃)dx

θ′ from FOC: fθ = w(x) and fx/θ = w ′, diff. and subst. µ′.

Example: F (x , y , l , r) = A(x , y)(αlγ + (1− α)rγ)1/γ , uniform distr.

θ′(x) =
(1− α)A2(x , µ(x))− αA1(x , µ(x))θ1−γ

A(x , µ(x))[1 + θγ ][1− γ]
; µ′ (x) =

1
θ(x)

.

• symmetry A and α = 1/2: then θ(x) = 1 and µ(x) = x

• symmetric A but α < 1/2: then θ′ > 0

• non-symmetry but inelastic limit (Becker): θ(x) = 1 and µ(x) = x
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ADDITIONAL EXTENSIONS
COMPETITIVE SEARCH WITH LARGE FIRMS

Vacancy filling prob: m(q). Job finding prob.: m(q)/q. Posting (x , vx , ωx ).

max
rx ,lx ,ωx ,vx

∫
[F (x , y , lx , rx )− lxωx − vx c] dx

s.t. lx = vx m(qx ); and ωx m(qx )/qx = w(x).

Two equivalent formulations:

1 maxsx ,rx
∫

[G(x , y , sx , rx )− w(x)sx ]dx , where

G(x , y , sx , rx ) = maxvx [F (x , y , vx m(sx/vx ), rx )− vx c].

2 maxrx ,lx ,vx

∫
[F (x , y , lx , rx )− C(x , lx )]dx , where

C(x , lx ) = minvx ,qx cvx + qx vx w(x) s.t. lx = vx m(qx ).

From 1.: check sorting, compute w(x) as in previous part.

From 2.: determine unemployment. FOC (Cobb-Douglas Matching, coefficient α) :

w(x)qx =
1− α
α

c

⇒ Unemployment : m(qx )/qx = q−αx =

[
α

(1− α)c
w(x)

]α
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ADDITIONAL EXTENSIONS
GENERAL CAPITAL, MONOPOLISTIC COMPETITION

General Capital:

• F (x , y , l, r) = maxk F̂ (x , y , l, r , k)− ik (CRS in quantities)

• sorting condition: F̂12F̂34F̂55 − F̂12F̂35F̂45 − F̂15F̂25F̂34 ≥
F̂14F̂23F̂55 − F̂14F̂25F̂35 − F̂15F̂23F̂45.

Monopolistic Competition:

• consumers have CES preferences with substitution ρ

• sales revenue of firm y : χF (x , y , l, 1)ρ

• Sorting condition[
ρF̃12 + (1− ρ)(F̃ )

∂2 ln F̃
∂x∂y

][
ρF̃34 − (1− ρ)l F̃

∂2 ln F̃
∂l2

]

≥

[
ρF̃23 + (1− ρ)F̃

∂2 ln F̃
∂y∂l

][
ρF̃14 + (1− ρ)

(
l F̃13 − l F̃

∂2 ln F̃
∂x∂r

)]
.

• independent of χ

• our condition under ρ = 1, log-sm when production linear in l .



ADDITIONAL EXTENSIONS
GENERAL CAPITAL, MONOPOLISTIC COMPETITION

General Capital:

• F (x , y , l, r) = maxk F̂ (x , y , l, r , k)− ik (CRS in quantities)

• sorting condition: F̂12F̂34F̂55 − F̂12F̂35F̂45 − F̂15F̂25F̂34 ≥
F̂14F̂23F̂55 − F̂14F̂25F̂35 − F̂15F̂23F̂45.

Monopolistic Competition:

• consumers have CES preferences with substitution ρ

• sales revenue of firm y : χF (x , y , l, 1)ρ

• Sorting condition[
ρF̃12 + (1− ρ)(F̃ )

∂2 ln F̃
∂x∂y

][
ρF̃34 − (1− ρ)l F̃

∂2 ln F̃
∂l2

]

≥

[
ρF̃23 + (1− ρ)F̃

∂2 ln F̃
∂y∂l

][
ρF̃14 + (1− ρ)

(
l F̃13 − l F̃

∂2 ln F̃
∂x∂r

)]
.

• independent of χ

• our condition under ρ = 1, log-sm when production linear in l .



CONCLUSION

This work:

• Lay out a tractable sorting model with factor intensity

• Derive tractable sorting condition (F12F34 ≥ F14F23)

• Characterize equilibrium factor intensity and assignment

• Extend to frictional market with sorting and large firms

• Various other extensions (general capital, monop. comp.)

Future:

• Generate more work on sorting on the intensive market

• Comparative statics on consequences of aggregate changes

• Applications in trade/macro/...


