# SORTING AND FACTOR INTENSITY: PRODUCTION AND UNEMPLOYMENT ACROSS SKILLS

Jan Eeckhout<sup>1</sup> Philipp Kircher<sup>2</sup>

1 UCL & UPF - 2 LSE & UPenn

Northwestern, February 2011

- Many markets are characterized by sorting (e.g., production factors to workers)
- Many interesting implications: non-linear wage patterns, inequality,...
- Much of the existing work: one-to-one matching (Kontorovich 42, Shapley & Shubik 71, Becker 73,...)

- Many markets are characterized by sorting (e.g., production factors to workers)
- Many interesting implications: non-linear wage patterns, inequality,...
- Much of the existing work: one-to-one matching (Kontorovich 42, Shapley & Shubik 71, Becker 73,...)
- Problem: How to capture factor intensity
- Example: Boom/bust in productivity (recession, globalization, trade...)
  - Concentrate resources on more/less workers?
  - How does that effect factor productivity?
  - How does that affect unemployment?

- Many markets are characterized by sorting (e.g., production factors to workers)
- Many interesting implications: non-linear wage patterns, inequality,...
- Much of the existing work: one-to-one matching (Kontorovich 42, Shapley & Shubik 71, Becker 73....)
- Problem: How to capture factor intensity
- Example: Boom/bust in productivity (recession, globalization, trade...)
  - Concentrate resources on more/less workers?
  - How does that effect factor productivity?
  - How does that affect unemployment?

#### Research Questions:

- 1 How to capture factor intensity in a tractable manner?
- 2 What are the sorting conditions?
- 3 What are the conditions for factor allocations?
- 4 How to tie it in with frictional theories of hiring?

The existing one-on-one matching framework:

- f(x, y) when firm hires worker
- tractable sorting condition: supermodularity
- trivial firm-worker ratio: unity; trivial assignment:  $\mu(x) = x$

The existing one-on-one matching framework:

- f(x, y) when firm hires worker
- tractable sorting condition: supermodularity
- trivial firm-worker ratio: unity; trivial assignment:  $\mu(x) = x$

Here: allowing for an intensive margin.

- f(x, y, l) when firm hires l workers
- F(x, y, l, r) when firm devotes fraction r of resources to l workers
- tractable sorting condition: cross-margin-supermodularity
   within-margin supermodularity larger than cross-margin supermodularity (F<sub>12</sub>F<sub>34</sub> > F<sub>14</sub>F<sub>23</sub>)
- capital-labor (worker-firm) ratio: type-dependent but tractable
- assignment: depends on how many workers each firm absorbs
- extensions: frictional hiring, mon. competition, general capital

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms              | $h_1^f$       |   |   | $h_2^f$       |   |   |
|-----------------------------|---------------|---|---|---------------|---|---|
| h <sub>1</sub> <sup>w</sup> | $F(x_1, y_1,$ | , | ) | $F(x_1, y_2,$ | , | ) |
| $h_2^w$                     | $F(x_2, y_1,$ | , | ) | $F(x_2, y_2,$ | , | ) |

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms | $h_1^f$                 | $h_2^f$          |
|----------------|-------------------------|------------------|
| $h_1^w$        | $F(x_1, y_1, r_{11}, )$ | $F(x_1,y_2, ,)$  |
| $h_2^w$        | $F(x_2, y_1, r_{12}, )$ | $F(x_2, y_2, ,)$ |

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms | $h_1^f$                       | $h_2^f$                 |
|----------------|-------------------------------|-------------------------|
| $h_1^w$        | $F(x_1, y_1, r_{11}, l_{11})$ | $F(x_1, y_2, , l_{12})$ |
| $h_2^w$        | $F(x_2, y_1, r_{12}, )$       | $F(x_2,y_2, ,)$         |

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms | $h_1^f$                       | $h_2^f$                       |
|----------------|-------------------------------|-------------------------------|
| $h_1^w$        | $F(x_1, y_1, r_{11}, l_{11})$ | $F(x_1, y_2, r_{21}, l_{12})$ |
| $h_2^w$        | $F(x_2, y_1, r_{12}, l_{21})$ | $F(x_2, y_2, r_{22}, l_{22})$ |

We consider competitive market. But welfare theorems hold. So consider planner's choices (two types):

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms              | $h_1^f$                       | $h_2^f$                       |
|-----------------------------|-------------------------------|-------------------------------|
| $h_1^w$                     | $F(x_1, y_1, r_{11}, l_{11})$ | $F(x_1, y_2, r_{21}, l_{12})$ |
| h <sub>2</sub> <sup>w</sup> | $F(x_2, y_1, r_{12}, l_{21})$ | $F(x_2, y_2, r_{22}, l_{22})$ |

• Becker 73: 
$$I_{jj} = r_{ij} \quad (\text{or } F(x, y, \min\{l, r\}, \min\{l, r\}))$$

We consider competitive market. But welfare theorems hold. So consider planner's choices (two types):

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms              | $h_1^f$                       | $h_2^f$                       |
|-----------------------------|-------------------------------|-------------------------------|
| $h_1^w$                     | $F(x_1, y_1, r_{11}, l_{11})$ | $F(x_1, y_2, r_{21}, l_{12})$ |
| h <sub>2</sub> <sup>w</sup> | $F(x_2, y_1, r_{12}, l_{21})$ | $F(x_2, y_2, r_{22}, l_{22})$ |

- Becker 73:  $I_{jj} = r_{ij} \quad (\text{or } F(x, y, \min\{l, r\}, \min\{l, r\}))$
- Sattinger 75:  $I_{ji} \le r_{ij}/t(x_i, y_i)$  (or  $F = \min\{I, \frac{r}{t(x, y)}\}$ )

We consider competitive market. But welfare theorems hold. So consider planner's choices (two types):

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms | $h_1^f$                       | $h_2^f$                       |
|----------------|-------------------------------|-------------------------------|
| $h_1^w$        | $F(x_1, y_1, r_{11}, l_{11})$ | $F(x_1, y_2, r_{21}, l_{12})$ |
| $h_2^w$        | $F(x_2, y_1, r_{12}, l_{21})$ | $F(x_2, y_2, r_{22}, l_{22})$ |

- Becker 73:  $I_{jj} = r_{ij} \quad (\text{or } F(x, y, \min\{l, r\}, \min\{l, r\}))$
- Sattinger 75:  $l_{ji} \le r_{ij}/t(x_i, y_i)$  (or  $F = \min\{I, \frac{r}{t(x, y)}\}$ )
- Rosen 74: more general, little characterization (Kelso-Crawford 82...)

We consider competitive market. But welfare theorems hold. So consider planner's choices (two types):

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms | $h_1^f$                       | $h_2^f$                       |
|----------------|-------------------------------|-------------------------------|
| $h_1^w$        | $F(x_1, y_1, r_{11}, l_{11})$ | $F(x_1, y_2, r_{21}, l_{12})$ |
| $h_2^w$        | $F(x_2, y_1, r_{12}, l_{21})$ | $F(x_2, y_2, r_{22}, l_{22})$ |

- Becker 73:  $I_{jj} = r_{ij}$  (or  $F(x, y, \min\{l, r\}, \min\{l, r\})$ )
- Sattinger 75:  $l_{ji} \le r_{ij}/t(x_i, y_i)$  (or  $F = \min\{I, \frac{r}{t(x, y)}\}$ )
- Rosen 74: more general, little characterization (Kelso-Crawford 82...)
- Roy 51:  $I_{jj} = r_{ij} \& h_1^f = h_2^f = \infty$  (no factor intensity)

We consider competitive market. But welfare theorems hold. So consider planner's choices (two types):

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms              | $h_1^f$                       | $h_2^f$                       |
|-----------------------------|-------------------------------|-------------------------------|
| $h_1^w$                     | $F(x_1, y_1, r_{11}, l_{11})$ | $F(x_1, y_2, r_{21}, l_{12})$ |
| h <sub>2</sub> <sup>w</sup> | $F(x_2, y_1, r_{12}, l_{21})$ | $F(x_2, y_2, r_{22}, l_{22})$ |

- Becker 73:  $I_{jj} = r_{ij} \quad (\text{or } F(x, y, \min\{l, r\}, \min\{l, r\}))$
- Sattinger 75:  $I_{jj} \le r_{ij}/t(x_i, y_i)$  (or  $F = \min\{I, \frac{r}{t(x, y)}\}$ )
- Rosen 74: more general, little characterization (Kelso-Crawford 82...)
- Roy 51:  $I_{jj} = r_{ij} \& h_1^f = h_2^f = \infty$  (no factor intensity)
- Roy 51+CES: particular functional form for decreasing return  $(F(x_1, y_1...) \& F(x_2, y_2, ...) | \text{linked, mon. comp.})$

We consider competitive market. But welfare theorems hold. So consider planner's choices (two types):

- $r_{ij}$  resources of firm type i devoted to worker type j,  $r_{i1} + r_{i2} \le h_i^f$
- $I_{ji}$  labor of worker type j deployed at firm type i,  $I_{j1} + I_{j2} \le h_j^w$

| worker / firms              | $h_1^f$                       | $h_2^f$                       |
|-----------------------------|-------------------------------|-------------------------------|
| $h_1^w$                     | $F(x_1, y_1, r_{11}, l_{11})$ | $F(x_1, y_2, r_{21}, l_{12})$ |
| h <sub>2</sub> <sup>w</sup> | $F(x_2, y_1, r_{12}, l_{21})$ | $F(x_2, y_2, r_{22}, l_{22})$ |

- Becker 73:  $I_{ii} = r_{ii}$  (or  $F(x, y, \min\{l, r\}, \min\{l, r\})$ )
- Sattinger 75:  $I_{ji} \le r_{ij}/t(x_i, y_i)$  (or  $F = \min\{I, \frac{r}{t(x, v)}\}$ )
- Rosen 74: more general, little characterization (Kelso-Crawford 82...)
- Roy 51:  $I_{jj} = r_{ij} \& h_1^f = h_2^f = \infty$  (no factor intensity)
- Roy 51+CES: particular functional form for decreasing return  $(F(x_1, y_1...) \& F(x_2, y_2,...) \text{ linked, mon. comp.})$
- Frictional Markets: one-on-one matching, but similar flavor under comp.
   search (Shimer-Smith 00, Atakan 06, Mortensen-Wright 03, Shi 02, Shimer 05, Eeckhout-Kircher 10)

Characterize assignments when factor intensity choices are feasible.

#### Future:

- 1 How does the intensive margin adjust with economic conditions?
- 2 How does it integrate into macro/trade models?

Population

• Production of firm y

Preferences

- Population
  - Workers of type  $x \in X = [\underline{x}, \overline{x}]$ , distribution  $H^w(x)$
  - Firms of types  $y \in Y = [y, \overline{y}]$ , distribution  $H^f(y)$
- Production of firm y

Preferences

- Population
  - Workers of type  $x \in X = [\underline{x}, \overline{x}]$ , distribution  $H^w(x)$
  - Firms of types  $y \in Y = [\underline{y}, \overline{y}]$ , distribution  $H^f(y)$
- Production of firm y
  - $F(x, y, l_x, r_x)$ , where  $l_x$  workers of type x,  $r_x$  fraction of firm's resources
  - F increasing in all arguments
  - F str. concave in each of the last two arguments
  - F constant returns to scale in last two arguments
  - Total output of the firm:  $\int F(x, y, l_x, r_x) dx$
  - Production with one worker type: f(x, y, l) = F(x, y, l, 1)
- Preferences

- Population
  - Workers of type  $x \in X = [\underline{x}, \overline{x}]$ , distribution  $H^w(x)$
  - Firms of types  $y \in Y = [y, \overline{y}]$ , distribution  $H^f(y)$
- Production of firm y
  - $F(x, y, l_x, r_x)$ , where  $l_x$  workers of type x,  $r_x$  fraction of firm's resources
  - F increasing in all arguments
  - F str. concave in each of the last two arguments
  - F constant returns to scale in last two arguments
  - Total output of the firm:  $\int F(x, y, l_x, r_x) dx$
  - Production with one worker type: f(x, y, l) = F(x, y, l, 1)
- Preferences
  - additive in output goods and numeraire

- Population
  - Workers of type  $x \in X = [\underline{x}, \overline{x}]$ , distribution  $H^w(x)$
  - Firms of types  $y \in Y = [y, \overline{y}]$ , distribution  $H^f(y)$
- Production of firm y
  - $F(x, y, l_x, r_x)$ , where  $l_x$  workers of type x,  $r_x$  fraction of firm's resources
  - F increasing in all arguments
  - F str. concave in each of the last two arguments
  - F constant returns to scale in last two arguments
  - Total output of the firm:  $\int F(x, y, l_x, r_x) dx$
  - Production with one worker type: f(x, y, l) = F(x, y, l, 1)
- Preferences
  - additive in output goods and numeraire

Different resource levels:  $F(x, y, l, r) = \tilde{F}(x, y, l, rT(y))$ . Generic capital:  $F(x, y, l, r) = max_k \tilde{F}(x, y, l, r, k) - ik$ .

Competitive search:  $F(x, y, l, r) = max_v \tilde{F}(x, y, vm(l/v), r) - vc$ 

Hedonic wage schedule w(x) taken as given.

Optimization:

• Feasible Resource Allocation:

Equilibrium

Hedonic wage schedule w(x) taken as given.

- Optimization:
  - Firms maximize:  $\max_{l_x, r_x} \int [F(x, y, l_x, r_x) w(x)l_x] dx$
  - Equivalent to:  $\max_{r_x} \int r_x \max_{l_x} [F(x, y, \frac{l_x}{r_x}, 1) w(x) \frac{l_x}{r_x}] dx$
  - Implies:  $r_x > 0$  only if  $\left(x, \frac{l_x}{r_x}\right) = \arg\max f(x, y, \theta) \theta w(x)$  (\*)
- Feasible Resource Allocation:

Equilibrium

Hedonic wage schedule w(x) taken as given.

- Optimization:
  - Firms maximize:  $\max_{l_x, r_x} \int [F(x, y, l_x, r_x) w(x)l_x] dx$
  - Equivalent to:  $\max_{r_x} \int r_x \max_{l_x} [F(x, y, \frac{l_x}{r_x}, 1) w(x) \frac{l_x}{r_x}] dx$
  - Implies:  $r_x > 0$  only if  $\left(x, \frac{l_x}{r_x}\right) = \arg\max f(x, y, \theta) \theta w(x)$  (\*)
- Feasible Resource Allocation:
  - $\mathcal{R}(x, y, \theta)$ : resources to any  $x' \leq x$  by any  $y' \leq y$  with  $\frac{l_{x'}}{l_{x'}} \leq \theta$ .
    - 1 Firm scarcity:  $\mathcal{R}(y|X,\Theta) \leq H^{t}(y)$  for all y.
    - 2 Worker scarcity:  $\int_{\theta \in \Theta} \int_{x' < x} \theta d\mathcal{R}(\theta, x' | Y) \le H^{w}(x)$  for all x.
- Equilibrium

Hedonic wage schedule w(x) taken as given.

- Optimization:
  - Firms maximize:  $\max_{l_x, r_x} \int [F(x, y, l_x, r_x) w(x)l_x] dx$
  - Equivalent to:  $\max_{r_x} \int r_x \max_{l_x} [F(x, y, \frac{l_x}{r_x}, 1) w(x) \frac{l_x}{r_x}] dx$
  - Implies:  $r_x > 0$  only if  $(x, \frac{l_x}{r_x}) = \arg\max f(x, y, \theta) \theta w(x)$  (\*)
- Feasible Resource Allocation:
  - $\mathcal{R}(x, y, \theta)$ : resources to any  $x' \leq x$  by any  $y' \leq y$  with  $\frac{l_{x'}}{l_{x'}} \leq \theta$ .
    - 1 Firm scarcity:  $\mathcal{R}(y|X,\Theta) \leq H^{f}(y)$  for all y.
    - 2 Worker scarcity:  $\int_{\theta \in \Theta} \int_{x' < x} \theta d\mathcal{R}(\theta, x' | Y) \le H^w(x)$  for all x.
- Equilibrium is a tuple (w,R) s.t.
  - 1 Optimality:  $(x, y, \theta) \in \text{supp}\mathcal{R}$  only if it satisfies (\*).
  - 2 Market Clearing:  $\int \theta d\mathcal{R}(\theta|x, Y) \leq h^w(x)$ , "=" if w(x) > 0.

# ASSORTATIVE MATCHING

# DEFINITION (ASSORTATIVE MATCHING)

A resource allocation  $\mathcal R$  entails sorting if its support only entails points  $(x,\mu(x))$  for some monotone  $\mu(x)$ .

Sorting is positive if  $\mu' > 0$ , it is negative if  $\mu' < 0$ .

# ASSORTATIVE MATCHING

# DEFINITION (ASSORTATIVE MATCHING)

A resource allocation  $\mathcal{R}$  entails sorting if its support only entails points  $(x, \mu(x))$  for some monotone  $\mu(x)$ .

Sorting is positive if  $\mu' > 0$ , it is negative if  $\mu' < 0$ .

# PROPOSITION (CONDITION FOR ASSORTATIVE MATCHING)

A necessary condition for positive assortative matching in equilibrium is

$$F_{12}F_{34} \geq F_{23}F_{14}$$

along the equilibrium path. The opposite inequality is necessary for negative assortative matching.

Next: Proof, Examples, Graph, Resource Allocation

# PROOF OF ASSORTATIVE MATCHING CONDITION

Assume assortative matching on  $(x, \mu(x))$  with associated  $\theta(x)$ . Must be optimal, i.e., maximizes:

$$\max_{x,\theta} f(x,\mu(x),\theta) - \theta w(x).$$

First order conditions:

$$f_{\theta}(x,\mu(x),\theta(x)) - w(x) = 0 \tag{1}$$

$$f_{x}(x,\mu(x),\theta(x)) - \theta(x)w'(x) = 0, \qquad (2)$$

# PROOF OF ASSORTATIVE MATCHING CONDITION

Assume assortative matching on  $(x, \mu(x))$  with associated  $\theta(x)$ . Must be optimal, i.e., maximizes:

$$\max_{x,\theta} f(x,\mu(x),\theta) - \theta w(x).$$

First order conditions:

$$f_{\theta}(x, \mu(x), \theta(x)) - w(x) = 0 \tag{1}$$

$$f_{x}(x,\mu(x),\theta(x)) - \theta(x)w'(x) = 0, \qquad (2)$$

The Hessian is

$$\textit{Hess} = \left( \begin{array}{cc} f_{\theta\theta} & f_{x\theta} - w'(x) \\ f_{x\theta} - w'(x) & f_{xx} - \theta w''(x) \end{array} \right).$$

Second order condition requires  $|Hess| \ge 0$ :

$$f_{\theta\theta}[f_{xx} - \theta w''(x)] - (f_{x\theta} - w'(x))^2 \ge 0.$$
 (3)

Differentiate (1) and (2) with respect to x, substitute:

$$-\mu'(x)[f_{\theta\theta}f_{xy}-f_{y\theta}f_{x\theta}+f_{y\theta}f_{x}/\theta] > 0$$

Positive sorting means  $\mu'(x) > 0$ , requiring [...] < 0 and after rearranging:

$$F_{12}F_{34} \ge F_{23}F_{14}. \tag{4}$$

# SPECIAL CASES

## Efficiency Units of Labor

- Skill equivalently to quantity:  $F(x, y, l, r) = \tilde{F}(y, xl, r)$
- In this case no sorting:  $F_{12}F_{34} = F_{23}F_{14}$

#### Multiplicative Separability

- F(x, y, l, r) = A(x, y)B(l, r). Sorting:  $[AA_{12}/(A_1A_2)][BB_{12}/(B_1B_2)] \ge 1$
- If *B* is CES with substitution  $\epsilon$ :  $[AA_{12}/(A_1A_2)] \geq \epsilon$ .
- Implies that root-supermodularity in qualities needed (Eeckhout-Kircher 10).

#### Becker's one-on-one matching

- $F(x, y, \min\{l, r\}, \min\{r, l\}) = F(x, y, 1, 1) \min\{l, r\},$
- Like inelastic CES ( $\epsilon \rightarrow 0$ ), so sorting if  $F_{12} \geq 0$

#### Sattinger's span of control model

- $F(x, y, l, r) = \min\{\frac{r}{t(x, y)}, l\},$
- Write as CES between both arguments
- Our condition converges for inelastic case to log-supermod. in qualities

Example: F(x, y, l, r) = A(x, y)B(l, r)Budget Set:  $D = \{(x, l)|lw(x) \le M\}$ 

Isoprofit Curve:  $i_y = \{(x, l) | A(x, y)B(l, r) = \Pi\}$ 



Slope of Isoprofit Curve:  $\frac{\partial I}{\partial x} = -\frac{A_X(x,y)B(I,1)}{A(x,y)B_Y(I,1)}$ .

If  $A_{xy} = 0$ : higher y has flatter slope as only denominator moves.

If  $A_{xy} > 0$ : higher y can have steeper slope.

Example: F(x, y, l, r) = A(x, y)B(l, r)Budget Set:  $D = \{(x, l)|lw(x) \le M\}$ 

Isoprofit Curve:  $i_y = \{(x, l) | A(x, y)B(l, r) = \Pi\}$ 



Slope of Isoprofit Curve:  $\frac{\partial I}{\partial x} = -\frac{A_X(x,y)B(I,1)}{A(x,y)B_X(I,1)}$ .

If  $A_{xy} = 0$ : higher y has flatter slope as only denominator moves.

If  $A_{xy} > 0$ : higher y can have steeper slope.

Example: F(x, y, l, r) = A(x, y)B(l, r)Budget Set:  $D = \{(x, l)|lw(x) \le M\}$ 

Isoprofit Curve:  $i_y = \{(x, l) | A(x, y)B(l, r) = \Pi\}$ 



Slope of Isoprofit Curve:  $\frac{\partial I}{\partial x} = -\frac{A_x(x,y)B(I,1)}{A(x,y)B_1(I,1)}$ .

If  $A_{xy} = 0$ : higher y has flatter slope as only denominator moves.

If  $A_{xy} > 0$ : higher y can have steeper slope.

# PROPOSITION (FACTOR INTENSITY AND ASSIGNMENT)

If sorting condition holds, then the equilibrium assignment and factor intensity are determined by the system of differential equations:

$$\mu'(x) = \frac{h_w(x)}{\theta(x)h_f(x)}, \quad \theta'(x) = \frac{1}{f_{\theta\theta}} \left[ \frac{1}{\theta} f_x - \frac{h_w}{\theta h_f} f_{y\theta} - f_{x\theta} \right]$$

## PROPOSITION (FACTOR INTENSITY AND ASSIGNMENT)

If sorting condition holds, then the equilibrium assignment and factor intensity are determined by the system of differential equations:

$$\mu'(x) = \frac{h_w(x)}{\theta(x)h_f(x)}, \quad \theta'(x) = \frac{1}{f_{\theta\theta}} \left[ \frac{1}{\theta} f_x - \frac{h_w}{\theta h_f} f_{y\theta} - f_{x\theta} \right]$$

**Proof:** 
$$\mu'$$
 from market clearing:  $H_w(\overline{x}) - H_w(x) = \int_{\mu(x)}^{\overline{y}} \theta(\tilde{x}) h_f(\tilde{x}) dx$   $\theta'$  from FOC:  $f_\theta = w(x)$  and  $f_x/\theta = w'$ , diff. and subst.  $\mu'$ .

# PROPOSITION (FACTOR INTENSITY AND ASSIGNMENT)

If sorting condition holds, then the equilibrium assignment and factor intensity are determined by the system of differential equations:

$$\mu'(x) = \frac{h_w(x)}{\theta(x)h_f(x)}, \quad \theta'(x) = \frac{1}{f_{\theta\theta}} \left[ \frac{1}{\theta} f_x - \frac{h_w}{\theta h_f} f_{y\theta} - f_{x\theta} \right]$$

Example:  $F(x, y, l, r) = A(x, y)(\alpha l^{\gamma} + (1 - \alpha)r^{\gamma})^{1/\gamma}$ , uniform distr.

# PROPOSITION (FACTOR INTENSITY AND ASSIGNMENT)

If sorting condition holds, then the equilibrium assignment and factor intensity are determined by the system of differential equations:

$$\mu'(x) = \frac{h_w(x)}{\theta(x)h_f(x)}, \quad \theta'(x) = \frac{1}{f_{\theta\theta}} \left[ \frac{1}{\theta} f_x - \frac{h_w}{\theta h_f} f_{y\theta} - f_{x\theta} \right]$$

Example: 
$$F(x, y, l, r) = A(x, y)(\alpha l^{\gamma} + (1 - \alpha)r^{\gamma})^{1/\gamma}$$
, uniform distr.

$$\theta'(x) = \frac{(1-\alpha)A_2(x,\mu(x)) - \alpha A_1(x,\mu(x))\theta^{1-\gamma}}{A(x,\mu(x))[1+\theta^{\gamma}][1-\gamma]} \; ; \; \; \mu'(x) = \frac{1}{\theta(x)}.$$

- symmetry A and  $\alpha = 1/2$ : then  $\theta(x) = 1$  and  $\mu(x) = x$
- symmetric A but  $\alpha < 1/2$ : then  $\theta' > 0$
- non-symmetry but inelastic limit (Becker):  $\theta(x) = 1$  and  $\mu(x) = x$

#### COMPETITIVE SEARCH WITH LARGE FIRMS

Vacancy filling prob: m(q). Job finding prob.: m(q)/q. Posting  $(x, v_x, \omega_x)$ .

#### COMPETITIVE SEARCH WITH LARGE FIRMS

Vacancy filling prob: m(q). Job finding prob.: m(q)/q. Posting  $(x, v_x, \omega_x)$ .

$$\max_{r_x, l_x, \omega_x, v_x} \int [F(x, y, l_x, r_x) - l_x \omega_x - v_x c] dx$$
s.t.  $l_x = v_x m(q_x)$ ; and  $\omega_x m(q_x)/q_x = w(x)$ .

#### COMPETITIVE SEARCH WITH LARGE FIRMS

Vacancy filling prob: m(q). Job finding prob.: m(q)/q. Posting  $(x, v_x, \omega_x)$ .

$$\max_{r_x, l_x, \omega_x, v_x} \int [F(x, y, l_x, r_x) - l_x \omega_x - v_x c] dx$$
  
s.t.  $l_x = v_x m(q_x)$ ; and  $\omega_x m(q_x)/q_x = w(x)$ .

Two equivalent formulations:

1 
$$\max_{s_x, r_x} \int [G(x, y, s_x, r_x) - w(x)s_x] dx$$
, where
$$G(x, y, s_x, r_x) = \max_{v_x} [F(x, y, v_x m(s_x/v_x), r_x) - v_x c].$$

2 
$$\max_{l_x, l_x, v_x} \int [F(x, y, l_x, r_x) - C(x, l_x)] dx$$
, where

$$C(x, I_x) = \min_{v_x, q_x} cv_x + q_x v_x w(x) \text{ s.t. } I_x = v_x m(q_x).$$

#### COMPETITIVE SEARCH WITH LARGE FIRMS

Vacancy filling prob: m(q). Job finding prob.: m(q)/q. Posting  $(x, v_x, \omega_x)$ .

$$\max_{r_x, l_x, \omega_x, v_x} \int [F(x, y, l_x, r_x) - l_x \omega_x - v_x c] dx$$
  
s.t.  $l_x = v_x m(q_x)$ ; and  $\omega_x m(q_x)/q_x = w(x)$ .

Two equivalent formulations:

1 
$$\max_{s_x, r_x} \int [G(x, y, s_x, r_x) - w(x)s_x] dx$$
, where  $G(x, y, s_x, r_x) = \max_{v_x} [F(x, y, v_x m(s_x/v_x), r_x) - v_x c]$ .  
2  $\max_{r_x, r_x, r_x} \int [F(x, y, l_x, r_x) - C(x, l_x)] dx$ , where

$$C(x, l_x) = \min_{v_x, q_x} cv_x + q_x v_x w(x) \text{ s.t. } l_x = v_x m(q_x).$$

From 1.: check sorting, compute w(x) as in previous part.

From 2.: determine unemployment. FOC (Cobb-Douglas Matching, coefficient  $\alpha)$  :

$$w(x)q_x = \frac{1-\alpha}{\alpha}c$$
  
 $\Rightarrow$  Unemployment:  $m(q_x)/q_x = q_x^{-\alpha} = \left[\frac{\alpha}{(1-\alpha)c}w(x)\right]^{\alpha}$ 

#### GENERAL CAPITAL, MONOPOLISTIC COMPETITION

#### General Capital:

- $F(x, y, l, r) = \max_{k} \hat{F}(x, y, l, r, k) ik$  (CRS in quantities)
- sorting condition:  $\hat{F}_{12}\hat{F}_{34}\hat{F}_{55} \hat{F}_{12}\hat{F}_{35}\hat{F}_{45} \hat{F}_{15}\hat{F}_{25}\hat{F}_{34} \ge \hat{F}_{14}\hat{F}_{23}\hat{F}_{55} \hat{F}_{14}\hat{F}_{25}\hat{F}_{35} \hat{F}_{15}\hat{F}_{23}\hat{F}_{45}.$

#### GENERAL CAPITAL, MONOPOLISTIC COMPETITION

#### General Capital:

- $F(x, y, l, r) = \max_{k} \hat{F}(x, y, l, r, k) ik$  (CRS in quantities)
- sorting condition:  $\hat{F}_{12}\hat{F}_{34}\hat{F}_{55} \hat{F}_{12}\hat{F}_{35}\hat{F}_{45} \hat{F}_{15}\hat{F}_{25}\hat{F}_{34} \ge \hat{F}_{14}\hat{F}_{23}\hat{F}_{55} \hat{F}_{14}\hat{F}_{25}\hat{F}_{35} \hat{F}_{15}\hat{F}_{23}\hat{F}_{45}.$

#### Monopolistic Competition:

- consumers have CES preferences with substitution ρ
- sales revenue of firm  $y: \chi F(x, y, l, 1)^{\rho}$
- Sorting condition

$$\begin{split} & \left[ \rho \tilde{F}_{12} + (1 - \rho) (\tilde{F}) \frac{\partial^2 \ln \tilde{F}}{\partial x \partial y} \right] \left[ \rho \tilde{F}_{34} - (1 - \rho) I \tilde{F} \frac{\partial^2 \ln \tilde{F}}{\partial I^2} \right] \\ \geq & \left[ \rho \tilde{F}_{23} + (1 - \rho) \tilde{F} \frac{\partial^2 \ln \tilde{F}}{\partial y \partial I} \right] \left[ \rho \tilde{F}_{14} + (1 - \rho) \left( I \tilde{F}_{13} - I \tilde{F} \frac{\partial^2 \ln \tilde{F}}{\partial x \partial r} \right) \right]. \end{split}$$

- independent of  $\chi$
- our condition under  $\rho = 1$ , log-sm when production linear in I.

# **CONCLUSION**

#### This work:

- Lay out a tractable sorting model with factor intensity
- Derive tractable sorting condition (F<sub>12</sub>F<sub>34</sub> ≥ F<sub>14</sub>F<sub>23</sub>)
- Characterize equilibrium factor intensity and assignment
- Extend to frictional market with sorting and large firms
- Various other extensions (general capital, monop. comp.)

#### Future:

- Generate more work on sorting on the intensive market
- Comparative statics on consequences of aggregate changes
- Applications in trade/macro/...