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Abstract

Using a sample of about 1,500 CEOs in the post-Sarbanes-Oxley Act of 2002 period,
I estimate the extent of undetected intentional manipulation in earnings and managers’
manipulation costs using a dynamic finite-horizon structural model. The model fea-
tures a risk-averse manager, who receives cash and equity compensation and maximizes
his terminal wealth. I find that the expected cost of manipulation is low. The prob-
ability of detection is estimated to be 9%, and the average misstatement results in
an 11% loss in the manager’s wealth if the manipulation is discovered. According to
the estimated parameters, the implied fraction of manipulating CEOs is 66%, and the
value-weighted bias in the stock price across manipulating CEOs is 15.5%. At the same
time, the value-weighted bias in the stock price across all CEOs is 6%. Finally, I find
that out-of-sample, the model-implied measure of intentional manipulation performs
at least eight times better in terms of the root mean squared error than any of the five
proxies for earnings management that have been used in the extant literature.
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1. Introduction

This paper attempts to estimate managers’ costs of lying about earnings and the extent of

undetected manipulation in the post-Sarbanes-Oxley Act of 2002 (post-SOX) period. In this

period, approximately 4.2% of the companies presently listed on the NYSE, the Amex, or

NASDAQ restated their financial statements, with about 70% of the restatements affecting

net income [Cheffers et al., 2011]. Although a majority of companies attribute restatements

to innocuous internal company errors [Plumlee and Yohn, 2010], questions about whether

these restatements reverse the intentional manipulation decisions made by management and

the extent of undetected manipulation remain. The major difficulty researchers face in ad-

dressing these issues lies in the imperfect ability of outside parties to detect intentional

manipulation [e.g., Feroz et al., 1991, Correia, 2009, Dechow et al., 2010]. If, in fact, a sub-

stantial amount of undetected manipulation exists, it is important to ascertain its magnitude

and potential impact on shareholder value. These insights would allow investors, boards of

directors, regulators and researchers to make informed decisions about resources that should

be invested in the detection and prevention of manipulation.

This paper implements a structural model of a manager’s manipulation decision, which

follows an economic approach to crime [Becker, 1968] by incorporating the manager’s costs

and benefits of manipulation. The structural model allows for the possibility that manip-

ulation is not detected perfectly. It also allows for an estimation of his manipulation cost

parameters, as well as an inference about the bias in the stock price induced by the manip-

ulation. The manipulation decision is modeled as a solution to an optimization problem of

a risk-averse manager in a dynamic finite-horizon setting. The manager’s wealth depends

on cash compensation and his holdings in the firm’s equity. Because the firm’s stock price

depends on reported earnings, the manager has incentives to misreport earnings to increase

the value of his equity holdings as suggested by the popular press1 and extant literature

1Olive, David (2002) “Many CEOs richly rewarded for failure - They didn’t suffer as stocks tanked in
new economy,” The Toronto Star, August 25, A01. Kilzer, Lou, David Milstead, and Jeff Smith (2002)
“Qwest’s rise and fall; Nacchio exercised uncanny timing in selling stock,” Rocky Mountain News, June 03,
1C. Haddad, Charles (2003) “Too good to be true - Why HealthSouth CEO Scrushy began deep-frying the
chain’s books,” BusinessWeek, April 14, 70.
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[e.g., Bergstresser and Philippon, 2006, Harris and Bromiley, 2007, Erickson et al., 2006,

Armstrong et al., 2010]. Misreporting is introduced as the bias in net assets, with the bias

in earnings equal to the difference in consecutive biases in net assets.

The manager trades off the benefits of misreporting against the cost of manipulation. I

assume that the cost is a fraction of the manager’s wealth and that this fraction increases

with the magnitude of manipulation, which is the bias in net assets. The assumption that

the cost depends on the cumulative amount of manipulation in earnings (i.e., the bias in

net assets) and that the benefit depends on the amount of manipulation in current earnings

(i.e., the difference in consecutive biases in net assets) implies that the existing bias in net

assets acts as a constraint on the manipulation decision.2 This feature is the valuation effect

which states that the manager chooses a higher bias in net assets in the current period if

the existing bias in net assets is also high. Another feature of the model is the wealth effect,

which implies that a risk-averse manager with greater total wealth chooses a smaller bias

since he does not value the additional dollar of manipulation as much and, at the same

time, the manipulation cost for him is higher. Finally, the manager’s manipulation decision

exhibits income-smoothing.3

In contrast to the common approach in the literature, the structural approach allows

the estimation of the manipulation cost parameters, such as the probability of detection

and the loss in wealth using the data on detected misstatements. Furthermore, estimates of

these parameters permit the recovery of the incidence and magnitude of overall undetected

manipulation. However, using the structural approach comes at a cost, because it imposes

strong assumptions on the data related to the functional form of the manager’s objective

function. For instance, I assume that the manipulation incentives are primarily determined

by the relative importance of the manager’s equity holdings in the firm and his cash wealth;

2This is similar to the notion of the balance sheet as an earnings management constraint, [e.g., Barton
and Simko, 2002, Baber et al., 2011].

3The phenomenon of smoothing by managers has received substantial attention in the theoretical litera-
ture. For example, it is derived as a result of smoothing consumption in an agency setting [e.g., Lambert,
1984, Dye, 1988] or a non-agency setting [e.g., Sankar and Subramanyam, 2001], to lower the perceived
probability of bankruptcy [e.g., Trueman and Titman, 1988], and/or to maximize the manager’s tenure in
the firm [e.g., Fudenberg and Tirole, 1995].
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then, I use observed equilibrium compensation and earnings pricing multiples to solve the

manager’s dynamic optimization problem with respect to manipulation. While these as-

sumptions are strong and can be relaxed in future research, they allow me to estimate the

model and provide useful descriptive evidence about executives’ manipulation decisions.

Because the structural model described here does not allow for a closed-form solution

to the manager’s optimization problem, I use the Simulated Method of Moments (SMM)

to estimate the costs of manipulation parameters.4 In this approach, I solve the individual

optimization problem for each executive in my sample of about 1,500 CEOs. This method

allows me to incorporate heterogeneity into manipulation decisions, which is assumed to be

primarily determined by differences in the structure of the executives’ compensation pack-

ages. The estimation uses observed data on restatements that are included in the category of

non-technical and nontrivial restatements from the Audit Analytics Advanced Restatement

database over the post-SOX period.

The data on restatements define four moment conditions which I use to identify three

parameters: the probability of detection, the loss in wealth, and the sensitivity of the loss

in wealth to the magnitude of manipulation. The four moment conditions are the fraction

of restating firms, the mean bias in net assets in the first restated period, the mean product

of biases in net assets in the first two restated periods, and the mean ratio of cash wealth

to the value of inflating earnings by one dollar. The probability of detection and the loss in

wealth are primarily identified from the fraction of restating firms and the mean ratio of cash

wealth to the value of inflating earnings by one dollar because these parameters determine the

manager’s binary decision to manipulate. The sensitivity parameter is primarily identified

from the two moments which utilize the magnitude of bias in net assets.

One of this paper’s major findings is that the expected cost of manipulation is low.

Specifically, the estimated probability of the manipulation being detected is 9%. If detected,

the average misstatement results in a 11% loss in the manager’s wealth for the non-technical

restatement sample. According to the estimated model, the fraction of executives who

manipulate during their tenure is 66%. This number is similar in magnitude to the 78% of

4The use of the SMM is common in structural corporate finance studies [Strebulaev and Whited, 2012].
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executives reporting that they would sacrifice long-term value to smooth earnings [Graham

et al., 2005]. In addition, two recent studies by Gerakos and Kovrijnykh [2013] and Dyck

et al. [2013] provide a conservative estimate for the fraction of misreporting executives and

fraud. According to Gerakos and Kovrijnykh [2013], the lower bound on the fraction of

misreporting firms is about 22%, whereas according to Dyck et al. [2013], a conservative

estimate for undetected fraud in any given year is 14.5%, assuming that the probability of

fraud detection has increased substantially following the Arthur Andersen collapse.

At the same time, the value-weighted inflation in the stock price among manipulating

executives is 15.5%, and the equally weighted inflation in the stock price is 24% for the non-

technical restatements sample. The difference between value-weighted and equally weighted

inflation implies that manipulation is primarily concentrated among small stocks. These

estimates are similar to Dyck et al. [2013], who estimate the cost of fraud to investors to

be around 22% of firm value. These estimates are also of the same order of magnitude as

a negative 25% mean annual return in the year in which a firm restates its earnings. The

value-weighted inflation in the stock price across all firms is 6%, which is two times higher

than the 3% estimated by Dyck et al. [2013] for fraud cases.

Finally, based on the out-of-sample tests, the model-implied measure of manipulation is

at least eight times better at predicting the magnitude of manipulation in earnings than the

commonly used measures of discretionary accruals5 [e.g., Jones, 1991, Dechow et al., 1995,

Kasznik, 1999, Kothari et al., 2005] in terms of the root mean squared error. This finding

implies that finance and accounting researchers should be cautious about using discretionary

accruals as a proxy for earnings management, and, instead, carefully consider the benefits

and costs of misreporting specific to their research setting.

While there is an extensive literature on earnings management6 and on the relationship

5A measure of discretionary accruals is a residual from a regression of total accruals on the determinants of
normal accruals. These measures are biased to the extent that the model does not use the true determinants
of normal accruals [see the discussion in McNichols, 2000] and ignores the incentives behind the manipulation
decision. Consequently, previous research indicates that measures of discretionary accruals do not predict
actual cases of manipulation, such as severe restatements and fraud [e.g., Dechow et al., 2011, Price et al.,
2011, Larcker and Zakolyukina, 2012].

6For a review of the empirical research, see Healy and Wahlen [1999], Dechow and Skinner [2000], and
Dechow et al. [2010]. For a review of the theoretical research, see Lambert [2001] and Ronen and Yaari
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between earnings management and equity incentives7, this is the first study to estimate

earnings management using a structural model. Moreover, this study represents the first

attempt to fit an economic model to data on restatements and executive compensation and to

evaluate the manager’s manipulation costs. Although the model is stylized, its specification

is detailed enough to capture important features of the data such as the partial observability

of manipulation decisions.

The remainder of the paper consists of five sections. Section 2 discusses why the structural

approach is particularly suitable in studying earnings manipulation. Section 3 outlines the

model and presents the intuition using a manager’s decision in the last period. Section 4

discusses data, identification considerations, and the estimation method. The results are

presented in Section 5. Section 6 discusses limitations and provides concluding remarks.

2. Structural estimation

I use the structural approach to estimate the expected cost of manipulation in earnings

because it allows model-specific parameters that cannot be observed directly to be quantified.

Such parameters determine the manager’s decision about what earnings number to report

and include the probability of detection and, if detected, the manager’s loss in wealth. To

estimate these parameters, I fit the model to the data on detected manipulation. I then use

the model to infer the magnitude of undetected manipulation in reported earnings.

The structural approach has frequently been used in economics, particularly to study

industrial organization [e.g., Reiss and Wolak, 2007, Einav and Levin, 2010] and consumer

choices [e.g., Nevo and Whinston, 2010, Keane, 2010]. Structural estimation also provides

useful insights into corporate finance [e.g., Whited, 1992, Hennessy and Whited, 2005, Morel-

lec et al., 2012, Nikolov and Whited, 2009, Taylor, 2010, Matvos and Seru, 2013, Strebulaev

and Whited, 2012]. It allows the estimation of theoretical parameters and provides a better

understanding of the precise economic mechanisms behind the decisions made by managers

and firms. It is often possible to test how well the model explains the data within this

[2008].
7See, for example, a short review in Armstrong et al. [2010].
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framework. However, the core feature of structural models is their potential in examining

counterfactuals, i.e., extrapolating from observed responses to predict responses under an

environment that has not yet been observed.

To infer undetected manipulation in this study, I analyze the primitives of the manager’s

decision problem, which differs from the extant studies that typically measure manipulation

using discretionary accruals. Discretionary accruals are defined as residuals from a linear

regression of some measure of total accruals on the ad hoc determinants of normal accruals.

However, measuring manipulation via discretionary accruals is problematic because they

are correlated with firms’ characteristics that are unrelated to manipulation, such as, for

instance, growth [McNichols, 2000]. Furthermore, such statistical models do not incorporate

the costs and benefits of manipulation to the manager. Therefore, only by estimating the

model of the manager’s decision to lie about earnings can the managers’ manipulation costs

and the magnitude of unobserved manipulation be assessed, which is done in this paper.

3. Model

3.1 Model outline

The model features a risk-averse manager who maximizes the utility of his wealth when he

leaves the firm. His terminal wealth depends on both the manager’s equity holdings in the

firm and cash. At each period, the manager can strategically distort the reported earnings

in order to inflate the stock price and, hence, the value of his equity holdings.8

The firm’s stock price deviates from the firm’s intrinsic value by an amount proportional

to the bias in earnings, which equals the difference in the biases in net assets. This speci-

fication accommodates various potential rates of accrual reversal because the manager can

always bias net assets by an additional dollar to compensate for any reversal rate. This is

possible because the cost of manipulation is assumed to depend only on the total bias in

8A number of theoretical papers consider the rational expectations equilibrium when the market incor-
porates the manager’s manipulation decision into the pricing function [e.g., Fischer and Verrecchia, 2000,
Sankar and Subramanyam, 2001]. I do not follow this approach here since incorporating rational expectations
into a multi-period setting is a difficult theoretical problem that lies beyond the scope of this paper.
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net assets rather than on the incremental bias introduced in each period. Therefore, when

selecting the bias in net assets in the current period, the manager considers the bias in net

assets in the previous period as well as the effect his choice of current-period bias in net

assets will have on future optimal bias levels.

The manager’s choices of bias determine the value of his wealth when he leaves the firm.

The manager can leave the firm for the following three reasons. First, the manager can leave

the firm for reasons unrelated to manipulation with a certain probability. This probabilistic

exit captures the notion that the manager is uncertain about when he will be terminated or

when an exogenous employment opportunity, prompting him to leave voluntarily, will arise.

Second, the manager can be forced to resign when manipulation is detected, and the firm

restates its financial statements. Third, the manager must leave the firm when he reaches

a retirement age; thus, his dynamic optimization problem has a finite horizon. That is,

irrespective of the reason for which the manager leaves, his utility is a function of the value

of his equity holdings and cash at that time.

The composition of the manager’s compensation, as captured by the relative magnitudes

of his equity holdings and cash, determines his manipulation decision. The manager benefits

from the manipulation by increasing the stock price and, as a result, the value of his equity

holdings. At the same time, he expects to incur a loss in his wealth once the manipulation is

detected. Because the manager receives a new grant of shares and periodic cash compensa-

tion, his wealth changes every period. However, the terminal value of the manager’s wealth

depends on whether he manipulates and whether his manipulation is detected.

If he has never manipulated before, the manager can decide whether to manipulate in

each period. Once he has decided to manipulate, he chooses the optimal amount of the

bias in net assets in every future period before the manipulation is detected or he leaves the

firm. The optimal amount of manipulation in the future periods could be zero, depending

on the firm’s current intrinsic value (because this value affects the future distribution of the

manager’s equity wealth) as well as the existing bias. If he manipulated before, he also faces

the probability of detection in each future period. Then, if the manipulation is detected,

the restatement is made, and the manager can be forced to resign. Restatement corrects the
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bias; thus, the stock price equals the intrinsic value subsequent to the detection. However, if

the manager is not terminated after the detection, he can never manipulate again, because

the board significantly improves its monitoring.

The board can also force the manager to resign, in which case the manager incurs a

loss proportional to his wealth. I assume that the loss is a convex function of the bias in

net assets as well as that either positive or negative misstatements are equally costly to the

manager. As a result of the forced resignation, the manager suffers a loss in his wealth, the

loss of non-vested equity holdings9 in addition to the loss of the future compensation that he

would have earned had he stayed with the firm. The solution to the multi-period problem

and the formal description of the model are presented in Appendix A.

3.2 Final period decision

Each period, the manager decides whether to manipulate and by how much by solving the

finite-horizon problem. A finite horizon implies that the manager’s optimal decision depends

on the number of periods remaining until the final date T . In addition, his decision is

determined by the path of his future wealth and equity holdings as well as by the distribution

of the future intrinsic firm value. To simplify the explanation, I demonstrate the intuition

underlying the manager’s decision using the optimization problem he solves at the final date

T . This intuition will carry over to the earlier periods.

At the final date T , the manager privately observes the realization of the intrinsic firm

value, pT ; and, if he has manipulated in the previous periods, the magnitude of the existing

bias in net assets, bT−1. If the manager has manipulated before, he chooses an amount

of manipulation that is a function of the intrinsic firm value and the existing bias in net

assets, bT (pT , bT−1). However, if the manager has not manipulated before, he can decide to

manipulate, in which case he chooses a magnitude of manipulation, which is a function of

the intrinsic firm value only because the existing bias is zero by definition, bT (pT ).

If the manager manipulates, his payoff depends on whether his manipulation is detected

9This idea is consistent with the common feature of compensation contracts in the sense that the manager
automatically loses his non-vested equity if he is terminated.
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and whether he is terminated as a result of this detection. If the manipulation is not detected,

the manager receives his wealth valued at the stock price distorted by the manipulation.

However, if manipulation is detected and the manager is terminated, the manager receives

only a fraction of his wealth, valued at the intrinsic price. This fraction decreases with the

magnitude of manipulation; therefore, higher levels of manipulation imply that the manager

receives less wealth. Finally, if manipulation is detected and the manager is not terminated,

the manager receives his wealth valued at the intrinsic price, which equals the wealth he would

have received if he had been honest. Denote the wealth the manager would have received if

he had been honest by w̃T = wT + nTpT (where wT is the manager’s cash holdings, nT = nvT

is his vested equity holdings10), then his expected payoff at T becomes:

max
bT

(1− g)U

(
w̃T + nTβ(bT − bT−1)

)
︸ ︷︷ ︸

not detected

+

+ gφU

(
w̃T

(
1− κ1 −

κ2
2

(βbT )2
))

︸ ︷︷ ︸
detected, terminated

+g(1− φ) U

(
w̃T

)
︸ ︷︷ ︸

detected, not terminated

, (1)

where g is the probability of detection; φ is the probability of termination if the manipulation

is detected; κ1 is the loss in the manager’s wealth if he has ever manipulated; κ2 is the

sensitivity of the loss in the manager’s wealth to the magnitude of manipulation; β is the

price-to-earnings multiple; and U(.) is a constant relative risk aversion utility.

The optimal choice of bias b∗T (pT , bT−1) satisfies the first-order condition:

(1− g)U ′
(
w̃T + nTβ(b∗T − bT−1)

)
nT = gφU ′

(
w̃T

(
1− κ1 −

κ2
2

(βb∗T )2
))

κ2βb
∗
T . (2)

If the manager has not manipulated before, he decides to manipulate if the payoff he

receives from manipulating, b∗T (pT ), is strictly greater than the payoff he would have received

10To simplify the notation, I set his non-vested equity holdings to zero.

10



if he had not been manipulating:

(1− g)U

(
w̃T + nTβb

∗
T

)
+ gφU

(
w̃T

(
1− κ1 −

κ2
2

(βb∗T )2
))

+

+ g(1− φ)U

(
w̃T

)
> U

(
w̃T

)
. (3)

For the general case of the constant relative risk aversion utility, this problem cannot be

solved analytically. Therefore, I solve the problem numerically. Fig. 1 depicts the optimal

magnitude of manipulation when the manager manipulates for the first time, b∗T (pT ), and the

optimal magnitude of manipulation if the manager continues to manipulate, b∗T (pT , bT−1), at

the terminal date T .

The manager trades off the benefit he receives from distorting the stock price and the

cost that is incurred if his manipulation is detected and he is terminated. The cost is

proportional to the manager’s wealth; hence, wealthier managers may not start manipulating

in the final period because the cost of termination for them at that time is higher. However,

if the manager manipulates in the final period, he will always manipulate a positive amount

because there is no future benefit to downwards distortion. On the other hand, it can be

optimal for a wealthier manager to distort the stock price downwards in previous periods.

This downwards distortion provides the manger with the reserve of manipulation that can

be reversed to inflate earnings in future periods. This practice is well known as a “cookie

jar” reserve, and the manager uses it to smooth the value of his wealth.11

The optimal magnitude of manipulation, b∗T (pT , bT−1) generally decreases with the intrin-

sic value, pT , which I label the wealth effect, and increases with the existing bias, bT−1, which

I label the valuation effect (Fig. 1). According to the wealth effect, the wealthier managers

have a lower magnitude of manipulation because they benefit less from manipulation, but, at

the same time, manipulation is still costly for them, as can be seen from the first-order con-

dition (2). This effect arises because the manager is risk-averse, and the cost of manipulation

is proportional to his wealth. Accordingly, his marginal benefit of manipulation decreases

11Income-smoothing has been derived in extant theoretical literature in a number of settings [see, for
instance, Lambert, 1984, Dye, 1988, Fudenberg and Tirole, 1995].
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more rapidly than his marginal cost when the wealth of the manager increases (under the

non-zero cost of manipulation parameters, (κ1, κ2)).

According to the valuation effect, the optimal bias in net assets in the current period

increases with the existing bias in net assets. This effect ensues because the manager is

risk-averse and reported earnings (possibly distorted by the difference in the biases in net

assets, bT − bT−1) are used by investors to price shares. The manager’s risk aversion is

important for this effect to occur because his marginal benefit of manipulation increases in

the existing bias, whereas his marginal cost depends only on the current-period bias. For

instance, suppose that the manager biased net assets by $10 in the previous period compared

to a $1 bias. In this case, the manager has greater incentives to misreport because if he did

not bias net assets in the current period, his firm’s earnings would be lower by $10; whereas

the earnings would be lower by just $1 if the bias in the previous period was $1.

Finally, manipulation is a convex function of wealth (Fig. 1). Manipulation by less

wealthy managers declines more rapidly as his wealth increases compared to the case of

wealthier managers. This effect is the result of the manager being risk-averse; thus, less

wealthy managers become more sensitive to the changes in their wealth caused by manipu-

lation.

To summarize, the optimal level of manipulation is determined by three effects. First, the

wealth effect implies that wealthier managers manipulate less. Managers’ manipulation pat-

tern smooths the value of their wealth. Second, the valuation effect implies that the optimal

bias in net assets in the current period increases with the existing bias in net assets. Third,

manipulation is a convex function of wealth. The intuition behind the results established in

the final period carries over to the multi-period case.

4. Estimation

4.1 Data

The model estimation requires data on executive compensation, CEO turnover, restatements,

and the parameters of the intrinsic value process. To be consistent with the model, I only
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consider restatements that are fully covered by the CEO’s tenure and have a non-zero effect

on net income. Restatements may be issued for a variety of reasons and may not be inten-

tional; whereas this model hypothesizes that the manager chooses manipulation optimally,

expecting that it may be detected with some probability. Accordingly, manipulation in the

model has two features: first, it should represent non-GAAP accounting that, if detected,

should be restated; second, the misstatement should be intentional. To satisfy the first crite-

rion, I consider only restatements that are due to accounting errors. However, it is difficult to

satisfy the second criterion; therefore, some discretion is unavoidable. I try to deal with this

issue by allowing for different definitions of an “intentional” misstatement and estimating

the model with two groups of restatements: non-technical and nontrivial.12

Data on CEO compensation are obtained from the comprehensive database on executive

compensation collected from annual proxy filings (DEF 14A) provided by Equilar, Inc. The

Equilar database coverage is more than double the coverage of Compustat Execucomp. This

database includes the CEO resignation date, but does not list the date on which the CEO

leaves the firm. These two dates can be different, for instance, because the CEO could

resign, but remain with the firm as a member of the board. I obtained the date on which the

CEO left from the BoardEx database, which provides the employment histories of individual

executives. Data on restatements originate from the Audit Analytics Advanced Restatement

database, which contains data from the restatement footnotes for firms traded on the NYSE,

the Amex, or NASDAQ at the end of 2007 or any time thereafter. Accordingly, there are two

groups of executives in my sample depending on whether the firm has restated its financial

statements. The first group comprises executives who had no restatements during their

tenure and became CEOs between August 1, 2002 and December 31, 2007. The second group

of executives represents those who issued a restatement during their tenure if they became

CEOs before December 31, 2007; and, the restated periods for them began after August 1,

2002. As a result, the sample represents an intersection of the Equilar and BoardEx data sets

12I have also estimated the model using the data on restatements that involve allegations of fraud, formal
and informal SEC investigations, or class-action lawsuits. There are only 28 instances of such restatements
in my sample; as a result, I found that the model is rejected, probably because not enough variation exists
in the detected misstatements in this case.

13



with the additional restriction that the firm be listed on the NYSE, the Amex, or NASDAQ

as of December 31, 2007 or any time thereafter.

The industry composition based on Standard & Poor’s Global Industry classification

groups of the sample firms is almost identical to the industry composition of firms in Com-

pustat. The industries comprising a larger percentage of firms include capital goods (7%),

health care equipment and services (7%), banks (9%), and software and services (8%). The

industries below 1% include food and staples retailing and household and personal products.

While the sample firms are significantly larger than the Compustat sample in terms of market

capitalization, total assets, and sales, they are not significantly different from the Compustat

sample in terms of profitability (as measured by the return on assets and profit margins),

sales growth, and capital structure (as measured by the book-to-market ratio, leverage, and

free cash flows) (Table 2).

I attempt to exclude extraneous restatements by considering two groups of restatements:

non-technical and nontrivial.13 This strategy represents a tradeoff between the likelihood

of these restatements being intentional and the amount of variation in the data. Having

only a few restatements can be a problem in my setting. Indeed, the number of restate-

ments decreases by half as the criteria for the seriousness of a restatement become more

restrictive (Table 3). First, non-technical restatements (165 cases) exclude lease-related re-

statements14, restatements related to SAB 108 and FIN 48 implementation because these

restatements do not provide a complete time-line for the misreporting and are likely to be

non-intentional. Second, nontrivial restatements (99 cases) are non-technical restatements

that exclude accounting issues that do not trigger a significant negative market reaction

according to Scholz [2008]. These restatement groups differ in the characteristics that are

hypothesized by previous research to capture the severity of a misstatement [Palmrose et al.,

2004, Scholz, 2008]. Specifically, nontrivial restatements contain more misstatements related

to revenue recognition, core expenses, and correct a greater number of accounting issues. The

13The recent paper by Karpoff et al. [2012] caution researchers that commonly used restatement databases,
including Audit Analytics, contain potentially extraneous restatements that are not necessarily related to
misconduct.

14See http://www.sec.gov/info/accountants/staffletters/cpcaf020705.htm
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mean annual return in the year in which the restatement was disclosed equals negative 25%

for both groups of restatements (Table 3). Accordingly, I estimate two models of intentional

manipulation when these two groups of restatements are classified as “intentional.”

Executives’ total wealth (the sum of outside and firm-specific wealth) is unobserved;

however, it is usually approximated as being a multiple of firm-specific wealth comprised

of cash compensation and the value of equity holdings [e.g., Core and Guay, 2010, Conyon

et al., 2011]. For instance, it is often assumed that a CEO’s firm-specific wealth is between

50% and 67% of his total wealth. Accordingly, I assume that a CEO’s initial outside wealth

(or initial cash wealth) equals his firm-specific wealth in the first period. In addition, I

assume that his periodic cash compensation adds to his cash wealth and that he earns a

risk-free rate of 2% on his cash wealth every year.

The finite horizon of the problem requires an assumption about the terminal date; I

assume that the manger leaves the firm with certainty at the age of 85. I make this as-

sumption because some executives stay in the firm after they have reached the age of 80.

However, not all the executives stay in the firm until they are 85; hence, I must extrapolate

the manager’s compensation until that age. Specifically, I assume that cash compensation

and equity holdings for each executive grow at an annual rate equal to the median growth in

industry-revenue groups. Before that age, an executive could leave the firm for restatement-

related or other reasons. I assume that his departure is restatement-related if he departs

between the end of the restated period and within one year following the restatement filing

date.15

Industry-specific parameters are defined based on Standard & Poor’s Global Industry

classification groups.16 These parameters include the price-to-earnings multiple and param-

eters corresponding to the firm’s intrinsic value process. I set the price-to-earnings multiple

equal to the median price-to-earnings multiple across firms in the same industry in order

to avoid unusually large or small firm-specific values that are unlikely to persist over time.

Similarly, I assume that firms in the same industry group experience a similar evolution of

15The extant studies use various assumptions about the time-window for restatement-related turnover that
ranges from six months as in Hennes et al. [2008] and three years as in Srinivasan [2005].

16I use the classification in which the number of industries is 24.
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intrinsic value because they are likely to have similar investment opportunities, technolo-

gies, and markets. Accordingly, the intrinsic value parameters are set to their corresponding

industry medians.

I measure the bias as the difference between the initially-reported basic earnings per share

(EPS) and subsequently restated basic EPS. I adjust firms’ EPS for stock splits to make them

comparable with data from Equilar. The bias in net assets in the first manipulative period

is the sum of the bias in earnings and the lagged bias in shareholders’ equity in the first

restated period.17 The second-period bias in net assets is the sum of the bias in net assets

in the first period and the bias in EPS in the second restated period.

Table 1 lists the parameter definitions. Descriptive statistics are presented in Table 4.

The sample for which an intentional misstatement is defined as a non-technical (nontrivial)

restatement contains 1, 513 (1, 462) CEOs. Because the two samples have virtually identical

summary statistics, I discuss these statistics only for the sample of non-technical restate-

ments. The mean cash wealth scaled by the value of CEOs’ equity holdings in the first

period is 191% with a large standard deviation of 141%. The mean of the number of vested

shares as a fraction of the number of total shares in the first period is 99%, and the mean

of the number of non-vested shares as a fraction of the number of total shares in the first

period is 35%. The median age of a CEO is 53 years old, and he is observed in the sample

for four years. The mean annual probability of leaving the firm for reasons unrelated to

restatements is relatively low at 7%. The parameters for the intrinsic value process are the

expected annual return with a mean of 8% and a standard deviation with a mean of 39%,

which is comparable to the historical mean of about 30% for large publicly-traded companies

from the previous decade [Hall and Murphy, 2002]. The mean price-to-earnings multiple is

21, which is consistent with the sample period being expansionary.

Although the summary statistics are similar across the two samples, the restatement

rates differ. The sample in which an intentional misstatement is defined as non-technical

(nontrivial) is associated with 11% (7%) of firms restating. The corresponding mean bias

in net assets in the first restated period scaled by the stock price before a CEO joins a firm

17In most cases, the lagged bias in shareholders’ equity in the first restated period is zero.
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among restating firms is 1% (1%). The mean magnitude of bias in net assets in the second

restated year is 0.66% (0.77%). The second period bias is lower because not all firms restate

both periods.

4.2 Identification

I estimate three parameters that determine the expected cost of manipulation: the prob-

ability of manipulation being detected, g, the loss in the manager’s wealth, κ1, and the

sensitivity of the loss in the manager’s wealth to the magnitude of the manipulation, κ2.

These parameters are estimated using a structural model and are assumed to be constant

across executives. Accordingly, I restrict my sample to the post-SOX period because SOX

has increased criminal penalties and the CEO’s exposure to liability for financial misreport-

ing [Karpoff et al., 2008], and, hence, changed the cost of the manipulation parameters. It is

certainly plausible that these parameters can be a function of managers’ and firms’ charac-

teristics.18 However, the rare nature of restatements does not allow me to incorporate such

variation into the model.

These three parameters are identified from four moment conditions: the fraction of restat-

ing firms in the overall population (the population of manipulating CEOs is unobserved19);

the mean bias in the first restated period, the covariance of biases in the first and second

restated periods, and the mean ratio of cash wealth to the value of inflating earnings by one

dollar. I use the biases in the first two restated periods because the firm restates its financial

statements upon detection of manipulation; and an overwhelming majority of restatements

corrects only two annual reports [Cheffers et al., 2011].

Managers have different incentives to manipulate. The heterogeneity in manipulation

decisions arises from time and cross-sectional variation in the composition of the manager’s

wealth and in the amount of time remaining until retirement in addition to cross-sectional

18The paper by Schrand and Zechman [2012] suggests that the expected cost of misreporting earnings can
vary across executives because differences in the degree of overconfidence may result in differing assessments
of the probability of detection. In addition, the probability of detection can depend on the analyst following
[Yu, 2008] and corporate governance [Hazarika et al., 2012].

19We do not observe all CEOs who manipulate in the data; instead, we only observe detected manipulation.
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variation in the parameters of the intrinsic value process and in price-to-earnings multiples.

Instead of modeling a general equilibrium, I assume that we observe the equilibrium path

comprising managers’ wealth and pricing multiples in the data. These values can perhaps

incorporate the expectation about how much the manager would manipulate; however, when

the manager solves his optimization problem, he takes these equilibrium values as being given.

I model the probability of detection and termination as exogenous although they could

be a function of the bias.20 Instead, I assume that the loss in wealth increases with the bias.

This assumption allows the expected cost of manipulation to increase with the bias through

the increased loss of wealth, rather than through the increased probability of detection or

termination.21

The four moment conditions are selected based on their sensitivity to parameter changes.

The first moment condition is the frequency of restatements. The changes in the probability

of detection and the loss-in-wealth parameters affect the number of restatements differently.

Once the probability of detection is held fixed, the number of restating firms decreases as the

loss in wealth parameters increases. In contrast, the change in the probability of detection

plays a dual role. On the one hand, as the probability of detection increases, the expected

cost of manipulation increases; hence, fewer managers find it optimal to manipulate, which

results in fewer restatements. On the other hand, once the loss in wealth is sufficiently low,

as the probability of detection increases, the number of restatements may also increase.

20A model of optimal monitoring would imply that the probability of detection and termination should be
higher when the cost of manipulation is low. However, I do not find that the firms in which the manager is
more likely to manipulate have corporate governance features that are hypothesized to be related to better
monitoring of the manager. Alternatively, monitoring by employees of the firm plays a role in fraud detection
[Dyck et al., 2010]. It is not clear whether the intensity of monitoring by employees would be higher if the
manager faces a lower cost of manipulation.

21I have also estimated the model in which the probability of detection depends on the bias. The parameters
are not well identified and the model has a poor fit. The identification can be more difficult in this case
because the manager has direct control over the probability of detection. The larger bias would imply a
higher probability of detection, and hence, more restatements. At the same time, the larger bias would imply
a higher expected cost of manipulation, and, hence, fewer manipulating managers and fewer restatements.
Thus, an increase in the bias would have two opposing effects on the restatement rate, which makes it difficult
to identify parameters. On the other hand, if the probability of detection is modeled as exogenous and only
the loss in wealth depends on the bias, the effect of an increase in the bias is one-directional. Specifically,
the larger bias would imply a higher expected cost of manipulation, and, as a result, fewer manipulating
managers and fewer restatements.
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The second moment condition is the mean first-period bias. This bias declines as the

expected cost of manipulation increases. The third moment condition is the mean product

of manipulation in the first and second periods. The bias in the second period decreases as

the expected cost of manipulation increases, but it is less sensitive to parameter changes if

the bias in the first period is large. This finding is a manifestation of the valuation effect:

the second-period manipulation is more valuable if the first-period manipulation is large.

The fourth moment condition is the mean ratio of cash wealth to the value of inflating

earnings by one dollar. The mean is taken over all future periods after the manager manipu-

lates for the first time. This moment is particularly sensitive to changes in the probability of

the manipulation being detected and to a loss in the manger’s wealth because these param-

eters primarily affect the manager’s decision to start manipulating. Indeed, the manager’s

manipulation can be detected and he can suffer a loss in his wealth anytime after he has

manipulated once.

One parameter that is difficult to identify is the relative risk aversion parameter, γ. The

difficulty associated with estimating the relative risk aversion parameter is well recognized

in the macroeconomics and finance literatures. A risk aversion parameter equal to 2 or 3 is

generally argued to be plausible and has been used in the prior empirical studies on executive

compensation [e.g., Conyon et al., 2011]. I follow the literature by setting its value to 2 for

the main result and set its value equal to 3 in the robustness test.22 The probability f with

which the manager can leave the firm for reasons other than a restatement is set to be equal

to the annual turnover rate across CEOs with the same tenure.23 The probability φ of the

manager leaving the firm as a result of a restatement (i.e., the probability of termination) is

set to be equal to a fraction of the restatement-related turnovers among restating firms.

22Alternatively, I could estimate the risk aversion parameter. However, the difficulty of the joint estimation
of a discount factor and a risk aversion parameter is well recognized in the literature. This issue is relevant in
my setting because I estimate the probability of detection, which acts like a discount factor when the manager
starts manipulating. The literature usually deals with this issue by setting one parameter to a plausible value
and estimating the other parameter. Similar to the extant literature, I fix the risk aversion parameter and
estimate the probability of detection. The economic interpretation of a risk aversion parameter is provided
in Ljungqvist and Sargent [2004] and Cochrane [1997].

23I assume that this probability equals 10% after ten years with the firm.
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4.3 Estimation method

To estimate the expected cost of manipulation, I use the method of moments in which I

closely match the moments from the data with the moments from the model. As discussed in

Section 4.2, I use four moment conditions to estimate three cost-of-manipulation parameters.

The closed-form expressions for these moment conditions cannot be obtained analytically;

therefore, I use the Simulated Method of Moments (SMM). The objective function of the

SMM is similar to that of the Generalized Method of Moments (GMM). Specifically, both

methods minimize the weighted squared distance between the moments implied by the data

and the moments implied by the model. The difference between the two methods is that the

GMM uses the closed-form expressions to calculate the model-implied moments. In contrast,

in the SMM, the model-implied moments are obtained using simulation. I provide details

regarding the SMM estimation in Appendix B.

Since the number of moment conditions exceeds the number of parameters (four moment

conditions are used to estimate three parameters), I can apply the test of overidentifying

restrictions to assess the model fit. If the test is rejected, the SMM estimator is inconsis-

tent. The rejection implies that a particular specification of the model, including all of the

underlying assumptions about functional forms and distributions, is rejected. However, the

test does not provide information about which specific moment does not hold.

5. Results

5.1 Parameter estimates

Parameter estimates for the structural model are presented in Table 5. For the sample of

non-technical restatements, I find that the probability of the manipulation being detected

is 9%, which is arguably low. The estimate of κ1, the loss in the manager’s wealth in the

event that past manipulation is detected, whereas current financials are unbiased, is small at

0.03% and not statistically significant. This finding indicates that the cost of restatements

that do not impact current financials is perceived by the manager to be relatively small.
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The estimate of κ2, the sensitivity of the loss in the manager’s wealth to the bias in net

assets, can best be interpreted by considering the marginal impact of manipulation on the

wealth loss evaluated at the average magnitude of manipulation among manipulating firms.

It seems natural to express this magnitude as a percentage of the manager’s wealth loss

when he inflates the stock price by 1%.24 The marginal effect for the sample of non-technical

restatements is 0.51, which implies that a 1% inflation in the stock price is associated with

a 0.51% loss in the manager’s wealth. As is the case with the probability of detection,

the marginal wealth loss is also low. However, the average misstatement for the sample of

non-technical restatements is higher and results in a 11% loss in the manager’s wealth.25

Because the manager’s perceived costs of manipulation are not directly observable, there are

no previous studies against which to benchmark these estimates. In fact, the ability to make

inferences about unobserved theoretical parameters is the distinctive feature of my approach.

As a robustness check, I also estimate the structural model for the sample in which a

detected intentional misstatement is defined as a nontrivial restatement. I find that the

estimates are qualitatively similar. However, because of the lower frequency of restatements,

the estimated perceived probability of manipulation being detected is 7%. Since the sample

mean of the biases in net assets for this sample’s first two periods is similar to that for the

non-technical sample,26 the estimated loss in the manager’s wealth in the event of detection

is similar, e.g., the marginal effect of manipulation is 0.4227 versus 0.51 in the non-technical

restatements sample. Similarly, for the sample of nontrivial restatements κ1, the loss in the

manager’s wealth in the event that past manipulation is detected, whereas current finan-

cials are unbiased, is not statistically significant and equals 8%. Accordingly, the average

24The loss in the manager’s wealth that is sensitive to the magnitude of manipulation is κ2

2 (βbt)
2, where

βbt is expressed as a fraction of the stock price P0. Therefore, the magnitude in question is 100

(
∂
κ2
2 (βbt)

2

∂βbt100

)
=

κ2βbt. The estimate of the average cost impact of bias (βbt) among manipulating executives in the sample
of non-technical restatements is 0.4329 (Table 8) and the estimate of κ2 is 1.17 (Table 5), which implies that
κ2βbt ≈ 0.51

25The average wealth loss is computed as κ2

2 (βbt)
2

∣∣∣∣
βbt=0.4329

+ κ1 = 1.17 ∗ (0.4329)2/2 + 0.0003 ≈ 0.11.

26The bias in net assets in the first (second) restated period is 1% (0.65 %) in the non-technical sample
and 1% (0.76%) in this sample.

27Here, I apply the same formula for the marginal effect, κ2βbt = 0.96 ∗ 0.4405 ≈ 0.42.
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cost of manipulation in this sample is higher and equals 17%.28 The sample of nontrivial

restatements implies that manipulation is perceived by the manager as being more costly

when detected, despite the fact that it has a lower probability of detection compared to the

sample of non-technical restatements.

5.2 Model fit

The test of overidentifying restrictions, which is a formal test of whether the model actually

explains the data, is reported in Table 5. The model is not rejected for either sample at

conventional significance levels. The magnitude of the J-test (0.03 for the sample of non-

technical restatements and 1.67 for the sample of nontrivial restatements) implies that the

model is not rejected, including the choice of the moment conditions.

Following Taylor [2010], I study the Monte Carlo simulation results to assess the dif-

ferences between empirical and simulated moments. Under this approach, the distribution

of moments is obtained by simulating 10,000 samples of CEOs, assuming that the model

parameters are equal to the estimates presented in Table 5. The p-values for the moment

differences are reported in Table 6. All moments for the non-technical restatement sam-

ple are not significantly different from the simulated moments at the 5% significance level,

whereas for nontrivial restatements, two moments (the mean product of biases in the first

and second periods and the average ratio of cash wealth to the value of a dollar increase in

manipulation) are reliably different from the simulated moments at the 1% significance level.

However, empirical and simulated values are very similar in terms of their magnitudes.

5.3 Model-implied measure of manipulation

I use the structural model and estimated parameters to infer the implied extent of undetected

manipulation from stock prices. To infer manipulation, stock prices have to be known in

each period because the optimal manipulation decision in the current period depends on the

28The average wealth loss is computed as κ2

2 (βbt)
2

∣∣∣∣
βbt=0.4405

+ κ1 = 0.96 ∗ (0.4405)2/2 + 0.0788 ≈ 0.17.
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manipulation decision in the previous periods.29 I utilize the price at the end of the third

month following the end of the fiscal year as the current period price because it generally

already incorporates the information in reported earnings.

For each firm in my sample, the model specifies what the stock price should be for a

specific realization of the intrinsic value as well as the manager’s manipulation incentives.

I can then utilize the time-series of stock prices, the time-series of compensation and the

structural model to infer the unobserved time-series of intrinsic values and manipulation

decisions. This inference is possible because according to the model, the stock price is the

sum of the intrinsic value and the product of the price-to-earnings multiple with the optimal

bias in earnings. At the same time, the optimal bias in earnings is a function of the intrinsic

value if the manager just started to manipulate; or, if the manager has manipulated before,

the optimal bias is a function of the intrinsic value and the existing bias. Therefore, if

the manager just began to manipulate, the stock price is solely a function of the intrinsic

value; hence, I can infer the intrinsic value and the corresponding bias from the stock price.

Furthermore, if the manager has already manipulated, the stock price is solely a function

of the intrinsic value and the existing bias; hence, I can infer the intrinsic value and the

corresponding bias from the stock price and the existing bias.

I infer undetected manipulation in three steps. First, I compute what the stock price

should be given a specific realization of intrinsic value when the manager has never manip-

ulated before. Second, I compute what the stock price should be given a specific realization

of intrinsic value and the existing bias when the manager has already manipulated. Third,

I use the time-series of stock prices to infer whether the manager manipulates and by how

much. I constructed the sample in such a way that executives do not manipulate when they

enter the sample. Therefore, for each executive, I can take the stock price in the first period

and map it into his first-time manipulation decision in the first period. Next, if the stock

price in the first period corresponds to the executive not manipulating, I take the second

29The price data are obtained from the Center for Research in Security Prices (CRSP). I omit executives
for whom the stock price at time zero is in the “penny stock” category (i.e., the stock price is under $2).
It is common in corporate finance studies to eliminate penny stocks, since the stock price process for these
firms may deviate substantially from the process assumed in the model.
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period price and map it into his first-time manipulation decision in the second period, and so

on. However, if the stock price in the first period corresponds to the executive manipulating,

I find the optimal bias in the first period and map the second period stock price and the

first period bias (i.e., existing bias) into his manipulation decision to find the intrinsic value

and the optimal bias in the second period, and so on.

The model-implied measures of manipulation are reported in two tables. Table 7 re-

ports the descriptive statistics computed using all CEO-years; whereas Table 8 reports the

descriptive statistics computed using only the CEO-years after the CEO has misreported

once. According to the model, misreporting occurs in 45% (37%) of the CEO-years (Table

7) and 66% (59%) of the CEOs decide to manipulate sometime during their tenure in the

non-technical (nontrivial) sample (Table 8). These numbers are similar in magnitude to the

78% of executives who report that they would sacrifice long-term value to smooth earnings

[Graham et al., 2005]. In addition, two recent studies by Gerakos and Kovrijnykh [2013]

and Dyck et al. [2013] provide a conservative estimate for the fraction of misreporting and

fraud. According to Gerakos and Kovrijnykh [2013], a lower bound on the fraction of mis-

reporting firms is 22%, whereas according to Dyck et al. [2013], a conservative estimate for

the undetected fraud in any given year is 14.5%.

For all CEO-years, equally weighted bias in price is 11% (11%) and the value-weighted

bias in price is 6% (5%) of the observed stock price in the non-technical (nontrivial) sample.

The difference between equally weighted and value-weighted bias implies that manipulation

is concentrated among small stocks. This result still holds for the sample of CEO-years

when the CEO misreports (Table 8). The estimated equally weighted bias in price among

misreporting CEOs is 24% (29%), and the value-weighted bias in price is about 15.5% (19%)

of the observed stock price for the non-technical (nontrivial) sample. This indicates that

although the incidence of manipulation is high, the actual amount of manipulation is not

as high on a value-weighted basis. The model-implied mean inflation in the stock price is

about two times higher than the mean return for fraudulent restatements of negative 13% at

the two-day restatement announcement window for 1997 - 2006 [Scholz, 2008, Table 8]. The

two-day return may not fully incorporate the impact of a restatement. Indeed, I find that
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the mean annual return at the restatement announcement year is negative 25%, which is

consistent with the model-implied equally weighted bias in price. Dyck et al. [2013] estimate

that among the fraud-committing firms the mean cost of a fraud is about 22% of firm value,

which aligns with my estimate of the mean inflation in the stock price among manipulating

firms.

Although the estimate of the share of manipulating firms is relatively high, the average

bias in net assets and earnings is low. Among manipulating firms, the bias in net assets as

a percentage of the lag of total assets is 2%, and the bias in earnings as a percentage of the

lag of total assets is 1% (Table 8).

5.4 Out-of-sample performance of model-implied manipulation

and discretionary accruals

I evaluate the out-of-sample performance of the model-implied manipulation and the com-

monly used measures of earnings management. Accounting and finance researchers tradi-

tionally measure earnings management using discretionary accruals. Both the discretionary

accruals and the structural model-implied manipulation measure true unobserved manip-

ulation with some error. The discretionary accruals models are ad hoc statistical models,

whereas the structural model represents a stylized view of the real world. Nevertheless,

both approaches attempt to capture a very complex misreporting decision. Therefore, it is

instructive to compare the out-of-sample performance of these measures. I use only 90% of

the executives in my sample to estimate parameters (i.e., the estimation sample) and hold

out a randomly chosen 10% (i.e., the holdout sample).30 The sample is split in such a way

that the fraction of restatements in the estimation sample and in the holdout sample is the

same. The out-of-sample performance can be computed only for the firms that restated their

financial statements because I observe the complete path of their manipulation, i.e., in which

periods executive manipulated as well as the extent of the misreporting.31

30The probability of leaving the firm for reasons unrelated to manipulation and the probability of termi-
nation are estimated using the full sample.

31For non-restating firms, it is ambiguous whether they manipulated and were not detected or whether
they did not manipulate; hence, such firms cannot be used for this test.
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For each executive who restates in the holdout sample, I compute the model-implied mea-

sure of bias in earnings as well as the bias in earnings implied by five discretionary accruals

models defined in Table 9. These models are the total accruals as in Hribar and Collins

[2002], the comprehensive accruals of Richardson et al. [2005], the Jones model discretionary

accruals as in Jones [1991], the modified Jones model discretionary accruals as in Dechow

et al. [1995], and the performance-matched discretionary accruals as in Kothari et al. [2005].

I perform a parametric bootstrap to compute the model-implied probability of detection and

the bias in earnings: (1) generate 100 random draws from the asymptotic distribution of

the parameter estimates32; (2) for each parameter draw, infer the manipulation path as in

Section 5.3; (3) compute the model-implied estimate of the probability of manipulation and

the bias in earnings by averaging over draws for every CEO-year. This procedure produces

the model-implied probability of manipulation for every CEO-year, whereas discretionary

accruals models do not provide such a measure. For discretionary accruals, I assume that

an executive manipulates when a measure of discretionary accruals is not zero, i.e., the

discretionary accruals-implied probability of manipulation can only be zero or one.

Next, I compute out-of-sample performance statistics for the probability of manipulation

and the bias in earnings. These statistics include the bias, the mean absolute deviation,

the median absolute deviation and the root mean squared error (RMSE). I compute these

statistics by taking the difference between the true value observed in the holdout sample and

the estimate (i.e., deviation). The bias is defined as the mean deviation and the formula for

the RMSE is

RMSE =

√√√√ 1

N

N∑
n=1

(
x(n) − x̂(n)

)2

, (4)

where x(n) is the true observed value for the observation n which represents a CEO-year

(e.g., the misreporting in earnings observed in the data) and x̂(n) is the estimate for the

observation n. The statistics for the probability of manipulation are computed using all

32If a parameter lies outside of the theoretical bounds (e.g., the probability of detection is negative), I
repeat the draw.
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CEO-years for executives who restate in the holdout sample because, under the assumption

that a restatement uncovers the complete path of manipulation, for these executives the

periods in which they manipulated are known; hence, each period can be coded as zero or

one depending on whether the executive manipulated. At the same time, the statistics for

the magnitude of misreporting are computed using only CEO-years in which an executive

actually misreports in the holdout sample. These statistics are summarized in Table 10.

Both the model-impled probability and the discretionary accruals-implied probability

predict that CEOs manipulate in the periods in which they actually do not manipulate. The

model-implied probability is slightly better than discretionary accruals-implied probability

in terms of the mean deviation and the RMSE statistics; the improvement for the mean

deviation is 29.5% (38.5%) and for the RMSE is 1% (5.5%) for non-technical (nontrivial)

restatements. For the bias in earnings, the model-implied measure performs significantly

better than discretionary accruals. For instance in terms of the RMSE for the sample of

non-technical restatements, the model-implied measure has a RMSE equal to 1%, which is

eight times better than the next best measure of the performance-matched discretionary

with a RMSE equal to 8%. Similarly, in terms of the RMSE for the sample of nontrivial

restatements, the model-implied measure has a RMSE equal to 2%, which is about five

times better than the next best measure of modified Jones model discretionary accruals with

a RMSE equal to 11%.

Overall, the results in Table 10 suggest that the model-implied measure of manipulation

performs significantly better out-of-sample than the commonly used measures of discre-

tionary accruals. The problems with using discretionary accruals as a proxy for earnings

management are well-recognized in extant research [e.g., McNichols, 2000, Dechow et al.,

2010]. These models are ad hoc statistical models; hence, the discretionary accruals measures

depend on various firm characteristics and incentives to misreport. Therefore, researchers

should be cautious about using discretionary accruals as a proxy for earnings management

and, instead, carefully consider the benefits and costs of misreporting specific to their re-

search setting.
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5.5 Robustness

There are three parameters that are set to specific values: the risk aversion parameter, γ,

the retirement age, T , and the multiple on firm-specific wealth that is used in computing

the managers’ outside wealth, η. The main specification in the paper utilizes γ = 2, T =

85, η = 1. It is important to evaluate the robustness of the results to the assumptions about

these parameters. To evaluate robustness, I vary the parameters one at a time and report

the results in Tables 11 through 14. Three alternative specifications are considered: (1)

γ = 3, T = 85, η = 1; (2) γ = 2, T = 65, η = 1; and (3) γ = 2, T = 85, η = 0.5. I follow the

literature in selecting these parameters. First, researchers in macroeconomics and finance

argue that the plausible values for the risk aversion parameter are γ = 2 or γ = 3 [e.g.,

Ljungqvist and Sargent, 2004]. Second, extant studies on executive compensation assume

that the manager’s firm-specific wealth is 50% or 67% of his total wealth [e.g., Conyon et al.,

2011] which implies η = 1 or η = 0.5. Finally, the mandatory retirement age for executives

in some firms is set at 65.

The qualitative conclusions about parameter estimates are similar for all specifications

(Table 11). The point estimates for the probability of detection range from 8% (6%) to

9% (7%); and the marginal effects of a 1% inflation in the stock price on the loss in the

manager’s wealth range from 0.26% (0.30%) to 0.56% (0.55%)for the sample of non-technical

(nontrivial) restatements.33 The loss in wealth parameter is not statistically significant for

the sample of non-technical restatements; however, it is statistically significant in some

specifications for the sample of nontrivial restatements. For the sample of non-technical

restatements, the costs of manipulation parameters tend to be lower for the specification in

which the retirement age is set at 65; they tend to be higher for the specification in which

the firm-specific wealth comprises 67% of the manager’s total wealth (i.e., η = 0.5). In

contrast, for the sample of nontrivial restatements, I do not find the same pattern for the

probability of detection; however, the sensitivity of the loss in wealth to manipulation is once

33For comparability, I compute these effects for the average cost impact of bias (βbt) among manipulating
executives in the respective samples of non-technical (i.e., βbt = 0.4329) and nontrivial (i.e., βbt = 0.4405)
restatements from Table 8.
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again the lowest for the specification with the retirement age set at 65 and the highest for

η = 0.5. The finding for the shortest horizon (i.e., T = 65) can be explained by the manager’s

lower tendency to manipulate, because there is a lower likelihood that he will benefit from

manipulation in the future. Therefore, the lower sensitivity parameter is sufficient to match

the empirical moments. However, if the manager’s total wealth is lower (i.e., η = 0.5), he

will have a greater tendency to manipulate; therefore, the sensitivity parameter should be

higher to preclude him from manipulating. Finally, according to the J-test, almost none of

the specifications are rejected at conventional significance levels, except for the specification

in which γ = 2, T = 65, η = 1 for non-technical restatements.

Similarly, the conclusions about the in-sample model-implied measure of manipulation

do not change significantly, except for the specification when executives retire at 65 (Tables

12 and 13). The fraction of CEO-years when CEO manipulates ranges from 34% (29%)

to 47% (39%) for non-technical (nontrivial) restatements with the lowest fraction for the

specification with T = 65 and the highest fraction for the specification with γ = 3. Similarly,

the unconditional value-weighted bias in stock price ranges from 5% (4%) to 6% (6%) for

non-technical (nontrivial) restatements with the lowest fraction for the specification with

T = 65 and the highest fraction with γ = 3. This result is consistent with more risk-averse

managers (i.e., γ = 3) trying to smooth the stock price by manipulating more. Similarly,

the fraction of manipulating CEOs is the highest for the specification with γ = 3 and equals

67% (61%), whereas the fraction of manipulating CEOs is the lowest for the specification

with T = 65 and equals 54% (51%) for non-technical (nontrivial) restatements (Table 13).

Interestingly, there is a tradeoff between how well the model captures the probability of

detection and how well it fits the magnitude of manipulation out-of-sample (Table 14). The

specification in which the manager has the shortest horizon (i.e., T = 65) fits the proba-

bility of manipulation out-of-sample better than any other model. At the same time, this

specification has the highest out-of-sample error in fitting the magnitude of manipulation.

In contrast, the other three specifications have virtually identical out-of-sample performance

and capture the magnitude of manipulation better than the specification with a shorter

horizon.
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6. Conclusions

In this paper, I suggest a structural model of a manager’s manipulation decision that allows

me to estimate his costs of manipulation and to infer the amount of undetected intentional

manipulation for each executive in my sample. The model follows the economic approach

to crime [Becker, 1968] and incorporates the costs and benefits of manipulation decisions.

The model is a dynamic finite-horizon problem in which the risk-averse manager maximizes

his terminal wealth. The manager’s total wealth depends on his equity holdings in the

firm and his cash wealth. The model yields three predictions. First, according to the

wealth effect, managers having greater wealth manipulate less. Second, according to the

valuation effect, the current-period bias in net assets increases in the existing bias. Third,

the manager’s risk aversion, the linearity of his terminal wealth in reported earnings, and the

stochastic evolution of the firm’s intrinsic value produce income-smoothing. Furthermore,

the structural approach allows partial observability of manipulation decisions in the data;

hence, I can estimate the probability of detection as well as the loss in the manager’s wealth

using the data on detected misstatements (i.e., financial restatements).

I contribute to the literature by providing estimates of the manager’s manipulation costs

and the extent of undetected intentional manipulation. I find that the costs of manipulation

are low: the probability of detection is 9%, and the marginal loss in wealth for inflating

the stock price by 1% is 0.51% for non-technical restatements. These costs result in high

estimates of the incidence of undetected manipulation. Specifically, the model predicts that

about 66% of executives manipulate at least once with a value-weighted bias in the stock

price of 15.5%. At the same time, the unconditional rate of manipulation is lower: CEOs

bias their earnings reports in 45% of CEO-years, and a value-weighted bias in the stock price

is 6% across all CEO-years. Finally, I find that the model-implied measure of manipulation

performs significantly better than the commonly used measures of discretionary accruals

out-of-sample. Therefore, researchers should exercise caution in relying on such measures

as proxies for earnings management and, instead, should carefully consider the costs and

benefits of manipulation that are relevant to their particular setting.
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These findings can be useful for investors, boards of directors, regulators and researchers.

The estimated cost of manipulation parameters can be utilized in calculating the cost to

a CEO of misreporting earnings by 1% or by a given amount. The only data that this

calculation requires is the firm’s price-to-earnings multiple and the hypothetical level of bias

per share, scaled by the stock price before a CEO joins a firm.34 In addition, the model can

be applied to the time-series of stock prices and the time-series of executive compensation to

infer the extent of undetected manipulation in a manner similar to that described in Section

5.2.

The structural approach can be used to analyze counterfactuals. For instance, one can

evaluate how an increase in the probability of detection changes the extent of manipulation.

However, to make sensible counterfactual predictions, one has to consider how investors

would react to a change in the policy parameters. For instance, if the costs of manipulation

increase, fewer managers would find it optimal to manipulate; in equilibrium, investors may

place greater weight on reported earnings; thus, price-to-earnings multiples would increase,

which, in turn, increase the manager’s incentives to manipulate. These issues can be ad-

dressed by explicitly modeling an equilibrium interaction between the manager’s reporting

choices and investors’ inferences about manipulation.

An analysis of counterfactuals can also be useful in helping regulators to decide about

the resources that should be invested in detection and the punishment for misreporting. For

instance, similar expected costs of manipulation can be achieved by adjusting the probability

of detection or the punishment for misreporting. However, the relative sensitivities of the

manipulation decision to the probability of detection and punishment can differ depending

on whether an executive is risk-averse or risk-loving. If an executive is risk-averse, then the

increase in the punishment for manipulation would have a greater effect on reducing mis-

statements than an equivalent change in the probability of detection, whereas if an executive

34The percentage of an executive’s wealth loss when he inflates the stock price by 1% equals κ2βbt, where
κ2 is the sensitivity parameter reported in Table 5, β is the firm’s price-to-earnings multiple (or the median
industry multiple to avoid extreme firm-specific values) and bt is a hypothetical bias in net assets per share,
expressed as a fraction of the stock price right before the executive joins the firm. The total wealth loss can
be computed as κ1 + κ2

2 (βbt)
2, where κ1 is the loss parameter estimated in Table 5, and other parameters

are defined above.
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is risk-loving, an increase in the probability of detection would have a greater effect than an

equivalent change in the punishment for manipulation [Becker, 1968].

A structural approach involves trade-offs between restrictive assumptions that make esti-

mation feasible and sufficient flexibility to capture the patterns observed in the data. In my

analysis, I make a variety of important assumptions; these choices represent limitations to

my results. First, I do not model a rational expectations equilibrium that involves the market

anticipating the manager’s reporting choices. Second, I do not incorporate the strategic de-

cision of the board regarding the optimal compensation contract. In doing so, I avoid solving

a difficult multi-period problem that lies beyond the scope of this paper. Another limitation

of this paper and a potential area for future research in structural estimation relates to my

assumption that only executives’ equity holdings provide an incentive to misreport earnings.

Other incentives to misreport include career concerns [e.g., Fudenberg and Tirole, 1995, De-

Fond and Park, 1997, Dechow and Sloan, 1991, Murphy and Zimmerman, 1993], bonuses

[e.g., Healy, 1985], and debt covenants [e.g., DeFond and Jiambalvo, 1994, Sweeney, 1994].

Consequently, the measure of intentional manipulation suggested here may be biased to the

extent that other incentives to misreport are also important. Future research can provide

further evidence on the relative importance of the various incentives to misreport.
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A. Solving the manager’s problem

This appendix provides the formal description of the model and explains how I solve the

manager’s dynamic manipulation problem. The definitions of variables can be found in

Table 1. There are five state variables that the manager observes in the beginning of the

period t:

St = {Pt, Bt−1, Detectt−1, Manipt−1, Leftt−1}, (5)

Pt ∈ (0,+∞), Bt ∈ (−B,B), Detectt ∈ {0, 1}, Manipt ∈ {0, 1}, Leftt ∈ {0, 1}. (6)

The two state variables – the existing bias in net assets Bt−1 and the indicator for

whether the manager has manipulated in previous periods Manipt−1 – are controlled by the

manager. In contrast, the intrinsic firm value Pt, the indicator for whether the manager has

been detected in previous periods, Detectt−1, and the indicator for whether the manager has

left the company Leftt−1, are random and, therefore, not directly controlled by the manager.

The manager is assumed to privately observe the firm’s intrinsic value without error.

The firm’s intrinsic value Pt follows a log-normal process,35 and the stock price equals the

intrinsic value of the firm whenever the manager does not distort financial statements. The

time subscript denotes either his year t in the firm or a period in the model:

ln

(
Pt+1

Pt

)
∼ N

(
µ− σ2

2
, σ2

)
. (7)

The firm’s intrinsic value Pt is a state variable because its distribution in the subsequent

periods and, hence, the distribution of the value of the manager’s equity holdings depends

on Pt.

I define manipulation as the bias in net assets Bt and assume that the market relies

35It is common to assume that the stock prices follow the log-normal distribution in the literature on
executive compensation [e.g., Lambert et al., 1991, Hall and Murphy, 2002]. It is certainly plausible that
the evolution of the intrinsic value depends on the manager’s characteristics and his effort; however, I ignore
the moral hazard and adverse selection problems in this paper. Instead, I assume that the data on return
distribution and executive compensation are generated in equilibrium, and I use these data to infer the
manger’s manipulation decision.
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on the reported earnings to price firm’s shares.36 Because net assets are biased by Bt, the

reported earnings are biased by Bt −Bt−1, and the stock price P̂t becomes

P̂t = Pt + β(Bt −Bt−1), (8)

where β is the price-to-earnings multiple. The existing bias in net assets Bt−1 is a state

variable because the stock price depends on the bias in earnings; hence, the manager considers

how the current period bias in net assets would affect his future wealth. I assume that

the manager maximizes the utility of his terminal wealth, which is consistent with extant

literature [e.g., Lambert et al., 1991, Hall and Murphy, 2002].

Each period t consists of several stages. If the manager has not manipulated previously

(Manipt−1 = 0), the stages are as follows: (1) the manager decides whether to manipulate;

(2) if he does not manipulate (Manipt = 0), he can leave the firm with probability ft (he

leaves the firm for certain if t = T ); (3) if he decides to manipulate (Manipt = 1), he

chooses the bias in net assets Bt and (3a) his manipulation can be detected with probability

g, in which case he can be terminated with probability φ or, (3b) if his manipulation is not

detected, he can leave the firm with probability ft; (4) if the manager is not terminated and

does not leave the firm for other reasons, he continues into the next period. If the manager

has manipulated before (i.e., Manipt−1 = 1), the stages are identical to (3). If the manager

has manipulated once, he can always be detected. Suppose the manager manipulates at t

for the first time, then

Manipt =

0, ∀t < t

1, ∀t ≥ t

. (9)

Once the manager has manipulated (Manipt = 1) and before he leaves the firm, his

manipulation can be detected with probability g.37 I assume that his manipulation can be

36In this paper, I ignore the possibility that the manager may make a mistake in his reporting that will be
later classified as manipulation. To be consistent in applying this assumption, I carefully select the sample
of restatements, such that they include possibly intentional misstatements rather than mere technical errors.

37I do not model the probability of detection g as a function of bias or the number of periods the manager
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detected only once, i.e., if the manager is caught, he cannot manipulate again:

Detectt =



0, t < t

0, with prob. 1− g,∀t ≥ t

1, with prob. g,∀t ≥ t

1, if Detectt−1 = 1

. (10)

The evolution of Leftt−1 is stochastic as well as contingent on whether the manipulation

was detected:

Leftt =



0, with prob. 1− ft, if Detectt = 0

0, with prob. 1− φ, if Detectt−1 = 0, Detectt = 1

1, with prob. ft, if Detectt = 0

1, with prob. φ, if Detectt−1 = 0, Detectt = 1

1, if Leftt−1 = 1

, (11)

where ft is the probability for the manager to leave for reasons unrelated to manipulation;

φ is the probability for the manager to be terminated when the manipulation is detected.38

When Leftt = 0 and Leftt = 1, the manager receives his terminal wealth and leaves the

firm at the end of period t.

The manager is assumed to exhibit constant relative risk aversion; hence, his utility is

U(c) =
c1−γ

1− γ
, (12)

where γ is the relative risk aversion parameter.

Under the constant relative risk aversion utility, it is possible to re-scale the argument

manipulates because it is difficult to identify this functional form from the data on rare restatements.
38As is the case with the probability of detection, I do not model the probability of termination as a function

of bias, again, because it is difficult to identify this functional form from the data on rare restatements.
Instead, I assume that the expected cost of manipulation increases by means of the increased wealth loss
when the manager is caught. If caught, the managers who manipulate more will lose more of their wealth.

35



of the utility function without affecting the manager’s optimal decision. Since the problem

is executive-specific, it is convenient to re-scale the problem for every executive by N1P0

(where N1 denotes the total number of shares the manager holds in the first period, and P0

denotes the stock price at the end of the third month after the fiscal year end before the

manager joins the firm). Re-scaled variables are denoted by lower-case letters as follows:

{
pt =

Pt
P0

, bt =
Bt

P0

, nt =
Nt

N1

, wt =
Wt

N1P0

}
, (13)

where Pt represents the firm’s intrinsic value at time t; Bt represents the bias in net assets

per share at time t; Nt represents the number of shares the manager holds at time t; and Wt

denotes the manager’s total cash wealth at time t.

At the beginning of the period one, the state is

S1 = {P1, 0, 0, 0, 0}. (14)

This state evolves depending on whether the manager manipulates, whether his manipula-

tion is detected, and whether he is terminated or leaves the firm for reasons unrelated to

manipulation.

The manager’s terminal payoff depends on the state St, and the manager receives it when

Leftt−1 = 0 and Leftt = 1:

w̃totalt =



wt + (nvt + nnvt )pt, if Manipt = 0

wt + (nvt + nnvt )pt, if Manipt = 1, Detectt−1 = 1, Detectt = 1

wt + (nvt + nnvt )

(
pt + β(bt − bt−1)

)
︸ ︷︷ ︸

p̂t,distorted price

, if Manipt = 1, Detectt−1 = 0, Detectt = 0

(
wt + nvt pt

)(
1− κ1 − κ2

2
(βbt)

2

)
, if Manipt = 1, Detectt−1 = 0, Detectt = 1

,

(15)

where wt is the manager’s cash holdings, and nt = nvt +nnvt represents his equity holdings of
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vested nvt and non-vested nnvt shares.

I solve the manager’s problem using backwards induction in three steps because there

are three value functions. First, I solve for the value Vpd,t(pt) which the manager expects to

receive in the state St = (pt, 0, 1, 1, 0) for each time t until he retires (where pd represents

post-detection state). Next, I solve for the value Vm,t(pt, bt−1) and the optimal bias bt(pt, bt−1)

in the state St = (pt, bt−1, 0, 1, 0) (where m represents the manipulative state). Finally, I solve

for the value Vnm,t(pt) in the state St = (pt, 0, 0, 0, 0) (where nm reflect the non-manipulative

state).

In the post-detection state, the manager can leave only for reasons unrelated to ma-

nipulation. Accordingly, the manager’s value function in the post-detection state at time t

is

Vpd,t(pt) = ftU

(
wt + (nvt + nnvt )pt

)
︸ ︷︷ ︸
detected at t<t, leaves at t

+δ(1− ft) Et
[
Vpd,t+1(pt+1)

∣∣∣∣pt]︸ ︷︷ ︸
detected at t<t, stays in pd state

, (16)

where δ is the time-discount factor which is assumed to be equal to 1/(1 + rf ) with rf being

a risk-free rate.

The manager can leave the manipulative state at time t under three scenarios: (1) the

manipulation is not detected and the manager leaves at time t for other reasons; (2) the

manipulation is detected at time t, and the manager is terminated; (3) the manipulation

is detected, but the manager is not terminated and transitions into a post-detection state.

Accordingly, the manager’s value function in the manipulative state at time t is

Vm,t(pt, bt−1) = max
bt(pt,bt−1)

(1− g)ftU

(
wt + (nvt + nnvt )p̂t

)
︸ ︷︷ ︸

not detected, leaves at t

+ gφU

(
(wt + nvt pt)

(
1− κ1 −

κ2
2

(βbt)
2

))
︸ ︷︷ ︸

detected at t,leaves at t

+

+ δ (1− g)(1− ft)Et
[
Vm,t+1(pt+1, bt)

∣∣∣∣pt]︸ ︷︷ ︸
not detected at t, stays in m

+δ g(1− φ)Et
[
Vpd,t+1(pt+1)

∣∣∣∣pt]︸ ︷︷ ︸
detected at t, transitions to pd

(17)

In the non-manipulative state, the manager decides whether to manipulate at each period,
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and his value function is

Vnm,t(pt) = ftU

(
wt + (nvt + nnvt )pt

)
+

+ δ(1− ft)Et
[

max
d(pt)∈{0,1}

{
Vnm,t+1(pt+1), Vm,t+1(pt+1, 0)

}∣∣∣∣pt]. (18)

I compute these three value functions via backwards induction [e.g., see Ljungqvist and

Sargent, 2004] using a two-dimensional grid for the firm’s intrinsic value pt and the existing

bias bt−1. For the intrinsic value, the grid ranges from 0 to 10 with increments that correspond

to a 5% stock return. Because the intrinsic value is defined on a grid of points, I can use a

transition matrix for the price process to compute the expectation of the future value with

respect to pt. The intrinsic value grid is the same for all executives because the data are

normalized such that p0 = 1. For the bias, the grid includes 100 points and the support of

the grid is determined by the extent of the manipulation observed empirically.39

For each value function, I compute the value at terminal time T when the manager

retires and iterate backwards to compute values for all previous periods. Specifically, once the

manager enters the post-detection state, he remains there until he leaves the firm. Therefore,

I can calculate the value function for the post-detection state, Vpd,t(pt), independently of the

value function in the manipulative or non-manipulative states by iterating on the following

equation:

V t
pd(pt) = ftU

(
wt + (nvt + nnvt )pt

)
+ δ(1− ft)Et

[
V t+1
pd (pt+1)

∣∣∣∣pt], (19)

starting with the terminal value in the post-detection state, V T
pd(pT ).

Next, if the manager enters the manipulative state, he remains there until he either leaves

the firm or transitions to the post-detection state. Therefore, I can find the value function

for the manipulative state, Vm,t(pt, bt−1), once I know the value function in the post-detection

39The maximum value of the grid is set to the maximum manipulation observed in the data multiplied by
1.1.
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state, Vpd,t(pt), by iterating on the following equation:

V t
m(pt, bt−1) = max

bt(pt,bt−1)
(1− g)ftU

(
wt + (nvt + nnvt )p̂t

)
︸ ︷︷ ︸

not detected, leaves at t

+ gφU

(
(wt + nvt pt)

(
1− κ1 −

κ2
2

(βbt)
2

))
︸ ︷︷ ︸

detected at t,leaves at t

+

+ δ (1− g)(1− ft)Et
[
V t+1
m (pt+1, bt)

∣∣∣∣pt]︸ ︷︷ ︸
not detected at t, stays in m

+δ g(1− φ)Et
[
V t+1
pd (pt+1)

∣∣∣∣pt]︸ ︷︷ ︸
detected at t, moves to pd

, (20)

starting with the terminal value in the post-detection state, V T
pd(pT ), and the manipulative

state, V T
m (pT , bT−1).

Finally, I utilize the value functions for the post-detection state, Vpd,t(pt), and the ma-

nipulative state, Vm,t(pt, bt−1), from the previous steps to find the value function for the

non-manipulative state, Vnm,t(pt), from the following equation:

V t
nm(pt) = ftU

(
wt + (nvt + nnvt )pt

)
+ δ(1− ft)Et

[
max

d(pt)∈{0,1}

{
V t+1
nm (pt+1), V

t+1
m (pt+1, 0)

}∣∣∣∣pt].
(21)

starting with the terminal value in the manipulative state, V T
m (pT , bT−1) and the non-

manipulative state, V T
nm(pT ).

As a by-product of value function iterations, I obtain the manager’s optimal decisions

with respect to whether to manipulate and to what extent.
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B. Simulated method of moments estimation details

B.1 Simulated method of moments

In the SMM, the moment condition is defined as

mn(θ) =
1

n

n∑
i=1

[
h(xi)−

1

S

S∑
s=1

h(yis(θ))

]
, (22)

where n is the number of observations; S is the number of simulations per observation; h(x)

is the vector of moment functions; θ is the parameter vector to be estimated; xi is an i.i.d.

data vector, and yis(θ) is an i.i.d. simulated vector from simulation s for observation i. The

SMM seeks to minimize the weighted squared distance between the moments implied by the

data and the moments implied by the model

θ̂ = argmin
θ
mn(θ)′Ŵnmn(θ), (23)

where Ŵn represents a positive-definite weighting matrix.

Similar to the traditional two-step GMM, the SMM estimate of θ can be obtained in

two steps. In the first step, the weighting matrix is set to a symmetric and positive definite

matrix that produces a consistent (but not necessarily an efficient) estimator θ̂. It is common

to set the first weighting matrix to the covariance matrix of empirical moments [Strebulaev

and Whited, 2012]. In the second step, the weighting matrix is set to the inverse of the

covariance matrix of the moments estimated in θ̂. The covariance matrix of the moments of

the SMM estimator is inflated by

(
1 + 1

S

)
and equals VSMM(mn(θ)) =

(
1 + 1

S

)
V (mn(θ))

because the moments are simulated, i.e., Ŵopt = S
1+S

V (mn(θ̂))−1, where V (mn(θ̂)) is the

covariance matrix of the moments mn(θ) [McFadden, 1989, Cameron and Trivedi, 2005, Dave

and Dejong, 2007]. The second step produces the consistent and asymptotically efficient

estimator θ̂SMM .
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According to McFadden [1989], the asymptotic distribution of optimal θ̂SMM is

√
n(θ̂SMM − θ) −→d N(0,Ω) (24)

Ω̂ =

(
1 +

1

S

)(
∂mn(θ̂SMM)

∂θ′
V (mn(θ̂SMM))−1

∂mn(θ̂SMM)

∂θ

)−1
, (25)

whereas the covariance matrix for the first-stage estimator is

Ω̂ =

(
1 +

1

S

)(
∂mn

∂θ′
W
∂mn

∂θ

)−1(
∂mn

∂θ′
WV (mn)W

∂mn

∂θ

)(
∂mn

∂θ′
W
∂mn

∂θ

)−1
. (26)

The four moment functions h(xi) that define my moment conditions are:

h1(xi) = 1(restatei) (27)

h2(xi) = b(1i)1(restatei) (28)

h3(xi) = b(2i)b(1i)1(restatei) (29)

h4(xi) =
1

T − t

T∑
t

cit1(restatei), (30)

where 1(restatei) is an indicator for whether the firm i restates its financial statements; b(1i)

is the bias in net assets in the first restated period for the firm i; b(2i) is the bias in net assets

in the second restated period for the firm i; cit = wit

(nv
it+n

nv
it )βi

is the ratio of the scaled cash

wealth to the value of one dollar inflation in reported earnings with the mean taken over all

future periods, starting from the period when the manager manipulates for the first time t.

The test of overidentifying restrictions can be applied to test the model fit when the

number of moment conditions exceeds the number of parameters. This test has one degree

of freedom because I use four moments to estimate three parameters:

J =
nS

1 + S
mn(θ̂SMM)′V (mn(θ̂SMM))−1mn(θ̂SMM) ∼ χ2(1). (31)

The test of overidentifying restrictions is a general model specification test that equals

the optimal SMM objective function evaluated at θ̂SMM . The null hypothesis is that the
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model is well identified. If the test is rejected, then the SMM estimator is inconsistent

for θ (i.e., a particular specification of the model including all the underlying assumptions

about functional forms and distributions is rejected). However, the test does not provide

information about which specific moment does not hold.

To compute standard errors, I must have a Jacobian of moment conditions. This Jacobian

matrix is computed numerically by taking the forward difference for the small enough step

size h:

f ′(x) =
f(x+ h)− f(x)

h
. (32)

The optimal h for a smooth function is 10−6. This value may not be appropriate for the

function that is obtained via noisy simulations. Indeed, I find that with h = 10−6 the

Jacobian matrix is not stable when parameters change slightly. Instead of arbitrary choosing

h, I choose it optimally via a method suggested by Moré and Wild [2012]. This method allows

the computation of the optimal h for a function that is obtained via simulations. I find that

the optimal step sizes are specific to the moment condition - parameter pair; these optimal

step sizes are larger than the step size which is optimal for a smooth function.40

Under the assumption that the simulations are unbiased, the SMM estimator is consis-

tent, even if S = 1 [Cameron and Trivedi, 2005]. However, this assumption may not hold in

complex non-linear models. The model estimated in this paper is complex and non-liner in

the simulation noise; therefore, the number of simulations can potentially have an effect on

the bias and efficiency of an estimator. To evaluate the effect of the number of simulations,

I perform a Monte Carlo study. The Monte Carlo study involves the following steps: (1)

simulate 50 artificial samples of 530 CEOs (randomly selected) under a fixed cost of manip-

ulation parameters (g = 0.1, κ1 = 0.01, κ2 = 1); (2) estimate parameters for each sample

using the two-step SMM; (3) compute summary statistics of the estimates. These statistics

include the bias, mean absolute deviation, median absolute deviation and root mean squared

error (RMSE) of the point estimates as well as the percentage of the data sets for which the

40The optimal step size for κ2 is about ten times larger than the optimal step size for g and κ1.
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point estimates reject the truth at the 90% (!CI90), 95% (!CI95) and 99% (!CI99) confidence

level. I compute these statistics by calculating the difference between the true parameter

value and the estimate (i.e., deviation). The bias is defined as the mean deviation and the

formula for the RMSE is

RMSE =

√√√√ 1

50

50∑
n=1

(
θ0 − θ̂(n)

)2

, (33)

where θ0 is the true parameter value, and θ̂(n) is the estimate from the simulated sample

n. The confidence intervals are computed using the standard asymptotic formula. These

statistics are summarized in the table below.

Panel A: First stage of SMM

Probability of detection g (%)

Bias Mean Abs Dev Med Abs Dev RMSE !CI90 !CI95 !CI99

100 −2.33 2.51 2.62 3.28 34.00 18.00 8.00
300 −2.07 2.26 2.37 3.06 20.00 10.00 6.00
500 −2.25 2.40 2.68 3.13 26.00 8.00 2.00
1000 −2.31 2.42 2.67 3.16 28.00 10.00 4.00
3000 −2.23 2.36 2.60 3.14 28.00 4.00 2.00

Loss in wealth κ1 (%)

Bias Mean Abs Dev Med Abs Dev RMSE !CI90 !CI95 !CI99

100 0.67 1.00 0.97 1.29 4.00 2.00 2.00
300 0.88 0.94 0.96 0.94 0.00 0.00 0.00
500 0.87 0.91 0.97 0.93 0.00 0.00 0.00
1000 0.89 0.93 0.97 0.94 0.00 0.00 0.00
3000 0.77 1.08 0.98 1.38 2.00 0.00 0.00

Sensitivity of loss in wealth to bias κ2
Bias Mean Abs Dev Med Abs Dev RMSE !CI90 !CI95 !CI99

100 0.08 0.08 0.07 0.09 20.00 10.00 4.00
300 0.08 0.08 0.07 0.09 12.00 6.00 2.00
500 0.08 0.08 0.07 0.09 14.00 2.00 0.00
1000 0.08 0.08 0.07 0.09 8.00 2.00 0.00
3000 0.08 0.08 0.08 0.09 2.00 2.00 0.00
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Panel B: Second stage of SMM

Probability of detection g (%)

Bias Mean Abs Dev Med Abs Dev RMSE !CI90 !CI95 !CI99

100 −3.13 3.31 3.09 4.18 48.00 34.00 20.00
300 −2.86 3.04 2.78 3.92 42.00 20.00 10.00
500 −2.92 3.09 3.47 3.91 42.00 24.00 8.00
1000 −2.91 3.07 3.30 3.94 44.00 24.00 10.00
3000 −2.88 3.05 3.47 3.90 38.00 20.00 6.00

Loss in wealth κ1 (%)

Bias Mean Abs Dev Med Abs Dev RMSE !CI90 !CI95 !CI99

100 0.75 1.01 0.98 1.23 4.00 4.00 2.00
300 0.93 0.94 0.98 0.95 0.00 0.00 0.00
500 0.91 0.94 0.98 0.95 2.00 2.00 2.00
1000 0.92 0.95 0.98 0.96 2.00 2.00 2.00
3000 0.92 0.97 0.99 0.97 0.00 0.00 0.00

Sensitivity of loss in wealth to bias κ2
Bias Mean Abs Dev Med Abs Dev RMSE !CI90 !CI95 !CI99

100 0.09 0.09 0.08 0.10 22.00 18.00 8.00
300 0.09 0.09 0.08 0.10 14.00 6.00 4.00
500 0.09 0.09 0.08 0.10 18.00 6.00 6.00
1000 0.09 0.09 0.08 0.10 16.00 10.00 6.00
3000 0.09 0.09 0.08 0.10 14.00 4.00 4.00

There are three conclusions that can be drawn from this table. First, the SMM estimates are

biased, and the bias does not decrease substantially as the number of simulations increases.

This finding is consistent with the findings of Michaelides and Ng [2000]. The estimate of

the probability of detection is biased upwards by 2%; the loss in wealth is biased downwards

by 1%; and the sensitivity in the loss in wealth to manipulation is biased downwards by 0.08.

Second, the second-stage SMM estimates have a larger bias and worse asymptotic properties

than the first-stage estimates. This finding is consistent with the extant literature on the

finite sample bias of the two-step GMM estimator [e.g., Altonji and Segal, 1996]. Third,

the asymptotic confidence intervals are more likely to include the true parameter as the

number of simulations increases, but this improvement is not monotonic in the number of

simulations. For instance, statistics for the estimates obtained using 3,000 simulations are

not strictly better than the statistics for the estimates obtained using 1,000 simulations. At

44



the same time, there is a significant increase in the computational time in going from 1,000

to 3,000 simulations for each executive. Based on these findings, I use 1,000 simulations per

executive when I estimate the model.

B.2 Simulation details

To simulate the model, I first fix the set of independent random shocks for the intrinsic

value process, turnover decision, termination decision, and detection of manipulation. The

random draws must be fixed to avoid “chatter” (the noise introduced by using different

random draws) when optimizing the SMM objective function [McFadden, 1989]. Next, for

each executive in my sample, I solve the optimization problem under fixed parameters.

The solution of the optimization problem yields optimal decision rules about whether to

manipulate and by how much, depending on the intrinsic value of the firm and the existing

bias.

Based on the set of random shocks and the optimal decision rules for each executive,

I simulate the data according to the model. First, I simulate the intrinsic value paths.41

Second, for each executive in every simulation, I apply his optimal decision rule with respect

to whether to manipulate, depending on the firm’s realized intrinsic value. Third, if it

is optimal for the executive to manipulate, I apply the optimal decision rule about the

magnitude of manipulation for the first time. Once the executive has manipulated, I apply

the optimal decision rule about the magnitude of manipulation depending on the firm’s

current intrinsic value and the existing bias. As a result of these steps, for each executive

in each simulation I calculate a path for whether the executive manipulates and by how

much. If he manipulates, I also observe the manipulation in each period and whether the

manipulation is detected. Finally, once manipulation is detected, I observe whether the

manager is terminated.

I compute the simulated moments in the same way in which I compute the moments

from the actual data. In the empirical sample, the number of years that each executive

41Because the model is normalized in such a way that all executives in the sample start with p0 = 1, there
is no need to choose a starting point for the intrinsic value process; thus, there is no need to employ a burn-in
period to dissipate the effect of an arbitrary choice of a starting point.
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is observed varies. To address the fact that different executives are observed for different

lengths of time in my sample, I use the simulation outcomes from the first t simulated periods

for the executive that I observe for t years in the empirical sample. Thus, in the simulated

sample, the restatement corresponds to the manipulation being detected before the manager

leaves the firm within the time interval during which I observe him in the empirical sample.

Next, I sample the simulated biases in the first two restated periods in the same way that

they are observed in the data. Finally, I use the restatement events and the biases in the

first two periods from the simulated sample to compute the moments.

B.3 Optimization details

The structural estimation involves optimizing the SMM objective function. For every guess

of parameters (g, κ1, κ2), it is necessary to solve the optimization problem for each executive,

simulate the data, and compute moments based on the simulated data. I constrain the pa-

rameters to be in the following intervals: g ∈ [0.0001, 1], κ1 ∈ [0.0001, 0.5], κ2 ∈ [0.0001, 3].42

Solving the optimization problem for each executive is computationally intensive. For ex-

ample, it takes about 110 seconds on a 32-processor cluster to evaluate the SMM objective

function once.43 It is common to restart optimization from the first value to which the op-

timization converges in order to increase the likelihood of finding a global optimum. I also

re-start the optimization function once and find that the new optimum value is very close to

the first value, and the objective function improves by at most 10−4.

I use a genetic algorithm [Holland, 1992] to select the starting values for the deterministic

directional search. The genetic algorithm incorporates the principles of biological evolution

42The interval for the probability of manipulation being detected, g, is straightforward. The wealth loss,
κ1, is the cost of manipulation that the manager incurs if he has ever manipulated before, irrespective of his
current bias in net assets. This parameter is expected to be low and I constrain it to κ1 ∈ [0.0001, 0.5]. The
sensitivity of the loss in wealth to the magnitude of manipulation, κ2, is constrained to κ2 ∈ [0, 3].

43Simulated annealing is commonly used to optimize a non-smooth objective function and to avoid local
minima [e.g., Rust, 1994, Taylor, 2010]. At each iteration, simulated annealing randomly generates a can-
didate point. That makes it inefficient in optimizing the objective function in my setting because, by the
nature of the problem, there is a large parameter region over which no executive finds it optimal to manip-
ulate and a relatively narrow parameter region over which the expected cost of manipulation is relatively
low and some executives manipulate. As a result, the simulated annealing routine can consume extensive
computational time in the large parameter region where no executive manipulates.
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and selects the candidate points by keeping the best ones without any change and replacing

the rest of the population by combining the best points (i.e., performing crossover) and

adding random mutations. At each restart of the SMM optimization, I run the genetic

algorithm for two generations with the number of points in each generation being 20 (this

implies 60 function evaluations, including the evaluation of the initial generation). I tune

the genetic algorithm parameters in such a way that the algorithm has enough random

components to have a chance of finding a better point without spending too much time in

the region within which it is not optimal to manipulate).44 After the genetic algorithm locates

a region that potentially contains the global minimum, I refine the point using another global

optimization algorithm – the patternsearch,45 which searches the points around the current

point in pre-specified directions. I run the pattern search until it reaches convergence.

44The specific settings for the genetic algorithm that I use in Matlab are: gaoptions = gaoptim-
set(@ga); gaoptions.PopulationSize = 20; gaoptions.Vectorized = ’off’; gaoptions.UseParallel = ’never’; gaop-
tions.Display = ’diagnose’; gaoptions.EliteCount = 3; gaoptions.CreationFcn = @gacreationlinearfeasible;
gaoptions.CrossoverFraction = .7; gaoptions.CrossoverFcn = @crossoverheuristic; gaoptions.MutationFcn1
= @mutationadaptfeasible; gaoptions.MutationFcn2 = 0.75; gaoptions.MutationFcn3 = 0.25; gaop-
tions.Generations = 2.

45The specific setting for the patternsearch that I use in Matlab are: psoptions = psoptimset; psop-
tions.UseParallel = ’never’; psoptions.Display = ’diagnose’; psoptions.Cache = ’on’; psoptions.CacheTol =
1e-4; psoptions.ScaleMesh = ’off’; psoptions.InitialMeshSize = 0.05; psoptions.MaxMeshSize = 1.5; psop-
tions.MeshContraction = 0.5; psoptions.MeshExpansion = 2; psoptions.MeshAccelerator = ’on’; psop-
tions.PollMethod = ’GSSPositiveBasis2N’; psoptions.CompletePoll = ’on’; psoptions.SearchMethod =
’MADSPositiveBasis2N’; psoptions.CompleteSearch = ’on’; psoptions.TolMesh = 1e-4; psoptions.TolX =
1e-4; psoptions.TolFun = 1e-6.
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Fig. 1. Optimal magnitude of bias in net assets in the final period

This figure depicts the optimal magnitude of manipulation in the final period T if the manager has

not manipulated before bT (pT ) and the optimal magnitude of manipulation if the manager has manipulated

before bT (pT , bT−1) for the model described in Section 3. I set the cost of manipulation parameters to their

estimated values (Table 5, Panel A) and the executive-specific parameters to their median values (Table

4).
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Table 1. Variable definitions

Definition Source
Executive-specific parameters

P0 Stock price at the end of the third month following the fiscal year end before
the CEO joins the firm.

CRSP

P̂t Stock price at the end of the third month following the fiscal year end in year
t.

CRSP

p̂t Scaled stock price P̂t/P0 at the end of the third month following the fiscal year
end in year t.

CRSP

NEPS
t Total number of shares used in calculation of earnings per share (basic) in year

t.
Compustat

nvt , n
nv
t Scaled vested and non-vested equity holdings set equal to Nt/N1, where Nt

is defined as Nstock
t + Noptions

t × d in respective groups; where Nstock
t is the

number of stocks the CEO owns at time t, Noptions
t is the number of options

the CEO owns at time t, and d is the mean stock option delta computed under
the assumptions of Core and Guay [2002] for all firms in the same industry.
This variable is winsorized at the 5th and 95th percentiles.

Equilar,
CRSP

wt Scaled estimate of a CEO’s cash wealth set equal to Wt/(n1P0), where W1

equals the CEO’s firm-specific wealth in the first period (when η = 1); Wt

is the sum of his cash compensation and cash wealth in the prior period. I
assume that the CEO earns a risk-free rate of 2% on his cash wealth every
year. This variable is winsorized, such that the resulting ct is within its 5th to
95th percentiles.

Equilar

ct The ratio of the scaled cash wealth to the value of one dollar inflation in re-
ported earnings c = wt/(ntβ). This variable is winsorized at the 5th and 95th
percentiles.

Equilar

Industry-specific parameters based on Standard & Poor’s Global Industry classification groups
µ Median expected return across all firms in the same industry, under the as-

sumption that CAPM holds, that is, rf + βCAPM (rm − rf ). I use βCAPM
provided by CRSP, which computes annual betas as in Scholes and Williams
[1977]. Since betas are based on two portfolio types (the NYSE/Amex and
NASDAQ-only), I define rm as the value-weighted return on the NYSE/Amex
and NASDAQ-only portfolios. I use the one-year T-bill rate for rf .

CRSP

σ Median standard deviation of continuously compounded returns across all firms
in the same industry. The standard deviation is measured as the annualized
standard deviation of daily returns provided by CRSP.

CRSP

β Median price-to-earnings multiple across all firms in the same industry. The
price-to-earnings multiple is defined as the average of fiscal year-end stock
prices P̂t and P̂t+1 divided by net income for year t for firms with a positive
net income.

Compustat

Variables observed in the case of restatements

B(1) Correction of earnings per share in the first restated period. AuditAnalytics
B(1)−B(2) Correction of earnings per share in the second restated period. AuditAnalytics
b(1), b(2) Scaled per share bias in net assets: b(t) = B(t)/P0. This variable is winsorized

at the 5th and 95th percentiles of restatements in the non-technical sample.
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Fixed parameters
γ = 2 Relative risk aversion parameter.
T = 85 CEOs’ retirement age.
η = 1 Multiplier for estimating CEOs’ total cash wealth in the first period, in which

the total wealth is the sum of outside and firm-specific wealth. CEOs’ outside
cash wealth is assumed to be equal to η multiplied by their firm-specific wealth
as in Conyon et al. [2011].

r = 2% Risk-free rate for cash wealth accumulation. In addition, 1/(1 + rf ) serves as
a time-discount factor in the manager’s optimization problem.

φ Probability of a restatement-related termination, which is computed as a frac-
tion of CEOs who leave the firm between the end of a restated period and 12
months after a restatement filing date: φ = 0.12 in the non-technical sample,
φ = 0.14 in the nontrivial sample.

f Probability of a CEO leaving a firm, which is defined as the annual turnover
rate across CEOs with the same tenure. It is assumed to equal 0.1 if the CEO’s
tenure is longer than 10 years.

Equilar,
Boardex

Estimated parameters
g Probability of manipulation being detected in each period.
κ1 Loss in the manager’s wealth if manipulation is detected.
κ2 Sensitivity of the loss in the manager’s wealth to the magnitude of manipulation

if manipulation is detected.
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Table 2. Descriptive statistics: comparison with Compustat universe

This table presents p-values for the two sample tests when one sample is Compustat firms listed on
the NYSE and NASDAQ and another sample consists of distinct firms from the sample of non-technical
restatements in 2006. The t-test is the test for the difference in means. The WMW test is the Mann-
Whitney two-sample rank-sum test where the null hypothesis states that the two samples of variables are
drawn from the same population. The variables are computed using annual Compustat data. Market value
is defined as (CSHO · PRCC F ); Total assets as AT; Sales as SALE; ROA as operating income after
depreciation, scaled by assets (OIADP/AT); Profit margin as operating income after depreciation scaled by
sales (OIADP/SALE); Sales growth as percentage change in sales; Book-to-market as shareholders’ equity
scaled by market capitalization (SEQ/MV); Leverage as the sum of long term debt and debt in current
liabilities divided by assets ((DLTT+DLC)/AT); Free Cash Flow as the difference between operating cash
flows and average capital expenditures over the previous three years (OANCF - CAPX Mean). Variables
are winsorized at 1- and 99- percentile.

Compustat Non-technical Compustat Non-technical
sample restatements sample restatements

Mean Mean t-test Median Median WMW
p-value p-value

Size

Market value 4040.58 5864.42 0.01 573.57 967.19 0.00
Total assets 7382.12 11 835.24 0.09 668.20 999.71 0.00
Sales 2808.53 4545.52 0.00 324.64 596.57 0.00

Profitability

ROA 0.04 0.04 0.15 0.06 0.06 0.33
Profit margin −1.30 −0.93 0.52 0.11 0.10 0.24

Growth

Sales growth 67.26 20.29 0.18 12.75 9.90 0.00

Capital structure

Book-to-market 0.42 0.43 0.94 0.44 0.43 0.80
Leverage 0.20 0.21 0.48 0.14 0.16 0.04
Free cash flows 170.21 246.40 0.35 14.21 27.97 0.00

Number of obs. 4,041 1,204 4,041 1,204
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Table 3. Restatement characteristics

This table contains descriptive statistics for the restatements from the non-technical and nontrivial re-
statements samples. Revenue recognition, core expenses, and non-core expenses issues are defined as in
Scholz [2008]. Fraud category, identified by Audit Analytics, includes restatements in which the disclosure
text indicates that errors were the result of improper, illegal, or falsified reporting, often for personal gain.
SEC investigation category, as identified by Audit Analytics, includes both formal and informal investiga-
tions. Class-action lawsuits includes lawsuits in which class action period overlaps with the restated period
and excludes lawsuits that were dismissed before trial or withdrawn. Security class action settlement is in
millions and originates from the Woodruff-Sawyer & Co database.

Non-technical Nontrivial
restatements restatements

Revenue recognition (%) 21.82 37.37
Core expenses (%) 47.27 54.55
Non-core expenses (%) 62.42 48.48
Number of issues restated 2.37 2.61
Number of years restated 2.18 2.11
Fraud disclosed (%) 3.64 5.05
SEC investigation (%) 6.06 7.07
Security class action (%) 8.48 8.08
Security class action settlement 25.39 8.47
Annual return in the year of a restatement (%) −25.01 −26.23

Number of obs. 165 99
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Table 4. Descriptive statistics

This table contains summary statistics for the sample of 1,513 CEOs, in which an intentional misstate-
ment is defined as a non-technical restatement and the sample of 1,462 CEOs, in which an intentional
misstatement is defined as a nontrivial restatement. The descriptive statistics represent the within-CEO
means. Additional details on the variable measurement can be found in Table 1.

Non-technical restatements (N = 1,513)

Mean Std dev 25th 50th 75th

Cash wealth, wt (%) 191.19 141.32 126.11 151.00 199.23
Vested equity, nvt (%) 99.04 57.09 71.14 92.03 108.86
Non-vested equity, nnvt (%) 35.06 28.87 8.18 31.80 55.78

Cost ratio, ct = wt/ntβ (%) 8.38 7.88 4.94 6.52 9.07
CEO age 52.84 7.16 48.00 53.00 57.50
Number of years a CEO in the sample 3.93 1.73 3.00 4.00 5.00

Probability of leaving the firm, ft (%) 7.40 4.07 3.88 7.14 10.16
Expected return, µ (%) 8.33 1.38 7.85 8.26 8.98
Return volatility, σ (%) 39.41 9.83 34.64 38.89 43.34
Price-to-earnings multiple, β 20.80 4.70 16.23 19.33 23.89

Price, P̂t/P0 1.11 0.71 0.66 0.95 1.31

Bias in net assets for non-technical restatements (N = 165)

Mean Std dev 25th 50th 75th

Bias in net assets, b(1) (0.01%) 108.32 219.02 0.00 27.72 125.81

Bias in net assets, b(2) (0.01%) 65.88 169.70 0.00 0.00 54.44

Bias in net assets for nontrivial restatements (N = 99)

Mean Std dev 25th 50th 75th

Bias in net assets, b(1) (0.01%) 105.38 210.74 0.00 30.55 95.77

Bias in net assets, b(2) (0.01%) 76.95 173.96 0.00 0.00 80.31
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Table 5. Parameter estimates

This table contains estimates of the cost of manipulation parameters for the model described in Section
3. The parameters are defined in Table 1, and the fixed parameters are the following: γ = 2, T = 85, η = 1.
Panel A contains estimates based on the sample of 1,361 CEOs, in which an intentional misstatement is
defined as a non-technical restatement. Panel B contains estimates based on the sample of 1,315 CEOs,
in which an intentional misstatement is defined as a nontrivial restatement. The parameters are estimated
using SMM, as described in Section 4. The J-test is the test of overidentifying restrictions (distributed as
χ2(1) in this case, as described in Section 4), which is the specification test for how well the model explains
the data; p-value is the p-value for the J-test. Standard errors are listed in parentheses.

Panel A: Non-technical restatements

Prob. of detection Loss in wealth Sensitivity of loss J-test p-value
g (%) κ1 (%) to bias κ2

8.74∗∗∗ 0.03 1.17∗∗∗ 0.03 0.85
(0.47) (4.65) (0.37)

Panel B: Nontrivial restatements

Prob. of detection Loss in wealth Sensitivity of loss J-test p-value
g (%) κ1 (%) to bias κ2

6.96∗∗∗ 7.88 0.96∗∗∗ 1.67 0.20
(0.35) (5.38) (0.33)
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Table 6. Empirical versus simulated moments

This table contains the results of Monte Carlo simulations of the distribution of simulated moments to
test hypotheses about the equality of the moments computed from the data and simulated moments, as
described in Section 5. The parameters are defined in Table 1, and the fixed parameters are the following:
γ = 2, T = 85, η = 1. The choice of moments is discussed in Section 4. Panel A contains estimates based on
the sample of 1,361 CEOs, in which an intentional misstatement is defined as a non-technical restatement.
Panel B contains estimates based on the sample of of 1,315 CEOs, in which an intentional misstatement is
defined as a nontrivial restatement. For each definition of an intentional misstatement, I simulate 10,000
samples of manipulation decisions for the sample CEOs under the estimated parameters reported in Table 5
to obtain 10,000 sets of simulated moments. The empirical values are moments computed using data. The
simulated values are means across 10,000 sets of simulated moments. The standard error is the standard
deviation of the 10,000 simulated moments; p-value is the p-value of the empirical moments based on the
distribution of simulated moments, i.e., it is the p-value of the test for equality between the empirical
moments and the simulated moments implied by the model.

Panel A: Non-technical restatements

Empirical Simulated Standard p-value
value value error

Restatement rate (1%) 10.87 10.76 0.08 0.07

Mean b(1) (0.01%) 240.60 240.31 3.43 0.46

Mean b(2)b(1) (0.01%) 123.53 123.77 1.43 0.44
Mean cost for restating firms (1%) 1.16 1.15 0.01 0.41

Panel B: Nontrivial restatements

Empirical Simulated Standard p-value
value value error

Restatement rate (1%) 6.77 6.83 0.07 0.16

Mean b(2) (0.01%) 144.30 144.61 3.22 0.46

Mean b(2)b(1) (0.01%) 97.74 93.65 1.41 0.00
Mean cost for restating firms (1%) 0.76 0.67 0.01 0.00
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Table 7. Unconditional model-implied measure of manipulation

Panel A contains summary statistics for the model-implied bias computed under the cost parameter
estimates obtained for the sample of 1,361 CEOs, in which an intentional misstatement is defined as a non-
technical restatement. Panel B contains summary statistics for the model-implied bias computed under the
cost parameter estimates obtained for the sample of 1,315 CEOs, in which an intentional misstatement is
defined as a nontrivial restatement. The variables are defined in Table 1, and the fixed parameters are the
following: γ = 2, T = 85, η = 1. The details on bias estimation are described in Section 5.3. I compute the
fraction of CEO-years when the CEO manipulates, the equally weighted and value-weighted biases in the
stock price (defined as the difference between the stock price and the firm’s intrinsic value as a percentage
of the stock price) over all CEO-years. Bias in net assets is the bias in net assets scaled by the lag of total

assets, i.e., b̂tP0N
EPS
t /ATt−1, where b̂t is the model-implied bias in net assets. Bias in earnings is the bias

in earnings scaled by the lag of total assets, i.e., (̂bt − b̂t−1)P0N
EPS
t /ATt−1. Bias in price is the difference

between the stock price and the firm’s intrinsic value divided by the stock price, which is equivalent to
β(̂bt − b̂t−1)/p̂t. Cost impact of bias is βb̂t. Bias in net assets, Bias in earnings, and Bias in price are
winsorized at the 5th and 95th percentiles.

Panel A: Non-technical restatements (N = 5,375)

Fraction of CEO-years Equally weighted Value-weighted
when CEO manipulates (%) bias in price (%) bias in price (%)

45.17 10.78 5.68

Mean Std dev 25th 50th 75th

Bias in net assets (%) 0.86 1.42 0.00 0.00 1.28
Bias in earnings (%) 0.43 0.82 0.00 0.00 0.49
Bias in price (%) 10.78 19.75 0.00 0.00 16.05
Cost impact of bias (%) 19.55 29.68 0.00 0.00 42.46

Panel B: Nontrivial restatements (N = 5,005)

Fraction of CEO-years Equally weighted Value-weighted
when CEO manipulates (%) bias in price (%) bias in price (%)

36.64 10.58 5.12

Mean Std dev 25th 50th 75th

Bias in net assets (%) 0.69 1.29 0.00 0.00 0.87
Bias in earnings (%) 0.41 0.81 0.00 0.00 0.34
Bias in price (%) 10.58 20.50 0.00 0.00 12.46
Cost impact of bias (%) 16.14 30.22 0.00 0.00 38.89
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Table 8. Model-implied measure of manipulation conditional on CEO manipulating

Panel A contains summary statistics for the model-implied bias computed under the cost parameter
estimates obtained for the sample of 1,361 CEOs, in which an intentional misstatement is defined as a non-
technical restatement. Panel B contains summary statistics for the model-implied bias computed under the
cost parameter estimates obtained for the sample of 1,315 CEOs, in which an intentional misstatement is
defined as a nontrivial restatement. The variables are defined in Table 1, and the fixed parameters are the
following: γ = 2, T = 85, η = 1. The details on bias estimation are provided in Section 5.3. I compute the
fraction of manipulating CEOs in the full sample and the equally weighted and value-weighted biases in the
stock price (defined as the difference between the stock price and the firm’s intrinsic value as a percentage
of the stock price) over CEO-years in which CEOs manipulate according to the model. Bias in net assets

is the bias in net assets scaled by the lag of total assets, i.e., b̂tP0N
EPS
t /ATt−1, where b̂t is the model-

implied bias in net assets. Bias in earnings is the bias in earnings scaled by the lag of total assets, i.e.,
(̂bt − b̂t−1)P0N

EPS
t /ATt−1. Bias in price is the difference between the stock price and the firm’s intrinsic

value divided by the stock price, which is equivalent to β(̂bt − b̂t−1)/p̂t. Cost impact of bias is βb̂t. Bias in
net assets, Bias in earnings, and Bias in price are winsorized at the 5th and 95th percentiles.

Panel A: Non-technical restatements (N = 2,428)

Fraction of CEOs Equally weighted Value-weighted
who manipulate (%) bias in price (%) bias in price (%)

66.42 23.96 15.54

Mean Std dev 25th 50th 75th

Bias in net assets (%) 2.08 2.14 0.64 1.48 2.76
Bias in earnings (%) 1.03 1.37 0.12 0.65 1.59
Bias in price (%) 23.96 23.37 2.66 19.94 42.51
Cost impact of bias (%) 43.29 30.38 33.64 46.05 62.72

Panel B: Nontrivial restatements (N = 1,834)

Fraction of CEOs Equally weighted Value-weighted
who manipulate (%) bias in price (%) bias in price (%)

58.86 28.98 18.96

Mean Std dev 25th 50th 75th

Bias in net assets (%) 2.08 2.43 0.62 1.52 2.91
Bias in earnings (%) 1.20 1.57 0.22 0.84 1.87
Bias in price (%) 28.98 24.73 6.58 27.46 51.78
Cost impact of bias (%) 44.05 35.55 36.08 47.96 67.22

64



T
ab

le
9.

D
efi

n
it

io
n
s

of
d
is

cr
et

io
n
ar

y
ac

cr
u
al

s
m

ea
su

re
s

C
om

p
u

st
at

X
P

F
d

at
a

it
em

s:
A

T
is

A
ss

et
s

-
T

o
ta

l;
S

A
L

E
is

S
a
le

s/
T

u
rn

ov
er

(N
et

);
R

E
C

T
is

R
ec

ei
va

b
le

s
-

T
o
ta

l;
P

P
E

N
T

is
P

ro
p

er
ty

P
la

n
t

an
d

E
q
u

ip
m

en
t

-
T

ot
al

(N
et

);
IB

C
is

In
co

m
e

B
ef

o
re

E
x
tr

a
o
rd

in
a
ry

It
em

s;
X

ID
O

C
is

E
x
tr

a
o
rd

in
a
ry

It
em

s
a
n

d
D

is
co

n
ti

n
u

ed
O

p
er

a
ti

o
n

s
(S

ta
te

m
en

t
of

C
as

h
F

lo
w

s)
;

N
I

is
N

et
In

co
m

e
(L

o
ss

);
O

A
N

C
F

is
O

p
er

a
ti

n
g

A
ct

iv
it

ie
s

-
N

et
C

a
sh

F
lo

w
;

L
T

is
L

ia
b

il
it

ie
s

-
T

o
ta

l;
P

S
T

K
is

P
re

fe
rr

ed
/P

re
fe

re
n

ce
S

to
ck

(C
ap

it
al

)
-

T
ot

al
;

C
H

E
is

C
a
sh

a
n
d

S
h

o
rt

-T
er

m
In

ve
st

m
en

ts
;

IV
S

T
is

S
h

o
rt

-T
er

m
In

ve
st

m
en

ts
-

T
o
ta

l;
A

C
T

is
C

u
rr

en
t

A
ss

et
s

-
T

ot
al

;
L

C
T

is
C

u
rr

en
t

L
ia

b
il

it
ie

s
-

T
o
ta

l.
T

h
e

fi
n

a
l

va
ri

a
b

le
s

a
re

w
in

so
ri

ze
d

a
t

th
e

1
st

a
n

d
9
9
th

p
er

ce
n
ti

le
s.

D
efi

n
it

io
n

T
ot

al
ac

cr
u

al
s

T
o
ta

l
a
cc

ru
a
ls

a
re

m
ea

su
re

d
fo

ll
ow

in
g

H
ri

b
a
r

a
n

d
C

o
ll

in
s

[2
0
0
2
]

a
s
I
B
C
t
−

(C
F
O
t
−
X
I
D
O
C
t
),

a
n

d
if

m
is

si
n

g
a
s
N
I t
−
O
A
N
C
F
t

o
r

a
s

im
p

li
ed

b
y

th
e

b
a
la

n
ce

-s
h

ee
t

a
p

p
ro

a
ch

.
T

h
is

va
ri

a
b

le
is

sc
a
le

d
b
y

th
e

la
g

o
f

to
ta

l
a
ss

et
s.

A
cc

ru
al

s
as

in
R

ic
h

ar
d

so
n

et
al

.
[2

00
5]

A
cc

ru
a
ls

co
m

p
u

te
d

fo
ll

ow
in

g
R

ic
h

a
rd

so
n

et
a
l.

[2
0
0
5
]

a
re

ca
lc

u
la

te
d

a
s

th
e

su
m

o
f

th
e

ch
a
n

g
e

in
n

o
n

-c
a
sh

w
o
rk

in
g

ca
p

it
a
l,

th
e

ch
a
n

g
e

in
n

et
n

o
n

-c
u

rr
en

t
o
p

er
a
ti

n
g

a
ss

et
s,

a
n

d
th

e
ch

a
n

g
e

in
n

et
fi

n
a
n

ci
a
l

a
ss

et
s.

T
h

e
fo

rm
u

la
is

si
m

p
li

fi
ed

to
((

(A
T
t
−
L
T
t
−
P
S
T
K
t
)
−

(C
H
E
t
−
I
V
S
T
t
))
−

((
A
T
t−

1
−
L
T
t−

1
−
P
S
T
K
t−

1
)
−

(C
H
E
t−

1
−
I
V
S
T
t−

1
))

).
T

h
is

va
ri

a
b

le
is

sc
a
le

d
b
y

th
e

la
g

o
f

to
ta

l
a
ss

et
s.

J
on

es
m

o
d

el
d

is
cr

et
io

n
ar

y
ac

cr
u

al
s

A
cc

ru
a
ls

fo
ll

ow
in

g
th

e
J
o
n

es
[1

9
9
1
]
m

o
d

el
a
re

g
iv

en
a
s

th
e

re
si

d
u

a
ls

fr
o
m

cr
o
ss

-s
ec

ti
o
n

a
l
re

g
re

ss
io

n
s

(f
o
r

ev
er

y
tw

o
-d

ig
it

S
IC

co
d
e

a
n

d
fi

sc
a
l
y
ea

r)
o
f
to

ta
l
a
cc

ru
a
ls

o
n

a
co

n
st

a
n
t,

th
e

re
ci

p
ro

ca
l
o
f
A
T
t−

1
,

∆
S
A
L
E
t
,

a
n

d
P
P
E
N
T
t
.

A
ll

va
ri

a
b

le
s

a
re

sc
a
le

d
b
y

th
e

la
g

o
f

to
ta

l
a
ss

et
s,
A
T
t−

1
.

E
st

im
a
ti

o
n

re
q
u

ir
es

a
t

le
a
st

te
n

o
b

se
rv

a
ti

o
n

s
p

er
g
ro

u
p

.
M

o
d

ifi
ed

J
on

es
m

o
d

el
d

is
cr

et
io

n
ar

y
ac

cr
u

al
s

A
cc

ru
a
ls

fo
ll

ow
in

g
th

e
D

ec
h

ow
et

a
l.

[1
9
9
5
]

m
o
d

el
a
re

g
iv

en
a
s

th
e

re
si

d
u

a
ls

fr
o
m

cr
o
ss

-s
ec

ti
o
n

a
l

re
g
re

ss
io

n
s

(f
o
r

ev
er

y
tw

o
-d

ig
it

S
IC

co
d

e
a
n

d
fi

sc
a
l

y
ea

r)
o
f

to
ta

l
a
cc

ru
a
ls

o
n

a
co

n
st

a
n
t,

th
e

re
ci

p
ro

ca
l

o
f
A
T
t−

1
,

∆
S
A
L
E
t
−

∆
R
E
C
T
t
,

a
n

d
P
P
E
N
T
t
.

A
ll

va
ri

a
b

le
s

a
re

sc
a
le

d
b
y
A
T
t−

1
.

E
st

im
a
ti

o
n

re
q
u

ir
es

a
t

le
a
st

te
n

o
b

se
rv

a
ti

o
n

s
p

er
g
ro

u
p

.
P

er
fo

rm
an

ce
-m

at
ch

ed
d

is
cr

et
io

n
ar

y
ac

cr
u

al
s

T
h

e
d

iff
er

en
ce

b
et

w
ee

n
J
o
n

es
m

o
d

el
d

is
cr

et
io

n
a
ry

a
cc

ru
a
ls

fo
r

fi
rm

i
a
n

d
th

e
m

ea
n

J
o
n

es
m

o
d

el
d

is
cr

et
io

n
a
ry

a
cc

ru
a
ls

fo
r

th
e

m
a
tc

h
ed

fi
rm

s,
w

h
er

e
th

e
m

a
tc

h
in

g
is

p
er

fo
rm

ed
b

a
se

d
o
n

th
e

tw
o
-

d
ig

it
S

IC
co

d
e

(o
r

o
n

th
e

o
n

e-
d

ig
it

S
IC

co
d

e
if

th
e

m
a
tc

h
o
n

th
e

tw
o
-d

ig
it

S
IC

co
d

e
is

em
p

ty
),

fi
sc

a
l

ye
a
r,

a
n

d
R
O
A
t

fo
r

a
m

a
tc

h
ed

fi
rm

w
it

h
in

a
1
.5

%
in

te
rv

a
l

o
f

fi
rm

i’
s
R
O
A
it

.
H

er
e,
R
O
A
t

is
co

m
p

u
te

d
fo

ll
ow

in
g

K
o
th

a
ri

et
a
l.

[2
0
0
5
]

a
s
N
I t
/A
T
t−

1
.

E
st

im
a
ti

o
n

re
q
u

ir
es

a
t

le
a
st

tw
o

va
li
d

m
a
tc

h
es

.

65



Table 10. Out-of-sample performance

This table reports out-of-sample performance statistics for the model-implied measure of manipulation
and measures of discretionary accruals. Additional details can be found in Section 5.4. The variables are
defined in Table 1, and the fixed parameters are the following: γ = 2, T = 85, η = 1. The performance
statistics include the bias (Bias), the mean absolute deviation (Mean Abs Dev), the median absolute deviation
(Med Abs Dev) and the root mean squared error (RMSE). I compute these statistics by calculating the
difference between the true value observed in the holdout sample and the estimate (i.e., deviation). The
statistics for the probability of manipulation are computed using all CEO-years for executives who restate
in the holdout sample, whereas the statistics for the magnitude of misreporting are computed using only
CEO-years in which an executive actually misreports in the holdout sample. The model-implied bias in
earnings is computed as the bias in earnings scaled by the lag of total assets, i.e., (̂bt− b̂t−1)P0N

EPS
t /ATt−1,

where b̂t is the model-implied manipulation. Discretionary accruals are defined in Table 9.

Panel A: Non-technical restatements

Probability of manipulation (number of CEOs = 16, number of obs. = 77)

Bias Mean Abs Dev Med Abs Dev RMSE

Model-implied probability(%) −30.34 58.49 100.00 76.12
Discretionary accruals-implied prob.(%) −59.74 59.74 100.00 77.29

Magnitude of manipulation in earnings (number of CEOs = 16, number of obs. = 31)

Bias Mean Abs Dev Med Abs Dev RMSE

Model-implied bias in earnings (%) −0.21 0.60 0.16 1.03
Total accruals (%) 7.07 10.58 7.08 14.74
Accruals as in Richardson et al. [2005] (%) −2.66 9.02 7.14 12.42
Jones model discr. accruals (%) −0.36 7.12 4.02 11.82
Modified Jones model discr. accruals (%) −0.35 6.93 4.08 11.81
Performance-matched discr. accruals (%) 0.38 6.34 4.65 8.35

Panel A: Nontrivial restatements

Probability of manipulation (number of CEOs = 10, number of obs. = 51)

Bias Mean Abs Dev Med Abs Dev RMSE

Model-implied probability (%) −28.14 62.61 95.00 76.03
Discretionary accruals-implied prob.(%) −66.67 66.67 100.00 81.65

Magnitude of manipulation in earnings (number of CEOs = 10, number of obs. = 17)

Bias Mean Abs Dev Med Abs Dev RMSE

Model-implied bias in earnings (%) 0.32 1.41 1.26 1.85
Total accruals (%) 7.41 12.08 12.07 13.77
Accruals as in Richardson et al. [2005] (%) −6.72 13.09 12.13 15.71
Jones model discr. accruals (%) −1.56 8.20 5.31 11.52
Modified Jones model discr. accruals (%) −1.54 8.12 5.18 11.35
Performance-matched discr. accruals (%) 1.46 9.26 6.73 11.97

66



Table 11. Alternative specifications: parameter estimates

This table contains estimates of the cost of manipulation parameters for the model described in Section
3 under different choices of the risk aversion parameter, γ, the retirement age, T , and the multiplier for
estimating CEOs’ total cash wealth, η. The parameters are defined in Table 1. Panel A contains estimates
based on the sample of 1,361 CEOs, in which an intentional misstatement is defined as a non-technical
restatement. Panel B contains estimates based on the sample of 1,315 CEOs, in which an intentional
misstatement is defined as a nontrivial restatement. The parameters are estimated using SMM, as described
in Section 4. The J-test is the test of overidentifying restrictions (distributed as χ2(1) in this case, as
described in Section 4), which is the specification test for how well the model explains the data; p-value is
the p-value for the J-test. Standard errors are listed in parentheses.

Panel A: Non-technical restatements

Prob. of detection Loss in wealth Sensitivity of loss J-test p-value
g (%) κ1 (%) to bias κ2

γ = 2, T = 85, η = 1 8.74∗∗∗ 0.03 1.17∗∗∗ 0.03 0.85
(0.47) (4.65) (0.37)

γ = 3, T = 85, η = 1 8.62∗∗∗ 1.16 0.98∗∗∗ 0.01 0.91
(0.72) (3.25) (0.28)

γ = 2, T = 65, η = 1 8.00∗∗∗ 0.01 0.60∗∗∗ 7.10 0.01
(0.46) (5.50) (0.17)

γ = 2, T = 85, η = 0.5 8.78∗∗∗ 0.26 1.29∗∗∗ 0.09 0.76
(0.61) (4.67) (0.41)

Panel B: Nontrivial restatements

Prob. of detection Loss in wealth Sensitivity of loss J-test p-value
g (%) κ1 (%) to bias κ2

γ = 2, T = 85, η = 1 6.96∗∗∗ 7.88 0.96∗∗∗ 1.67 0.20
(0.35) (5.38) (0.33)

γ = 3, T = 85, η = 1 6.25∗∗∗ 9.90∗∗ 0.82∗∗ 1.91 0.17
(0.53) (4.69) (0.35)

γ = 2, T = 65, η = 1 7.22∗∗∗ 0.55 0.68∗∗∗ 0.08 0.77
(0.98) (7.23) (0.22)

γ = 2, T = 85, η = 0.5 6.93∗∗∗ 8.42∗ 1.26∗∗ 1.52 0.22
(0.44) (5.00) (0.51)

67



Table 12. Alternative specifications: unconditional model-implied measure of manipulation

This table contains statistics for the unconditional model-implied measure of manipulation for the model
described in Section 3 under different choices of the risk aversion parameter, γ, the retirement age, T , and
the multiplier for estimating CEOs’ total cash wealth, η. Panel A contains summary statistics for the model-
implied bias computed under the cost parameter estimates obtained for the sample of 1,361 CEOs, in which
an intentional misstatement is defined as a non-technical restatement. Panel B contains summary statistics
for the model-implied bias computed under the cost parameter estimates obtained for the sample of of 1,315
CEOs, in which an intentional misstatement is defined as a nontrivial restatement. The variables are defined
in Table 1. The details of bias estimation are described in Section 5.3. I compute the fraction of CEO-years
when CEO manipulates, the equally weighted and value-weighted biases in the stock price (defined as the
difference between the stock price and the firm’s intrinsic value as a percentage of the stock price) over all
CEO-years.

Panel A: Non-technical restatements (N = 5,375)

Fraction of CEO-years Equally weighted Value-weighted
when CEO manipulates (%) bias in price (%) bias in price (%)

γ = 2, T = 85, η = 1 45.17 10.78 5.68
γ = 3, T = 85, η = 1 46.62 10.95 5.97
γ = 2, T = 65, η = 1 33.95 11.24 4.57
γ = 2, T = 85, η = 0.5 45.54 10.86 5.89

Panel B: Nontrivial restatements (N = 5,005)

Fraction of CEO-years Equally weighted Value-weighted
when CEO manipulates (%) bias in price (%) bias in price (%)

γ = 2, T = 85, η = 1 36.64 10.58 5.12
γ = 3, T = 85, η = 1 39.34 10.98 5.59
γ = 2, T = 65, η = 1 29.03 10.19 4.00
γ = 2, T = 85, η = 0.5 37.78 10.07 4.99
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Table 13. Alternative specifications: model-implied measure of manipulation
conditional on CEO manipulating

This table contains statistics for the model-implied measure of manipulation, conditional on the CEO
manipulating, for the model described in Section 3 under different choices of the risk aversion parameter, γ,
the retirement age, T , and the multiplier for estimating the CEOs’ total cash wealth, η. Panel A contains
summary statistics for the model-implied bias computed under the cost parameter estimates obtained for the
sample of 1,361 CEOs, in which an intentional misstatement is defined as a non-technical restatement. Panel
B contains summary statistics for the model-implied bias computed under the cost parameter estimates
obtained for the sample of 1,315 CEOs, in which an intentional misstatement is defined as a nontrivial
restatement. The variables are defined in Table 1. The details of bias estimation are described in Section
5.3. I compute the fraction of manipulating CEOs in the full sample as well as the equally weighted and
value-weighted biases in the stock price (defined as the difference between the stock price and the firm’s
intrinsic value as a percentage of the stock price) over CEO-years in which CEOs manipulate according to
the model.

Panel A: Non-technical restatements

Fraction of CEOs Equally weighted Value-weighted
who manipulate (%) bias in price (%) bias in price (%)

γ = 2, T = 85, η = 1 66.42 23.96 15.54
γ = 3, T = 85, η = 1 67.01 23.56 15.51
γ = 2, T = 65, η = 1 54.05 33.36 19.62
γ = 2, T = 85, η = 0.5 66.42 23.93 15.94

Panel B: Nontrivial restatements

Fraction of CEOs Equally weighted Value-weighted
who manipulate (%) bias in price (%) bias in price (%)

γ = 2, T = 85, η = 1 58.86 28.98 18.96
γ = 3, T = 85, η = 1 60.84 27.98 19.29
γ = 2, T = 65, η = 1 50.85 35.26 21.04
γ = 2, T = 85, η = 0.5 59.54 26.73 17.88
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Table 14. Alternative specifications: out-of-sample performance

This table reports out-of-sample performance statistics for the model-implied measure of manipulation
under different choices of the risk aversion parameter, γ, the retirement age, T , and the multiplier for
estimating CEOs’ total cash wealth, η. Additional details are presented in Section 5.4. The variables are
defined in Table 1. These statistics include the bias (Bias), the mean absolute deviation (Mean Abs Dev),
the median absolute deviation (Med Abs Dev) and the root mean squared error (RMSE). I compute these
statistics by calculating the difference between the true value observed in the holdout sample and the estimate
(i.e., deviation). The statistics for the probability of manipulation are computed using all CEO-years for
executives who restate in the holdout sample, whereas the statistics for the magnitude of misreporting are
computed using only CEO-years in which an executive actually misreports in the holdout sample. The
model-implied bias in earnings is computed as the bias in earnings, scaled by the lag of total assets, i.e.,
(̂bt − b̂t−1)P0N

EPS
t /ATt−1, where b̂t is the model-implied manipulation.

Panel A: Non-technical restatements

Probability of manipulation (number of CEOs = 16, number of obs. = 77)

Bias Mean Abs Dev Med Abs Dev RMSE

γ = 2, T = 85, η = 1 (%) −30.34 58.49 100.00 76.12
γ = 3, T = 85, η = 1 (%) −26.78 57.14 97.00 74.10
γ = 2, T = 65, η = 1 (%) −27.86 45.18 10.00 66.14
γ = 2, T = 85, η = 0.5 (%) −29.71 58.13 100.00 75.95

Magnitude of manipulation in earnings (number of CEOs = 16, number of obs. = 31)

Bias Mean Abs Dev Med Abs Dev RMSE

γ = 2, T = 85, η = 1 (%) −0.21 0.60 0.16 1.03
γ = 3, T = 85, η = 1 (%) −0.08 0.57 0.22 0.98
γ = 2, T = 65, η = 1 (%) −1.72 2.40 0.68 5.72
γ = 2, T = 85, η = 0.5 (%) −0.19 0.60 0.24 1.01

Panel B: Nontrivial restatements

Probability of manipulation (number of CEOs = 10, number of obs. = 51)

Bias Mean Abs Dev Med Abs Dev RMSE

γ = 2, T = 85, η = 1 (%) −28.14 62.61 95.00 76.03
γ = 3, T = 85, η = 1 (%) −29.86 63.27 87.00 76.27
γ = 2, T = 65, η = 1 (%) −27.16 51.68 71.00 69.28
γ = 2, T = 85, η = 0.5 (%) −24.65 61.12 95.00 75.24

Magnitude of manipulation in earnings (number of CEOs = 10, number of obs. = 17)

Bias Mean Abs Dev Med Abs Dev RMSE
γ = 2, T = 85, η = 1 (%) 0.32 1.41 1.26 1.85
γ = 3, T = 85, η = 1 (%) 0.36 1.37 1.44 1.69
γ = 2, T = 65, η = 1 (%) −1.21 2.77 2.35 3.62
γ = 2, T = 85, η = 0.5 (%) 0.37 1.27 1.13 1.60
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