
Logarithmic Transformations 

In the following “Regression Modeling” listing, the last two (optional) points, involving 
logarithmic transformations, are “the next things I’d cover if we had a bit more time.” 

 

Regression Modeling 

The list below summarizes steps which should be taken after you've preliminarily explored a 
regression model. The steps can be taken in any order, and can be tried repeatedly as you 
continue to improve your model. 

1. Use sets of dummy variables to represent qualitative variables in your mode. An analysis 
of variance (ANOVA) will tell you if the data supports inclusion of these variables. 

2. Plot the residuals against each explanatory variable. If you see a "U" (bending upwards or 
downwards), try adding the square of that explanatory variable to your model. Then look at 
"c" and "-b/(2c)" to see the nature of the nonlinearity you've captured. 

3. For each explanatory variable in turn, ask yourself whether its impact on the dependent 
variable might vary as some other explanatory variable varies. If so, try adding the product of 
those two explanatory variables to your model (in order to capture a possible interaction). 
Interpret the regression results in terms of the "conceptual" model in which the coefficient of 
the first variable explicitly incorporates the second. 

4. Find the sample observations with the largest positive residuals, and those with the largest 
(in magnitude) negative residuals. If some as-yet-not-in-your-model factor seems to 
differentiate the two groups, collect data on that factor and try including it as a new 
explanatory variable in your model. 

5. Do a "model analysis," and examine any outliers that turn up. Check that the data was 
entered correctly. If it was, see if you can identify something "special" about the outliers 
(ideally, new explanatory variables which will yield a model where the observations are no 
longer outliers). 

6. [Plot the residuals against the predicted values of the dependent variable. If the "scatter" of 
the residuals grows as the predicted values grow, consider using the logarithm of the 
dependent variable as the dependent variable in a new model.] 

7. [If you suspect that the effects of the explanatory variables are "scale" effects (for 
example, if you think that changes in an explanatory variable are associated with percentage 
changes in the dependent variable, rather than additive changes), consider using the 
logarithms of the explanatory variables in a new model, instead of the original explanatory 
variables themselves.] 

 
 

Here are a couple of examples which illustrate points (6) and (7). 

The first is pulled from the Session-4 section of the course materials (where you can find all of 
the data): 
   



I collected player performance data on National Basketball Association guards for the 1997-8 
season, and matched that data to their 1998-9 salaries. From the performance data, I determined 
two performance indices: How many points they scored per minute of playing time, and how 
many other contributions to their team they made per minute (the “other” contributions give 
them credit for assists, free throws made, rebounds, and the like, while reducing credit for fouls 
committed, turnovers, and other “bad” things). I also included their age in the study, as well as 
whether they were primarily a “shooting” guard (sg=1) or a “point” guard (sg=0). 
 
Here’s the regression of salary onto the four explanatory variables: 

Regression: salary 
 

  constant ppm cpm age sg 
coefficient -4422980.4 5109892.49 10968564.6 108678.696 852094.908 
std error of coef 1609690.64 1549029.42 2880311.02 53200.2007 441455.612 
t-ratio -2.7477 3.2988 3.8081 2.0428 1.9302 
significance 0.7377% 0.1438% 0.0269% 4.4282% 5.7040% 
beta-weight   0.3131 0.3903 0.1879 0.2017 

 

standard error of regression 1703713.89
coefficient of determination 33.18%
adjusted coef of determination 29.92%

 
I then plotted the residuals against the predicted salaries: 

 
 
 

Clearly, the errors (residuals) in my predictions grew, on average, as predicted salaries 
increased. This is an instance of what’s known as heteroskedasticity (a fun word to 
pronounce, and sometimes spelled heteroscedasticity although the “k” leads the “c” in 
Google, 691,000 to 607,000). 
 
   



Generally, heteroskedasticity refers to any situation where the residuals vary systematically with 
the size of the dependent variable, and a common type is when the dependent variable varies 
over a wide range, and there’s more “room” for error for larger values of the dependent variable. 

Heteroskedasticity doesn’t distort coefficient estimates, but it does throw off the estimates of the 
standard errors of the coefficients and the standard error of the regression, as well as the standard 
errors of predictions. 

KStat offers a test for heteroskedasticity (on the “Model Analysis” page) known as the Breusch-
Pagan test. The null hypothesis is that the residuals have equal variance for all values of the 
dependent variable, and significance levels near 0% indicate that the data strongly contradicts 
that hypothesis, i.e., values of the significance level near 0% indicate strong evidence of the 
presence of heteroskedasticity: 

Predicted values and residuals 
 

11.8247 0.058% Breusch-Pagan heteroskedasticity test 
18.6203 0.009% Jarque-Bera non-normality test 

When you see the type of “fanning-outwards” residual plot we saw above, one common 
modeling approach is to recale the dependent variable, and a common rescaling is to use its 
logarithm as a new dependent variable. Regressing log(salary) onto the same explanatory 
variables yields: 

Regression: logsal 
 

  constant ppm cpm age sg 
coefficient 4.79270892 0.77434739 2.13552137 0.02842371 0.1675415 
std error of coef 0.28599623 0.27521846 0.51174932 0.00945216 0.0784341 
t-ratio 16.7579 2.8136 4.1730 3.0071 2.1361 
significance 0.0000% 0.6131% 0.0074% 0.3501% 3.5655% 
beta-weight   0.2601 0.4166 0.2694 0.2174 

 

standard error of regression 0.30270149
coefficient of determination 36.61%
adjusted coef of determination 33.51%

 
   



The plot of the residuals against the predicted values (of log(salary)) looks much 
more “in control.” 

 

 
 

And the Breusch-Pagan statistic has a significance level far above 0, indicating no remaining 
evidence of heteroskedasticity! 
 

Predicted values and residuals 
 

0.5347 46.465% Breusch-Pagan heteroskedasticity test 
2.1191 34.661% Jarque-Bera non-normality test 

 

(The Jarque-Bera test also shows no evidence that the distribution of the residuals is non- 
normal. Together, these tell us that our various standard errors can be properly used to determine 
confidence intervals for the estimated coefficients and for predictions.) 

To now predict a player’s salary, you’d first predict his log(salary), and then raise 10 to that 
power (to “unlog” the prediction). For a 95%-confidence interval for your prediction, you’d take 
the endpoints of the confidence interval for log(salary) and unlog them as well. This yields a 
somewhat-asymmetric interval around the prediction, but it’s the best you can do. 

Final notes on basketball salaries: The adjusted coefficient of determination indicates that we’ve 
potentially explained about 1/3 of the overall variation in salary levels using these four 
explanatory variables. Other variables that likely play a role in the relationship are the player’s 
health (is he prone to injury?) and his position in a multi-year contract (was his salary 
determined after the previous playing season, or several years earlier?) As well, the model itself 
can be further improved. 
   



For example, “age” actually enters the relationship in a non-linear fashion, as is seen in this 
residual plot: 

 
 

If you have a few beers and then stare at the plot of the residuals against age, you’ll eventually 
see a downward-bending “U”. 
 
The regression below shows strong evidence that this is a real nonlinearity. The age effect  
tops out at 31.6 years, and then begins to taper off. Try to come up with your own explanation! 
 
Regression: logsal 

constant ppm cpm age age^2 sg 
Coefficient 0.37206996 0.83187619 2.37428449 0.33426693 -0.0052846 0.18015783
std error of coef 2.13146893 0.2711184 0.51434661 0.14647899 0.00252592 0.07710339
t-ratio 0.1746 3.0683 4.6161 2.2820 -2.0922 2.3366
significance 86.1861% 0.2927% 0.0014% 2.5112% 3.9556% 2.1933%
beta-weight 0.2795 0.4631 3.1678 -2.9131 0.2338

standard error of regression 0.29665438
coefficient of determination 39.86%
adjusted coef of determination 36.14%

 
 

 

   



Moving onwards: If you believe that an explanatory variable has a scaling effect (instead of an 
additive effect) on the dependent variable, you might consider regressing its logarithm onto the 
dependent variable. 

For example, in a study I did for McDonalds of the relationship between the approximate retail 
value of a prize offered in the McDonald’s “Monopoly” game, and the likelihood that the prize 
would actually be claimed, I found that 

Redemption rate = 0.367524 + 0.062011  log( prize ARV ) . 

The regression yields these predictions: 
 

36.75% $1
42.95% $10
49.15% $100
55.36% $1,000
73.96% $1,000,000

In a direct linear model, the increment from the $1,000 case to the $1,000,000 case would have 
to be 100 times as large as the increment (6.2%) from the $10 case to the $100 case. This is 
clearly ridiculous! 
 

 

A final example:  If several of your explanatory variables have scaling effects (instead of 
additive effects) on the dependent variable, you might even consider regressing their logarithms 
onto the logarithm of the dependent variable. 

A standard model in marketing is:  Sales a Priceb1  Advb2   Promob3 

In order to estimate the coefficients of this model, recast it as  

log(Sales) log(a) b1log(Price) b2log(Adv) b3log(Promo)  

(Typically, you’ll find that b1 is negative, and b2 and b3 lie between 0 and 1.) 


