
 Discrete Random Variables 
 
A dichotomous random variable takes only the values  0  and  1.  Let  X  be such a random 
variable, with Pr(X=1) = p  and  Pr(X=0) = 1-p .  Then  E[X] = p, and  Var[X] = p(1-p) . 
 
Consider a sequence of  n  independent experiments, each of which has probability  p  of  “being 
a success.”  Let  Xk = 1  if the k-th experiment is a success, and  0  otherwise.  Then the total 
number of successes in  n  trials is  X = X1 +...+ Xn ; X is a binomial random variable, and 
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E[X] = np , and  Var[X] = np(1-p) .  (These results follow from the properties of the expected 
value and variance of sums of independent random variables.) 
 
 
Next, consider a sequence of independent experiments, and let  Y  be the number of trials up to 
(and including) the first success.  Y  is a geometric random variable, and 

 Pr(Y = k)  =  (1- p) p .k-1  

E[Y] = 1/p , and  Var[Y] = (1-p)/p2 .  (These results follow from the evaluation of infinite sums.) 
 
 
A hypergeometric random variable  Z  results from drawing a sample of size  n  from a 
population of size  N  containing  g  “good” members, and then counting the number of “good” 
members in the sample: 
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(This formula was used to compute the relevant probabilities in the “Bag R vs. Bag B” example.) 



Continuous Random Variables 
 
A continuous random variable is a random variable which can take any value in some interval.  A 
continuous random variable is characterized by its probability density function, a graph which has 
a total area of  1  beneath it:  The probability of the random variable taking values in any interval 
is simply the area under the curve over that interval. 
 
The normal distribution:  This most-familiar of continuous probability distributions has the 
classic “bell” shape (see the left-hand graph below).  The peak occurs at the mean of the 
distribution, i.e., at the expected value of the normally-distributed random variable with this 
distribution, and the standard deviation (the square root of the variance) indicates the spread of 
the bell, with roughly 68% of the area within 1 standard deviation of the peak. 
 

 
The normal distribution arises so frequently in applications due to an amazing fact:  If you take a 
bunch of independent random variables (with comparable variances) and average them, the result 
will be roughly normally distributed, no matter what the distributions of the separate variables 
might be.  (This is known as the “Central Limit Theorem”.)   Many interesting quantities (ranging 
from IQ scores, to demand for a retail product, to lengths of shoelaces) are actually a composite 
of many separate random variables, and hence are roughly normally distributed. 
 
If  X  is normal, and  Y = aX+b,  then  Y  is also normal, with  E[Y] = a⋅E[X] + b  and  
StdDev[Y] = a⋅StdDev[X] .  If  X  and  Y  are normal (independent or not), then  X+Y and X-Y = 
X+(-Y)  are also normal (intuition:  the sum of two bunches is a bunch).  Any normally-
distributed random variable can be transformed into a “standard” normal random variable (with 
mean  0  and standard deviation  1) by subtracting off its mean and dividing by its standard 
deviation.  Hence, a single tabulation of the cumulative distribution for a standard normal random 
variable (attached) can be used to do probabilistic calculations for any normally-distributed 
random variable. 
 
The exponential distribution:  Consider the time between successive incoming calls at a 
switchboard, or between successive patrons entering a store.  These “interarrival” times are 
typically exponentially distributed.  If the mean interarrival time is  1/λ  (so  λ  is the mean arrival 
rate per unit time), then the variance will be  1/λ2  (and the standard deviation will be  1/λ ).  The 
right-hand graph above displays the graph of the exponential density function when  λ = 1 .  
Generally, if  X  is exponentially distributed, then  Pr(s < s < X ≤ t) = e-λs - e-λt  (where  
e ≈ 2.71828) . 

 



 
The exponential distribution fits the examples cited above because it is the only distribution with 
the “lack-of-memory” property: If  X  is exponentially distributed, then  
Pr(X ≤ s+t ⏐X > s) = Pr(X ≤ t).  (After waiting a minute without a call, the probability of a call 
arriving in the next two minutes is the same as was the probability (a minute ago) of getting a call 
in the following two minutes.  As you continue to wait, the chance of something happening 
“soon” neither increases nor decreases.)  Note that, among discrete distributions, the geometric 
distribution is the only one with the lack-of-memory property; indeed, the exponential and 
geometric distributions are analogues of one another. 
 
Let the time between successive arrivals into some system be exponentially distributed, and let  N  
be the number of arrivals in a fixed interval of time of length  t.  Then  N  (a discrete random 
variable) has the Poisson distribution, and 
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E[N] = λt, and  Var[N] = λt  as well.  The exponential and Poisson distributions arise frequently 
in the study of queuing, and of process quality.  An interesting (and sometimes useful) fact is that 
the minimum of two independent, identically-distributed exponential random variables is a new 
random variable, also exponentially distributed and with a mean precisely half as large as the 
original mean(s). 
 
Connections:  The geometric distribution deals with the time between successes in a series of 
independent trials, and the binomial distribution deals with the number of successes in a fixed 
number of trials.  The exponential distribution deals with the time between occurrences of 
successive events, and the Poisson distribution deals with the number of occurrences in a fixed 
period of time.  Obviously, there's a relationship here.  Rule of thumb:  If  n > 20  and  p < 0.05 , 
then a binomial random variable with parameters  (n, p)  has a probability distribution very 
similar to that of a Poisson random variable with parameters  λ = np and  t = 1 .  (Think of 
dividing one interval of time into  n  subintervals, and having a probability  p  of an arrival in 
each subinterval.  That's very much like having a rate of  np  arrivals (on average) per unit time.) 
 
The uniform distribution:  A random variable  U  is uniformly distributed on an interval  [a,b]  if 
its density function is flat over that interval.  (The uniform distribution is what one typically has 
in mind when one thinks of “picking a number at random” over some range.)  The expected value 
of  U  is (a+b)/2, and  Var[U] = (b-a)2/12 .  If  n  independent, identically distributed random 
variables are all uniformly distributed on  [0,1]  (i.e., if we pick  n  numbers at random between  0  
and  1), then the expected values of the largest, second-largest,..., smallest are  n/(n+1), (n-
1)/(n+1),..., 1/(n+1)  (i.e., the expected values divide the interval into  n+1  equally-large 
subintervals).  Given that  n  individuals enter a system (with exponential interarrival times) in a 
fixed interval of time, the  n  actual arrival times will look as if they were drawn uniformly over 
that time interval. 
 
The beta distribution:  A random variable  X  has the beta distribution (with parameters  α > 0  
and  β > 0)  on the interval  [0, 1]  if its density has the form  k⋅xα−1(1-x)β−1  (where  k  is a scale 
factor which makes the area under the curve  1).   
 
 E[X] = α/(α+β), and  Var[X] = αβ/[(α+β)2(α+β+1)] .   
 



The main use of the beta distribution is to “fit” it to observed data when building a model of a 
real-world phenomenon:  The beta distribution can take a wide variety of shapes, as seen in the 
graphs below. 
 

 
The lefthand graph arises when  α = 5  and  β = 3 , the center when  α = 1.5  and  β = 3, and the 
right when  α = 0.5  and  β = 0.5 .  Generally, if  α > 2, the density has a slope of  0  at  x = 0, if  
2 > α > 1, the density is near-vertical near  x = 0, and if  1 > α > 0, the density rises as x 
approaches  0.  (Analogous properties involving  β  hold when  x  is near  1.)  When  α = β = 1, 
the beta distribution is uniform on  [0,1]. 

  

 

   



 Right-Tail Probabilities of the Normal Distribution    
 

  +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09 +0.10 

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 0.4602 

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 0.4207 

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 0.3821 

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 0.3446 

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 0.3085 

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 0.2743 

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 0.2420 

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 0.2119 

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 0.1841 

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 0.1587 

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 0.1357 

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 0.1151 

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 0.0968 

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 0.0808 

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 0.0668 

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 0.0548 

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 0.0446 

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 0.0359 

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 0.0287 

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 0.0228 

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 0.0179 

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 0.0139 

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 0.0107 

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 0.0082 

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 0.0062 

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 0.0047 

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 0.0035 

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0026 

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 0.0019 

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0013 



Simulating Random Variables 
 
Sometimes one wishes to simulate a random process (so as to compare alternative policies on a 
computer before trying them out in real life).  Simulations require the generation of random 
variables fitting particular distributions.  Most computer languages and spreadsheets can provide 
(pseudo-) random numbers, uniformly distributed between  0  and  1.  Fortunately, random 
variables with any probability distribution can be generated from these uniform random variables: 
 
Consider any random variable  X.  Simply take a uniformly-distributed observation  u, solve the 
equation Pr(X ≤ x) = u  for  x, and let the resulting  x  be your observation of  X. 
 
For example, in Excel the function RAND() returns a random value uniformly distributed 
between 0 and 1.  In addition, the function NORMINV(.,.,.) returns the inverse of the cumulative 
normal probability distribution.  Therefore, to generate a random observation from a normal 
distribution with a particular mean and standard deviation, one can simply enter the formula 
=NORMINV(RAND(),mean,stddev) in a cell of the spreadsheet. 
 


