
Chance and Uncertainty:  Probability Theory 
 
Formally, we begin with a set of elementary events, precisely one of which will eventually occur. 
Each elementary event has associated with it a probability, which represents the likelihood that a 
particular event will occur; the probabilities are all nonnegative, and sum to 1. 
 
For example, if a five-card hand is dealt from a thoroughly-shuffled deck of 52 cards, there are 
2,598,960 different elementary events (different hands), each of which has probability 
1/2,598,960 of occurring. 
 
An event is a collection of elementary events, and its probability is the sum of all of the 
probabilities of the elementary events in it. 
 
For example, the event A = “the hand contains precisely one ace” has probability 
778,320/2,598,960 of occurring; this is written as  Pr(A) = 0.299474. 
 
The shorthand  A∪B  is written to mean “at least one of A or B occurs” (more concisely, “A or 
B”; more verbosely, “the disjunction of A and B”), and  A∩B  is written to mean “both A and B 
occur” (more concisely, “A and B”; more verbosely, “the conjunction of A and B”).  A 
sometimes-useful relationship is 
 
  Pr(A) + Pr(B) = Pr(A∪B) + Pr(A∩B) . 
 
Two events A and B are mutually exclusive (or disjoint) if it is impossible for both to occur, i.e., 
if A∩B = ∅.  The complement of A, written Ac, is the event “A does not occur”.  Obviously, 
 
 Pr(A)+ Pr(Ac) = 1 . 
 
More generally, a collection of events  A1,..., Ak  is mutually exclusive and exhaustive if each is 
disjoint from the others, and together they cover all possibilities. 
 
Whenever  Pr(A) > 0, the conditional probability that event B occurs, given that A occurs (or has 
occurred, or will occur), is  Pr(B⏐A) = Pr(A∩B)/Pr(A).   
 
Two events A and B are independent if  Pr(A∩B) = Pr(A)⋅Pr(B).  Note that when A and B are 
independent, Pr(B⏐A) = Pr(B).  Three events, A, B, and C, are mutually independent if each pair 
is independent, and furthermore  Pr(A∩B∩C) = Pr(A)⋅Pr(B)⋅Pr(C).  Similarly, any number of 
events are mutually independent if the probability of every conjunction of events is simply the 
product of the event probabilities. 
 
[The following example illustrates why we must be careful in our definition of mutual 
independence:  Let our elementary events be the outcomes of two successive flips of a fair coin.  
Let A = “first flip is Heads”, B = “second flip is Heads”, and C = “exactly one flip is Heads”.  
Then each pair of events is independent, but the three are not mutually independent.] 
 



If  A1, ..., Ak are mutually exclusive and exhaustive, then 
 
   Pr(B)  = Pr(B∩A1) + ... + Pr(B∩Ak) 

   = Pr(B⏐A1)⋅Pr(A1) + ... + Pr(B⏐Ak)⋅Pr(Ak) . 

 
Often, one observes some consequence B of a chance event, and wishes to make inferences about 
the outcome of the original event A.  In such cases, it is typically easier to compute Pr(B⏐A), so 
the following well-known “rule” is of use. 
 
Bayes' Rule: Pr(A⏐B) = Pr(A∩B)/Pr(B) = Pr(B⏐A)⋅Pr(A) / Pr(B) . 
 
The result at the top of this page can be used to compute  Pr(B). 
 
Example:  On the basis of a patient's medical history and current symptoms, a physician feels that 
there is a 20% chance that the patient is suffering from disease X.  There is a standard blood test 
which can be conducted:  The test has a false-positive rate of 25% and a false-negative rate of 
10%.  What will the physician learn from the result of the blood test? 
 
 Pr(X present⏐test positive) = Pr(test positive⏐X present)⋅Pr(X present) / Pr(test positive) 
 = 0.9⋅0.2 / Pr(test positive) , and 
 
 Pr(test positive) = Pr(test positive⏐X present)⋅Pr(X present) 
      + Pr(test positive⏐X not present)⋅Pr(X not present) 
 = 0.9⋅0.2 + 0.25⋅0.8 = 0.38 , so 
 
 Pr(X present⏐test positive) = 0.18/0.38 = 0.474 . 
Similarly, 
 
 Pr(X present⏐test negative) = Pr(test negative⏐X present)⋅Pr(X present) / Pr(test negative) 
 = 0.1⋅0.2 / Pr(test negative) = 0.02/(1-0.38) = 0.032 . 
 



The preceding calculations are much simpler to visualize in “probability-tree” form: 
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From the tree we can immediately write 
 
 Pr(X present⏐test positive) = 0.18 / (0.18 + 0.20) . 



(Probabilistic) Learning 
 
I walk into the room carrying two small bags.  I open both bags, and let you examine the contents.  
You see that one of the bags (call it “Bag R”) contains 70 red marbles and 30 blue marbles.  The 
other (Bag B) contains 70 blue marbles and 30 red. 
 
I reseal the bags, and quickly slide them back and forth past each other on the table.  (The old 
“shell” game - you completely lose track of which bag is which.)  I then throw one of the bags out 
the door, leaving the other in front of you on the table.  At this point, you figure it's 50:50 whether 
Bag R or Bag B is sitting on the table. 
 
I loosen the tie at the top of the bag, reach in, pull out a dozen marbles (chosen from the bag at 
random), and reseal the bag again.  We look at the marbles, and see that eight are red, and four 
are blue.  What are the odds that this bag is bag R? 
 
  number      probability 
  of reds  probability  probability  of R, given 
  out of 12  if R  if B  number of reds 
 
  0  0.000%  1.013%  0.001%    
  1  0.000%  6.180%  0.006%    
  2  0.007%  16.428%  0.042%    
  3  0.075%  25.136%  0.296%    
  4  0.511%  24.629%  2.032%    
  5  2.346%  16.263%  12.605%    
  6  7.412%  7.412%  50.000%    
  7  16.263%  2.346%  87.395%    
  8  24.629%  0.511%  97.968%   (48-to-1!)  
  9  25.136%  0.075%  99.704%    
  10  16.428%  0.007%  99.958%    
  11  6.180%  0.000%  99.994%    
  12  1.013%  0.000%  99.999%    
 
Lesson:  Given new information, we should revise our beliefs in accordance with Bayes' 

Rule.  This does not come naturally to most people. 
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Let's Make a Deal 
 
Perhaps you remember an old TV game show called “Let's Make a Deal,” hosted by Monty Hall.  
Each show ended the same way:  One member of the studio audience was given a shot at a 
“fabulous prize” (a new car, exotic cruise, or the like).  On the stage were three closed curtains.  
One concealed the prize; the other two concealed garbage (joke prizes, such as “a pig in a poke,” 
not worth very much money). 
 
The contestant selected a curtain, and could have whatever it concealed.  But, before the curtain 
was opened, Monty Hall would step in and complicate matters: 
 
No matter which curtain was selected (the prize or garbage), there was always at least one of the 
other two which concealed garbage.  The stage crew would signal to Monty, and he'd open an 
unselected garbage-hiding curtain.  Everyone would see the joke prize, and laugh.  Then, the 
moment of truth arrived.  Monty Hall would turn to the contestant, and point at the remaining two 
closed curtains. 
 
“One of these hides the prize; the other hides garbage.  You've already selected this one.”  (He 
points.)  “You can have what it conceals, or, if you're having second thoughts, you can switch 
your choice, and have what the other conceals instead.” 
 
What would you do?  Stay with your original choice, or switch?  Or does it not really matter? 
--------------------------------------------------------------------------- 
Imagine facing this situation on many consecutive days.  Pick-and-stick wins the prize only on 
those days when your initial guess is correct, i.e., on 1/3 of all days.  So pick-and-switch must 
win on the other 2/3 of all days:  Your odds are twice as good from switching as they are from 
sticking! 
 
For another perspective, assume that you plan to pick Door A.  Then the situation will unfold 
according to the diagram below:  
 

prize behind A (1/3)

prize behind B (1/3)

prize behind C (1/3)

open B (1/2)

open C (1/2)

open C (1)

open B (1)

1/6    stick wins

1/3    switch wins

1/3    switch wins

1/6    stick wins

 
 
So, for example, given that B has been opened, your chance of winning by switching is   
 

(1/3) / (1/6 + 1/3 ) = 2/3 . 
 

For those of you who play the card game of bridge, a similar phenomenon that arises there is 
known as the “Principle of Restricted Choice”. 



 What Are The “Odds”? 
 
In both gambling and gaming settings, you’ll often hear probabilities referred to indirectly 
through a reporting of the “odds” associated with a wager or the outcome of a game. The 
traditional method for stating the so-called “odds against” is to compare the chance that one 
might lose, if things work out unfavorably, to the chance that one might win: If  p  is your 
probability of winning, then the odds you are facing are  1-p:p . 
 
Odds are scalable, and are frequently scaled to whole numbers. For example, if your probability 
of winning a gamble is 1/3, then the odds can be reported as  2/3:1/3, but are usually reported as  
2:1  (and read as “the odds are 2 to 1 against you”) instead. The original probability can be easily 
recaptured from an “odds against” statement: Odds of  a:b  correspond to a probability (of 
winning) of  b/(a+b). 
 
“Game” Odds 
 
A common marketing technique is to offer consumers participation in a “collection game.” 
McDonald’s, for example, runs an annual “Monopoly” game in conjunction with Hasbro (the 
publisher of the board game). Stickers representing Monopoly “properties” are attached to food-
product containers, and a customer who collects some particular combination of properties over 
the duration of the game can claim a prize (usually a free McDonald’s or Hasbro product). 
McDonald’s benefits directly from heightened consumer interest, and Hasbro indirectly by 
building name recognition for its product line. 
 
A legal requirement (in most states) of such games is that the odds of winning the various prizes 
must be posted. The standard language states, “If you collect  k  stamps, the odds of winning 
prize  P  are 1 in x.” This translates directly to “the odds against winning are x-1:1.” 
 
Parimutuel Wagering 
 
When you gamble at a casino, you are playing against the “house.” However, when you bet at a 
racetrack, be it on thoroughbreds, trotters, or greyhounds – I’ll assume horses, for purposes of 
discussion – you are betting against the other bettors. The amounts of money bet on the various 
horses determine the “track odds,” which are stated in terms of monetary outcomes: If a horse 
goes off at 4:1 odds, this means that a $1 bet will bring you either a $1 loss, or a $5 payback (for 
a $4 profit). 
 
“Win” betting, under a parimutuel system, is simple to understand. The track collects all the bets, 
takes out a fixed percentage (as its earnings – and tax obligations – on the race), and returns all 
the residual money to those who bet on the winning horse (in proportion to their bets). For 
example, assume you bet $20 on “Raging Bob” to win, and he does indeed win the race. Also 
assume that the track takes 20% of the total of all “win” bets. (Actual track percentages in the 
U.S. are typically fixed by local law, at somewhere between 15% and 20% of the total betting 
pool. The track percentage on “exotic” bets, such as exactas and quinellas, might be even higher.) 
If a total of $20,000 was wagered, of which $2000 was bet on “Raging Bob,” then the track keeps 
$4000, and the remaining $16,000 goes to the winning bettors, who get back $8 for each dollar 
bet: You receive $160, for a profit of $140 on your bet. 
 
Before the race begins, if the current bets are as stated above, the track will announce the odds on 
your pick as 7:1 (i.e., 140:20, scaled down). If you believe that the actual probability that your 



pick will win the race is greater than 1/(7+1) = 12.5%, then you will have a positive expected 
return from placing a small wager on this horse. 
 
Before you race out to the track, note that the “final” odds determine the payoff, and that 
empirical research has shown that much of the “smart” money gets bet in the last minute before 
the betting windows close. Since the “posted” odds change as more money is bet on the race, and 
tend to lag the actual odds by about a minute, you can never be sure, when placing a bet, on the 
actual payoff you’ll receive if your bet wins. 
 
Also note that your bet will itself shift the odds. This effect is greatest when the odds on a horse 
are “long”, e.g., 50:1. A large bet at the last minute could substantially reduce the prospective 
payoff if your “long-shot” wins the race. 
 
A “place” bet is a bet that your horse will finish either first or second. The track collects all the 
“place” bets into a pool, takes its percentage, pays back the winning bettors (on either of the top 
two finishers) the amount they bet, and then splits the remaining money into two equal shares. 
The bettors on the horse that won proportionately split one share, and the bettors on the horse that 
finished second proportionately split the other share. “Show” bets – that your horse will finish in 
the top three – are handled similarly. 
 
Can you make money at the track? Of course you can, IF you are much better able to predict 
outcomes than most of the other bettors. (It’s not enough to be just a bit better, since you must 
overcome the track’s takeout.) Much statistical analysis has gone into the development of 
horserace betting systems. A good system must combine the ability to (probabilistically) predict 
race outcomes with the ability to determine when the posted odds differ enough from the 
prediction to offer a profit. A common feature of any sensible system is that it will often 
recommend not betting at all (when, for example, the posted odds are in line with the predictions 
of the system). 
 
One business application of parimutuel betting is to forecasting: If you wish to derive a consensus 
forecast of the likelihood of one or the other of several events occurring, you could endow each of 
your forecasters with a budget, and require that they all place bets on the outcome. The resulting 
odds could then be taken as their actual (combined) forecast. Goldman Sachs and Deutsche Bank 
have recently opened an online enterprise where bettors can wager on such economic derivatives 
as the inflation rate, housing starts, or new unemployment claims. The odds that result can be 
used as a composite (across the bettors) estimate of the economic future 
 


