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I. Proofs

PROOF OF LEMMA 1. Notice that when t ≥ v
a , V < 0. Therefore, we maximize a continuous

function over a compact set: [t, va ]× [0, 1], implying an optimum exists. C 0(1) =∞ implies pFB < 1.

Since the IR constraint must bind, substitute w = λ[a(t+ pF̄ (t)r)− b] into the objective function

and the Kuhn-Tucker conditions are

∂V (tFB, pFB)

∂t
= λ[−a+ f(tFB)(pFB(ar + cI) + (1− pFB)cE)] ≤ 0,

∂V (tFB, pFB)

∂p
= λ[F̄ (tFB)(cE − cI − ar)− C 0(pFB)] ≤ 0.

Because cE−cI > ar gives ∂V (t,0)
∂p > 0, C 0(0) = 0 implies pFB > 0. Now we have shown pFB ∈ (0, 1),

which implies (pFB(ar+ cI) + (1− pFB)cE) ∈ (ar+ cI , cE). Applying the condition a
f(t) < ar+ cI ,

we get ∂V (t,p)
∂t > 0, which implies t > t. ¥

PROOF OF LEMMA 2, 3, 4. We will prove Lemma 2. Proofs of Lemma 3 and 4 are similar and

thus omitted. The Kuhn-Tucker condition is −1+prf(t) ≤ 0 with equality at interior solutions. The

boundary conditions follow from the fact that f is strictly monotone decreasing. The uniqueness

follows from the second-order condition (SOC) λaprF 00(t) < 0. ¥

PROOF OF PROPOSITION 1. From Equation (1) and (3), we get f(tS) > f(tFB) and thus

tS < tFB. Therefore self routing cannot achieve the first best. For dedicated and cross routing, set

p = pFB and b∗ = a
f(tFB)p

to achieve tFB. The rest follows from the fact that the IR constraints are

satisfied at equality. ¥

PROOF OF COROLLARY 1. Proposition 1 and Equation (1) together imply

f(tFB(p)) = f(tD(p)) = f(tC(p)) =
1

pr + 1
a(pcI + (1− p)cE)

.

Because we have implicitly assumed the conditions in Proposition 1, i.e., cE > cI + ar > a
f(t) to
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ensure the existence of an interior first-best solution, we must have

f(t) >
1

pr + 1
a(pcI + (1− p)cE)

⇐⇒ p <
cE − a

f(t)

cE − cI − ar
.

The second inequality is always satisfied because
cE− a

f(t)

cE−cI−ar > 1. Hence, t
FB(p) = tD(p) = tC(p) > t.

In addition, f(tS(p)) = 1
pr > f(tFB(p)) when tS(p) is interior. Therefore, tS(p) < tFB(p). The rest

follows from the fact that Q is strictly increasing in t at any p. ¥

PROOF OF COROLLARY 2. Because tS(p) = argmin
t0≥t

{t0 + pF̄ (t0)r} < tFB(p), wFB(p) =

λ[a(tFB(p)+ pF̄ (tFB(p))r)− bFB(p)] = wS(p) = λ[a(tS(p)+ pF̄ (tS(p))r)− bS(p)] implies bFB(p) >

bS(p). The rest follows from the fact that bFB(p) = bD(p) = bC(p). ¥

PROOF OF LEMMA 5. Notice that when t ≥ v
a , V < 0. Therefore, we maximize a continuous

function over a compact set: [t, va ] × [0, 1], implying an optimum exists. Assuming an interior

optimum exists, the optimal solution {tFB, pFB} is then given by the first-order conditions in the

lemma. ¥

PROOF OF LEMMA 6. Evaluate the second derivative of U(t) at any interior critical point tS

using f(tS) = 1/pr :

U 00(tS) =
bprF 00(tS)

(tS + pF̄ (tS)r)2
+
2b(1− prf(tS))

(tS + pF̄ (tS)r)3
=

bprF 00(tS)

(tS + pF̄ (tS)r)2
< 0.

Because U(t) is strictly concave at any interior critical point, U(t) is strictly pseudoconcave (Avriel,

Diewert, Schaible & Zang (1988)) and thus tS is a unique global maximum. The boundary conditions

follow from the fact that f is strictly monotone decreasing. ¥

PROOF OF LEMMA 7. Evaluate the second derivative of U1(t) at any interior critical point

tD using f
¡
tD
¢
= 1−pF̄ (tD)

ptD
:

U 001 (t
D) = b

∙
pF 00(tD)

tD
− 2

(tD)3
(ptDf(tD) + pF̄ (tD)− 1)

¸
=

bpF 00(tD)

tD
< 0.

Because U1(t) is strictly concave at any interior critical point, U1(t) is strictly pseudoconcave

(Avriel et al. (1988)) and thus tD is a unique global maximum. The boundary condition follows

from the fact that tf(t) + F̄ (t) is strictly monotone decreasing in t and F̄ (t) = 1. ¥

PROOF OF LEMMA 8. We first assume an interior solution exists for agent i’s problem and

derive the equation that determines an interior symmetric Nash equilibrium. We then prove that

the equation must have an interior solution under the existence condition. The first-order condition

(FOC) for agent i’s problem is

∂Ui(ti, tj)

∂ti
=

b(1− ρj)

(1− ρiρj)
2

1

t2i

∙
p(tif(ti) + F̄ (ti))

µ
1 + ρj

µ
1− r

ti

¶¶
+ ρiρj − 1

¸
= 0.
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Let t̂i be the critical point satisfying the FOC. The second derivative evaluated at t̂i is

∂2Ui(t̂i, tj)

∂t2i
=

b(1− ρj)

(1− ρiρj(t̂i))
2

1

t̂2i

∙
pt̂iF

00(t̂i)

µ
1 + ρj

µ
1− r

t̂i

¶¶
+ p(t̂if(t̂i) + F̄ (t̂i))

r

t̂2i
ρj + ρj

∂ρi(t̂i)

∂ti

¸

+b(1− ρj)
∂
h

1
(1−ρiρj)2

1
t2i

i
∂ti

∙
p(t̂if(t̂i) + F̄ (t̂i))

µ
1 + ρj

µ
1− r

t̂i

¶¶
+ ρi(t̂i)ρj − 1

¸
.

Substituting ∂ρi(t̂i)
∂ti

= −pr
t̂2i
[t̂if(t̂i) + F̄ (t̂i)] and the FOC into the second derivative gives

∂2Ui(t̂i, tj)

∂t2i
=

b(1− ρj)

(1− ρiρj(t̂i))
2

1

t̂2i

∙
pt̂iF

00(t̂i)

µ
1 + ρj

µ
1− r

t̂i

¶¶¸
< 0.

The inequality follows from the fact that F 00(·) < 0 and that 1 + ρj

³
1− r

t̂i

´
> 0. Because it is

strictly concave at any interior critical point, Ui(ti, tj) is strictly pseudoconcave in ti (Avriel et al.

(1988)), implying that t̂i is a unique global maximum. Therefore, the equation that determines a

symmetric Nash equilibrium (tC , tC) is g(tC) = 0, where g(tC) is the left hand side of Equation (6).

It remains to show that Equation (6) has an interior solution. When p > p̄,

g(t) > ρ(t)

µ
1− r

t

¶
+ 1 + ρ(t)2 − 1 > 0.

Because f = F 0, it is integrable on [t,∞) and lim
t→∞

f(t) = 0. Since 1/t is not integrable on [t,∞),

f(t) = o(1/t) as t→∞. Thus, lim
t→∞

tf(t) = 0. Therefore,

lim
t→∞

g(t) = p lim
t→∞

[tf(t) + F̄ (t)]× lim
t→∞

h
ρ(t)

³
1− r

t

´
+ 1
i
+ lim

t→∞
ρ(t)2 − 1

= p lim
t→∞

tf(t)− 1 < 0.

Hence, there exists a t̄ such that g(t̄) < 0. Because g(·) is continuous and g(t) > 0 and g(t̄) < 0,

applying the Intermediate Value Theorem implies that there exists a tC ∈ (t, t̄) such that g(tC) = 0.

¥

PROOF OF PROPOSITION 2. From Equation (4), we get f(tS) > f(tFB) and thus tS(p) <

tFB(p). Therefore self routing cannot achieve the first best. Notice that the agents’ optimal effort

under dedicated and cross routing only depends on p and the corresponding FOCs are different

from the FOC of tFB. Obviously, setting p = pFB in the FOCs of dedicated and cross routing do

not give the same solution as tFB (except in an extremely special case where the different FOCs

happen to have same the solution, which is a trivial case that we do not consider here). Hence, the

first best solution cannot be implemented by any of the routing schemes. ¥
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PROOF OF COROLLARY 3. To show tS(p) < tD(p), substituting tS(p) into the FOC of tD(p)

yields that

w

tS(p)
[ptS(p)f(tS(p)) + pF̄ (tS(p))− 1] = w

tS(p)
[
tS(p)

r
+ pF̄ (tS(p)− 1] > 0.

We show tD(p) < tC(p) by contradiction. Suppose tD(p) ≥ tC(p) and it follows from the FOC of

tD(p) that

ptC(p)f(tC(p)) + pF̄ (tC(p))− 1 ≥ 0.

Then,

p[tC(p)f(tC(p)) + F̄ (tC(p))][1 + (1− r

tC(p)
)ρ(tC(p))] + ρ(tC(p))2 − 1

≥ 1 + (1− r

tC(p)
)ρ(tC(p)) + ρ(tC(p))2 − 1

=
ρ(tC(p))

tC(p)
(tC(p) + pF̄ (tC(p)r − r) > 0,

contradicting the FOC of tC(p). The rest follows from the fact that Q is strictly increasing in t at

any p. ¥

PROOFOF COROLLARY 4. Because tS = argmin
t0≥t

{t0+pF̄ (t0)r}, wC(p) = a− bC(p)
tC(p)+pF̄ (tC(p))r

=

wS(p) = a− bS(p)
tS(p)+pF̄ (tS(p))r

implies that bC(p) > bS(p). Because wD(p) = a[tD(p)+pF̄ (tD(p))r]−bD(p)
2tD(p)

,

then zero wage rate implies bD(p) = a[tD(p) + pF̄ (tD(p))r]. The inequality follows from Lemma 3.

¥

PROOF OF PROPOSITION 3. First we compare the principal’s profit rate at a given p,

V C(p)− V S(p) =
1

[tC(p) + pF̄ (tC(p))r][tS(p) + pF̄ (tS(p))r]

·
½
(v − C(p))

¡
tC(p)− tS(p)

¢µ
pr

F (tC(p))− F (tS(p))

tC(p)− tS(p)
− 1
¶

+ [pcI + (1− p)cE ] [t
CF̄ (tS(p))− tSF̄ (tC(p))]

ª
.

(i) Since tC(p) > tS(p), it follows that F (tC(p))−F (tS(p))
tC(p)−tS(p) < f(tS(p)) = 1

pr and tCF̄ (tS(p)) −

tSF̄ (tC(p)) > 0. Therefore, V C(p) − V S(p) > 0 if cI , cE, and C 00 are sufficiently large. Thus

under the conditions, V C = V C(pC) ≥ V C(pS) > V S(pS) = V S. The first inequality follows from

the optimality of V C . (ii) Similarly, V C(p) − V S(p) < 0 if v is sufficiently large. Thus under the

condition, V C = V C(pC) < V S(pC) ≤ V S(pS) = V S . The second inequality follows from the opti-

mality of V S. Comparing V D with V S is similar and thus omitted. Now we compare V D with V C .

Because 2tD(p) > tD + pF̄ (tD)r,

V C(p)− V D(p) >
v + F̄ (tC(p))(pcI + (1− p)cE)− C(p)

t+ pF̄ (tC(p))r
− v + F̄ (tD(p))(pcI + (1− p)cE)− C(p)

t+ pF̄ (tD(p))r
.
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The rest is similar to comparing V S with V C .¥

PROOF OF LEMMA 9.

∂Ui(ti, t−i)

∂ti
=

b(1− ρi)∙
1 + (1− ρi

N−1) Σj 6=i
ρj
1−ρj

¸2 1t2i
½
p[tif(ti) + F̄ (ti)]

∙
1 +

Nti − r

(N − 1)ti
Σ
j 6=i

ρj
N − 1− ρj

¸

−1−
µ
1− ρi

N − 1

¶
Σ
j 6=i

ρj
N − 1− ρj

¾
Let t̂i be the critical point satisfying the FOC. To simplify notation, let ρ̂i = ρi(t̂i). The second

derivative evaluated at t̂i is

∂2Ui(t̂i, t−i)

∂t2i
=

b∙
1 +

³
1− ρ̂i

N−1

´
Σ
j 6=i

ρj
N−1−ρj

¸2 1t̂2i
½
pt̂iF

00(t̂i)

∙
1 +

Nti − r

(N − 1)ti
Σ
j 6=i

ρj
N − 1− ρj

¸

+p[t̂if(t̂i) + F̄ (t̂i)]
1

N − 1
r

t̂2i
Σ
j 6=i

ρj
N − 1− ρj

+
1

N − 1
∂ρ̂i
∂ti
Σ
j 6=i

ρj
N − 1− ρj

¾

+b

∂

⎛⎝ 1

1+ 1− ρ̂i
N−1 Σ

j 6=i

ρj
N−1−ρj

2
1
t̂2i

⎞⎠
∂ti

½
[p(t̂if(t̂i) + F̄ (t̂i)]

∙
1 +

Nti − r

(N − 1)ti
Σ
j 6=i

ρj
N − 1− ρj

¸
−1−

µ
1− ρ̂i

N − 1

¶
Σ
j 6=i

ρj
N − 1− ρj

¾
=

b∙
1 + (1− ρ̂i

N−1) Σj 6=i
ρj
1−ρj

¸2 1t̂2i pt̂iF 00(t̂i)
∙
1 +

Nti − r

(N − 1)ti
Σ
j 6=i

ρj
N − 1− ρj

¸
< 0.

The last equality follows from the FOC above and that ∂ρ̂i
∂ti
= − r

t̂2i
p[t̂if(t̂i) + F̄ (t̂i)]. The inequality

follows from the fact that F 00(·) < 0 and that ρj < 1. Because it is strictly concave at any interior

critical point, Ui(ti, tj) is strictly pseudoconcave in ti (Avriel et al. (1988)), implying that t̂i is a

unique global maximum. Assuming a symmetric equilibrium gives Equation (7). The proof for the

existence condition is similar to that of Lemma 8 and thus omitted. ¥

PROOF OF LEMMA 10. If tD(p) = t, we are done because tCN (p) is interior. Now consider

interior tD(p). Suppose to the contrary tD(p) ≥ tCN (p) and it follows from the FOC of tD(p) that

p[tCNf(t
C
N ) + F̄ (tCN )] ≥ 1 (for simplicity, we use tCN to denote tCN (p).) Let gN(t) denote the FOC of

the symmetric equilibrium of the N -agent system.

gN(t
C
N) ≥

1

N − 1
prF̄ (tCN )

tCN

∙
1 +

prF̄ (tCN)

tCN
− r

tCN

¸
> 0,

contradicting the optimality condition of tCN . ¥

37



PROOF OF LEMMA 11. To show tCN > tCN+1, it suffices to show gN strictly decreases in both

N and t. To simplify notation, we treat N as a real number. Taking the derivative w.r.t. N

∂gN(t)

∂N
=

1

(N − 1)2
prF̄ (t)(prf(t)− 1)

t
< 0

for any t > tD because f(t) < f(tD) ≤ f(tS) = 1/pr. Lemma 10 says that tD < tCN for all N ≥ 2.

Therefore, for the set of equilibrium solutions, gN strictly decreases in N. Hence gN(t
C
N+1) >

gN+1(t
C
N+1) = gN(t

C
N ) = 0. It remains to show that gN strictly decreases in t.

∂gN(t)

∂t
= p2rF 00(t)F̄ (t)

µ
1− r

(N − 1)t

¶
− p2[tf(t) + F̄ (t)]2r

t2

+ptF 00(t) +
pr[tf(t) + F̄ (t)]

t2
prf(t) +N − 2

N − 1

< p2rF 00(t)F̄ (t)

µ
1− r

(N − 1)t

¶
− p2[tf(t) + F̄ (t)]2r

t2
+ p

∙
tF 00(t) +

tf(t) + F̄ (t)

t

¸
for any t > tD (because f(t) < 1/pr and r ≤ t). Since the first two terms of the RHS are

negative, the third term being negative is a sufficient condition for ∂gN (t)
∂t < 0, which is equivalent

to −F 00(t)
f(t) ≥

1
t +

F̄ (t)
t2f(t)

. Now let us invoke the DFR assumption and from the definition of DFR

we have −F 00(t)
f(t) ≥

f(t)
F̄ (t)

. If f(t)
F̄ (t)
≥ 1

t +
F̄ (t)
t2f(t)

, equivalently, if tf(t)
F̄ (t)

³
tf(t)
F̄ (t)
− 1
´
≥ 0, the third term of

∂gN (t)
∂t will be negative. Satisfying the condition calls for the IGFR property and tf(t) ≥ 1 so that

tf(t)
F̄ (t)
≥ tf(t)

F̄ (t)
≥ 1. ¥

PROOF OF PROPOSITION 4. Let t∗i denote the optimal effort when all other agents choose

tD. It suffices to show Ui(t
∗
i , t

D
−i)−Ui(t

D
i , t

D
−i) ≤ ε. Claim. t∗i ≥ tD. To show this, substitute tD into

the first derivative
∂Ui(ti,tD−i)

∂ti
. Because p[tDf(tD) + F̄ (tD)] = 1 (Otherwise tD = t, we are done.),

∂Ui(tDi ,t
D
−i)

∂ti
= gN (t

D) = 1
N−1

prF̄ (tD)
tD

h
1 + prF̄ (tD)

tD
− r

tD

i
> 0. Because the agent’s problem is strictly

pseudoconcave as shown in Lemma 9, t∗i ≥ tD. Now

Ui(t
∗
i , t

D
−i)− Ui(t

D
i , t

D
−i)

=
b

1 +
1− pr

N−1
F̄ (t∗

i
)

t∗
i

1− pr
N−1

F̄ (tD)

tD

prF̄ (tD)
tD

⎡⎣1− pF̄ (t∗i )

t∗i
+
1− pr

N−1
F̄ (t∗i )
t∗i

1− pr
N−1

F̄ (tD)
tD

pF̄ (tD)

tD

⎤⎦− b

tD + prF̄ (tD)

≤ b

1 + pF̄ (tD)
tD

"
1− pF̄ (tD)

tD
+

1

1− pr
N−1

F̄ (tD)
tD

pF̄ (tD)

tD

#
− b

tD + prF̄ (tD)

because 1 − pr
N−1

F̄ (t∗i )
t∗i
≥ 1 − pr

N−1
F̄ (tD)
tD

and 1−pF̄ (t∗i )
t∗i

≤ 1−pF̄ (tD)
tD

. Choose N1 large enough s.t.
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pr
N1−1

F̄ (tD)
tD
≤ 1

2 . Then
1

1− pr
N−1

F̄ (tD)

tD

≤ 1 + 2 pr
N−1

F̄ (tD)
tD

. It follows that

LHS ≤ b

1 + pF̄ (tD)
tD

∙
1− pF̄ (tD)

tD
+

pF̄ (tD)

tD
+ 2

pr

N − 1
F̄ (tD)

tD
pF̄ (tD)

tD

¸
− b

tD + prF̄ (tD)

=
1

N − 1
2rb

³
pF̄ (tD)
tD

´2
1 + pF̄ (tD)

tD

.

Now choose N2 large enough s.t. LHS ≤ ε. Let Nε = max(N1, N2). ¥

II. Alternative Incentive Schemes: Penalty and Bonus

Assigning rework to a different agent implicitly punishes the agent for quality failure. In dedicated

and cross routing, the agents are punished because they cannot recoup the cost of effort spent

on a job that fails quality inspection. Such punishment could be replicated by a modified self

routing scheme where the principal executes a monetary punishment whenever a defect is identified.

Consider the case of limited demand. Suppose the principal specifies a penalty x for each defect

identified, the agents’ problem becomes

max
t≥t

λ[b− a(t+ pF̄ (t)r)− pF̄ (t)x].

The first-order condition is equivalent to f(t) = 1
pr+ 1

a
px
. Recalling Equation (1), we set

x = cI +
1− pFB

pFB
cE

to allow the principal to achieve the first-best effort level. Similarly, we can derive the penalty for

the case of unlimited demand

x =
b
³
cI +

1−pFB
pFB

cE

´
£
tFB + pFBF̄ (tFB)r

¤
A(tFB, pFB) + F̄ (tFB) [pFBcI + (1− pFB)cE]

,

where A(tFB, pFB) is defined as in Lemma 5.

If instead we suppose the principal specifies a bonus y for each first-pass success, we derive the

bonus that induces the first-best outcome under limited demand:

y = cI +
1− pFB

pFB
cE,

and under unlimited demand:

y =
b
³
cI +

1−pFB
pFB

cE

´
£
tFB + pFBF̄ (tFB)r

¤
A(tFB, pFB)−

h
1

pFB
− F̄ (tFB)

i
[pFBcI + (1− pFB)cE]

.
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