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W e introduce a class of models, called newsvendor networks, that allow for multiple products
and multiple processing and storage points and investigate how their single-period prop-

erties extend to dynamic settings. Such models provide a parsimonious framework to study
various problems of stochastic capacity investment and inventory management, including as-
sembly, commonality, distribution, flexibility, substitution and transshipment. Newsvendor net-
works are stochastic models with recourse that are characterized by linear revenue and cost
structures and a linear input-output transformation. While capacity and inventory decisions are
locked in before uncertainty is resolved, some managerial discretion remains via ex-post input-
output activity decisions. Ex-post decisions involve both the choice of activities and their levels
and can result in subtle benefits. This discretion in choice is captured through alternate or
‘‘nonbasic’’ activities that can redeploy inputs and resources to best respond to resolved uncer-
tain events. Nonbasic activities are never used in a deterministic environment; their value stems
from discretionary flexibility to meet stochastic demand deviations from the operating point.

The optimal capacity and inventory decisions balance overages with underages. Continu-
ing the classic newsvendor analogy, the optimal balancing conditions can be interpreted as
specifying multiple ‘‘critical fractiles’’ of the multivariate demand distribution; they also
suggest appropriate measures for and trade-offs between product service levels. This paper
shows that the properties of optimal newsvendor network solutions extend to a dynamic
setting under plausible conditions. Indeed, we establish dynamic optimality of inventory
and capacity policies for the lost sales case. Depending on the nonbasic activities, this also
extends to the backordering case. Analytic- and simulation-based solution techniques and
graphical interpretations are presented and illustrated by a comprehensive example that
features discretionary input commonality and a flexible processing resource.
(Inventory; Capacity; Assembly; Commonality; Distribution; Flexibility; Substitution; Transshipment;
Multiple Products)

1. Introduction
The classic ‘‘newsboy’’ model provides a very simple,
yet effective framework for studying a variety of sto-
chastic economic decision problems. Using its gender-
neutral name, the newsvendor must decide how
much of a particular divisible asset—for example,

newspapers—to buy at a constant unit cost knowing
only a probabilistic forecast of the demand for that
asset, which is to be sold at a given unit price. After
demand is observed and sales are made, either excess
demand results in lost sales or excess assets are sal-
vaged at a loss. In deciding the optimal quantity the
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Figure 1 A Newsvendor Network Example Featuring a Discretionary
Common Input 1 and a Flexible Processing Resource 2

newsvendor must trade off the cost of overage and
underage, resulting in the well-known ‘‘critical frac-
tile’’ solution. This simple, yet powerful model forms
the basis for inventory, cash, capacity, and a variety
of other managerial problems. A vast literature has
modified or extended the classic newsvendor model.
The ‘‘multidimensional newsvendor model’’ intro-
duced by Harrison and Van Mieghem (1999) and Van
Mieghem (1998a) generalizes the classic newsvendor
model by allowing for multiple products and multi-
ple processing points. Multidimensional newsvendor
models focus on processing capacity constraints and
consider essentially a single period by excluding in-
ventory holding and carryover.

This paper continues the agenda of Harrison and
Van Mieghem by incorporating multiple storage
points into the multidimensional newsvendor model.
We call the resulting broader class of models news-
vendor networks. The inclusion of inventory holding
points allows a direct extension of the single-period
model into a truly dynamic setting where any left-
over stock at the end of one period carries over as
input to the next period. While processing-storage net-
works would be a perfectly appropriate name for the
class of models that we consider, we chose ‘‘news-
vendor networks’’ to stress the link to the classic
newsvendor model. Indeed, newsvendor networks in-
herit many of its classic predecessor’s advantages—
such as parsimony, tractability, and effectiveness in
yielding insights into stochastic planning—but also
its main disadvantage: The model may be too styl-
ized to capture details necessary for practical decision
support systems.

To illustrate the features of a newsvendor network
consider the example depicted in Figure 1, which we
will carry throughout our discussion. Adopting the
process nomenclature of Anupindi et al. (1999), the
entities that flow through the network are called
‘‘flow units.’’ Before demand is known, a set of ‘‘ex-
ante’’ activities are performed onto the inputs and
their results are stored in ‘‘stocks’’ or inventories.
These activities can be simple purchasing or prepro-
cessing activities. After demand is realized, ‘‘ex-post’’
activities process stocked inputs into demanded out-
puts using resources. In addition to being constrained

by demand, the sales or output rate is also con-
strained both by the input stock levels and by the
resource capacities, denoted by vectors S and K, re-
spectively. Both types of activities generate cash
flows: The ex-ante activities incur marginal cost vec-
tor cS, while the ex-post activities generate net mar-
ginal value vector v, which includes the price minus
marginal processing and demand shortage penalty
costs. Finally, units carried over to a subsequent pe-
riod incur a holding cost cH.

The example captures some key characteristics of
newsvendor networks. First, there are multiple in-
puts—and thus inventories—that are transformed
into multiple outputs (products) by utilizing a net-
work of resources that are linearly capacity con-
strained. The ex-post activity levels x in this linear
production technology with linear financial structure are
thus constrained by both input stocks S and capaci-
ties K. For example, Activities 3 and 2 deplete stocks
1 and 2, respectively, and consume Resource 2’s ca-
pacity at rate ��1 and 1, respectively. (As we shall
illustrate later, newsvendor networks can also easily
handle an activity that simultaneously depletes sev-
eral complementary stocks or a less traditional activ-
ity that simultaneously requires multiple complemen-
tary resources.) The inventory constraints are: x1 � x3

�S1 and x2 � S2, while the capacity constraints are:
x1 � K1 and x2 � ��1x3 � K2. Newsvendor networks
are thus about three decisions: capacity investment
decisions K, input inventory procurement decisions S,
and activity decisions x(K, S, D). (The multidimen-
sional newsvendor model is only about K and x.)
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A second characteristic is that while both the ca-
pacity investment and inventory procurement deci-
sions are locked in before demand uncertainty is re-
solved as usual, newsvendor networks allow for
ex-post ‘‘discretionary’’ or ‘‘alternate’’ activities dur-
ing the input-output transformation. Thus, multiple
options may exist to produce a given output and the
ex-post decisions thus involve both choice and quan-
tity: how to convert inputs into outputs, as well as how
many. The example features input substitution, which
we will also refer to as discretionary commonality:
While the ‘‘normal’’ or ‘‘basic’’ activity is 2, the pro-
cess manager has the option to draw from the more
costly Input 1 to process Product 2. In other words,
the manager has ex-post discretion in choosing
whether Input 1 should be common to both products
or not (by using the ‘‘alternate’’ (nonbasic) Activity 3
or not). This discretion requires Resource 2 to be flex-
ible in the sense that it can transform either type of
input. Typically, the resource would be ‘‘better’’ at its
basic activity than its alternate activity because by de-
sign the latter is to be used only sparingly. Hence, the
capacity consumption rate and the processing cost of
Activity 3 may exceed those of Activity 2: ��1 � 1
and v3 � v2. Thus, 0 � � � 1 and � can be interpreted
as a measure of the product flexibility of Resource 2
with � � 1 representing perfect processing flexibility,
while v3 � v2 represents perfect financial flexibility.

This redundancy in activities highlights the flexi-
bility inherent in the formulation that admits a vari-
ety of interesting applications that have more activi-
ties than end-products and/or inputs. Obviously,
newsvendor networks can capture assembly opera-
tions where one activity simultaneously consumes
multiple input types in fixed proportions, distribution
activities that fill multiple demands from a single in-
put, or commonality settings where multiple prod-
ucts draw from a common input. While distribution
and commonality result in well-known inventory
pooling, none of those activities are discretionary or
nonbasic. Indeed, nonbasic activities are never used
in a deterministic environment; their value stems
from the discretionary flexibility to meet stochastic
demand deviations from the operating point. Discre-
tionary activities thus model input- or resource-sub-

stitution and provide subtle benefits in additional to
traditional ‘‘risk pooling.’’ The analysis here will dis-
tinguish resource pooling (i.e., when alternative
means for processing a given set of inputs are avail-
able) and inventory pooling (i.e., when a set of out-
puts can be provided from a smaller set of inputs).
The discretion imbedded in resource pooling gener-
ates an ex-post revenue maximization option that can
remain valuable even when risk pooling is not, as dis-
cussed in Van Mieghem (2002b).

Whereas these first two characteristics of multidi-
mensionality and discretionary activities illustrate
modeling objectives, the second objective of this pa-
per addresses the analysis of newsvendor networks
in a dynamic or multiperiod setting. It is in this set-
ting that the difference between inventories, which
store flow units and link successive periods, and ca-
pacities, which limit processing activity levels, mat-
ters and is clarified. In addition, we will establish the
dynamic optimality of the myopic policy for the case
where excess demands result in lost sales. This result
will be extended to the case of backlogging for a re-
stricted set of newsvendor networks that are unca-
pacitated and only have ‘‘strong’’ nonbasic activities,
which will be defined later. Thus, while the lost sales
case is a generalization of the optimality of the classic
single-item base-stock policy, this paper highlights
some of the technical difficulties that arise when un-
met demand is backlogged in a network with discre-
tionary, capacitated activities.

The objectives of newsvendor networks and this paper
can now be summarized as follows. Newsvendor net-
works are used to synthesize newsvendor literature,
to develop richer understanding of the value and pur-
pose of basic and nonbasic or discretionary activities,
and to investigate how insights apply to multiple-pe-
riod settings. From a modeling standpoint, newsven-
dor networks are a direct extension to the multidi-
mensional newsvendor model by allowing for
multiple storage points, and their solution can be ob-
tained by analogy, as shall be shown in §2. The key
difference between this paper and those on the mul-
tidimensional newsvendor model is not modeling,
but how the model is used and what we learn from
that application. By formalizing the natural extension
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of multidimensional newsvendor models to include
storage points and simultaneously consider ex-ante
inventory and capacity decisions, newsvendor net-
works can be used to synthesize a variety of news-
vendor-type models, and they can be used to develop
a much richer understanding of the value and the
purpose of discretionary activities. (Multidimensional
newsvendor models were not used to achieve either
of these effects.) In passing, we will also suggest ap-
propriate measurements of and trade-offs between
product service levels, which are not obvious in a
multiproduct setting.

This paper shows that the structure of the optimal
policy in a single-period newsvendor network ex-
tends to a dynamic setting under plausible condi-
tions. Thus we provide a rigorous proof of dynamic
optimality under certain conditions and give some
initial indications of factors that may prevent us from
establishing such dynamic optimality. Obviously, un-
der the conditions that we give, the result is not sur-
prising to anyone familiar with dynamic control.
(However, hardly any dynamic optimality result of a
simple stationary policy is surprising.) The contri-
bution here must be found in providing a stepping
stone for future work and in ‘‘checking off’’ a nec-
essary task in building newsvendor networks theory.
Indeed, the dynamic optimality result directly gen-
eralizes a set of previously published, single-period
studies and insights to a dynamic setting. Specifically,
our results suggest that earlier papers that focused
only on capacity or inventory in a single-period news-
vendor model will retain their insights when dynam-
ic inventory management is added to the modeling
setup.

To put the two objectives in perspective, it is help-
ful to clearly delineate the boundaries of this paper. First,
while newsvendor networks attempt to contribute to
the literature on capacity and the literature on inven-
tory, there are many other existing models that in-
corporate both capacity and inventory and where
both of these factors affect system performance. By
design, newsvendor networks are clearly not the most
detailed models of reality, yet they do bridge the two
literatures and several functional or problem-specific
areas. In addition, they allow for a rather general set-

ting of multiple products flowing through both mul-
tiple storage inventories and processing capacities in
a multiperiod context. Second, continuing the ab-
straction of reality: The models as presented here in-
volve centralized optimization in a risk-neutral set-
ting. Newsvendor networks do extend to
multiperson, decentralized game-theoretic settings
(e.g., Anupindi et al. 2001, Rudi et al. 2001, Van
Mieghem 1999) as well as risk-sensitive settings, but
no attempt will be made to prove that assertion in
this article. (Van Mieghem 2002a discusses how to in-
corporate risk considerations.) Yet centralized control
does imply that certain customer-driven activities,
such as customers randomly substituting among the
set of available products (e.g., Lippman and Mc-
Cardle 1997, Netessine and Rudi 2002, Parlar 1988),
are not captured in our current framework. Also, by
design we fix the capacity of the processing resources
at the beginning of the time period to highlight the
difference between capacity, which is constant
throughout time periods, and inventory, whose fluc-
tuations connect time periods. Multiresource dynam-
ic capacity adjustment, as in Eberly and Van Miegh-
em (1997), could be incorporated, but the added
complication would bring us beyond the scope of this
first newsvendor networks paper. Finally, the model
presented here is ‘‘single-stage’’ in the sense that in-
ventory storage points are not connected. Section 5
will discuss the complications that arise when one
extends the newsvendor setting and allows for output
inventories, in addition to input inventories. In the
‘‘true newsvendor setting’’ the basic trade-off is be-
tween holding inventory and losing sales or having
backorders. When we consider both input and output
inventories, we must decide where to keep inventory
in addition to how much. This relates to echelon in-
ventories, the marvelous concept of a simple, plausi-
ble local control scheme, using a base-stock policy at
each stage that is equivalent to fully centralized con-
trol in uncapacitated supply chains without discre-
tionary activities. In the multiproduct setting with
discretionary activities, such equivalence does not al-
ways exist. Indeed, this is due to the distinct func-
tions of input vs. output inventories: Input inventories
are low-cost holding points against stockouts and
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partially pool output demands, whereas output in-
ventories offer a hedge against production capacity
constraints. As such, input inventories and capacities
are typically economic complements, while output in-
ventories and capacities tend to be economic substi-
tutes.

Structure of the Paper. After a literature review, §2
starts with the formulation of a newsvendor network,
illustrates some network examples and summarizes
analytic properties of the optimal inventory and ca-
pacity decision. Section 3 analyzes the illustrative ex-
ample of the newsvendor network in Figure 1. Section
4 extends the formulation to a multiperiod setting
and presents dynamic optimality results of the my-
opic inventory base-stock policy and the capacity de-
cision. Section 5 discusses complications that may
arise when allowing for backlogging or output inven-
tories.

Related Literature. There is a vast literature using
the classic (single-dimensional) newsvendor model or
some variation of it. Khouja (1999) gives an extensive
literature overview of the variations and extensions to
the classic model.

Several models of multi-item management of either
inventories or capacities fit into the framework of
newsvendor networks. In addition to the multidimen-
sional newsvendor model of Harrison and Van
Mieghem (1999), newsvendor networks also capture
existing models of centralization (Eppen 1979), com-
monality (Gerchak and Henig 1989, Tayur 1995, Van
Mieghem 2002b), flexibility (Van Mieghem 1998a,
Rudi and Zheng 1997), substitution (Bassok et al.
1999, Netessine et al. 2002), and transshipment
(Krishnan and Rao 1965, Robinson 1990), as will be
discussed in §2. Multiechelon inventory models are
related to our framework in that it deals with inven-
tories in networks, although the typical focus is to
address the impact of holding costs, setup costs, and
leadtimes (see Chen and Zheng 1994 and references
therein). Federgruen and Zipkin (1986a–b) are the
classic references for capacitated inventory manage-
ment. Other papers that have combined inventory
and capacity management include Angelus and Por-
teus (2002), for a single item, and work by Kapuscin-
ski and Tayur (1998). The latter builds on pioneering

work by Glasserman and Tayur (1995) on the use of
infinitesimal perturbation analysis (IPA) for calculat-
ing optimal base-stock policies in complex multi-
item, capacitated inventory systems. While our
framework is simpler, in that we focus on analytic
results for single-stage systems, we also discuss IPA
as the method to be used in practice. The formulation
of our newsvendor network is strongly influenced by
the recent and ongoing work of Harrison (2001a–b)
that presents stochastic processing networks in rela-
tion to the classical field that T.C. Koopmans called
activity analysis. That general linear model of the
firm with activities performed on flow units by re-
sources is also our building block, and linear pro-
gramming is an important analysis tool. The name
discretionary or alternate activity was coined by Har-
rison and our coverage of such activities mirrors his.
The name is an abstraction of existing ideas relating
substitution but also allows more general and unex-
plored types of flexibility or ‘‘real options’’ as will be
illustrated in the next section. There are, however,
some important distinctions between our newsvendor
network and Harrison’s processing network. News-
vendor networks are a much simpler subset of sto-
chastic networks. Our setting is discrete-time and as-
sumes deterministic ex-post processing. More
importantly, we adopt a setting more in line with
supply chains, where output demand is exogenous
but inputs, capacities, and activities are controlled.
The simplification of deterministic processing allows
us to get more structural results. In that sense, this
paper is complementary to Harrison’s work.

It is appropriate to finish this introduction with
some of Zipkin’s caveats (2000). As in all stylized
models, one walks a fine line between abstraction,
which favors tractability, and realism, which leads to
notoriously hard problems in multidimensional sys-
tems. It is important to recognize the implicit as-
sumptions in newsvendor networks: As in many in-
ventory models, the supply system is exogenous and
has constant, small leadtimes. This is clearly a sim-
plifying assumption. A more realistic model endo-
genizes the supply system and the leadtimes into a
multistage processing network, which is much harder
to analyze. (In many situations, however, it is reason-



VAN MIEGHEM AND RUDI
Newsvendor Networks

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

Vol. 4, No. 4, Fall 2002318

able to assume that ‘‘our process’’ represents only a
small part of the overall demands on the supply sys-
tem.) Regardless, newsvendor networks are a useful
and tractable starting point to analyze and under-
stand the fundamentals of the harder problems.

2. Newsvendor Network
Formulation

A newsvendor network is a stochastic, linear decision
model with recourse. (As usual, newsvendor net-
works are defined as a single-period model; §4 pre-
sents its dynamic extension.) Consistent with the
multidimensional newsvendor model, it is defined by
a linear production technology, which describes how
inputs (supply) are transformed into outputs to fill
end-product demand, a linear financial structure, and
a probability distribution of end-product demand. Its
primitive attributes are l different resources that con-
sume m distinct inputs (or stocks) to produce n dis-
tinct outputs by means of p different processing ac-
tivities, in addition to the m ordering activities. Inputs
and outputs are also called flow units, which may
include traditional ‘‘materials.’’ The timing is exactly
as it is in the classic newsvendor: Only the probability
distribution P of end-product demand is known
when the ordering and capacity investment activities
are made. Then demand uncertainty is resolved, after
which the processing activities are chosen with full
knowledge of the actual demand. Hence, we shall
also refer to the sourcing and processing activities as
the ex-ante and ex-post activities, respectively.

Let Rij denote the amount of flow unit i consumed
per unit of activity j, with a negative value interpret-
ed to mean that activity j is a net producer of flow
unit i. In a supply chain setting, one traditionally par-
titions flow units in two classes: The m input stocks
are being consumed, while n distinct outputs are be-
ing generated. Accordingly, partition the input-output
matrix R as R � [RSj � RD], where both submatrices
RS and RD are nonnegative. Notice that this setup al-
lows for an activity to simultaneously consume mul-
tiple (complementary) inputs or produce multiple
outputs. Similarly, an output may be produced via

different activities, possibly drawing from different
(substitutable) inputs.

Let x be a nonnegative p-vector of processing activ-
ity rates. Next, let Akj be the amount of resource k
capacity consumed per unit of activity j, and let Kk

be the available capacity during the period of re-
source k. The l � p capacity consumption matrix A is
nonnegative. Let S be the available input stock vector
(after ordering), and let D be the demand vector for
output materials.

The last set of the data for the formulation are fin-
ancials. Let p-vectors r and c be the revenue and pro-
cessing cost rates associated with the various pro-
cessing activities; r � c can thus be thought of as
gross margins. For the processing resources, we as-
sume linear1 capacity costs:

• cK: per unit capacity investment cost.
For the inventories, the usual data as defined by Por-
teus (1990), as cost at the beginning of period apply:

• cS: per unit order cost for input materials,
• cH: per unit effective holding cost assessed

against any leftover input stock at the end of the pe-
riod. (If each unit of leftover stock has a salvage value
of cL, then the effective holding cost is the actual hold-
ing cost cHa less cL.)
In newsvendor networks, insufficient inputs or ca-
pacity may lead to output shortages, which may in-
flict a penalty (e.g., loss of customer goodwill) that is
captured, as usual, by

• cP: per unit output shortage penalty cost as-
sessed on any unfilled demand (D � RDx)�. (The
shortage cost may differ when shortages result in lost
sales versus backlogs.)
We can now summarize the formulation of a news-
vendor network:

DEFINITION 1. A newsvendor network is defined by
three data sets:

(1) Demand data: the probabilistic demand forecast
represented by measure P over demand space.

(2) Financial data: gross margins r � c, capacity in-

1Economies of scale, modeled via concave affine capacity costs re-
sulting from the inclusion of fixed cost components, can relatively
easily be accomodated as described in an unabridged version of
this paper available from the authors.
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vestment cost cK, inventory costs cS and cH, and de-
mand (output) shortage cost cP.

(3) Network data: input-output matrices RS and RD

and capacity consumption matrix A.

Notation. We will use matrix notation, such that
vectors are assumed to be arranged in columns and
primes denote transposes. Expectation, with respect
to the demand distribution P, is denoted by �. (For
simplicity we will assume that P has a continuous
distribution function, although results directly extend
to mixed and discrete distributions by using subgra-
dients.) The terms decreasing and increasing are used
in the weak sense throughout this paper.

Objective. The system’s manager objective is to
maximize the expected firm value by choosing ca-
pacity K and inventory S before demand is known,
and activity x afterwards. The activity vector x max-
imizes operating profit by transforming RSx of input
stock into output RDx. Let �(K, S) denote the expect-
ed maximal operating profit, which is net value from
processing minus the shortage penalty cost and hold-
ing cost:

��(K, S) � � max [(r � c)�x � c� (D � R x)P D
x∈X(K,S,D)

�� c� (S � R x) ], (1)H S

where the set of feasible activities are constrained by
supply S, demand D, and capacity K:

X(K, S, D) � {x � 0 : R x � S, R x � D, Ax � K}.S D

(2)

The expected firm value to be maximized then is

V(K, S) � �(K, S) � c S � c K.� �S K (3)

2.1. Newsvendor Network Properties and
Solution

Given the set of feasible activities (2), the expected
maximal operating profit (1) equals

�(K, S) � � max [(r � c)�x � c� (D � R x)P D
x∈X(K,S,D)

� c� (S � R x)]H S

� ��(K, S, D) � c��D � c� S,P H

where the optimal effective operating profit is

�(K, S, D) � max v�x, (4)
x∈X(K,S,D)

and v is the net value vector associated with the various
processing activities:

v � r � c � R cP � R cH.� �D S (5)

The net value vector thus includes not only the rev-
enue r and marginal processing cost c of each activity,
but also the mitigating impact each activity has on
total demand shortage penalty and inventory holding
costs. The value vector is assumed to be positive to
make each ex-post processing activity economically
viable. (If vj were negative, the revenue generated by
activity j would not outweigh its cost. If it were zero,
we are indifferent and may as well not do it.)

The properties and solution of newsvendor net-
works are analogous to those of the multidimensional
newsvendor model. They build on linear program-
ming theory and are presented as Proposition 1 (see
Harrison and Van Mieghem 1999 for a proof2):

PROPOSITION 1. The optimal effective operating profit
�(K, S, D), the expected operating profit �(K, S) and the
firm value V(K, S) are jointly concave. There exists an
	-partition of the demand space such that the gradients of
� and V simplify to:


 V(K, S) � 
 �(K, S) � c ,K K K

where


 �(K, S) � �
 �(K, S, D) � � P ,�K K K,j j
j


 V(K, S) � 
 �(K, S) � c ,S S S

where


 �(K, S) � �
 �(K, S, D) � � P � c ,�S S S,j j H
j

where Pj is shorthand for P(	j(K, S, D)) and �k,j and �S,j

are the constant Lagrange multipliers of the capacity and
inventory constraints, respectively, in 	j.

Clearly, the optimal inventory and capacity vectors
K* and S* solve 
KV(K*, S*) � 0 and 
SV(K*, S*) � 0,
and the optimal inventory levels S* are, in general,

2An unabridged version of this paper presents a shorter proof based
on the monotone convergence theorem.
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Table 1 Comparing Newsvendor Networks and the Multidimensional
Newsvendor Model of Harrison and Van Mieghem (1999)

Multidimensional
Newsvendor Model Newsvendor Network Model

Ex-post
(Recourse)
Problem:

�(K, D) � max v�x
x�0

s.t. Ax � K, x � D.

�(K, S, D) � max v�x
x�0

s.t. Ax � K, R x � D,D

R x � S.S

Ex-ante
Problem:

max �[�(K, D)] � c�KK
K�0

max �[�(K, S, D)]
K,S�0

� [c�K � (c � c )�S ]K S H

‘‘Critical
Fractile’’
Solution:

� P � c� K,j j K
j

� P � c ,� K,j j K
j

� P � c � c .� S,j j S H
j

capacity dependent. Similar to traditional newsven-
dor results, these sufficient first-order conditions
specify the optimal balance between overages and
underages. Indeed, any of the dual variables is non-
zero only if the optimal activity x*(K, S, D) is either
capacity or supply constrained. Each component of
the vector sum thus denotes the expected ‘‘underage
cost’’ of a particular resource or input, while the com-
ponent of the marginal cost cK or cH � cS denotes its
‘‘overage cost.’’ The underage cost measures the risk
of output shortages due to capacity or input short-
ages. The overage costs measures the risk of leftover
(unused) capacity or inputs. (Notice, that output de-
cisions are made ex-post so that there is no risk of
leftover outputs.) The optimal coupled balance be-
tween underages and overages of all resources and
inputs thus uniquely specifies the optimal probabili-
ties P , which can be interpreted as ‘‘generalized crit-*j
ical fractiles’’ of the multivariate demand distribution.
The determination of these critical fractiles P , how-*j
ever, is much more difficult than for the single-di-
mensional newsvendor model that can always be
solved in closed form.

For small problems or if the linear program exhib-
its special structure such that a greedy allocation pol-
icy is optimal (see Federgruen and Groenevelt 1986
for necessary and sufficient conditions), the linear
program and the regions 	j can be solved in closed
form for any value of the parameters K and S and a
realization of D. Otherwise, the newsvendor network
solution can effectively be solved numerically with a
steepest-ascent method using the gradient of V as fol-
lows. Draw a large set of sample demand vectors,
and keep these fixed. Assume we have an initial es-
timate (K(0), S(0)), and set i � 0. Now iterate as follows:
Given capacity K( i) and supply S( i), solve the linear
program and associated dual variables �(K( i), S( i), D( j))
numerically for each sample demand vector D( j). Take
the average of the �(K( i), S( i), D( j)) over all j as an un-
biased estimate of ��(K( i), S( i)), and use it to compute
an unbiased (given that differentiation and integra-
tion interchange) estimate of 
V (K( i), S( i)). If
�
V(K( i), S( i))� is smaller than some tolerance level,
stop: (K( i), S( i)) is close to the optimal vector (K*, S*).
Otherwise, adjust capacity and inventory in the di-

rection of the gradient: K( i�1) � K( i) � 
KV(K( i), S( i)),
and similarly for S( i), where  is some step-size (or
perform a line-search), and iterate. This is nothing
more than optimization through simulation, also
called infinitesimal perturbation analysis (IPA). Ob-
viously, if the dual variables �(K, S) are known ana-
lytically, the iteration is vastly accelerated because the
linear programs do not need to be resolved. This nu-
merical optimization through simulation is easily im-
plemented in Excel for virtually any demand distri-
bution (or forecast) which enhances the practical and
didactical value of newsvendor networks.

The preceding presentation has closely followed
those of the multidimensional newsvendor model
provided in Harrison and Van Mieghem (1999) and
Van Mieghem (1998a). As illustrated in Table 1, news-
vendor networks extend the multidimensional news-
vendor model in a natural way by including inven-
tories and enriching the processing formulation via
activities and more general demand constraints. Fur-
ther, newsvendor networks feature a richer activity
set that allows for nonbasic activities and inventories
that connect periods in a dynamic setting. (In multi-
dimensional newsvendor models, which are essen-
tially single-period, inventories and capacities are in-
distinguishable. Their fundamental difference only
arises in a dynamic setting where inventories change
on a much smaller time-scale than capacities, as is
elaborated on in Van Mieghem 2002a.) The remainder
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Figure 2 Four Illustrative Newsvendor Networks

Note. A features an assembly activity and input commonality; B adds nonbasic (in dotted line) input substitution; C has a flexible resource; and D enjoys
resource pooling.

of this section discusses the richer processing for-
mulation and additional properties and sets the
groundwork for the extension to the multiperiod set-
ting of §4.

2.2. Modeling Processing: Basic vs. Nonbasic
Activities

The processing formulation in newsvendor networks
allows for ex-post redeployment of inputs and re-
sources to best respond to resolved uncertain events.
Redeployment implies a deviation from the normal
(or planned) regime or operating point. Loosely
speaking, utilized activities in the normal regime are
called basic activities, while nonbasic activities per-
form redeployment.

Formally, it is useful to define basic activities as fol-
lows. For a given demand or ‘‘operating point’’ D*,
consider the relaxed linear program maxx∈X* v�x,
where X* � X(�, �, D*) � {x � 0 : RDx � D*}. If this
relaxed problem has a unique optimal solution x*,
then we call the activities j, such that x � 0, ‘‘basic*j

activities’’ and the other activities ‘‘nonbasic’’ or ‘‘dis-
cretionary.’’ Thus, basic activities are those that sat-
isfy the demand D* in the most profitable manner if
the system is not supply or capacity constrained. The
corresponding process that only uses basic activities
and the minimal cost inputs and capacities S* and K*
such that X* � X(K*, S*, D*) is called the basic process.
It is the process that would be optimal if there were
no uncertainty. The value of nonbasic activities then
reflects the discretionary flexibility to meet stochastic
demand deviations from the operating point. Non-
basic activities thus provide a redundancy that is only
valuable in the presence of uncertainty.

Figure 2 illustrates four newsvendor networks,
three of which feature nonbasic activities, which are
drawn with a dotted line. Network A features simple
assembly and commonality: Activity 1 depletes two
inputs simultaneously in fixed proportions: RS,11 � 1
and RS,21 � 2, while Input 2 is a joint input for Prod-
ucts 1 and 2. Notice that simple assembly and com-
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monality do not involve discretionary activities. Both
activities are basic and the common Input 2 exhibits
traditional inventory pooling. Network B adds a non-
basic input-substitution Activity 3 to Network A (as-
suming v2 � v3). Network C illustrates a flexible Re-
source 3 and two nonbasic activities (assuming v1 �
v3 and v2 � v4). Network D has two processing re-
sources with limited flexibility. Its two nonbasic ac-
tivities (assuming v1 � v4 and v2 � v5) generate re-
source pooling: Input 2 can be processed on Resource
1 or on Resource 2 and generates dynamic pooling
among the inputs.

Given that discretionary activities enlarge the
choice set of activities, it is obvious that:

PROPOSITION 2. The presence or addition of discretionary
activities increases optimal expected network value.

Indeed, having more processing options can never be
worse because one can choose not to use them. Re-
lated interesting questions are: Under which condi-
tions does the presence of discretionary activities lead
to a difference between inventories and capacities?
Similarly, when does the presence of common inputs
or resources lead to lower inventories or capacities
and higher inventories or capacities of noncommon
inventories or resources to exploit ex-post flexibility?
Typically, the answers to these questions will depend
on the three data sets (demand, financial, and net-
work data) of the newsvendor network. Section 3 will
illustrate some of these answers.

The rich processing formulation allows newsven-
dor networks to unify various elements in the existing
literature on newsvendor-type decisions. Indeed, by
appropriately structuring the capacity consumption
matrix A and the input-output matrices RS and RD

various classical problems are recovered. For exam-
ple:

(1) A network with independent products implies
RS � RD � I, where I is the identity matrix. If, in
addition, there are no capacity constraints (A � 0),
then all decisions are decoupled per product: x �

min(Si, Di). Thus, �(S, D) � �i vi min(Si, Di ) and �S,i

� vi1{Di � Si}, where 1{·} is the indicator operator
whose expectation yields the probability so that: ��S,i

� vi�1{Di � Si} � vi�{Di � Si}. The solution thus

reduces to m independent critical fractiles: vi�{Di �
Si} � cH,i � cS,i.

(2) When activities correspond one-to-one to output
production quantities, then RD � I and RS represent
the familiar ‘‘bill-of-materials.’’

(3) Assembly activities (i.e., when an output re-
quires multiple inputs) fill the corresponding column
of RS with multiple positive entries.

(4) Component commonality of an input (i.e., when
multiple outputs require a common input) fills the
corresponding row of RS with multiple positive en-
tries; c.f. Gerchak and Henig (1989), Tayur (1995), and
Van Mieghem (2002b), who also establish an equiva-
lence with resource flexibility.

(5) Input substitution and/or transshipment: Row
j of RD has multiple positive entries when output j
normally uses input i with basic activity k but can
substitute i with an equal amount of i� using non-
basic activity k� (RD,jk � RD,jk� and RS,ik � RS,i�k�). With
‘‘one-level downward substitution,’’ RD � (I, I) and
RS � (I B), where B has zeros except for the one-off
diagonal. For examples, see Bassok et al. (1999) and
Netessine et al. (2002) for substitution and Krishnan
and Rao (1965) and Robinson (1990) for transship-
ment.

(6) Resource flexibility: Multiple positive entries in
row i of A mean that resource i can perform multiple
activities. For examples, see Rudi and Zheng (1997)
and Van Mieghem (1998a) who study a setting where
two products can be produced either on product-ded-
icated resources or on one flexible resource, which is
captured by

1 0 0 0 
 

A � 0 1 0 0 and  
0 0 1 1 

1 0 1 0
R � .D � �0 1 0 1

(7) Simultaneous resource requirements: Multiple
positive entries in column j of A mean that activity j
requires the simultaneous use of multiple resources.

Finally, aside from network optimization, newsven-
dor networks can also be used for network design.
For example, the structure of newsvendor network D
exhibits ‘‘chaining’’ in the sense introduced and stud-
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ied by Jordan and Graves (1995). Their objective was
to study the higher-level decision of network design,
while this paper focuses on optimal control of a given
network design. In particular, the extremely impor-
tant decision that Jordan and Graves (1995) address
so beautifully can be phrased using our terminology
as follows. If one wants to add ‘‘process flexibility’’
to a basic network by adding nonbasic activities (i.e.,
by adding links as the dotted lines in our Figure 2),
which nonbasic activities have the highest impact on
expected profits or shortages? Thus, the input-output
matrix R, which defines the activity set or routing
structure, becomes a decision variable. Recent work
by Graves and Tomlin (2001) studies this network de-
sign question in a multistage setting.

2.3. The Effect of Demand Uncertainty
In many newsvendor networks, one is also interested
in the effect of demand uncertainty on optimal in-
ventory and capacity decisions, as well as on the op-
timal value. An increase in the mean vector of the
demand distribution is easy because it affects only
the basic activities by a similar increase and yields a
corresponding increase in the optimal value and the
inputs and capacities necessary to support the in-
crease of those basic activities. To analyze the com-
parative statics of other demand parameters, such as
standard deviations or pairwise correlations, the tra-
ditional approach is to use Jacobians and the implicit
function theorem. Unfortunately, such analysis quick-
ly becomes involved (e.g., Netessine et al. 2002, Van
Mieghem 1998a) and often has to be numerically eval-
uated for specific parameter values so that one may
as well directly vary demand parameters in the op-
timization through simulation. Sometimes, however,
special analytic structure allows one to draw rather
general conclusions for the optimal value3 by drawing
on Müller’s (2001) recent work on stochastic orders.
(Corbett and Rajaram 2001 give other useful stochas-
tic order results.)

PROPOSITION 3. Assume D is normally distributed with
mean vector � and covariance matrix �. The optimal value
V is increasing in � and decreasing in any variance term

3Comparative statics on the optimal inventory and capacity levels,
however, are much more difficult to establish.

�ii. In addition, if the operating profit �(K, S, D) is sub-
modular in D, then the optimal value V is decreasing in
any covariance term �ij (and thus pairwise demand corre-
lation), whether K and S are held constant or are adjusted
optimally.
(All proofs are relegated to the Appendix.)

Recall that a function f is submodular in D if the
marginal returns of Di are decreasing in Dj. This is a
condition that holds in uncapacitated transportation
problems whose optimal profit �(S, D) is submodular
in (�S, D) (Topkis 1998, Theorem 3.4.1): As other
products consume higher levels of available inputs
and capacity, the return of an additional unit of de-
mand for product i typically does not increase; sim-
ilarly, returns are supermodular in supply S. Hence,
the demands of any two products are substitutes, the
supplies of any two inputs are substitutes, and the
demand of any product and the supply of any input
are complements. The transportation problem is a
special case of our input-output activity problem (4),
where activities correspond to an arc between one
supply node and one demand node. Unfortunately,
the proof by Topkis does not address capacity con-
straints on arcs, let alone joint capacity constraints of
the type considered here. Our formulation also allows
one activity to simultaneously deplete multiple inputs
or generate multiple outputs.

Although our formulation thus is more general
than a transportation problem, economic intuition
suggests that the profit be submodular in D for most
systems. To verify submodularity in our setting, one
must verify whether the (sub)gradient v��x/�Di,
which is constant in each domain 	j, is decreasing
over the sequence of the domains that are traversed
when one increases Dj for any given Di. For stylized
problems this is easy to verify. For example, this holds
for the flexible system studied in Van Mieghem
(1998a) and for our example, as will be shown in the
next section.

2.4. Economical Service Levels
By definition, the firm’s processing capacity region is the
demand region where all demand can be met. It is
the feasible region of the linear program (4), denoted
by 	0 for now. Baker et al. (1986) define the aggregate
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service level as the probability of meeting all demand,
P(	0). They further point out that while ‘‘the concept
of service level is fundamental to single-product in-
ventory analysis, it is not obvious how to generalize
that concept to the multiproduct situation.’’ Indeed,
for cases where aggregate demand exceeds total ca-
pacity, the service level of a particular product de-
pends on how available inputs and capacity are ra-
tioned and allocated to outputs. Baker et al. suggest
that ‘‘in general the optimal rationing policy is a func-
tion of the service level measure.’’ Not only is the
optimal rationing policy endogenous in any newsven-
dor-based framework, but so is the type as well as the
value of service. Indeed, by capturing financial data,
the newsvendor network solution has a clear objective
and automatically specifies the economically optimal
service levels and rationing policy. This overcomes a
major weakness of using the probability of meeting
all demand as an exogenous service measure in mul-
ti-item systems. (To illustrate this, consider n inde-
pendent newsvendor problems, each with a probabil-
ity � of meeting its demand. The probability of
meeting all demand is then �n, which not only de-
pends on the size of the problem n but approaches
zero as n gets sufficiently large.) The different setting
of Baker et al. also leads to a more subtle difference.
In their setting, where they minimize overall inven-
tory subject to an exogenous service measure, they
conclude that the pooling effect of commonality leads
to lower overall inventory. Such general conclusions
cannot be made for newsvendor networks. It is well
known that, depending on financial data, pooled in-
ventory in newsvendor-type systems can be smaller,
equal to, or larger than the aggregate inventory when
managing each product’s inputs individually. As an
example, consider the classic paper by Eppen (1979)
that considers the effect of centralization (i.e., merg-
ing multiple independent newsvendors into a single
newsvendor) under a multivariate normal distribu-
tion. While centralization always increases the opti-
mal expected profit, it leads to (i) increased total in-
ventory when the ‘‘newsvendor fractile’’ is less than
half, (ii) no change in inventory when the fractile is
equal to one half, and (iii) decreased total inventory
when the fractile exceeds one half. In summary, for

normally distributed demands, the pooling consid-
ered by Eppen makes the total inventory gravitate to-
wards the mean.

2.5. Initial Input Stock z
For the extension to the dynamic setting, it is useful
to consider the case where we start with an initial level
z of input inventory before ordering. Let y denote the
input inventory level after ordering and denote the val-
ue function excluding capacity investment costs by

g(K, y) � �(K, y) � c y.�S (6)

Restricting attention to the inventory decisions, the
objective function now becomes

G(K, y; z) � max {�(K, y) � c� (y � z)}S
y�z

� max {g(K,y) � c�z}.S
y�z

If we do order up to y, the value is G(K, y; x); if we
don’t order, the value is G(K, z; z). Hence, we order iff

G(K, y; z) � G(K, z; z) � g(K, y) � g(K, z) � 0.

Given that S* is an unconstrained optimizer of the
concave function g(K, ·), it is optimal to order up to
y � S* for any vector z � S*. (If any zi � S*, the
optimal policy is more complicated, but we are not
concerned about such transient initial conditions.)
This means that each input component is managed
via a base-stock policy iff z � S*. It also means that
the optimal value function is affine in its starting
states, for z � S*:

G*(K, z) � g(K, S*) � c z,�S

and its gradient is cS. These results are similar to the
conventional, one-dimensional newsvendor model.

2.6. Incorporating Random Yield
In many applications, there might not be a 100% yield
of the resources. (See Yano and Lee 1995 for a review
of research on random yield and Hsu and Bassok
1999 for an example of a newsvendor network with
random yield.) Input stocks might have defects, while
capacities might not be fully available due to main-
tenance or employee absence. Let U � (US, UK) be a
diagonal matrix where US,ii and UK,ii are the random
yield of input stocks i and the random fraction of time
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Figure 3 Ex-post Activity Vector x and Total Output q � (x1, x2 � x3)
Depends on Supply S, Capacity K, and Demand D

Note. Graph assumes K1 � S1, otherwise 	5 � ø and the capacity K1

constraint is nonbinding.

that resource j capacity is available. For the case
where U is realized at the same time as D, the con-
straint set (2) can easily be adjusted to reflect the ran-
dom yield U as follows:

X(K, S, D, U)

� {x � 0 : R x � U S, R x � D, Ax � U K},S S D K

and (1) is adjusted by taking the expectation over
both D and U. It follows that Proposition 1 still holds.

3. An Example with Discretionary
Commonality

This section illustrates the typical properties of a
newsvendor network and the insights that it gener-
ates by considering the example presented in the in-
troduction. The matrices that define the feasible activ-
ity set X in (2) are:

1 0 1 1 0 0
R � , R � ,S D� � � �0 1 0 0 1 1

1 0 0
A � .

�1� �0 1 �

3.1. Optimal Activities, Inventories, and
Capacities

Assume now that v1 � v2 � v3 � 0 and 0 � � � 1.
For this (or any other) ranking, the linear program (4)
is easily solved for the optimal activity: Prioritize Ac-
tivities 1 and 2, and let Activity 3 take care of the
residual demand of Product 2, provided there is suf-
ficient capacity and input. Hence, the parametric so-
lution of the linear program is:

x (K, S, D) � min{D , K , S },1 1 1 1

x (K, S, D) � min(D , K , S },2 2 2 2

x (K, S, D) � min{D � x , �(K � x ), S � x }3 2 2 2 2 1 1

�� min{[D � min{K , S }] ,2 2 2

��[K � min{D , S }] ,2 2 2

�[S � min{D , K }] }.1 1 1

Clearly, without supply or capacity constraints and
for any chosen operating point D* we have that x �*1

D , x � D , and x � 0. Therefore, Activities 1 and* * * *1 2 2 3

2 are basic, while Activity 3 is nonbasic. These activ-
ity decisions and the aggregate output vector q �
(x1, x2 � x3) can be represented graphically in the de-
mand space, shown in Figure 3. The demand space
is partitioned into seven domains: � � �i 	i, and2

�

Table 2 gives the optimal activity and dual variables
in each domain. As defined earlier, the firm’s pro-
cessing region here is the thick-lined 	0 � 	p where
all demand can be met through the basic activities
(x1, x2) and the nonbasic activity x3. The newsvendor
network framework shows that the aggregate service
level as defined by Baker et al. (1986) should be mea-
sured by the probability of the rectangle with cut-off
at the upper right corner: SLagg � P(	0 � 	p), which
is a function of K and S. It also shows how trade-offs
between individual service levels should be mea-
sured: The individual service levels, as measured by
SL1(K, S) � 1 � P(	3 � 	4 � 	5) and SL2(K, S) � 1
� P(	1 � 	2 � 	3) satisfy the trade-off, for arbitrary
K and S:

SL1 � SL2 � SLagg � 1 � P(	3).

Notice that for the basic process the domains 	p, 	2,
and 	5 would be empty. Hence, intuitively, the sub-
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stitution-flexibility option embedded in the presence
of the nonbasic activity x3 will increase in value as
these domains ‘‘cover more demand,’’ that is, as
P(	p), P(	2), and P(	5) increase. Clearly, a necessary
condition is that there is some extra capacity and
some flexibility: K2 � S2 � 0 and � � 0.

For any capacity vector K, it is suboptimal to pro-
cure more Input 2 than can ever be used, so that S*2
� K2. What is more interesting, and perhaps surpris-
ing at first, given the substitution option is that an
identical result holds for the discretionary common
Input 1.

RESULT 1. If cS,1 � cH,1 � cS,2 � cH,2, then, for any K,
optimal sourcing sets S � K1 and S � K2.* *1 2

This result becomes intuitive by considering the
counter case that �� � 0 such that S1 � K1 � �. Hence,
at least � of Input 1 is held only for Output 2 pro-
duction. Clearly, under the assumptions, one can do
better by reducing S1 by � and increasing S2 by �: We
save in procurement by (cS,1 � cS,2)� � 0; we may gain
an operating margin (v2 � v3)� � 0 while consuming

equal or less of K2 capacity. (A formal proof can be
found in the Appendix.) Given Result 1, the optimal
sourcing conditions E�S � cS simplify to:

Sv P(	 (K, S*)) � v P(	 (K, S*)) � c � c � � ,3 2 1 3�4 S,1 H,1 1

(v � v )P(	 (K, S*)) � (v � �v )P(	 (K, S*))2 3 p 2 3 1

� v P(	 (K, S*)) � c � c ,2 2�3 S,2 H,2

where � � 0 if S � K1 and is positive if S � K1.S * *1 1 1

This defines the unique optimal sourcing vector
S*(K ) for any K. (Note that without capacity con-
straints, P1 � 0 and � � 0.) Now we can strengthenS

1

the bounds on the optimal S* and K*. Clearly, it is
suboptimal to invest in more capacity than can ever
be used given the input stocks S. Hence, S � K and* *1 1

S � K � S � ��1S , and the optimality conditions* * * *2 2 2 1

become:
RESULT 2. If cS,1 � cH,1 � cS,2 � cH,2, then optimal

sourcing and investment sets: S � K and S � K* * * *1 1 2 2

� S � ��1S and the value function and its gradient* *2 1

(and thus optimality equations) simplify:

� �V(K , K , S ) � v � min{D , K } � v � min{D , S } � v � min{[D � S ] , �[K � min{D , S }], [K � D ] }1 2 2 1 1 1 2 2 2 3 2 2 2 2 2 1 1

� c��D � (c � c � c )K � c K � (c � c )S ,P S,1 H,1 K,1 1 K,2 2 S,2 H,2 2

v P(	 (K, S)) � v P(	 (K, S)) � (c � c � c ) 3 2 1 3�4 S,1 H,1 K,1
 


V(K , K , S ) � �v P(	 (K, S)) � c . 1 2 2 3 1 K,2
 
(v � v )P(	 (K, S)) � (v � �v )P(	 (K, S)) � v P(	 (K, S)) � c � c 2 3 p 2 3 1 2 2�3 S,2 H,2

3.2. Discussion and Insights on Discretionary
Commonality

Recall the earlier questions of interest: Under which
conditions do the presence of discretionary activities
lead to a difference between inventories and capaci-
ties? Similarly, when does the presence of common
inputs or resources lead to lower inventories or capac-
ities and higher inventories or capacities of noncom-
mon inventories or resources to exploit ex-post flexi-
bility? This example illustrates the answers and the
type of insights newsvendor networks may generate.

Impact of Discretionary Commonality (Substitutive
Flexibility Option). An important question is how the

presence of the substitutive flexibility option changes
decisions compared to the basic system (i.e., a system
without the substitution Activity 3). Let (Kb, Sb) denote
the optimal solution for the basic system, which satisfies
simple critical fractiles: viP(Di � K � S ) � cK,i � cS,i �b b

i i

cH,i. Comparing these with the generalized critical frac-
tile solutions directly shows that:

RESULT 3. Compared to a basic system, discretionary
commonality (substitutive flexibility) warrants a higher
inventory of the expensive discretionary common In-
put 1 and higher Capacity 1; a lower inventory of the
cheaper unique Input 2; and a higher flexible Capacity
2 to be able to exercise on the substitution option:
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Table 2 The Optimal Activity Vector and Marginal Values of Inputs and Capacities in Each Demand Domain for the Example

Domain

Activity Vector x

S1 � K1 S1 � K1

Marginal Value �S

S1 � K1 S1 � K1

Marginal Value �K

S1 � K1 S1 � K1

	0

	p

	1

	2

(D1, D2, 0)
(D1, S2, D2 � S2)
(D1, S2, �(K2 � S2))
(D1, S2, S1 � D1)

(D1, D2, 0)
(D1, S2, D2 � S2)
(D1, S2, �(K2 � S2))
(D1, S2, S1 � D1)

(0, 0)
(0, v2 � v3)
(0, v2 � �v3)
(v3, v2)

(0, 0)
(0, v2 � v3)
(0, v2 � �v3)
(v3, v2)

(0, 0)
(0, 0)
(0, �v3)
(0, 0)

(0, 0)
(0, 0)
(0, �v3)
(0, 0)

	3

	4

	5

(K1, S2, S1, � K1)
(K1, D2, 0)
(K1, S2, D2 � S2)

(S1, S2, 0)
(S1, D2, 0)
—

(v3, v2)
(0, 0)
(0, v2 � v3)

(v1, v2)
(v1, 0)
—

(v1 � v3, 0)
(v1, 0)
(v1, 0)

(v1, 0)
(v1, 0)
—

b bK � S � K* � S* and1 1 1 1

b b �1S* � S � K � K* � S* � � S*.2 2 2 2 2 1

Thus the procurement savings from substitution
derive from holding less of the less costly input rather
than more of the more costly input. (Clearly, this all
assumes—quite optimistically—that the flexible ca-
pacity has the same investment cost as a dedicated
resource: c � cK,2. In reality, one would expect cb b

K,2 K,2

� cK,2, and if the discount is sufficiently high, the sub-
stitutive option may become worthless.) The example
directly shows how the presence of the substitutive
discretionary activity leads to an essential difference
between inventory and capacity levels: S � K , an* *2 2

effect that can only be captured if both inventories
and capacities are modeled. It is the discretionary
commonality and the flexible resource that lead to
higher K , S , and K , but lower S , compared to the* * * *1 1 2 2

basic system. And both commonality and flexibility
are necessary to produce the effects and higher prof-
itability: This real option is worthless without the si-
multaneous presence of the discretionary Activity 3,
processing flexibility (� � 0), and financial flexibility
(v3 � 0).

The effect of discretionary commonality in news-
vendor networks is different from the effect of com-
monality in inputs in the insightful article by Baker
et al. (1986). They showed that ‘‘commonality per-
mits a given service level to be attained with a small-
er amount of safety stock than would be attainable
without commonality’’ and, more interestingly, that
inventory of the common component decreases
while those of unique components increase, again
with a constraint on service level. In contrast, our

example shows that inventory of Input 1 (which is a
discretionary common component) actually increas-
es, while inventory of the Input 2 (which is unique
to Product 2) decreases, while increasing overall ex-
pected profit. Our effect is thus very different from
that in Baker et al. due to the inherent difference in
model setup.4 Similar to the centralization benefit in
Eppen (1979) mentioned earlier, total inventories
(and thus safety stock) S � S can be smaller, equal* *1 2

to, or larger than S � S , depending on the financialb b
1 2

data. This is a comparison of economically optimal
stocking levels whose corresponding economic op-
timal service levels may differ between the basic net-
work and the network with discretionary common-
ality. Also, discretionary commonality leads to
weaker pooling effects than ‘‘simple’’ or ‘‘ordinary
commonality.’’ In our example, the ‘‘base case’’ is
that both products are processed each from their
unique inputs. Only if Demand 2 is ‘‘much higher
than expected’’ while Demand 1 is lower (loose lan-
guage for D ∈ 	p) will Input 1 be a common com-
ponent for both products. The graphical represen-
tation is also useful to estimate some nonobvious
comparative statics related to demand uncertainty.
For example:

Impact of Demand Correlation and Variability.
Assume for concreteness that D is multivariate nor-
mal with mean vector �D and covariance matrix

4Newsvendor networks automatically lead to economically optimal
service levels, for example, inventory levels that maximize expected
profits. Therefore, we do not need service-level constraints in our
analysis, as Baker et al. (1986) did because they did not capture
financials.
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Figure 4 Superimposed Isoplots of the Demand Density to Estimate the
Impact of Increasing Correlation and Decreasing Uncertainty
on Optimal Stock and Capacity Levels

2� �� �1 1 2� � � ,2� ��� � �1 2 2

where � � 0 is a measure for the amount of variabil-
ity and �1 � � � 1 is the correlation coefficient. Now
set � � 1, and fix a value for �. It is easily verified5

that �(K, S, D) is submodular in D, so that Proposition
3 yields that the value of the system decreases in cor-
relation �. Establishing general comparative statics of
the optimal inventory and capacity levels, however,
is more difficult. The following discussion is meant
to illustrate how one can build intuition and appre-
ciation for the complexity of the impact of various
demand parameters from a graphical representation.
For stylized problems as in Van Mieghem (1998b), the
graphical approach is very effective in the classroom:
It typically gets to the key effects quickly. Neverthe-
less, this reasoning is rather intuitive and case spe-
cific.

Assume that the stock and capacity levels shown
in Figure 4 are optimal for the normal distribution
with those parameter values and thick isoplot. Now
consider a small increase in correlation to the dotted
isoplot, ceteris paribus. A plausible reasoning may go
as follows, which illustrates what may happen if cor-
relation increases for the situation as shown in Figure
4. Given that the optimality conditions must remain
to hold, one can estimate the change in the stock and
capacity levels to counteract the change in the prob-
ability of the domains. To counteract the increase of
P2, increase S � S ; to counteract the small decrease* *1 2

in P3�4, decrease K � S . Hence, S must increase,* * *1 1 2

which indeed counteracts the decrease in P4. Finally,
to counteract the decrease in P1, the weighted average
of S and K must decrease. Given that S increases,* * *2 2 2

K must decrease. Thus, as correlation increases for*2
the situation given in Figure 4, we expect Input 1
stock to decrease and Input 2 stock to increase while

5For example, to show that the (sub)gradient ��/�D1 � v��x/�D1 is
decreasing in D2, one must consider three scenarios: (1) if D1 � S1

� �(S2 � K2), then, as D2 increases from 0, v��x/�D1 remains con-
stant at v1 throughout 	0, 	p, and 	1; (2) if S1 � �(2 � K2) � D1 �

min(K1, S1), then, as D2 increases from 0, v��x/�D1 remains constant
at v1 throughout 	0 and 	p, and decreases to v1 � v3 in 	2; (3)
finally, if D1 � min(K1, S1), v��x/�D1 remains constant at 0 through-
out 	4, 	5, and 	3.

total stock levels increase. At the same time, we ex-
pect both capacity levels to decrease, which reflects
the decreasing option value imbedded in the substi-
tutive flexibility. Given that S increases while K de-* *2 2

creases, there may exist a threshold value � 1 at�̄
which S � K (and thus P2 � Pp � 0 and x3 are* *2 2

always zero). The above trends are indeed observed
in numerical studies. Thus, is the maximal corre-�̄
lation for the substitution option to be valuable. Be-
yond the dedicated solution is optimal. (Clearly,�̄ �̄
is a function of the value and cost parameters that
can be analytically studied. Similar to the flexible and
commonality systems of Van Mieghem 1998a and
2002b, there may be instances such that the substi-
tution option remains valuable—and thus S � K —* *2 2

even for perfectly positive correlation. This highlights
the revenue maximization benefit imbedded in dis-
cretionary activities, in addition to traditional risk
pooling.)

Similarly, consider any other amount of variability
� � 1. Rescaling the demand space directly yields
that the optimal values of (1 � �)S2 � �K2 � �D2, K1

� �D1 and S1 � S2 � �(D1 � D2) are also scaled by
�, generalizing the critical fractile scaling of the one-
dimensional newsboy. Hence, as variability � decreas-
es to zero, K � S → �D1, (1 � �)S � �K → �D2* * * *1 1 2 2
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and S � S → �(D1 � D2), so that S and K both* * * *1 2 2 2

approach �D2. Thus, Pp and P2 both decrease to zero
as does the value of the nonbasic activity.

Impact of Processing Flexibility �. Recall that 0 �

� � 1 captures the degree of processing flexibility of
Resource 2. From the second optimality equation, it
follows that an increase in flexibility decreases P1 and
the effective investment cost cK,2/� for Resource 2 so
that K will tend to increase. At the same time, while*2
the effective procurement cost of Input 2, cS,2 � �v3P1

� cS,2 � cK,2, remains constant, Pp�2�3 must increase
to counterbalance the decrease in P1. Hence, we ex-
pect the individual Input 2 stock level to decrease,
increasing Pp, P2, and P3. To counterbalance the in-
crease in P2 and P3, the discretionary common input
S and K � S must increase. Reversing the argu-* * *1 1 1

ment, as � decreases, K decreases while S increases* *2 2

so that there exists a threshold value � under which
S � K and P2 � 0, and x3 is always zero. Thus,* *2 2

similar to , � is the minimum amount of processing�̄
flexibility that is necessary to make the substitution
option worthwhile. Clearly, total value is increasing
in � as seen from the expression of V.

4. Dynamic Optimality of the
Base-Stock Policy

This section extends the newsvendor network to a dy-
namic (multiperiod) setting. Similar to the single-
item inventory model (Porteus 1990, p.628), there
now are a sequence of discrete periods in which de-
mands, denoted by {Dt : t � 0}, occur. There is a sin-
gle-capacity investment decision K at the beginning
of Period 1 and K remains in effect ever after. Other
timing follows the standard inventory setup: At the
beginning of each period, stock levels are reviewed
and an order is made for the current period. Any
order is received in time to satisfy any demand in
that period. Then demand for that period is observed,
after which production decisions for that period are
made. Demands in different periods are independent
and identically distributed according to P. Revenues
and costs are discounted using the discount factor �,
where 0 � � � 1. The marginal costs cS, cK, cP and
the actual holding cost cHa remain as before. (Even

though these costs may be incurred at the end of a
period, they are expressed in beginning-of-period
monetary units.) At the end of the last period in the
time horizon, each unit of leftover input stock has a
value of cS. Otherwise, leftover stock at the end of one
period is the initial inventory for the following peri-
od. We can now summarize the formulation of a (dy-
namic) newsvendor network:

DEFINITION 2. A dynamic newsvendor network is
defined by three data sets of the newsvendor net-
work, augmented by:

(1) Demand data: demand {Dt : t � 0} is i.i.d. with
measure P; treatment of demand shortages (lost,
backlogged, or a combination).

(2) Financial data: discount factor �.
The key result is that the optimal dynamic policy is
myopic when shortages result in lost sales; that is, it
then equals the optimal stationary base-stock policy
for the single-period model with holding and invest-
ment cost parameters adjusted for discounting. When
shortages are backlogged, some restrictions must be
imposed for the optimal policy to remain a myopic
stationary base-stock policy.

4.1. Dynamic Optimality with Lost Sales
This section considers the case when unmet demand
results in lost sales.

PROPOSITION 4. A stationary base-stock inventory policy
with level S* is optimal for any finite horizon problem.

Similar traditional extensions to the single-item case
also hold: If � � 1, the policy is also optimal for the
infinite horizon problem. The policy is also optimal
if the discounted cost is replaced by the average-cost
criterion. Karlin (1960) and Veinott’s (1965) results for
nonstationary independent demands also hold: Com-
pute S with the parameters for period t. If S �* *t t

S (which is the case if demands increase stochas-*t�1

tically over time and financial parameters are station-
ary), then everything works out and using myopic
base-stock in each period is an optimal strategy.

Finally, returning to the original i.i.d. setting, the
optimal capacity level is also derived from the one-
period problem, provided we use the effective single-
period capacity cost cK(1 � �)/(1 � �T ). Indeed, the
optimal net present value of investing in capacity K
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and following the inventory base-stock S* policy dur-
ing T periods, starting with zero initial inventory, is

T1 � �
V (K, 0) � (�(S*, K) � c�S*) � c� K.1 S K1 � �

The optimal capacity level that maximizes this con-
cave function is as before, provided we adjust the ca-
pacity cost. (The special choice of a salvage value of
cS eliminates any end-of-horizon effects and makes
the optimal base-stock policy stationary. Its cost in
each period is i.i.d., and its optimal value is the dis-
counted sum of T single-period values.)

4.2. Dynamic Optimality with Backlogging
Complications arise when, instead of being lost, un-
met demand is backlogged to be filled in the future.
First, we must keep track of the backorders for end
units. As usual, this is most easily accomplished by
establishing a cumulative backorder counter as an in-
ventory level zD for outputs that must be added to the
state descriptor of the system. In true newsvendor
networks, zD � 0 with negative values signifying the
backlog b � -zD.

Second, in traditional inventory systems one can
map backlogs of outputs into certain demand for in-
puts upstream. Adding to that the stochastic com-
ponent of next period’s demand leads to the marvel-
ous concept of echelon inventory, which in essence
allows a reduction of the state space. With nonbasic
activities, however, this is not possible in general be-
cause the flexibility of the nonbasic activities makes
it impossible to ex-ante designate inputs to fill known
backlogs. Indeed, when an input is consumed by both
a basic and a nonbasic activity, it may be ex-post op-
timal to prioritize the nonbasic activity over the basic
one. Consider our example: Assume there is a backlog
b1 for Output 1 and no capacity constraints. Tradi-
tionally, one would map the backlog into an increased
demand for Input 1 and order S1 � b1, with the intent
to use the deterministic component b1 to fill the back-
log next period. However, it may be better ex-post to
allocate some portion of b1, which was intended to fill
the Output 1 backlog, to Output 2 if that generates
higher profits, for example, if v3 � v1. (Notice that
Activity 3 remains nonbasic if v2 � v3 � v1.) Or, stick-
ing with the earlier parameter values v1 � v2 � v3, a

high backlog b1 will make the expected usage of the
discretionary Activity 3 very small and may lead to
an increase of the optimal order-up-to level S2 for In-
put 2.

These complications illustrate why the myopic pol-
icy may no longer be dynamically optimal for news-
vendor networks under backlogging. In restricted
classes of newsvendor networks, however, a myopic
solution remains dynamically optimal with backlog-
ging. As in standard inventory systems, it is natural
to consider whether base-stock inventory control is
optimal. An alternative way to think about an output
backorder b is that the effective demand is the sum
of b and the stochastic single-period demand D. Thus,
the expected operating profit becomes

�(S, K; b) � ��(S, K, D � b),

and the optimal order-up-to input levels are a func-
tion of the backlog b. If this function is linear in the
backlog, then one can separate the deterministic back-
log component b in the effective demand from the
stochastic component D. If, in addition, we can trans-
late backorders for outputs into backorders for inputs,
the backorder can then be accounted for as usual with
a negative input inventory and a base-stock policy for
those input inventories remains optimal. Provided we
add some restrictions, the myopic policy then re-
mains dynamically optimal with backlogging. It is
known that this holds in networks without discre-
tionary activities and capacity constraints; in terms of
our primitives:

PROPOSITION 5. In an uncapacitated newsvendor network
without discretionary activities, a stationary policy is op-
timal under backlogging: Let z be the input stock on-hand
just before ordering, and let b be the output backlog; it is
optimal to order S* � z � RSR b.�1

D

Thus, a base stock S* policy remains optimal on the
quantity x � RSR b, which is like an ‘‘echelon-like’’�1

D

inventory because it includes both on-hand input in-
ventory and a backlog from outputs.

Notice that the presence of a joint capacity con-
straint may prevent the optimality of such a simple
policy. Consider, for example, a simple newsvendor
network with two activities (and no discretionary ac-
tivities) and one simple capacity constraint x1 � x2 �
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K. The demand for inputs then becomes
RSx*(D � b, K ), where x*(D � b, K ) � arg maxx{v�x : 0
� x � R (D � b) and x1 � x2 � K}. Now assume a�1

D

large backlog b so that the capacity constraint is bind-
ing for almost any D. It then would be optimal to
stock only one input (the one with the highest com-
ponent in RSv � cS). The point is that a joint capacity
constraint may introduce nonlinearity so that a sim-
ple echelon policy would no longer be optimal.

Can we say anything at all for newsvendor net-
works with discretionary activities? Yes, but only for
networks with a restricted type of discretionary ac-
tivities, which we will simply call strong nonbasic ac-
tivities and define as follows. A network has strong
nonbasic activities if:

(1) All basic activities remain basic for any operat-
ing point D* � 0.

(2) Basic activities do not share inputs.
(3) Basic activities dominate nonbasic activities ex-

ante and ex-post. That is, for any known D* � 0, it
is optimal ex-ante to procure only those inputs that
are needed by the basic activities and, ex-post, it is
optimal to have basic activities first consume that
stock before nonbasic activities.

In terms of our model primitives, this requires that:
(1) The number of strong basic activities must

equal the number of outputs m. If we label those ac-
tivities from 1 to m, then RD can be decomposed as
RD � [B, N ], where the m � m matrix B forms a basis
and is invertible. Equivalently, RD has a left inverse:
R � [B�1, 0]�. This basis remains unchanged for any�

D

D* � 0 in the linear program maxx∈X* v�x, where X*
� {x � 0 : RDx � D*}. Hence, with ample supply, the
optimal activity vector x* for any output demand D*
is x* � [x , x ] with basic activities x � B�1D* and* * *B N B

nonbasic activities x � 0, and would consume the*N
input quantity RSx*.

(2) Let ij denote the number of inputs that are
depleted by strong basic activity j, and let i � �j ij. If
we label the inputs that are depleted by the first
strong-basic activities by 1, 2, . . . , i1, followed by
those depleted by the second and so on, then RS can
be decomposed as

R Rb n1R �S � �0 Rn2

where the i � m matrix RB is block-diagonal and
block j is ij � 1.

(3) For any D* � 0, strong basic activities remain
the only basic variables in the following two linear
programs—(i) ex-ante: max(x,y∈Y* v�x � c y, where Y*�S
� {x, y � 0 : RSx � y, RDx � D*} and (ii) ex-post:
maxx∈Z* v�x, where Z* � {x � 0 : RSx � RSR D*}.�

D

Newsvendor networks with strong nonbasic activ-
ities are a nontrivial and a useful subset of networks
that can model problems with substitution, flexibility,
and transshipment. For example, it is easy to verify
that in our example newsvendor network of Figure 1,
Activities 1 and 2 are strong basic, while Activity 3
is strong nonbasic, if the natural conditions v1 � cS,1

� v2 � cS,2 and v1 � v2 � v3 hold. Matrix B becomes
the identity matrix, while N � (0, 1)�. Compared to
basic activities, strong basic activities thus have two
additional properties: First, they remain the only ac-
tivities to be used for a deterministic problem of pro-
curing stock to fill a known demand. Second, they
always dominate nonbasic activities. These two prop-
erties are exactly what we need to separate determin-
istic backlog from stochastic demand: They allow us
to ex-ante map output backlog b into unique input
requirements, while a weakly greedy ex-post alloca-
tion is optimal—First satisfy the backlog, then fill the
stochastic demand with basic activities, and finally
fill the remaining stochastic demand with nonbasic
activities. (The first two allocations via basic activities
are separable for each output, while the third alloca-
tion using nonbasic activities is not separable and
need not be greedy.)

PROPOSITION 6. In an uncapacitated newsvendor network
with strong nonbasic activities, a stationary policy is op-
timal under backlogging: Let z be the input stock on-hand
just before ordering, and let b be the output backlog; it is
optimal to order S* � z � RSR b.�

D

Thus, a base stock S* policy remains optimal provid-
ed we consider ‘‘echelon-like’’ inventory z � RSR b.�

D

Given that R � [B�l, 0]�, it follows that only the i�
D

inputs that are drawn by strong basic activities have
backlog-adjusted, echelon-like inventories.
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5. Concluding Remarks
This paper has introduced a rather broad class of ca-
pacitated processing networks with single-stage in-
ventories. A key feature of such newsvendor networks
is that they allow for ex-post managerial discretion
through nonbasic activities. Such activities can cap-
ture various subtle inventory- and resource-pooling
effects. We presented single-period optimality con-
ditions and showed that they retain their optimality
in a dynamic setting, so that a stationary base-stock
policy is optimal. As such, this paper directly extends
the results in a variety of prior papers that focus ei-
ther on inventory or on capacity in a multiperiod set-
ting with both inventories and capacities. This paper
has provided a first thrust of analysis of how multiple
end products become linked due to the presence of
static or discretionary sharing of inventories or ca-
pacities. Future work should continue exploring the
implications of these intricate links.

Our intent was to present a network model involv-
ing both capacity, inventory, and discretionary activ-
ity decisions that retains many of the features of the
traditional newsvendor model, yet is quite a bit more
general. The restrictions we impose on newsvendor
networks were made to maintain parsimony and trac-
tability. Our discussion also gave a first hint of the
limits of this tractability. As in most inventory set-
tings, lost sales are more tractable in newsvendor net-
works than backlogging. Our discussion suggests
that the culprits are discretionary activities or joint
ex-post capacity constraints, both of which make the
order-up-to levels of inputs dependent on the backlog
in a nonlinear manner so that simple echelon stocks
are no longer optimal. (They are, however, for a re-
stricted class of newsvendor models as shown.) Back-
logging inherits its difficulty because it is very closely
related to a multistage inventory model that allows
for holding output inventories, in addition to input
inventories. Such networks are notoriously hard to
analyze. This echoes what is well known for multi-
echelon inventory systems with a distribution struc-
ture (e.g., one warehouse serving multiple retailers
must decide how much to ship to each retailer and
how much to hold back at the warehouse for later
allocation). This distribution problem is a dynamic

newsvendor network problem with discretionary ac-
tivities and backlogging for which an optimal policy
is still unknown after Clark and Scarf (1960) pointed
it out several decades ago.

By enriching newsvendor networks with output in-
ventories, leadtimes, or setup costs, tractability will
suffer. For example, the well-known concept of ‘‘ech-
elon inventories’’ does not readily extend to networks
with discretionary activities that are not strongly
greedy. The problem is that one can no longer ex-ante
map output backlogs into needed input stock. Also,
as in typical inventory models, lost sales and positive
leadtimes would be a deadly combination. Setup
costs and distributive networks also are hard.

In fact, discretionary activities in newsvendor net-
works, which focus on inventory and production to
meet exogenous output demand, create the same dif-
ficulties as dynamic routing in queuing networks,
which focus on production and the input buffers
from arrivals. Concepts developed for queuing net-
works may very well be useful for newsvendor net-
works. For example, the accounting problem of back-
log may be approached through an ‘‘equivalent
workload formulation’’ (Harrison and Van Mieghem
1997), which is the minimal state descriptor needed
to account for inventory in discretionary networks in
an appropriately scaled asymptotic regime. Future
work that investigates a series of scaled newsvendor
networks may provide fruitful insights and simplifi-
cations similar to heavy-traffic queuing networks.
Nevertheless, when the frontier of analytic tractability
is reached, one has no choice but to adopt approxi-
mating network control problems (i.e., simplify the
network flows using fluid or Brownian approxima-
tions and find optimal controls for that simplified net-
work in an appropriately scaled asymptotic regime)
or to restrict the policy space ex-ante (i.e., restrict the
analysis to base-stock policies, for example).

Finally, as mentioned in the introduction, we intro-
duced newsvendor networks as being controlled by a
single decision maker. Clearly, following recent trends
in supply chain theory, multiple decision makers can
directly be incorporated into a game-theoretic for-
mulation. Newsvendor networks then become a use-
ful tool to study subcontracting (as in Van Mieghem
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1999) and other contingent relationships, including
pricing, in the supply chain.
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Appendix. Proofs
PROOF OF PROPOSITION 3. This proof follows directly from Müller

(2001): Let D� also be normally distributed with mean �� and a
covariance matrix ��. If � � �� and � � ��, then D � D� in the
increasing concave order so that � f (D) � � f (D�) for any increasing
concave function, which includes �(K, S, ·). If � � �� and �� differs
from � in only one variance term (� � �ii), then M � �� � � is�ii
a zero matrix except for Mii � 0, so that M is positive and semi-
definite. Hence, D � D� in the convex order, so that � f (D) � � f (D�)
for any convex function, which includes ��(K, S, ·). Finally, if � �

�� and �� differs from � in only one covariance term (� � �ij ),�ij
then D� � D in the supermodular order, so that � f (D1) � � f (D2)
for any supermodular function. If K and S remain fixed, the prop-
osition follows directly by considering f � ��. If they are optimally
adjusted, ��/�Kk � ��/�Sl � 0 for all k and l, so that d�/d�ij �

��/��ij and the ordering remains. �

PROOF OF RESULT 1. It is obvious that S2 � K2 is suboptimal. As-
sume on the contrary that S1 � K1. Consider the directional deriv-
ative d� in direction dS � (-1, 1)d�, where d� � 0. With S2 � K2

and � � 1, the marginal values �S of Table 1 apply:

1/22 d� � (E� � c )·(�1, 1)d�S S

1/22 d�/d� � (v � v )P � (v � �v )P2 3 p�2�3�5 2 3 1

� (c � c ) � (c � c ) � 0,S,1 H,1 S,2 H,2

so that S1 � K1 cannot be optimal. �

PROOF OF PROPOSITION 4. By induction, let Vt(K, z) denote the ex-
pected present value starting and evaluated at the beginning of pe-
riod t with initial input inventory z and capacity K. Define the set
of structured functions V* as the set of continuous functions f that
are concave and affine in the starting state; for example, f (K, z) �

f (K S*) � c (S* � z) for z � S*, where S* is the base-stock level�S
defined earlier and the minimizer of g(K, ·), defined in (6). Let �*
be the set of decision rules that bring the input inventory level after
ordering up to S* if z � S*, and order nothing otherwise. Recall
that with lost sales, z � 0. As before, we assume the starting state
z � S*. (If some components zi � S , there is a transient policy that*i
is more complicated but eventually will bring z � S*.)

For the last period T � 1, we clearly have that the optimal value
function VT�1(K, z) � c z, which is structured. Now assume that�S
Vt�1(K, z) ∈ V*, we show that Vt, which solves the Belmann equa-
tions, is also structured:

V (K, z) � max {� max [(r � c)�x � c� (D � R x)t P D
y�z x∈X(K,y,D)

� c� (y � R x) � c�(y � z)Ha S S

� �V (K, y � R x)]}t�1 S

� max G (K, y).t
y�x

Concavity preservation under maximization says that the function
behind the expectation operator, and hence its expectation Gt(K, y),
is a concave function. Another application of the concavity preser-
vation theorem directly yields that Vt(K, z) is concave. We now show
that Vt is affine with slope cS for z � S* and that it is optimized by
a base-stock policy.

Consider any y � S*. Then, for any x ∈ X(K, y, D), we have that
y � RSx � y � S*, thus

G (K, y)t

� � max [(r � c)�x � c� (D � R x)P D
x∈X(K,y,D)

� c� (y � R x) � c�(y � z)Ha S S

� �V (K, S*) � �c�(S* � y � R x)]t�1 S S

� � max [(r � c)�x � c� (D � R x)P D
x∈X(K,y,D)

� (c� � �c�)(y � R x) � c�(y � z)Ha S S S

� �V (K, S*) � �c�S*]t�1 S

� �(K, y) � c�(y � z) � �V (K, S*) � �c�S*S t�1 S

� g(y, K) � c�z � �V (K, S*) � �c�S*.S t�1 S

Clearly, y* � S* is a maximizer of Gt(K, y) for y � S*. Given that

Gt(K, S*) � 0 and Gt is concave, S* is also a global maximizer of
Gt(K, y). Thus, again the optimal policy is a base-stock S* policy: y
� S* if z � S*. (If some components zi � S , there is a transient*i
policy that is more complicated but eventually will bring z � S*.)
The optimal value function is not only concave again, but also struc-
tured:

V (K, z) � �(K, S*) � c�(S* � z) � �V (K, S*) � �c�S*t S t�1 S

if z � S*. �

PROOF OF PROPOSITION 5. If there are no discretionary activities, all
activities are basic in the relaxed linear program maxx∈X* v�x, where
X* � X(�, �, D*) � {x � 0 : RDx � D*} for any operating point D*.
Hence, linear algebra shows that the number of activities must equal
the number of outputs m and the matrix RD forms a basis and is
invertible: The optimal solution is RDx* � D* or x* � R D*. Thus,�1

D

without capacity constraints, an effective output demand D* � D �

b yields a demand for inputs RSx* � RSR (D � b). Essentially, the�1
D

multi-item inventory system decouples and each input can be ana-
lyzed independently; the base-stock S* reorder policy remains opti-
mal for the stochastic part, to which we add the deterministic order
RSR b. ��1

D
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PROOF OF PROPOSITION 6. First, in an uncapacitated network with
strong nonbasic activities, the optimal activity vector x(S, D) satis-
fies for any backlog vector b � 0 and S, D � 0:

x(S � RSR b, D � b) � x(S, D) � x(RSR b, b).� �
D D

To see this, consider the ex-post problem of allocating demand D
� b to available supply. If supply were not constrained, demand D
� b would be allocated optimally via the strong basic activities to
the supply RSR b. Given that basic activities dominate nonbasic ac-�

D

tivities and that no basic activities share inputs, the feasible allo-
cation of the backlog b to the available supply RSR b is optimal for�

D

any S and D. Hence, it only remains to allocate the remaining de-
mand D to the remaining supply S, which is by definition achieved
through activity x(S, D). Thus, with strong basic activities, one can
again ex-ante translate output backorders into a deterministic input
requirement that ex-post also will be used to fill the backlog. In
essence, using the designed supply RSR b, the backlog problem can�

D

be separated from the stochastic problem: The expected operating
profit given a backlog b, �(S � RSR b; b) � ��(S � RSR b, D � b),� �

D D

is linear in the backlog: �(S � RSR b; b) � �(S) � �(RSR b). The� �
D D

backlog profit is deterministic and the stochastic problem retains its
dynamic optimality. �
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