Appendix 1
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The corresponding optimal output vector Q* (K, e (7)):
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Ife(r) € Q7(K), Q" is the unique solution to Q1 + Q2 = K; + K3 and
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Ife(r) € Qg(K), Q" is the unique solution to Q1 + Q2 = K1 + K3 and
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Appendix 2

Proof of Proposition 1: For simplicity, we use p* and Q* as shorthand for p* (Q* (K)) and
Q* (K), respectively, where p* is given by (5) and Q* is characterized in Appendix 1. Given the
optimal pricing and output decisions, the firm value at time 7 is
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v(rnK) =Y (ETQ (T) (Q)"V — coQ; — csmax (Q] — K;,0) — cKKi> . (9)
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The Hessian matrix of (9) with respect to K is
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Thus, Hkv (7; K) is negative definite if € (7) € Qg and negative semidefinite otherwise. Therefore,
v (7;K) is concave in K for any € (7) and the concavity is strict if € (1) € Q. This means that
v (0; K) = Egv (1;K) is concave in K and the first-order optimality condition Vkwv (0; K) = 0 is
sufficient. Furthermore, if cg > 0, then Pr(Qg (K)) > 0 and the concavity is strict, implying that
K* is unique. The uniqueness of K* together with the symmetry of all parameters implies that

K} = K;. Taking the derivative of v (0; K) with respect to K yields

. 8
R~ R (TiK) = 5o 3 Pr(@ (K) B (0 (R (K)),  (10)
i=1

0K, 0K,

where the firm terminal value, given the optimal pricing and output decisions, is

2
v(T;K) = Z (Qip; —cpQi —csmax (QF — K;,0) — cx K;) .
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Note that v (T'; K) is continuous in € (7) and, therefore, the terms from differentiating the bound-

aries of 21, ..., Qg with respect to K7 in (10) cancel out. This leaves us with

ov (0; K) i v (T} K)
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Differentiating v (T'; K) with respect to K and setting dv (0; K) /0K = 0 results in (7).0
Proof of Corollary 1: The result follows from Proposition 1 with 7 =0, cx = ¢k and cg = ¢g.0]
Proof of Lemma 1: It follows from Proposition 1 that if cg = cg = 0, the optimal total capacity

and firm value are, respectively,

1+1/b
CK

Ki+K; = [ Eo ((E;bﬂ (T) + E; e (T))l/b>]_b and v* (0) = K (K{+ K3).

This together with Corollary 1 gives the desired result.[]

Proof of Lemma 2: To simplify the notation, we normalize T' = 1 and € (0) = 1. To prove the de-

b b —-1/b
sired results, it is sufficient to show that 22 [|€ (1)||,. > 0. Recall that [|e (1), = Eq {(ET 61(1);& 62(1)) }

and In€e (t) ~ N (In€(0),tX). Using the fact that Er¢; (1) = € (7) exp (302 (1 — 7)), we can write

lel; = Eo

((61 (t)exp (302 (1 — T)))_b + (ea (r)exp (102 (1 — T)))—b> —1/b
2

_ olbexp (;(;2 (1- T)> Eq {(e;b (1) + 6" (7))_1/ b] .

The normal vector In e (7) can be rewritten in terms of two independent standard normal random
variables as Ine(7) = V7XZ, where Z ~ N (0,I) and I is a 2 x 2 identity matrix. Since 73

is positive definite, v/ 73 exists and can be obtained using eigenvector decomposition, vV7X =
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Va=p) /2 /0+p)/2

V1o . Using this transformation, we obtain

—/(=p)/2 J(1+p)/2

le (D], = 2/ exp <;(72 (- T)> y
o 0 (V7o T 122) (exp (-owro T 7221) + o0 (o T 51 224)) .

Since Z; and Z3 are independent, we can further simplify

1 1 1
le )|l = 21/ exp (202 - 1702 + 4702p> X

Eo [(exp (fb\ﬁa\/mZO + exp <bﬁ0\/mZ1>)l/b] . (11)

Next, we take the derivative of (11) with respect to 7. After some algebra, we obtain

e, = 2o (o= 1l +2exp (307 ro? 4 Lrotp) AL,
Eo [(exp (—hﬁ(ﬂ/WZO + exp (bﬁa\/mzl>)—1/b—l exp (—bﬁa\/le) Zl] .

(12)

To evaluate (12), we make use of the fact that for a differentiable function g and a standard normal

random variable Z1, E(9(Z1)Z1) = Eg’ (Z1) (Rubinstein 1976). Applying this result and some
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algebra to (12), we obtain
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Proof of Lemma 3: The proof is similar to the proof of Lemma 2 and is omitted.[]

Proof of Lemma 4: The proof is similar to the proof of Lemma 2 and is omitted.[]
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