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Abstract

We introduce a class of models, called newsvendor networks, that allow for multiple products and mul-

tiple processing and storage points and investigate how their single-period properties extend to dynamic

settings. Such models provide a parsimonious framework to study various problems of stochastic ca-

pacity investment and inventory procurement. Newsvendor networks can feature commonality, ßexibil-

ity, substitution or transshipment in addition to assembly and distribution. Newsvendor networks are

stochastic models with recourse that are characterized by linear revenue and cost structures and a linear

input-output transformation. While capacity and inventory decisions are locked in before uncertainty

is resolved, some managerial discretion remains via ex-post input-output activity decisions. Ex-post

decisions involve both the choice of activities and their levels, and can result in subtle pooling effects.

This discretion in choice is captured through alternate or �non-basic� activities that can redeploy inputs

and resources to best respond to resolved uncertain events. Non-basic activities are never used in a

deterministic environment; their value stems from the discretionary ßexibility to meet stochastic demand

deviations from the operating point.

The optimal capacity and inventory decisions balance overages with underages. Continuing the classic

newsvendor analogy, the optimal balancing conditions can be interpreted as specifying multiple �criti-

cal fractiles� of the multivariate demand distribution; they also suggest appropriate measures for and

trade-offs between product service levels. This paper shows that the properties of optimal newsvendor

network solutions extend to a dynamic setting under plausible conditions. Indeed, we establishes dy-

namic optimality of inventory and capacity policies for the lost sales case. Depending on the non-basic

activities, this also extends to the backordering case. Analytic and simulation-based solution techniques

and graphical interpretations are presented and illustrated by a comprehensive example that features

discretionary input commonality and a ßexible processing resource.

1 Introduction

The classic �newsboy� model provides a very simple, yet effective framework for studying a variety of

stochastic economic decision problems. Using its gender-neutral name, the newsvendor must decide howmuch

of a particular divisible asset�newspapers, say�to buy at a constant unit cost knowing only a probabilistic

forecast of the demand for that asset, which is to be sold at a given unit price. After demand is observed
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Figure 1: A newsvendor network example featuring a discretionary common input 1 and a ßexibile processing

resource 2.

and sales are made, either excess demand results in lost sales or excess assets are salvaged at a loss. In

deciding the optimal quantity the newsvendor must trade-off the cost of overage and underage, resulting in

the well-known �critical fractile� solution. This simple, yet powerful model forms the basis for inventory,

cash, capacity and a variety of other managerial problems. A vast literature has modiÞed or extended the

classic newsvendor model. The �multi-dimensional newsvendor model,� as introduced by Harrison and Van

Mieghem (1999) and Van Mieghem (1998a), generalizes the classic newsvendor model by allowing for multiple

products and multiple processing points. Multi-dimensional newsvendor models focus on processing capacity

constraints and consider essentially a single period by excluding inventory holding and carry-over.

This paper continues the agenda of Harrison and Van Mieghem by incorporating multiple storage points

into the multi-dimensional newsvendor model. We call the resulting broader class of models newsvendor

networks. The inclusion of inventory holding points allows a direct extension of the single-period model to

a truly dynamic setting where any leftover stock at the end of one period carries over as input to the next

period. While processing-storage networks would be a perfectly appropriate name for the class of models that

we consider, we chose �newsvendor networks� to stress the link to the classic newsvendor model. Indeed,

newsvendor networks inherit many of its classic predecessor�s advantages�such as parsimony, tractability,

and effectiveness in yielding insights into stochastic planning�but also its main disadvantage: the model

may be too stylized to capture details necessary for practical decision support systems.

To illustrate the features of a newsvendor network consider the example depicted in Figure 1, which we will

carry throughout our discussion. Adopting the process nomenclature of Anupindi, Chopra et al. (1999), the

entities that ßow through the network are called �ßow units.� Before demand is known, a set of �ex-ante�

activities are performed onto the inputs and their results are stored in �stocks� or inventories. These activities

can be simple purchasing or pre-processing activities. After demand is realized, �ex-post� activities process
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stocked inputs into demanded outputs using resources. In addition to being constrained by demand, the

sales or output rate is also constrained both by the input stock levels and by the resource capacities, denoted

by vectors S and K respectively. Both types of activities generate cash ßows: the ex-ante activities incur

marginal cost vector cS, while the ex-post activities generate net marginal value vector v, which includes

the price minus marginal processing and demand shortage penalty costs. Finally, units carried over to a

subsequent period incur a holding cost cH.

The example captures some key characteristics of newsvendor networks. First, there are multiple inputs�and

thus inventories�that are transformed into multiple outputs (products) by utilizing a network of resources

that are linearly capacity constrained. The ex-post activity levels x in this linear production technology

with linear Þnancial structure are thus constrained by both input stocks S and capacities K. For example,

activities 3 and 2 deplete stocks 1 and 2, respectively, and consume resource 2�s capacity at rate α−1

and 1, respectively. (As we shall illustrate later, newsvendor networks can also easily handle an activity

that simultaneously depletes several complementary stocks or a less traditional activity that simultaneously

requires multiple complementary resources.) The inventory constraints are: x1+x3 ≤ S1 and x2 ≤ S2, while
the capacity constraints are: x1 ≤ K1 and x2 + α−1x3 ≤ K2. Newsvendor networks thus are about three

decisions: capacity investment decisions K, input inventory procurement decisions S, and activity decisions

x(K,S,D). (The multi-dimensional newsvendor model is only about K and x.)

A second characteristic is that, while both the capacity investment and inventory procurement decisions

are locked in before demand uncertainty is resolved as usual, newsvendor networks allow for ex-post �dis-

cretionary� or �alternate� activities during the input-output transformation. Thus, multiple options may

exist to produce a given output and the ex-post decisions involve thus both choice and quantity: how to

convert inputs into outputs, as well as how many. The example features input substitution, which we will

also refer to as discretionary commonality : while the �normal� or �basic� activity is 2, the process manager

has the option to draw from the more costly input 1 to process product 2. In other words, the manager

has ex-post discretion in choosing whether input 1 should be common to both products or not (by using

the �alternate� (non-basic) activity 3 or not). This discretion requires resource 2 to be ßexible in the sense

that it can transform either type of input. Typically, the resource would be �better� at its basic activity

than its alternate activity because by design the latter is to be used only sparingly. Hence, the capacity

consumption rate and the processing cost of activity 3 may exceed those of activity 2: α−1 ≥ 1 and v3 ≤ v2.
Thus, 0 ≤ α ≤ 1 and α can be interpreted as a measure of the product ßexibility of resource 2 with α = 1
representing perfect processing ßexibility, while v3 = v2 represents perfect Þnancial ßexibility.

This �redundancy� in activities highlights the ßexibility inherent in the formulation that admits a variety of

interesting applications that have more activities than end-products and/or inputs. Newsvendor networks

obviously can capture assembly operations where one activity simultaneously consumes multiple input types

in a Þxed proportion, distribution activities that Þll multiple demands from a single input, or commonality

settings where multiple products draw from a common input. While distribution and commonality results
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in well-known inventory pooling, none of those activities are discretionary or non-basic. Indeed, non-basic

activities are never used in a deterministic environment; their value stems from the discretionary ßexibility

to meet stochastic demand deviations from the operating point. Discretionary activities thus model input- or

resource-substitution and provide for an additional yet less obvious generator of pooling effects. The analysis

here will distinguish resource pooling (i.e., when alternative means for processing a given set of inputs are

available) and inventory pooling (i.e., when a set of outputs can be provided from a smaller set of inputs).

Whereas these Þrst two characteristics of multidimensionality and discretionary activities illustrate modeling

objectives, the second objective of this paper addresses the analysis of newsvendor networks in a dynamic

or multi-period setting. It is in this setting that the difference between inventories, which store ßow units

and link successive periods, and capacities, which limit processing activity levels, matters and is clariÞed. In

addition, we will establish the dynamic optimality of the myopic policy for the case where excess demands

result in lost sales. This result will be extended to the case of backlogging for a restricted set of newsvendor

networks that are uncapacitated and only have �strong� non-basic activities, which will be deÞned later.

Thus, while the lost sales case is a generalization of the optimality of the classic single-item base-stock

policy, this paper highlights some of the technical difficulties that arise when unmet demand is backlogged

in a network with discretionary, capacitated activities.

The objectives of newsvendor networks and this paper can now be summarized as follows. Newsven-

dor networks are used to synthesize newsvendor literature, to develop richer understanding of the value and

purpose of basic and non-basic or discretionary activities, and to investigate how insights apply to multiple-

period settings. From a modeling standpoint, newsvendor networks are a direct extension to the multi-

dimensional newsvendor model by allowing for multiple storage points and their solution can be obtained

by analogy (see later in Table 1). The key difference between this paper and those on the multi-dimensional

newsvendor model is not modeling, but how the model is used and what we learn from that application.

By formalizing the natural extension of multi-dimensional newsvendor models to include storage points and

simultaneously consider ex-ante inventory and capacity decisions, newsvendor networks can be used to syn-

thesize a variety of newsvendor-type models; and it can be used to develop a much richer understanding

of the value and the purpose of discretionary activities. (Multi-dimensional newsvendor models were not

used to achieve either of these effects.) In passing, we also will suggest appropriate measurements of and

trade-offs between product service levels, which are not obvious in a multi-product setting.

This paper shows that the structure of the optimal policy in single-period newsvendor network extends to a

dynamic setting under plausible conditions. Thus we provide a rigorous proof of dynamic optimality under

certain conditions and give some initial indications of factors that may prevent us to establish such dynamic

optimality. Obviously, under the conditions that we give, the result is not surprising to anyone familiar

with dynamic control. (But hardly any dynamic optimality result of a simple stationary policy is...) The

contribution here must be found in providing a stepping stone for future work and �in checking of� a necessary

task in building newsvendor networks theory. Indeed, the dynamic optimality result directly generalizes a
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set of previously published single-period studies and insights to a dynamic setting. SpeciÞcally, our results

suggest that earlier papers that focused only on capacity or inventory in a single-period newsvendor model

will retain their insights when dynamic inventory management is added to the modeling setup.

To put the two objectives in perspective, it is helpful to clearly delineate the boundaries of this paper.

First, while newsvendor networks attempt to contribute to the literature on capacity and the literature on

inventory, there are many other existing models that incorporate both capacity and inventory and where

both of these factors affect system performance. By design, newsvendor networks are clearly not the most

detailed models of reality, yet they do bridge the two literatures and several functional or problem-speciÞc

areas. In addition, they allow for a rather general setting of multiple product ßowing through both multiple

storage inventories and processing capacities in a multi-period context. Second, continuing the abstraction of

reality: the models as presented here involve centralized optimization in a risk-neutral setting. Newsvendor

networks do extend to multi-person, decentralized game-theoretic settings (e.g., Anupindi, Bassok and Zemel

2001, Rudi, Kapur and Pyke 2001, Van Mieghem 1999) as well as risk-sensitive settings, but no attempt

will be made to prove that assertion in this article. (Van Mieghem (2002a) discusses how to incorporate

risk considerations.) Yet centralized control does imply that certain customer-driven activities, such as

customers randomly substituting among the set of available products (e.g., Lippman and McCardle 1997,

Netessine and Rudi 2002, Parlar 1988), are not captured in our current framework. Also, by design we

Þx the capacity of the processing resources at the beginning of the time period to highlight the difference

between capacity, which is constant throughout time periods, and inventory, whose ßuctuations connect

time periods. Multi-resource dynamic capacity adjustment as in Eberly and Van Mieghem (1997) could be

incorporated but the added complication would bring us beyond the scope of this Þrst newsvendor networks

paper. Finally, the model presented here is �single-stage� in the sense that inventory storage points are not

connected. Section 5 will discuss the complications that arise when one extends the newsvendor setting and

allows for output inventories, in addition to input inventories. In the �true newsvendor setting� the basic

trade-off is between holding inventory and loosing sales or having backorders. When we consider both input

and output inventories, we must decide where to keep inventory in addition to how much. This relates to

echelon inventories, the marvelous concept of a simple, plausible local control scheme using a base-stock

policy at each stage that is equivalent to fully centralized control in uncapacitated supply chains without

discretionary activities. In the multi-product setting with discretionary activities, such equivalence does not

always exist. Indeed, this is due to the distinct functions of input vs. output inventories: input inventories

are low-cost holding points against stockouts and partially pool output demands whereas output inventories

offer a hedge against production capacity constraints. As such, input inventories and capacities typically are

economic complements, while output inventories and capacities tend to be economic substitutes.

Structure of the paper After a literature review, section 2 starts with the formulation of a newsvendor

network, illustrates some network examples and summarizes analytic properties of the optimal inventory

and capacity decision. Section 3 analyzes the illustrative example of the newsvendor network in Figure 1.
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Section 4 extends the formulation to a multi-period setting and presents dynamic optimality results of the

myopic inventory base-stock policy and the capacity decision. Section 5 discusses complications that may

arise when allowing for backlogging or output inventories.

Related literature There is a vast literature using the classic (single-dimensional) newsvendor model or

some variation of it. Khouja (1999) gives an extensive literature overview of the variations and extensions

to the classic model.

Several models of multi-itemmanagement of either inventories or capacities Þt into the framework of newsven-

dor networks. In addition to the multi-dimensional newsvendor model of Harrison and Van Mieghem (1999),

newsvendor networks also capture existing models of centralization (Eppen 1979), commonality (Gerchak

and Henig 1989, Tayur 1995, Van Mieghem 2002b), ßexibility (Van Mieghem 1998a and Rudi and Zheng

1997), substitution (Bassok, Anupindi and Akella 1999 and Netessine, Dobson and Shumsky 2002), and

transshipment (Krishnan and Rao 1965, Robinson 1990), as will be discussed in section 2. Multi-echelon in-

ventory models are related to our framework in that it deals with inventories in networks although the typical

focus is to address the impact of setup costs and leadtimes (see Chen and Zheng 1994 and references therein).

Federgruen and Zipkin (1986a-b) are the classic references for capacitated inventory management. Other

papers that have combined inventory and capacity management include Angelus and Porteus (2002) for a

single item and work by Kapucinski and Tayur (1998). The latter builds on pioneering work by Glasserman

and Tayur (1995) on the use of inÞnitesimal perturbation analysis (IPA) in calculation optimal base-stock

policies in complex multi-item, capacitated inventory systems. While our framework is simpler in that we

focus on analytic results for single stage systems, we also discuss IPA as the method to be used in practice.

The formulation of our newsvendor network is strongly inßuenced by the recent and ongoing work of Harrison

(2001a-b) that presents stochastic processing networks in relation to the classical Þeld that T.C. Koopmans

called activity analysis. That general linear model of the Þrm with activities performed on ßow units

by resources is also our building block and linear programming is an important analysis tool. The name

discretionary or alternate activity was coined by Harrison and our coverage of such activities mirrors his. The

name is an abstraction of existing ideas relating substitution, but also allows more general and unexplored

types of ßexibility or �real options� as will be illustrated in the next section. There are, however, some

important distinctions between our newsvendor network and Harrison�s processing network. Newsvendor

networks are a much simpler subset of stochastic networks. Our setting is discrete-time1 and assumes

deterministic ex-post processing. More importantly, we adopt a setting more in-line with supply chains

where output demand is exogenous, but inputs, capacities and activities are controlled. The simpliÞcation of

deterministic processing allows us to get more structural results. In that sense, this paper is complementary

to Harrison�s work.

It is appropriate to Þnish this introduction with some of Zipkin (2000)�s caveats. As in all stylized models, one

1Adopting a discrete-time setup is a non-essential difference; obviously, letting the time period shrink would recover a

Brownian control problem.
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walks a Þne line between abstraction, which favors tractability, and realism, which leads to notoriously hard

problems in multi-dimensional systems. It is important to recognize the implicit assumptions in newsvendor

networks: as in many inventory models the supply system is exogenous and has constant, small leadtimes.

This clearly is a simplifying assumption. A more realistic model endogenizes the supply system and the lead

times into a multi-stage processing network, which is much harder to analyze. (In many situations, however,

it is reasonable to assume that �our process� represents only a small part of the overall demands on the

supply system.) Regardless, newsvendor networks are a useful and tractable starting point to analyze and

understand the fundamentals of the harder problems.

2 Newsvendor Network Formulation

The newsvendor network is a stochastic, linear decision model with recourse. (As usual, newsvendor net-

works are deÞned as a single-period model; section 4 presents its dynamic extension.) Consistent with the

multidimensional newsvendor model, it is deÞned by a linear production technology, which describes how

inputs (supply) are transformed into outputs to Þll end-product demand, a linear Þnancial structure, and a

probability distribution of end-product demand. Its primitive attributes are l different resources that con-

sumem distinct inputs (or stocks) to produce n distinct outputs by means of p different processing activities,

in addition to the m ordering activities. Inputs and outputs are also called ßow units, which may include

traditional �materials.� The timing is exactly as in the classic newsvendor: only the probability distribution

P of end-product demand is known when the ordering and capacity investment activities are made. Then

demand uncertainty is resolved, after which the processing activities are chosen with full knowledge of the

actual demand. Hence, we shall also refer to the sourcing and processing activities as the ex-ante and ex-post

activities, respectively.

Let Rij denote the amount of ßow unit i consumed per unit of activity j, with a negative value interpreted to

mean that activity j is a net producer of ßow unit i. In a supply chain setting, one traditionally partitions ßow

units in two classes: the m input stocks are being consumed, while n distinct outputs are being generated.

Accordingly, partition the input-output matrix R as follows:

R =

 RS

−RD

 , (1)

where both submatrices RS and RD are non-negative. Notice that this setup allows for an activity to

simultaneously consume multiple (complementary) inputs or produce multiple outputs. Similarly, an output

may be produced via different activities, possibly drawing from different (substitutable) inputs.

Let x be a non-negative p-vector of processing activity rates. Next, let Akj be the amount of resource k

capacity consumed per unit of activity j, and let Kk be the available capacity during the period of resource

k. The l×p capacity consumption matrix A is non-negative. Let S be the available input stock vector (after
ordering) and let D be the demand vector for output materials.
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The last set of the data for the formulation are Þnancials. Let p-vectors r and c be the revenue and processing

cost rates associated with the various processing activities; r − c thus can be thought of as gross margins.
For the processing resources, we assume linear capacity costs:

� cK: per unit capacity investment cost.

For the inventories, the usual data as deÞned by Porteus (1990) as cost at beginning of period apply:

� cS: per unit order cost for input materials,

� cH: per unit effective holding cost assessed against any leftover input stock at the end of the period.
(If each unit of leftover stock has a value of cL, then the effective holding cost is the actual holding

cost cHa less cL .)

In newsvendor networks, insufficient inputs or capacity may lead to output shortages, which may inßict a

penalty (e.g., loss of customer goodwill) that is captured, as usual, by

� cP: per unit output shortage penalty cost assessed on any unÞlled demand (D−RDx)+. (The shortage
cost may differ when shortages result in lost sales versus backlogs.)

We can now summarize the formulation of a newsvendor network:

DeÞnition 1 A newsvendor network is deÞned by three data sets:

1. Demand data: the probabilistic demand forecast represented by measure P .

2. Financial data: gross margins r − c, capacity investment cost cK, inventory costs cS and cH , and
demand (output) shortage cost cP .

3. Network data: input-output matrices RS and RD, and capacity consumption matrix A.

Remark on the capacity investment cost structure: As we shall see, the assumption of linear (or even

convex) capacity costs yields a concave maximization problem that is well behaved. In reality, however, ca-

pacity costs can exhibit economies of scale through a Þxed cost component or a general concave cost function.

While both may lead to a non-concave optimization problem, concave affine capacity costs (resulting from

the inclusion of Þxed cost components) can relatively easily be accommodated using our linear capacity costs

as follows. Start by considering the interior point solution associated with the linear cost structure (which

will be the focus of this paper) using marginal arguments. Then reduce the corresponding total value by the

Þxed costs to capture the affine cost structure. The only additional effect of a Þxed cost component in a given

resource�s affine capacity cost is that it may be better not to invest in that resource at all. To verify that

possibility, one must thus check whether the �reduced newsvendor network� that obtains after setting one or

several capacities equal to zero, would yield a higher value. In theory, this requires solving 2l newsvendor
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networks with linear capacity costs using the methodology that we will present. The exponential complexity

is not as bad as it sounds because many of the reduced networks are of much smaller dimension than the

�original� network. In addition, from a practical perspective very few of those reduced newsvendor networks

would still be �interesting� because eliminating resources quickly leads to a network that can handle fewer

number of products or inputs than the original. Thus, studying the impact of Þxed capacity cost components

is very much related to the strategic question of network design: how should the network be conÞgured?

While our framework here can address that design question, it also can address the simpler but related �cost

sizing� question: for a given strategic design (i.e., the set of resources has been Þxed), what is the maximal

Þxed cost that this network can absorb (i.e., while still breaking even)?

Notation: We will use matrix notation, such that vectors are assumed to be arranged in columns and

primes denote transposes. Expectation with respect to the demand distribution P is denoted by E. (For

simplicity we will assume that P has a continuous distribution function, although results directly extend to

mixed and discrete distributions by using subgradients.) The terms decreasing and increasing are used in

the weak sense throughout this paper.

Objective: The system�s manager objective is to maximize the expected Þrm value by choosing capacity

K and inventory S before demand is known, and activity x afterwards. The activity vector x maximizes

operating proÞt by transforming RSx of input stock into output RDx. Let Π(K,S) denote the expected

maximal operating proÞt, which is net value from processing minus the shortage penalty cost and holding

cost:

Π(K,S) = E max
x∈X(K,S,D)

£
(r − c)0x− c0P(D−RDx)+ − c0H(S −RSx)+

¤
, (2)

where the set of feasible activities are constrained by supply S, demand D, and capacity K:

X(K,S,D) = {x ≥ 0 : RSx ≤ S,RDx ≤ D,Ax ≤ K}. (3)

The expected Þrm value to be maximized then is

V (K,S) = Π(K,S)− c0SS − c0KK. (4)

2.1 Newsvendor Network Properties and Solution

Given the set of feasible activities (3), the expected maximal operating proÞt (2) equals

Π(K,S) = E max
x∈X(K,S,D)

[(r − c)0x− c0P(D −RDx)− c0H(S −RSx)]
= Eπ(K,S,D)− c0PED − c0HS,

where the optimal �effective� operating proÞt is

π(K,S,D) = max
x∈X(K,S,D)

v0x, (5)
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and v is the net value vector associated with the various processing activities:

v = r − c+R0DcP +R0ScH . (6)

The net value vector thus includes not only the revenue r and marginal processing cost c of each activity but

also the mitigating impact each activity has on total demand shortage penalty and inventory holding costs.

The value vector is assumed to be positive to make each ex-post processing activity economically viable. (If

vj were negative, the revenue generated by activity j would not outweigh its cost. If it were zero, we are

indifferent and may as well not do it.)

Reviewing linear programming theory directly yields a few important properties: the optimal objective

function π(K,S,D) is jointly concave increasing in its arguments. In addition, there is an Ω-partition of the

demand space so that the optimal activity vector x∗(K,S,D) is piecewise linear over each subset. Hence,

the Lagrange multipliers or dual variables λK and λS of the capacity and inventory constraints are piecewise

constant and equal to constant vectors λK,j and λS,j , respectively, in Ωj . Given that integration preserves

concavity, the expected operating proÞt Π and the value function V inherit concavity from π. Finally,

integration and differentiation interchange (see Harrison and Van Mieghem 1999 for a proof).

A shorter proof to show that differentiation and integration interchange is based on the monotone convergence

theorem as follows.

Proof that ∇xiΠ(xi, x−i) = E∇xiπ(xi, x−i,D) where x = (K,S) and, as usual, xi denotes any component
of x, and x−i all other components: DeÞne the sequence gn = n

¡
π(xi + n−1, x−i,D

¢− π(x,D)). Because π
is concave increasing in x, gn is increasing in n with limn→∞ gn = ∇xiπ(x,D), which exists w.p. 1 because
of concavity. Now invoking the monotone convergence theorem shows that limn→∞ Egn = E limn→∞ gn.¥
Summarizing:

Proposition 1 The optimal effective operating proÞt π(K,S,D), the expected operating proÞt Π(K,S) and

the Þrm value V (K,S) are jointly concave. There exist an Ω-partition of the demand space such that the

gradients of Π and V simplify to:

∇KV (K,S) = ∇KΠ(K,S)− cK, where ∇KΠ(K,S) = E∇Kπ(K,S,D) =
P
j λK ,jPj ,

∇SV (K,S) = ∇SΠ(K,S)− cS , where ∇SΠ(K,S) = E∇Sπ(K,S,D) =
P
j λS,jPj − cH ,

where Pj is shorthand for P (Ωj(K,S,D)) and λK,j and λS,j are the constant Lagrange multipliers of the

capacity and inventory constraints, respectively, in Ωj.

Clearly, the optimal inventory and capacity vectorsK∗ and S∗ solve∇KV (K∗, S∗) = 0 and∇SV (K∗, S∗) = 0

and the optimal inventory levels S∗ are in general capacity dependent. Similar to traditional newsvendor

results, these sufficient Þrst-order conditions specify the optimal balance between overages and underages.

Indeed, any of the dual variables is non-zero only if the optimal activity x∗(K,S,D) is either capacity or

supply constrained. Each component of the vector sum thus denotes the expected �underage cost� of a
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particular resource or input, while the component of the marginal cost cK or cH + cS denotes its �overage

cost.� The underage cost measures the risk of output shortages due to capacity or input shortages. The

overage costs measures the risk of leftover (unused) capacity or inputs. (Notice, that output decisions are

made ex-post so that there is no risk of leftover outputs.) The optimal coupled balance between underages

and overages of all resources and inputs thus uniquely speciÞes the optimal probabilities P ∗j , which can be

interpreted as �generalized critical fractiles� of the multivariate demand distribution. The determination of

these critical fractiles P ∗j , however, is much more difficult than for the single-dimensional newsvendor model

that always can be solved in closed form.

For small problems, one actually can solve the linear program and the regions Ωj in closed form for any

value of the parameters K and S and realization of D. In addition, if the linear program exhibits special

structure such that a greedy allocation policy is optimal (see Federgruen and Groenevelt (1986) for necessary

and sufficient conditions), the optimal activity x∗ (K,S,D), and thus also the operating proÞt π (K,S,D),

can be written explicitly in terms of the sum of piecewise linear functions. Hence, V (K,S) can be expressed

explicitly as the expectation of a sum of piecewise linear functions. Its gradient, and thus also the regions

Ωj , can then be found directly and explicitly by using the method of Rudi (2000) of taking the gradient of

the expectation of a sum of piecewise linear functions. Thus, for small problems or for greedy problems of

any size, analytic expression of the Þrst-order conditions that specify the optimal balance between overages

and underages can be obtained, which then allows analytic comparative statics. For problems with 2 or

3-dimensinal demand vectors, the balance conditions and comparative statics can be graphically interpreted,

as will be illustrated in our example below.

For actual computations of practical, large size problems, the concavity and gradient properties of V are

extremely useful because they show that the optimization problem is well behaved. Hence, it can effectively be

solved numerically with a steepest ascent method as follows. Draw a large set of sample demand vectors and

keep these Þxed. Assume we have an initial estimate (K(0), S(0)) and set i = 0. Now iterate as follows: Given

capacity K(i) and supply S(i) solve the the linear program and associated dual variables λ(K(i), S(i),D(j))

numerically for each sample demand vector D(j). Take the average of the λ(K(i), S(i),D(j)) over all j as an

unbiased estimate of Eλ(K(i), S(i)) and use it to compute an estimate of ∇V (K(i), S(i)). If |∇V (K(i), S(i))|
is smaller than some tolerance level, stop: (K(i), S(i)) is close to the optimal vector (K∗, S∗). Otherwise,

adjust capacity and inventory in the direction of the gradient: K(i+1) = K(i)+ξ∇KV (K(i), S(i)) and similar

for S(i+1), where ξ is some step-size (or perform a line-search), and iterate. This is nothing else than

optimization through simulation, also called inÞnitesimal perturbation analysis (IPA). Obviously, if the dual

variables λ(K,S) are known analytically, the iteration is vastly accelerated because the linear programs do

not need to be resolved. This numerical optimization through simulation is easily be implemented in Excel

for virtually any demand distribution (or forecast), which enhances the practical and didactical value of

newsvendor networks.

The preceding presentation has closely followed those of the multi-dimensional newsvendor model provided in
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Multidimensional Newsvendor model Newsvendor Network model

Ex-Post (Recourse) Problem:

π(K,D) = maxx≥0 v0x

s.t. Ax ≤ K,
x ≤ D.

π(K,S,D) = maxx≥0 v0x

s.t. Ax ≤ K,
RDx ≤ D,
RSx ≤ S.

Ex-Ante Problem: maxK≥0 E [π(K,D)]− c0KK maxK,S≥0 E [π(K,S,D)]−
£
c0KK + (cS + cH )

0 S
¤

�Critical Fractile� Solution:
P

j λK ,jPj = cK

P
j λK ,jPj = cK ,P
j λS,jPj = cS + cH .

Table 1: Comparison between static newsvendor networks and the multidimensional newsvendor model of Harrison and Van
Mieghem (1999).

Harrison and VanMieghem (1999) and VanMieghem (1998a). As illustrated in Table 1, newsvendor networks

extend the multi-dimensional newsvendor model in a natural way by including inventories and enriching the

processing formulation via activities and more general demand constraints. Further, newsvendor networks

feature a richer activity set that allows for non-basic activities and inventories that connect periods in a

dynamic setting. (In multidimensional newsvendor models, which are essentially single-period, inventories

and capacities are indistinguishable. Their fundamental difference only arises in a dynamic setting where

inventories change on a much smaller time-scale than capacities, as elaborated on in Van Mieghem (2002a).)

The remainder of this section discusses the richer processing formulation and additional properties, and sets

the groundwork for the extension to the multi-period setting of section 4.

2.2 Modeling Processing: Basic vs. Non-Basic Activities

The processing formulation in newsvendor networks allows for ex-post redeployment of inputs and resources

to best respond to resolved uncertain events. Redeployment implies a deviation from the normal (or planned)

regime or operating point. Loosely speaking, utilized activities in the normal regime are called basic activities,

while non-basic activities perform redeployment.

Formally, it is useful to deÞne basic activities as follows. For a given demand or �operating point� D∗,

consider the relaxed linear program maxx∈X∗ v0x, where X∗ = X(∞,∞,D∗) = {x ≥ 0 : RDx ≤ D∗}. If
this relaxed problem has a unique optimal solution x∗, then we call the activities j such that x∗j > 0 �basic

activities� and the other activities �non-basic� or �discretionary.� Thus, basic activities are those that satisfy

the demand D∗ in the most proÞtable manner if the system is not supply or capacity constrained. The

corresponding process that only uses basic activities and the minimal cost inputs and capacities S∗ and

K∗ such that X∗ = X(K∗, S∗,D∗) is called the basic process. It is the process that would be optimal if

there were no uncertainty. The value of non-basic activities then reßect the discretionary ßexibility to meet

stochastic demand deviations from the operating point. Non-basic activities thus provide a redundancy that

only is value in the presence of uncertainty.
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Figure 2: Four illustrative newsvendor networks: A features an assembly activity and input commonality; B

adds non-basic (in dotted line) input substitution; C has a ßexible resource; and D enjoys resource pooling.

Figure 2 illustrate four newsvendor networks, three of with feature non-basic activities, which are drawn

with dotted line. Network A features simple assembly and commonality: activity 1 depletes two inputs

simultaneously in Þxed proportions: RS,11 = 1 and RS,21 = 2, while input 2 is a joint input for products 1

and 2. Notice that simple assembly and commonality do not involve discretionary activities. Both activities

are basic and the common input 2 exhibits traditional inventory pooling. Network B adds a non-basic input-

substitution activity 3 to network A (assuming v2 > v3). Network C illustrates a ßexible resource 3 and two

non-basic activities (assuming v1 > v3 and v2 > v4). Network D has two processing resources with limited

ßexibility. Its two non-basic activities (assuming v1 > v4 and v2 > v5) generate resource pooling: input 2

can be processed on resource 1 or on resource 2 and generates dynamic pooling among the inputs.

Given that discretionary activities enlarge the choice set of activities, it is obvious that:

Proposition 2 The presence or addition of non-basic (or discretionary) activities increases optimal expected

newsvendor network proÞtability.

Indeed, having more processing options can never be worse as one can choose not to use them. Related

interesting questions are: Under which conditions does the presence of discretionary activities lead to a

difference between inventories and capacities? Similarly, when does the presence of common of inputs
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or resources lead to lower inventories or capacities and higher inventories or capacities of non-common

inventories or resources to exploit ex-post ßexibility? Typically, the answers to these questions will depend

on the three data sets (demand, Þnancial, and network data) of the newsvendor network. Section 3 will

illustrate some of these answers.

The rich processing formulation allows newsvendor networks to unify various elements in the existing liter-

ature on newsvendor-type decisions. Indeed, by appropriately structuring the capacity consumption matrix

A and the input-output matrices RS and RD various classical problems are recovered. For example:

1. A network with independent products implies RS = RD = I, where I is the identity matrix. If, in

addition, there are no capacity constraints (A = 0), then all decisions are decoupled per product: xi =

min(Si,Di). Thus, π(S,D) =
P
i vimin(Si,Di) and λS,i = vi1{Di > Si}, where 1{.} is the indicator

operator whose expectation yields the probability so that : EλS,i = viE1{Di > Si} = viP{Di > Si}.
The solution thus reduces to m independent critical fractiles: viP{Di > Si} = cH,i − cS,i.

2. When activities correspond one-to-one to output production quantities, then RD = I and RS represents

the familiar �bill-of-materials.�

3. Assembly activities (i.e., when an output requires multiple inputs) Þll the corresponding column of RS

with multiple positive entries.

4. Component commonality of an input (i.e., when multiple outputs require a common input) Þlls the

corresponding row of RS with multiple positive entries; c.f. Gerchak and Henig (1989), Tayur (1995)

and Van Mieghem (2002b).

5. Input substitution and/or transshipment: row j of RD has multiple positive entries when output j

normally uses input i with basic activity k, but can substitute i with an equal amount of i0 using

non-basic activity k0 (RD,jk = RD,jk0 and RS,ik = RS,i0k0). With �one-level downward substitution,�

RD = (I, I) and RS = (I,B), where B has zeros except for the one-off diagonal. For example, c.f.

Bassok, Anupindi and Akella (1999) and Netessine, Dobson and Shumsky (2002) for substitution, and

Krishnan and Rao (1965) and Robinson (1990) for transshipment.

6. Resource ßexibility: multiple positive entries in row i of A mean that resource i can perform multiple

activities. For example, Rudi and Zheng (1997) and Van Mieghem (1998a), who studies a setting where

two products can be produced either on product dedicated resources or on one ßexible resource, which

is captured by

A =


1 0 0 0

0 1 0 0

0 0 1 1

 and RD =

 1 0 1 0

0 1 0 1

 .
(Van Mieghem (2002b) establishes an equivalence between component commonality and ßexible re-

source capacity.)
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7. Simultaneous resource requirements: multiple positive entries in column j of A mean that activity j

requires the simultaneous use of multiple resources.

Finally, aside from network optimization, newsvendor networks can also be used for network design. For

example, the structure of newsvendor network D exhibits �chaining� in the sense introduced and studied by

Jordan and Graves (1995). Their objective was to study the higher-level decision of network design, while

this paper focuses on optimal control of a given network design. In particular, the extremely important

decision that Jordan and Graves (1995) address so beautifully can be phrased using our terminology as

follows. If one wants to add �process ßexibility� to a basic network by adding non-basic activities (i.e., by

adding links in dotted-line in our Figure 2), which non-basic activities have the highest impact on expected

proÞts or shortages? Thus, the input-output matrix R, which deÞnes the activity set or routing structure,

becomes a decision variable. Recent work by Graves and Tomlin (2001) studies this network design question

in a multi-stage setting.

2.3 The effect of demand uncertainty

In many newsvendor networks, one is also interested in the effect of demand uncertainty on optimal inventory

and capacity decisions, as well as on the optimal value. An increase in the mean vector of the demand

distribution is easy as it affects only the basic activities by a similar increase and yields a corresponding

increase in the optimal value and the inputs and capacities necessary to support the increase of those basic

activities. To analyze the comparative statics of other demand parameters such as standard deviations

or pairwise correlations, the traditional approach is to use Jacobians and the implicit function theorem.

Unfortunately, such analysis quickly becomes involved (e.g., Netessine, Dobson and Shumsky (1999), Van

Mieghem (1998)) and often has to be numerically evaluated for speciÞc parameter values so that one may as

well directly vary demand parameters in the optimization through simulation. Sometimes, however, special

analytic structure allows one to draw rather general conclusions for the optimal value2 by drawing on Müller

(2001)�s recent work on stochastic orders. (Corbett and Rajaram (2001) give other useful stochastic order

results.)

Proposition 3 Assume D is normally distributed with mean vector µ and covariance matrix Σ. The optimal

value V is increasing in µ and decreasing in any variance term Σii. In addition, if the operating proÞt

π(K,S,D) is submodular in D, then the optimal value V is decreasing in any covariance term Σij (and thus

pairwise demand correlation), whether K and S are held constant or are adjusted optimally.

(All proofs are relegated to the Appendix.)

Recall that a function f is submodular in D if the marginal returns of Di are decreasing in Dj . This is a

condition that holds in uncapacitated transportation problems whose optimal proÞt π(S,D) is submodular

2Comparative statics on the optimal inventory and capacity levels, however, are much more difficult to establish.

15



in (−S,D) (Topkis (1998), Theorem 3.4.1): as other products consume higher levels of available inputs and

capacity, the return of an additional unit of demand for product i typically does not increase; similarly, returns

are supermodular in supply S. Hence, the demands of any two products are substitutes, the supplies of any

two inputs are substitutes, and the demand of any product and the supply of any input are complements. The

transportation problem is a special case of our input-output activity problem (5) where activities correspond

to an arc between one supply node and one demand node. Unfortunately, the proof by Topkis does not

address capacity constraints on arcs, let alone joint capacity constraints of the type considered here. Our

formulation also allows one activity to simultaneously deplete multiple inputs or generate multiple outputs.

Although our formulation thus is more general than a transportation problem, economic intuition suggests

that the proÞt be submodular in D for most systems. To verify submodularity in our setting, one must verify

whether the (sub)gradient v0∂x/∂Di, which is constant in each domain Ωj , is decreasing over the sequence

of the domains that are traversed when one increases Dj for any given Di. For stylized problems this is

easy to verify. For example, this holds for the ßexible system studied in Van Mieghem (1998) and for our

example, as will be shown in the next section.

2.4 Economical Service Levels

By deÞnition, the Þrm�s processing capacity region is the demand region all demand can be met. It is the

feasible region of the linear program (5), denoted by Ω0 for now. Baker et al. (1986) deÞne the aggregate

service level as the probability of meeting all demand, i.e., P (Ω0). They further point out that while

�the concept of service level is fundamental to single-product inventory analysis, it is not obvious how to

generalize that concept to the multiproduct situation.� Indeed, for cases where aggregate demand exceeds

total capacity, the service level of a particular product depends on how available inputs and capacity are

rationed and allocated to outputs. Baker et al. suggested that �in general the optimal rationing policy

is a function of the service level measure.� Not only is the optimal rationing policy endogenous in any

newsvendor-based framework, but so is the type as well as the value of service. Indeed, by capturing Þnancial

data, the newsvendor network solution has a clear objective and automatically speciÞes the economically

optimal service levels and rationing policy. This overcomes a major weakness of using the probability of

meeting all demand as an exogenous service measure in multi-item systems. (To illustrate this, consider n

independent newsvendor problems each with probability θ of meeting its demand. The probability of meeting

all demand is then θn, which not only depends on the size of the problem n but approaches zero as n gets

sufficiently large.) The different setting of Baker et al. also leads to a more subtle difference. In their setting

where they minimize overall inventory subject to an exogenous service measure, they conclude that the

pooling effect of commonality leads to lower overall inventory. Such general conclusions cannot be made for

newsvendor networks. It is well known that, depending on Þnancial data, pooled inventory in newsvendor-

type systems can be smaller, equal to, or larger than the aggregate inventory when managing each product�s

inputs individually. As an example, consider the classic paper by Eppen (1979) which considers the effect
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of centralization (i.e., merging multiple independent newsvendors into a single newsvendor) under a multi-

variate normal distribution. While centralization always increases the optimal expected proÞt, centralization

leads to (i) increased total inventory when the �newsvendor fractile� is less than half; (ii) no change in

inventory when the fractile is equal to one half; and (iii) decreased total inventory when the fractile exceeds

one half. In summary, for normally distributed demands, the pooling considered by Eppen makes the total

inventory gravitate towards the mean.

2.5 Initial input stock z

For the extension to the dynamic setting, it is useful to consider the case where we start with an initial level

z of input inventory before ordering. Let y denote the input inventory level after ordering and denote the

value function excluding capacity investment costs by

g(K, y) = Π(K, y)− c0Sy.

Restricting attention to the inventory decisions, the objective function now becomes

G(K, y; z) = max
y≥z

{Π(K, y)− c0S(y − z)} = max
y≥z

{g(K, y) + c0Sz} .

If we do order up to y, the value is G(K, y; z), if we don�t order, the value is G(K, z; z). Hence, we order iff

G(K, y; z)−G(K, z; z) = g(K, y)− g(K, z) > 0.

Given that S∗ is an unconstrained optimizer of the concave function g(K, ·), we have that for any vectors
z ≤ S∗, it is optimal to order up to y = S∗. (If any zi > S∗i , the optimal policy is more complicated, but
we are not concerned about such transient initial conditions.) This means that each input component is

managed via a base-stock policy iff z < S∗. It also means that the optimal value function is affine in its

starting states, for z < S∗ :

G∗(K, z) = g(K,S∗) + c0Sz,

and its gradient is cS. These results are similar to the conventional, one-dimensional newsvendor model.

2.6 Incorporating Random Yield

In many applications, there might not be a 100% yield of the resources. (See Yano and Lee (1995) for a

review of research on random yield and Hsu and Bassok (1999) for an example of a newsvendor network

with random yield). Input stocks might have defects while capacities might not be fully available due to

maintenance or employee absence. Let U = (US, UK) be a diagonal matrix where US,ii and UK,jj are the

random yield of input stocks i and the random fraction of time that resource j capacity is available. For the

case where U is realized at the same time as D, the constraint set (3) can easily be adjusted to reßect the

random yield U as follows:

X (K,S,D,U) = {x ≥ 0 : RSx ≤ USS,RDx ≤ D,Ax ≤ UKK} ,
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and (2) is adjusted by taking the expectation over both D and U . It follows that Proposition 1 still holds.

3 An Example with Discretionary Commonality

This section illustrates the typical properties of a newsvendor network and the insights that it generates by

considering the example presented in the introduction. The matrices that deÞne the feasible activity set X

in (3) are:

RS =

 1 0 1

0 1 0

 ,RD =
 1 0 0

0 1 1

 , A =
 1 0 0

0 1 α−1

 .
3.1 Optimal Activities, Inventories, and Capacities

Assume now that v1 > v2 ≥ v3 > 0 and 0 ≤ α ≤ 1. For this (or any other) ranking, the linear program (5) is
easily solved for the optimal activity: prioritize activities 1 and 2, and let activity 3 take care of the residual

demand of product 2 provided there is sufficient capacity and input. Hence, the parametric solution of the

linear program is:

x1(K,S,D) = min {D1,K1, S1} ,
x2(K,S,D) = min {D2,K2, S2} ,
x3(K,S,D) = min {D2 − x2, α(K2 − x2), S1 − x1}

= min
n
[D2 −min {K2, S2}]+ , α [K2 −min {D2, S2}]+ , [S1 −min {D1,K1}]+

o
.

Clearly, without supply or capacity constraints and for any chosen operating pointD∗ we have that x∗1 = D∗1 ,

x∗2 = D∗2 and x∗3 = 0. Therefore, activities 1 and 2 are basic, while activity 3 is non-basic. These activity

decisions and the aggregate output vector q = (x1, x2 + x3) can be represented graphically in the demand

space, shown in Figure 3. The demand space is partitioned into 7 domains: R2+ = ∪iΩi and Table 2 gives the
optimal activity and dual variables in each domain. As deÞned earlier, the Þrm�s processing region here is

the thick-lined Ω0 ∪Ωp where all demand can be met through the basic activities (x1, x2) and the non-basic
activity x3. Not only does the newsvendor network framework show that the aggregate service level as deÞned

by Baker et al. (1986) should be measured by the probability of the rectangle with cut-off upper right corner:

SLagg = P (Ω0∪Ωp), which is a function of K and S. It also shows how trade-offs between individual service

levels should be measured: the individual service levels, as measured by SL1(K,S) = 1− P (Ω3 ∪ Ω4 ∪ Ω5)
and SL2(K,S) = 1− P (Ω1 ∪Ω2 ∪Ω3) satisfy the trade-off, for arbitrary K and S :

SL1 + SL2 = SLagg + 1− P (Ω3).

Notice that for the basic process the domains Ωp, Ω2 and Ω5 would be empty. Hence, intuitively, the

substitution-ßexibility option embedded in the presence of the non-basic activity x3 will increase in value
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Figure 3: Ex-post activity vector x and total output q = (x1, x2+x3) depends on supply S, capacity K and

demand D. (Graph assumes K1 < S1, otherwise Ω5 = ∅ and the capacity K1 constraint is non-binding.)

as these domains �cover more demand,� i.e., as P (Ωp), P (Ω2) and P (Ω5) increase. Clearly, a necessary

condition is that there is some �extra capacity� and some ßexibility: K2 − S2 > 0 and α > 0.
For any capacity vector K, it is suboptimal to procure more input 2 than can ever be used, so that S∗2 ≤ K2.
What is more interesting and perhaps surprising at Þrst given the substitution option is that an identical

result holds for the discretionary common input 1.

Result 1 If cS,1 + cH ,1 > cS,2 + cH ,2, then, for any K, optimal sourcing sets S∗1 ≤ K1 and S∗2 ≤ K2.

This result becomes intuitive by considering the counter case that ∃J > 0 such that S1 > K1 + J. Hence, at
least J of input 1 is held only for output 2 production. Clearly, under the assumptions, one can do better

by reducing S1 by J and increasing S2 by J: we save in procurement by (cS,1 − cS,2) J ≥ 0, we may gain an
operating margin (v2 − v3) J ≥ 0 while consuming equal or less of K2 capacity. (Formal proof is found in the
Appendix.) Given result 1, the optimal sourcing conditions EλS = cS simplify to:

v3P (Ω2(K,S
∗)) + v1P (Ω3+4(K,S∗)) = cS,1 + cH,1 + µ

S
1 ,

(v2 − v3)P (Ωp(K,S∗)) + (v2 − αv3)P (Ω1(K,S∗)) + v2P (Ω2+3(K,S∗)) = cS,2 + cH,2,

where µS1 = 0 if S
∗
1 < K1 and positive if S

∗
1 = K1. This deÞnes the unique optimal sourcing vector S

∗(K) for

any K. (Note that without capacity constraints, P1 = 0 and µS1 = 0.) Now we can strengthen the bounds

on the optimal S∗ and K∗. Clearly, it is suboptimal to invest in more capacity than can ever be used given

the input stocks S. Hence, S∗1 = K∗
1 and S

∗
2 ≤ K∗

2 ≤ S∗2 + α−1S∗1 and the optimality conditions become:
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domain activity vector x marginal value λS marginal value λK

S1 > K1 S1 ≤ K1 S1 > K1 S1 ≤ K1 S1 > K1 S1 ≤ K1
Ω0 (D1,D2, 0) (D1,D2, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Ωp (D1, S2,D2 − S2) (D1, S2,D2 − S2) (0, v2 − v3) (0, v2 − v3) (0, 0) (0, 0)

Ω1 (D1, S2, α(K2 − S2)) (D1, S2, α(K2 − S2)) (0, v2 − αv3) (0, v2 − αv3) (0, αv3) (0, αv3)

Ω2 (D1, S2, S1 −D1) (D1, S2, S1 −D1) (v3, v2) (v3, v2) (0, 0) (v3, 0)

Ω3 (K1, S2, S1 −K1) (S1, S2, 0) (v3, v2) (v1, v2) (v1 − v3, 0) (v1, 0)

Ω4 (K1,D2, 0) (S1,D2, 0) (0, 0) (v1, 0) (v1, 0) (v1, 0)

Ω5 (K1, S2,D2 − S2) − (0, v2 − v3) − (v1, 0) −

Table 2: The optimal activity vector and marginal values of inputs and capacities in each demand domain for the example.

Result 2 If cS,1 + cH ,1 > cS,2 + cH ,2, then optimal sourcing and investment sets S∗1 = K∗
1 and S

∗
2 ≤ K∗

2 ≤
S∗2 + α−1S∗1 and the value function and its gradient (and thus optimality equations) simplify:

V (K1,K2, S2) = v1Emin {D1,K1}+ v2Emin {D2, S2}
+v3Emin

n
[D2 − S2]+ , α [K2 −min {D2, S2}] , [K1 −D1]+

o
−c0PED− (cS,1 + cH ,1 + cK ,1)K1 − cK ,2K2 − (cS,2 + cH ,2)S2,

∇V (K1,K2, S2) =


v3P (Ω2(K,S)) + v1P (Ω3+4(K,S))− (cS,1 + cH ,1 + cK ,1)

αv3P (Ω1(K,S))− cK ,2
(v2 − v3)P (Ωp(K,S)) + (v2 − αv3)P (Ω1(K,S)) + v2P (Ω2+3(K,S))− cS,2 − cH ,2

 .

3.2 Discussion and Insights on Discretionary Commonality

Recall the earlier questions of interest: Under which conditions does the presence of discretionary activities

lead to a difference between inventories and capacities? Similarly, when does the presence of common of

inputs or resources lead to lower inventories or capacities and higher inventories or capacities of non-common

inventories or resources to exploit ex-post ßexibility? This example illustrates the answers and the type of

insights newsvendor networks may generate.

Impact of discretionary commonality (substitutive ßexibility option): An important question is

how the presence of the substitutive ßexibility option changes decisions compared to the basic system (i.e.,

a system without the substitution activity 3). Let (Kb, Sb) denote the optimal solution for the basic system,

which satisfy simple critical fractiles: viP (Di > Kb
i = S

b
i ) = cK,i + cS,i + cH,i. Comparing these with the

generalized critical fractile solutions directly shows that:

Result 3 Compared to a basic system, discretionary commonality (substitutive ßexibility) warrants a higher

inventory of the expensive discretionary common input 1 and higher capacity 1; a lower inventory of the
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cheaper unique input 2; and a higher ßexible capacity 2 to be able to exercise on the substitution option:

Kb
1 = S

b
1 ≤ K∗

1 = S
∗
1 and S∗2 ≤ Sb2 = Kb

2 ≤ K∗
2 ≤ S∗2 + α−1S∗1 .

Thus the procurement savings from substitution derive from holding less of the less costly input rather than

more of the more costly input. (Clearly, this all assumes�quite optimistically�that the ßexible capacity has

the same investment cost as a dedicated resource: cbK,2 = cK,2. In reality, one would expect c
b
K,2 < cK,2 and if

the discount is sufficiently high, the substitutive option may become worthless.) The example directly shows

how the presence of the substitutive discretionary activity leads to an essential difference between inventory

and capacity levels: S∗2 ≤ K∗
2 , an effect that only can be captured if both inventories and capacities are

modeled. It is the discretionary commonality and the ßexible resource that lead to higher K∗
1 , S

∗
1 and K

∗
2 ,

but lower S∗2 , compared to the basic system. And both commonality and ßexibility are necessary to produce

the effects and higher proÞtability: this real option is worthless without the simultaneous presence of the

discretionary activity 3, processing ßexibility (α > 0), and Þnancial ßexibility (v3 > 0).

The effect of discretionary commonality in newsvendor networks is different from the effect of commonality

in inputs in the insightful article by Baker et al. (1986). They showed that �commonality permits a

given service level to be attained with a smaller amount of safety stock than would be attainable without

commonality� and, more interestingly, that inventory of the common component decreases while those of

unique components increase, again with a constraint on service level. In contrast, our example shows that

inventory of input 1 (which is a discretionary common component) actually increases, while inventory of

the input 2 (which is unique to product 2) decreases, while increasing overall expected proÞt. Our effect is

thus very different from that in Baker et al. due to the inherent difference in model setup3. Similar to the

centralization beneÞt in Eppen (1979) mentioned earlier, total inventories (and thus safety stock) S∗1 + S∗2

can be smaller, equal to, or larger than Sb1 + S
b
2, depending on the Þnancial data. This is a comparison of

economically optimal stocking levels whose corresponding economic optimal service levels may differ between

the basic network and the network with discretionary commonality. Also, discretionary commonality leads

to weaker pooling effects than �simple� or �ordinary commonality.� In our example, the �base case� is that

both products are processed each from their unique inputs. Only if demand 2 is �much higher than expected�

while demand 1 is lower (loose language for D ∈ Ωp) will input 1 be a common component for both products.
The graphical representation is also useful to estimate some non-obvious comparative statics related to

demand uncertainty. For example:

Impact of demand correlation and variability. Assume for concreteness that D is multivariate normal

with mean vector ED and covariance matrix Σ = γ

 σ21 ρσ1σ2

ρσ1σ2 σ22

, where γ ≥ 0 is a measure for the
amount of variability and −1 ≤ ρ ≤ 1 is the correlation coefficient. Now set γ = 1 and Þx a value for ρ.

3Newsvendor networks automatically lead to economically optimal service levels, i.e., inventory levels that maximize expected

proÞts. Therefore, we do not need service level constraints in our analysis as Baker et al. (1986) needed because they did not

capture Þnancials.
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It is easily veriÞed4 that π(K,S,D) is submodular in D so that Proposition 3 yields that the value of the

system decreases in correlation ρ. Establishing general comparative statics of the optimal inventory and

capacity levels, however, is more difficult. The following discussion is meant to illustrate how one can build

intuition and appreciation for the complexity of the impact of various demand parameters from a graphical

representation. For stylized problems as in Van Mieghem (1999b), the graphical approach is very effective

in the classroom: it typically gets to the key effects quickly. Nevertheless, this reasoning is rather intuitive

and case-speciÞc.

Assume that the stock and capacity levels shown in Figure 4 are optimal for the normal distribution with

those parameter values and thick isoplot. Now consider a small increase in correlation to the dotted isoplot,

ceteris paribus. A plausible reasoning may go as follows, which illustrates what may happen if correlation

increases for the situation as shown in Figure 4. Given that the optimality conditions must remain to hold,

one can estimate the change in the stock and capacity levels to counteract the change in the probability

of the domains. To counteract the increase of P2, increase S∗1 + S∗2 ; to counteract the small decrease in

P3+4, decrease K∗
1 = S

∗
1 . Hence, S

∗
2 must increase, which indeed counteracts the decrease in P4. Finally, to

counteract the decrease in P1, the weighted average of S∗2 and K∗
2 must decrease. Given that S

∗
2 increases,

K∗
2 must decrease. Thus, as correlation increases for the situation given in Figure 4, we expect input 1 stock

to decrease and input 2 stocks to increase while total stock levels increase. At the same time, we expect both

capacity levels to decrease, which reßects the decreasing option value imbedded in the substitutive ßexibility.

Given that S∗2 increases while K∗
2 decreases, there may exist a threshold value ρ ≤ 1 at which S∗2 = K∗

2 (and

thus P2 = Pp = 0 and x3 is always zero). The above trends are indeed observed in numerical studies. Thus,

ρ is the maximal correlation for the substitution option to be valuable. Beyond ρ the dedicated solution is

optimal. (Clearly, ρ is a function of the value and cost parameters that can be analytically studied; as in the

ßexible system of Van Mieghem (1998), there may be instances such that the substitution option remains

valuable�and thus S∗2 > K∗
2�even for perfectly positive correlation.)

Similarly, consider any other amount of variability γ 6= 1. Rescaling the demand space directly yields that
the optimal values of (1− α)S2 + αK2 − ED2, K1 − ED1 and S1 + S2 − E(D1 +D2) are also scaled by γ,
generalizing the critical fractile scaling of the one-dimensional newsboy. Hence, as variability γ decreases to

zero, K∗
1 = S∗1 → ED1, (1 − α)S∗2 + αK∗

2 → ED2 and S∗1 + S∗2 → E(D1 + D2), so that S∗2 and K∗
2 both

approach ED2. Thus, Pp and P2 both decrease to zero as does the value of the non-basic activity.

Impact of processing ßexibility α: Recall that 0 ≤ α ≤ 1 captures the degree of processing ßexibility
of resource 2. From the second optimality equation, it follows that an increase in ßexibility decreases P1

and the effective investment cost cK,2/α for resource 2 so that K∗
2 will tend to increase. At the same time,

4For example, to show that the (sub)gradient ∂π/∂D1 = v0∂x/∂D1 is decreasing in D2, one must consider three scenarios:

(1) if D1 < S1 + α(S2 +K2), then, as D2 increases from 0, v0∂x/∂D1 remains constant at v1 throughout Ω0, Ωp and Ω1; (2)

if S1 + α(S2 +K2) < D1 < min(K1, S1), then, as D2 increases from 0, v0∂x/∂D1 remains constant at v1 throughout Ω0, Ωp

and decreases to v1 − v3 in Ω2; (3) Þnally, if D1 > min(K1, S1), v0∂x/∂D1 remains constant at 0 throughout Ω4, Ω5 and Ω3.
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Figure 4: Superimposed isoplots of the demand density to estimate the impact of increasing correlation and

decreasing uncertainty on optimal stock and capacity levels.

while the effective procurement cost of input 2, cS,2 + αv3P1 = cS,2 + cK,2, remains constant, Pp+2+3 must

increase to counterbalance the decrease in P1. Hence, we expect the individual input 2 stock level to decrease,

increasing Pp, P2 and P3. To counterbalance the increase in P2 and P3, the discretionary common input S∗1

and K∗
1 = S∗1 must increase. Reversing the argument, as α decreases, K∗

2 decreases while S
∗
2 increases so

that there exists a threshold value α under which S∗2 = K∗
2 and P2 = 0 and x3 is always zero. Thus, similar

to ρ, α is the minimum amount of processing ßexibility that is necessary to make the substitution option

worthwhile. Clearly, total value is increasing in α as seen from the expression of V .

4 Dynamic Optimality of the Base-Stock Policy

This section extends the newsvendor network to a dynamic (multi-period) setting. Similar to the single-item

inventory model (Porteus 1990, p.628), there now are a sequence of discrete periods in which demands,

denoted by {Dt : t > 0}, occur. There is a single capacity investment decision K at the beginning of period

1 and K remains in effect ever after. Other timing follows the standard inventory setup: At the beginning of

each period, stock levels are reviewed and an order is made for the current period. Any order is received in

time to satisfy any demand in that period. Then demand for that period is observed, after which production

decisions for that period are made. Demands in different periods are independent and identically distributed

according to P . Revenues and costs are discounted using the discount factor δ, where 0 < δ ≤ 1. The
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marginal costs cS, cK, cP and the actual holding cost cHa remain as before. (Even though theses costs may

be incurred at the end of a period, they are expressed in beginning-of-period monetary units.) At the end

of the last period in the time horizon, each unit of leftover input stock has a value of cS. Otherwise, leftover

stock at the end of one period is the initial inventory for the following period. We can now summarize the

formulation of a (dynamic) newsvendor network:

DeÞnition 2 A dynamic newsvendor network is deÞned by three data sets of the newsvendor network,

augmented by:

1. Demand data: demand {Dt : t > 0} is i.i.d. with measure P ; treatment of demand shortages (lost,
backlogged, or a combination).

2. Financial data: discount factor δ.

The key result is that the optimal dynamic policy is myopic when shortages result in lost sales; that is, it then

equals the optimal stationary base-stock policy for the single-period model with holding and investment cost

parameters adjusted for discounting. When shortages are backlogged, some restrictions must be imposed for

the optimal policy to remain a myopic stationary base-stock policy.

4.1 Dynamic Optimality with lost sales

This section considers the case when unmet demand result in lost sales.

Proposition 4 A stationary base-stock inventory policy with level S∗ is optimal for any Þnite horizon prob-

lem.

Similar traditional extensions to the single-item case also hold: If δ < 1, the policy is also optimal for

the inÞnite horizon problem. The policy is also optimal if the discounted cost is replaced by the average-

cost criterion. Karlin (1960) and Veinott�s (1965) results for non-stationary independent demands also

hold: compute S∗t with the parameters for period t. If S∗t ≤ S∗t+1 (which is the case if demands increase

stochastically over time and Þnancial parameters are stationary), then everything works out and using myopic

base-stock in each period is an optimal strategy.

Finally, returning to the original IID setting, the optimal capacity level also is derived from the one-period

problem provided we use the effective single-period capacity cost cK(1−δ)/(1−δT ). Indeed, the optimal net
present value of investing in capacity K and following the inventory base-stock S∗ policy during T periods,

starting with zero initial inventory, is

V1(K, 0) =
1− δT
1− δ (Π(S

∗,K)− c0SS∗)− c0KK.

The optimal capacity level that maximizes this concave function is as before provided we adjust the capacity

cost. (The special choice of a salvage value of cS eliminates any end-of-horizon effects and makes the optimal
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base-stock policy stationary. The resulting inventory process is recurrent5 and its optimal value is the

discounted sum of T single-period values.)

4.2 Dynamic Optimality with Backlogging

Complications arise when instead of being lost, unmet demand is backlogged to be Þlled in the future.

First, we must keep track of the backorders for end units. As usual, this is most easily accomplished by

establishing a cumulative backorder counter as an inventory level zD for outputs that must be added to the

state descriptor of the system. In true newsvendor networks, zD ≤ 0 with negative values signifying the

backlog b = −zD.
Second, in traditional inventory systems one can map backlogs of outputs into certain demand for inputs

upstream. Adding to that the stochastic component of next period�s demand leads to the marvelous concept

of echelon inventory, which in essence allows a reduction of the state space. With non-basic activities,

however, this is not possible in general because the ßexibility of the non-basic activities makes it impossible

to ex-ante designate inputs to Þll known backlogs. Indeed, when an input is consumed by both a basic

and a non-basic activity, it may be ex-post optimal to prioritize the non-basic activity over the basic one.

Consider our example: assume there is a backlog b1 for output 1 and no capacity constraints. Traditionally,

one would map the backlog into an increased demand for input 1 and order S1 + b1, with the intent to use

the deterministic component b1 to Þll the backlog next period. However, it may be better ex-post to allocate

some portion of b1, which was intended to Þll output 1 backlog, to output 2 if that generates higher proÞts,

i.e., if v3 > v1. (Notice that activity 3 remains non-basic if v2 > v3 > v1.) Or, sticking with the earlier

parameter values v1 > v2 ≥ v3, a high backlog b1 will make the expected usage of the discretionary activity
3 very small and may lead to an increase of the optimal order-up-to level S2 for input 2.

These complications illustrate why the myopic policy may no longer be dynamically optimal for newsvendor

networks under backlogging. In restricted classes of newsvendor networks, however, a myopic solution

remains dynamically optimal with backlogging. As in standard inventory systems, it is natural to consider

whether base-stock inventory control is optimal. An alternative way to think about an output backorder b

is that the effective demand is the sum of b and the stochastic single-period demand D. Thus, the expected

operating proÞt becomes

Π(S,K; b) = Eπ(S,K,D+ b),

and the optimal order-up-to input levels are a function of the backlog b. If this function is linear in the

backlog, then one can separate the deterministic backlog component b in the effective demand from the

stochastic component D. If, in addition, we can translate backorders for outputs into backorders for inputs,

the backorder then can be accounted for as usual as a negative input inventory and a base-stock policy for

those input inventories remains optimal. Provided we add some restrictions, the myopic policy then remains

5A period ending with leftover stock S is equivalent to ending with zero stock but with a cash payment of c0SS.
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dynamically optimal with backlogging. It is known that this holds in networks without discretionary activities

and capacity constraints; in terms of our primitives:

Proposition 5 In an uncapacitated newsvendor network without discretionary activities, a stationary policy

is optimal under backlogging: let z be the input stock on-hand just before ordering and let b be the output

backlog, it is optimal to order S∗ − z +RSR−1D b.

Thus, a base stock S∗ policy remains optimal on the quantity z − RSR−1D b, which is like an �echelon-like�

inventory because it includes both on-hand input inventory and a backlog from outputs.

Notice that the presence of a joint capacity constraint may prevent the optimality of such simple policy.

Consider, for example, a simple newsvendor network with two activities (and no discretionary activities)

and one simple capacity constraint x1 + x2 ≤ K. The demand for inputs then becomes RSx∗(D + b,K),

where x∗(D+ b,K) = argmax
©
vx : 0 ≤ x ≤ R−1D (D+ b) and x1 + x2 ≤ K

ª
. Now assume a large backlog b

so that the capacity constraint is binding for almost any D. It then would be optimal to stock only one input

(the one with highest component in RSv − cS). The point is that a joint capacity constraint may introduce
non-linearity so that a simple echelon policy would no longer be optimal.

Can we say anything at all for newsvendor networks with discretionary activities? Yes, but only for networks

with a restricted type of discretionary activities, which we will simply call strong non-basic activities and

deÞne as follows. A network has strong (non-)basic activities if:

1. All basic activities remain basic for any operating point D∗ > 0.

2. Basic activities do not share inputs.

3. Basic activities dominate non-basic activities ex-ante and ex-post. That is, for any known D∗ > 0, it

is optimal ex-ante to procure only those inputs that are needed by the basic activities; and, ex-post, it

is optimal to have basic activities Þrst consume that stock before non-basic activities.

In terms of our model primitives, this requires that:

1. The number of strong basic activities must equal the number of outputs m. If we label those activities

from 1 to m, then RD can be decomposed as RD = [B,N ], where the m×m matrix B forms a basis

and is invertible. Equivalently, RD has a left inverse: R+D = [B
−1, 0]0. This basis remains unchanged

for any D∗ > 0 in the linear program maxx∈X∗ v0x, where X∗ = {x ≥ 0 : RDx ≤ D∗}. Hence, with
ample supply, the optimal activity vector x∗ for any output demand D∗ is x∗ = [x∗B, x

∗
N ] with basic

activities x∗B = B
−1D∗ and non-basic activities x∗N = 0, and would consume the input quantity RSx

∗.

2. Let ij denote the number of inputs that are depleted by strong basic activity j and let i =
P
j ij . If

we label the inputs that are depleted by the Þrst strong-basic activities by 1, 2, ..., i1, followed by those

depleted by the second and so on, then RS can be decomposed as RD =

 Rb Rn1

0 Rn2

 where the

i×m matrix RB is block-diagonal and block j is ij × 1.
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3. For any D∗ > 0, strong basic activities remain the only basic variables in the following two linear

programs : (i) ex-ante: max(x,y)∈Y ∗ v0x − c0Sy, where Y ∗ = {x, y ≥ 0 : RSx ≤ y,RDx ≤ D∗}, (ii)
ex-post: maxx∈Z∗ v0x, where Z∗ = {x ≥ 0 : RSx ≤ RSR+DD∗}.

Newsvendor networks with strong non-basic activities are a non-trivial and useful subset of networks that can

model problems with substitution, ßexibility, and transshipment. For example, it is easy to verify that in our

example newsvendor network of Figure 1 activities 1 and 2 are strong basic, while activity 3 is strong non-

basic, if the natural conditions v1 − cS,1 ≥ v2 − cS,2 and v1 ≥ v2 ≥ v3 hold. Matrix B becomes the identity

matrix while N = (0, 1)0. Compared to basic activities, strong basic activities thus have two additional

properties: First, they remain the only activities to be used for a deterministic problem of procuring stock to

Þll a known demand. Second, they always dominate non-basic activities. These two properties are exactly

what we need to separate deterministic backlog from stochastic demand: they allow us to ex-ante map output

backlog b into unique input requirements, while a weakly greedy ex-post allocation is optimal: Þrst satisfy

the backlog, then Þll the stochastic demand with basic activities, and Þnally Þll remaining stochastic demand

with non-basic activities. (The Þrst two allocations via basic activities are separable for each output, while

the third allocation using non-basic activities is not separable and need not be greedy.)

Proposition 6 In an uncapacitated newsvendor network with strong non-basic activities, a stationary policy

is optimal under backlogging: let z be the input stock on-hand just before ordering and let b be the output

backlog, it is optimal to order S∗ − z +RSR+D b.

Thus, a base stock S∗ policy remains optimal provided we consider �echelon-like� inventory z − RSR+Db.
Given that R+D = [B

−1, 0]0, it follows that only the i inputs that are drawn by strong basic activities have

backlog-adjusted echelon-like inventories.

5 Concluding Remarks

This paper has introduced a rather broad class of capacitated processing networks with single-stage invento-

ries. A key feature of such newsvendor networks is that they allow for ex-post managerial discretion through

non-basic activities. Such activities can capture various subtle inventory and resource pooling effects. We

presented single-period optimality conditions and showed that they retain their optimality in a dynamic

setting, so that a stationary base-stock policy is optimal. As such, this paper directly extends the results in

a variety of prior papers that focus either on inventory or on capacity to a multi-period setting with both

inventories and capacities. This paper has provided a Þrst thrust of analysis of how multiple end products

become linked due to the presence of static or discretionary sharing of inventories or capacities. Future work

should continue exploring the implications of these intricate links.

Our intent was to present a network model involving both capacity, inventory and discretionary activity

decisions that retains many of the features of the traditional newsvendor model, yet that is quite a bit
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more general. The restrictions we impose on newsvendor networks were made to maintain parsimony and

tractability. Our discussion also gave a Þrst hint of the limits of this tractability. As in most inventory

settings, lost sales is more tractable in newsvendor networks than backlogging. Our discussion suggests that

the culprits are discretionary activities or joint ex-post capacity constraints, both of which make the order-

up-to levels of inputs dependent on the backlog in a non-linear manner so that simple echelon stocks are

no longer optimal. (They are, however, for a restricted class of newsvendor models as shown.) Backlogging

inherits its difficulty because it is very closely related to a multi-stage inventory model that allows for

holding output inventories, in addition to input inventories. Such networks are notoriously hard to analyze.

This echoes what is well known for multi-echelon inventory systems with a distribution structure (e.g., one

warehouse serving multiple retailers must decide how much to ship to each retailer and how much to hold

back at the warehouse for later allocation). This distribution problem is a newsvendor network problem with

discretionary activities and backlogging for which an optimal policy is still unknown after Clark and Scarf

(1960) pointed it out several decades ago.

By enriching newsvendor networks with output inventories, lead-times, or setup costs, tractability will suffer.

For example, the well-known concept of �echelon inventories� does not readily extend to networks with

discretionary activities that are not strongly greedy. The problem is that one can no longer ex-ante map

output backlogs into needed input stock. Also, as in typical inventory models, lost sales and positive leadtimes

would be a deadly combination. Setup costs and distributive networks also are hard.

In fact, discretionary activities in newsvendor networks, which focus on inventory and production to meet

exogenous output demand, create the same difficulties as dynamic routing in queuing networks, which focus

on production and the input buffers from arrivals. Concepts developed for queuing networks may very well

be useful for newsvendor networks. For example, the accounting problem of backlog may be approached

through an �equivalent workload formulation� (Harrison and Van Mieghem 1997), which is the minimal state

descriptor needed to account for inventory in discretionary networks in an appropriately scaled asymptotic

regime. Future work that investigates a series scaled newsvendor networks may provide fruitful insights

and simpliÞcations similar to heavy-traffic queuing networks. Nevertheless, when the frontier of analytic

tractability is reached, one has no choice but to adopt approximating network control problems (i.e., simplify

the network ßows using ßuid or Brownian approximations and Þnd optimal controls for that simpliÞed

network in an appropriately scaled asymptotic regime) or to restrict the policy space ex-ante (i.e., restrict

the analysis to base-stock policies, for example).

Finally, as mentioned in the introduction, we introduced newsvendor networks as being controlled by a single

decision maker. Clearly, following recent trends in supply chain theory, multiple decision makers can directly

be incorporated into a game-theoretic formulation. Newsvendor networks then become a useful tool to study

subcontracting as in Van Mieghem (1999) and other contingent relationships, including pricing, in the supply

chain.
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Appendix: Proofs
Proof of Proposition 3: Follows directly from Müller (2001): Let D0 also be normally distributed with

mean µ0 and a covariance matrix Σ0. If µ ≤ µ0 and Σ = Σ0, then D ≤ D0 in the increasing concave order
so that Ef(D) ≤ Ef(D0) for any increasing concave function, which includes π(K,S, .). If µ = µ0 and Σ0

differs from Σ only in one variance term (Σ0ii ≥ Σii) then M = Σ0 − Σ is a zero matrix except for Mii > 0

so that M is positive semi-deÞnite. Hence, D ≤ D0 in the convex order so that Ef(D) ≤ Ef(D0) for any

convex function, which includes −π(K,S, .). Finally, if µ = µ0 and Σ0 differs from Σ only in one covariance

term (Σ0ij ≥ Σij), then D0 ≥ D in the supermodular order, so that Ef(D1) ≥ Ef(D2) for any supermodular
function. If K and S remain Þxed, the proposition follows directly by considering f = −π. If they are
optimally adjusted, ∂Π/∂Kk = ∂Π/∂Sl = 0 for all k and l, so that dΠ/dΣij = ∂Π/∂Σij and the ordering

remains.¥
Proof of Result 1: It is obvious that S2 > K2 is suboptimal. Assume on the contrary that S1 > K1.

Consider the directional derivative dΠ in direction dS = (−1, 1)dJ, where dJ > 0. With S2 ≤ K2 and α ≤ 1,
the marginal values λS of table 1 apply:

21/2dΠ = (EλS − cS) · (−1, 1)dJ = (v2 − v3)Pp+2+3+5 + (v2 − αv3)P1 + (cS,1 + cH,1)− (cS,2 + cH,2) > 0,

so that S1 > K1 cannot be optimal.¥
Proof of Proposition 4: (by induction) Let Vt(K, z) denote the expected present value starting and

evaluated at the beginning of period t with initial input inventory z and capacity K. DeÞne the set of

structured functions V ∗ as the set of continuous functions f that are concave and affine in the starting

state; i.e., f(K, z) = f(K,S∗)− c0S(S∗ − z) for z ≤ S∗, where S∗ is the base-stock level deÞned earlier and
minimizer of g(K, ·), deÞned in (??). Let ∆∗ be the set of decision rules that bring the input inventory level
after ordering up to S∗ if z ≤ S∗ and order nothing otherwise. Recall that with lost sales z ≥ 0. As before,
we assume the starting state z ≤ S∗. (If some components zi > S∗i , there is a transient policy that is more
complicated but eventually will bring z ≤ S∗.)
For the last period T + 1, we clearly have that the optimal value function VT+1(K, z) = c0Sz is structured.

Now assume that Vt+1(K, z) ∈ V ∗, we show that Vt, which solves the Belmann equations, is also structured:

Vt(K, z) = max
y≥z

½
E max
x∈X(K,y,D)

£
(r − c)0x− c0P(D−RDx)+ − c0Ha(y −RSx)+ − c0S(y − z) + δVt+1(K, y −RSx)

¤¾
= max

y≥z
Gt(K, y).

Concavity preservation under maximization says that the function behind the expectation operator, and

hence its expectation Gt(K, y), are concave functions. Another application of the concavity preservation

theorem directly yields that Vt(K, z) is concave. We now show that Vt is affine with slope cS for z ≤ S∗ and
that it is optimized by a base-stock policy.
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Consider any y ≤ S∗. Then, for any x ∈ X(K, y,D), we have that y −RSx ≤ y ≤ S∗, thus

Gt(K, y) = E max
x∈X(K,y,D)

£
(r − c)0x− c0P(D −RDx)+ − c0Ha(y −RSx)+ − c0S(y − z) + δVt+1(K,S∗)− δc0S(S∗ − y +RSx)

¤
= E max

x∈X(K,y,D)
£
(r − c)0x− c0P(D −RDx)+ − (c0Ha − δc0S)(y −RSx)+ − c0S(y − z) + δVt+1(K,S∗)− δc0SS∗

¤
= Π(K,y)− c0S(y − z) + δVt+1(K,S∗)− δc0SS∗

= g(y,K) + c0Sz + δVt+1(K,S
∗)− δc0SS∗.

Clearly, y∗ = S∗ is a maximizer of Gt(K, y) for y ≤ S∗. Given that ∇Gt(K,S∗) = 0 and Gt is concave, S∗
is also a global maximizer of Gt(K, y). Thus, again the optimal policy is a base-stock S∗ policy: y = S∗ if

z ≤ S∗. (If some components zi > S∗i , there is a transient policy that is more complicated but eventually
will bring z ≤ S∗.) The optimal value function not only is concave again but also structured:

Vt(K, z) = Π(K,S
∗)− c0S(S∗ − z) + δVt+1(K,S∗)− δc0SS∗ if z ≤ S∗.

¥
Proof of Proposition 5: If there are no discretionary activities, all activities are basic in the relaxed linear

programmaxx∈X∗ v0x, whereX∗ = X(∞,∞,D∗) = {x ≥ 0 : RDx ≤ D∗} for any operating pointD∗. Hence,
linear algebra shows that the number of activities must equal the number of outputs m and the matrix RD

forms a basis and is invertible: the optimal solution is RDx∗ = D∗ or x∗ = R−1D D
∗. Thus, without capacity

constraints, an effective output demand D∗ = D + b yields a demand for inputs RSx∗ = RSR
−1
D (D + b).

Essentially, the multi-item inventory system decouples and each input can be analyzed independently; the

base-stock S∗ reorder policy remains optimal for the stochastic part, to which we add the deterministic order

RSR
−1
D b.¥

Proof of Proposition 6: First, in an uncapacitated network with strong non-basic activities, the optimal

activity vector x(S,D) satisÞes for any backlog vector b ≥ 0 and S,D ≥ 0 :

x(S +RSR
+
D b,D + b) = x(S,D) + x(RSR

+
Db, b).

To see this, consider the ex-post problem of allocating demand D+ b to available supply. If supply were not

constrained, demand D+b would be allocated optimally via the strong basic activities to the supply RSR+Db.

Given that basic activities dominate non-basic activities and that no basic activities share inputs, the feasible

allocation of the backlog b to the available supply RSR+D b is optimal for any S and D. Hence, it only remains

to allocate the remaining demand D to the remaining supply S, which is by deÞnition achieved through

activity x(S,D). Thus, with strong basic activities, one can again ex-ante translate output backorders into

a deterministic input requirement that ex-post also will be used to Þll the backlog. In essence, using the

designed supply RSR+Db the backlog problem can be separated from the stochastic problem: the expected

operating proÞt given a backlog b, Π(S + RSR+D b; b) = Eπ(S + RSR+D b,D + b), is linear in the backlog:

Π(S + RSR
+
D b; b) = Π(S) + Π(RSR

+
Db). The backlog proÞt is deterministic and the stochastic problem

retains its dynamic optimality.¥
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