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I. Extended Literature Review

A. Operations strategy. Con�guring the right multiplant facility network plays an important

role in a �rm�s operations strategy. Hayes & Wheelwright (1984) illustrate four approaches for for-

mulating a multiplant facility strategy: physical facilities analysis, geographical network analysis,

functional needs and corporate philosophy analysis, and product-process focus analysis. They argue

that these approaches represent di¤erent perspectives and should be used in a proper combination.

Our analysis combines the geographical network and product-process focus approaches. The ge-

ographical network analysis is often observed when transportation costs constitute a signi�cant

portion of total production cost. This paper illustrates the pivoting role of transportation cost in

choosing centralized versus localized commonality strategy. The basis of the product-process focus

approach is the concept of operational focus, proposed by Skinner (2006) and recently modeled by

Van Mieghem (2008). Firms may choose to focus their facilities according to volumes, product,

process, or service. Similar in spirit, our model incorporates two products with di¤erent demand

characteristics, two geographically separated markets with distinct economic characteristics, and

two processes with di¤erent purposes: common component manufacturing versus dedicated assem-

bly. We illustrate how these elements interact and drive the optimal network decisions.

B. Facility location & network design. Our research falls within the vast literature on

facility location and supply chain network design. Snyder (2006) presents a recent and broad

review of facility location research. Our paper follows the stream that deals with facility decisions

in a global context. We categorize and summarize the related literature into four groups of papers

according to their research methodologies:

B1. Mathematical programming. One of the seminal papers that formulate global manu-
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facturing strategic planning as a mathematical programming problem is Cohen & Lee (1989). Their

model is capable of capturing a large number of factors a¤ecting resource deployment decisions in

a multi-country model, such as regional demand requirements, sourcing constraints, interplant

transshipments, taxation and tari¤s. In a global setting, �rms�manufacturing decisions are signi�-

cantly a¤ected by international trade barriers and regulations. Arntzen et al. (1995) construct and

implement a mixed integer programming model for global supply chain design at Digital Equip-

ment Corporation. Their integrated manufacturing and distribution decision framework enables

the company to restructure its existing global supply chain and save over $100 million. Munson

& Rosenblatt (1997) focus on the impact of local content rules on global sourcing decisions. They

incorporate local content rules into the classical plant location problem and provide an e¢ cient

solution procedure. Kouvelis et al. (2004) present a mixed integer programming model that incor-

porates government trade policies, such as �nancing subsidies, tari¤s, and taxation. The solution

of their model con�rms and quanti�es expected determinants of the structure of global facility

networks. (For example, expensive transportation of subassemblies leads to centralized manu-

facturing and distribution networks while increased trade tari¤s makes decentralized distribution

networks more attractive.) A common feature of these mathematical programming formulations is

that the decision framework is deterministic, i.e., no demand, �nancial, production, or regulatory

uncertainties.

B2. Stochastic programming. Some papers explicitly model uncertainty in the global man-

ufacturing environment using a stochastic programming approach. Santoso et al. (2005) propose

a model and a solution algorithm for solving large-scale stochastic supply chain design problems.

Others speci�cally evaluate the bene�t of operational �exibility embodied in owning international

operations. Kogut & Kulatilaka (1994) treat a multinational operating network as a real option

whose value depends on exchange rates. They use stochastic dynamic programming to solve the

option valuation problem and conclude that high variance of exchange rates increases the value

of multinational networks. Similar to Kogut & Kulatilaka (1994), Huchzermeier & Cohen (1996)

develop a stochastic dynamic programming formulation for valuation of global manufacturing strat-

egy options in the face of switching costs and correlated exchange rate processes. Kouvelis et al.

(2001) study the e¤ects of real exchange rates on the ownership structure of global production facil-

ities. They identify a hysteresis phenomenon that characterizes switching behavior between three

ownership strategies: exporting, joint ventures with local partners, and wholly owned production

facilities in the foreign country. A more recent paper by Kazaz et al. (2005) characterizes the
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value of production hedging and allocation hedging in global production planning in the presence

of exchange-rate uncertainty.

B3. Newsvendor networks. This stream of papers use parsimonious newsvendor models

to generate managerial insights pertaining to demand risk in general and speci�cally the value of

transshipment. Robinson (1990) shows that transshipment can not only reduce costs consider-

ably but also a¤ect the optimal ordering policy. Rudi et al. (2001) take a new approach to the

transshipment problem by extending it to an inter�rm setting and studying the impact of local vs.

centralized decision making on joint pro�ts.

Van Mieghem & Rudi (2002) present a systematic approach to study network design in a

newsvendor setting, which was adopted by Kulkarni et al. (2004) and Kulkarni et al. (2005). The

latter is closely related to our model and numerically determines the better of two predetermined

network con�gurations for a multiplant network with commonality: process plant (correspond-

ing to our U.S.-centralization) and product plant (corresponding to our market-focused con�gura-

tion). Four major distinctions separate our work from Kulkarni et al. (2005). First, we enlarge

the feasible con�guration set and endogenize the location of common component by incorporat-

ing Asia-centralization and the most general con�guration, i.e., the hybrid. Second, we let the

optimal network con�guration emerge from optimization and provide analytical optimality con-

ditions. Third, instead of using numerical sensitivity analysis, we analytically demonstrate how

economic and demand characteristics impact optimal network con�gurations. Last, we explain how

di¤erences in transportation costs and revenue maximization bene�ts determine optimal network

design under demand uncertainty and demonstrate how this can even lead U.S.-centralization to

be optimal.

B4. Conceptual and empirical approaches. A group of papers draw on extensive inter-

views and case studies to examine the strategies and trends in facility location selections (Schmenner

(1979), Bartmess & Cerny (1993), Bartmess (1994), MacCormack et al. (1994)). Bartmess & Cerny

(1993) emphasize the strategic impact of plant location decisions and champion capability building

in the objective of facility location decisions. MacCormack et al. (1994) document the new trend

of locating global manufacturing sites location based on changes in production technologies, work-

force sophistication, and organizational philosophies. Other papers conduct empirical studies on

facility strategies of large manufacturing �rms. Key characteristics that a¤ect the attractiveness of

four prevailing multiplant strategies (i.e., product, market area, process, and general purpose) are

identi�ed for the Fortune 500 �rms (Schmenner (1982)). Similarly, Brush et al. (1999) empirically
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investigate the determinants of multinational manufacturing �rms�choices between integrated and

independent plants, and between domestic and foreign plants. The novelty of their approach is to

combine perspectives from international business and manufacturing, and examine the interplay of

the two perspectives in shaping managers�facility decisions.

C. The commonality, dual sourcing, and o¤shoring literature is also relevant to our

work. Commonality is about assembling multiple products from common components and product-

speci�c components, according to Van Mieghem (2004). Multiproduct �rms often use commonality

to add �exibility to their existing production networks. Kulkarni et al. (2005) examine the trade-

o¤s between risk pooling and logistics cost for two extreme con�gurations (process vs. product)

of commonality in a multiplant network. In contrast to Kulkarni et al. (2005), we endogenize

the location decision of commonality and allow di¤erent centralization con�gurations to arise from

optimization.

Our work also studies the choice between single sourcing (centralization) and dual sourcing

(hybrid) strategies for commonality. Anupindi & Akella (1993) study how to optimally allocate

quantities between two suppliers with yield uncertainty and its e¤ects on the buyer�s inventory

policies. Yazlali & Erhun (2004) examine the trade-o¤ between responsiveness and cost in global

sourcing strategies using an imbedded multi-period inventory model. Tomlin & Wang (2005) study

unreliable supply chains with risk averse �rms that trade-o¤ the level of mix �exibility against

risk diversi�cation through dual sourcing. Tomlin (2006) also studies sourcing mitigation strategies

in the presence of di¤erent reliable suppliers as compared to adopting inventory mitigation and

contingent rerouting for managing supply chain disruptions.

Finally, our research belongs to the growing literature on o¤shoring. The related literature is

mostly found in the economics, international business, and popular management journals. Ferdows

(1997) categorizes the strategic roles of foreign plants in a manufacturing �rm�s facility network and

suggests that �rms upgrade the roles of their foreign plants over time in order to gain competitive

advantage in manufacturing capability. In contrast, Markides & Berg (1988) argue that o¤shore

manufacturing does not build long-term competitive advantages, but is rather a �short-term tactical

move.� Farrell (2004) and Farrell (2005) lay out a conceptual framework for �rms considering

o¤shoring and shows (based on a recent study by the McKinsey Global Institute) that �rms can

signi�cantly lower their costs by moving their production to low-wage locations. She also argues that

cost savings from o¤shoring in turn enables �rms to reduce prices and attract new customers, and

therefore o¤shoring creates enormous value for both �rms and the global economy. The related
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economics literature focuses on the impact of o¤shoring on domestic labor markets (Feenstra &

Hanson (1996), Baily & Lawrence (2004)).

II. Proofs

Proposition 1 Proof. Since demand is deterministic, choosing the most pro�table processing

activity for each product yields the optimal con�guration and capacities. �

Lemma 1 Proof. The ordering follows immediately from the de�nition of the v0is and the

assumptions. �

Proposition 2 Proof. If cT;1 � ��cM ; suppose to the contrary K�
4 > 0: Moving all common

component capacity in market 2 to market 1 keeps the investment cost unchanged but increases

the pro�t because v1 � v4 and v3 � v2; contradicting the optimality. Similarly for the case of

cT;2 � �cM : �

Lemma 2 Proof. Suppose to the contrary that K�
3 > K

�
1 : Let " = K

�
3�K�

1 ; then " can only be

utilized by activity x3: Moving this " capacity to K�
4 gives a higher expected pro�t because v2 � v3;

contradicting the assumed optimality. Similarly, we can prove that K�
4 � K�

2 : �

Proposition 3 Proof. The proof for part (i) and (ii) proceeds in three steps. First, we establish

the strict concavity of the optimization problem, i.e., the uniqueness of the optimal solution. Second,

we provide the optimality conditions. Third, we derive the transportation cost threshold. We

separate the proof for the medium and high �p cases.

(1) Medium �p

Step 1. Claim: There exists a unique K� that solves the capacity investment problem.

Let F be the joint distribution function of D1and D2 and f be the density function. The greedy

solution for the stage-2 contingent capacity allocation problem is:

x1(K;D) = minfD1;K1;K3g = minfD1;K3g; x2(K;D) = minfD2;K2;K4g = minfD1;K4g;

x3(K;D) = minfD2 � x2;K2 � x2;K3 � x1g; x4(K;D) = minfD1 � x1;K1 � x1;K4 � x2g:

Partition the demand space as in Figure 8, such that the marginal value of each capacity is constant

within each domain. The optimal activity vector and marginal values of capacities in each demand

domain are displayed in Table 5.

Let H denote the Hessian matrix of V (K; cK): For the interior solution K� = (K�
1 ;K

�
2 ;K

�
3 ;K

�
4 );

H = D2KV (K; cK) = D2KE�(K;D) = DKE(rK�(K;D)) = DKE�;

E� = �P;
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Figure 8: Partitioning of the demand space (assuming medium �p)

Domain Activity Vector x Marginal Value �


0 (D1; D2; 0; 0) (0; 0; 0; 0)


p (D1;K4; D2 �K4; 0) (0; 0; 0; v2 � v3)


q (K3; D2; 0; D1 �K3) (0; 0; v1 � v4; 0)


1 (D1;K4;K2 �K4; 0) (0; v3; 0; v2 � v3)


2 (D1;K4;K3 �D1; 0) (0; 0; v3; v2)


3 (K3;K4; 0; 0) (0; 0; v1; v2)


4 (K3; D2; 0;K4 �D2) (0; 0; v1; v4)


5 (K3; D2; 0;K1 �K3) (v4; 0; v1 � v4; 0)

Table 5: Optimal activity vector and marginal values of capacities in each demand domain
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where

� =

0BBBBBB@
0 0 0 0 0 0 0 v4

0 0 0 v3 0 0 0 0

0 0 v1 � v4 0 v3 v1 v1 v1 � v4
0 v2 � v3 0 v2 � v3 v2 v2 v4 0

1CCCCCCA ;

P = (P (
0(K
�)); P (
p(K

�)); P (
q(K
�)); P (
1(K

�));

P (
2(K
�)); P (
3(K

�)); P (
4(K
�)); P (
5(K

�)))0:

Hence,

H = �DKP = �

0BBBBBBBBBBBBBBBBBBB@

0 0 I5 I3

0 I1 I2 I2 � I3
I10 0 I8 � I5 I8

0 �I1 � I6 I6 I6

0 I6 I7 � I2 � I6 �I2 � I6
0 0 �I7 �I4
I9 0 �I8 � I9 I4 � I8 � I9

�I9 � I10 0 I9 I9

1CCCCCCCCCCCCCCCCCCCA

;

where I 0is are the marginal change in the probability of the demand domains as a result of the

marginal change in the capacities. Since certain capacity changes impact multiple demand domains,

multiple I 0is are de�ned according to the boundaries of the domains. For example, I1 represents

the marginal increase in the probability of 
p as a result of an increase in K2:

I1 =

Z K1+K4�K2

0
f(x;K2)dx; I2 =

Z K1

K1+K4�K2

f(x;K1 +K4 � x)dx;

I3 =

Z K3

0
f(x;K4)dx; I4 =

Z 1

K3

f(x;K4)dx;

I5 =

Z K4

0
f(K3; x)dx; I6 =

Z 1

K2

f(K1 +K4 �K2; x)dx;

I7 =

Z 1

K4

f(K3; x)dx; I8 =

Z K1

K3

f(x;K3 +K4 � x)dx;

I9 =

Z 1

K1

f(x;K3 +K4 �K1)dx; I10 =

Z K3+K4�K1

0
f(K1; x)dx:
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Thus

H =

0BBBBBB@
�a1 � a2 0 a1 a1

0 �a3 � a4 a4 a4

a1 a4 �a1 � a4 � a5 � a6 �a1 � a4 � a5
a1 a4 �a1 � a4 � a5 �a1 � a4 � a5 � a7

1CCCCCCA ;

where

a1 = v4I9; a2 = v4I10;

a3 = v3I1; a4 = v3I6;

a5 = v3I2 + v4I8; a6 = (v1 � v3)I7 + (v1 � v4)I5;

a7 = (v2 � v3)I3 + (v2 � v4)I4:

H is negative de�nite because it is symmetric and has a negative and dominant diagonal (To see the

diagonal is dominant, let � = (1; 1; 1=2; 1=2). We then have j�iHiij >
P
j 6=i j�jHij j:) The uniqueness

of the optimal solution follows from the negative de�niteness of H.

Step 2. The optimality conditions follow from

rKV (K�; cK) = rKfE�(K�; D)� c0KK� + �0K� + �1(K
�
1 �K�

3 ) + �2(K
�
2 �K�

4 )g

= E�� cK + �+ � = 0:0BBBBBB@
0

0

0

v2 � v3

1CCCCCCAP (
p(K
�))+

0BBBBBB@
0

0

v1 � v4
0

1CCCCCCAP (
q(K
�))+

0BBBBBB@
0

v3

0

v2 � v3

1CCCCCCAP (
1(K
�))+

0BBBBBB@
0

0

v3

v2

1CCCCCCAP (
2(K
�)

+

0BBBBBB@
0

0

v1

v2

1CCCCCCAP (
3(K
�) +

0BBBBBB@
0

0

v1

v4

1CCCCCCAP (
4(K
�) +

0BBBBBB@
v4

0

v1 � v4
0

1CCCCCCAP (
5(K
�) = cK � �� �;

�0K� = 0;

�i(K
�
i �K�

i+2) = 0; i 2 f1; 2g;

where � 2 R4+ and �1; �2 2 R+.

40



Step 3. Derivation of �cT : Consider the boundary solution �K = ( �K1; �K2; �K1; 0) and simplify the

�rst-order conditions to

v3P (
2(
�K)) + v1P (
3(

�K)) = cK;1 + cK;3; (3)

v3P (
1(
�K)) = cK;2; (4)

v2�v3P (
p+1( �K)) = cK;3 � �4: (5)

If �4 > 0; K�
4 = 0 and thus �K is the unique solution to the optimization problem. Combining

equations (3)-(5), �4 > 0 is equivalent to cT;1 < �cT , where �cT is given by equation (1) with

�P3 = Pr(D1 > �K1):

Proof for part (iii). The market-focused con�guration is optimal i¤ P (
p(K�)) = P (
q(K�)) =

P (
2(K
�)) = P (
4(K�)) = 0: The �rst-order conditions simplify to0BBBBBB@
0

v3

0

v2 � v3

1CCCCCCAP (
1( ~K)) +
0BBBBBB@

0

0

v1

v2

1CCCCCCAP (
3( ~K)) +
0BBBBBB@

v4

0

v1 � v4
0

1CCCCCCAP (
5( ~K)) =
0BBBBBB@
cK;1 � �1
cK;2 � �2
cK;3 + �1

cK;3 + �2

1CCCCCCA :

Solving it yields

P (D1 > ~K1) =
cK;1 + cK;3

v1
; P (D2 > ~K2) =

cK;2 + cK;3
v2

:

By complementary slackness, the optimality of ~K requires �i > 0; for i = 1; 2: It follows from the

above �rst-order conditions that

P (
1( ~K)) <
cK;2
v3
; P (
5( ~K)) <

cK;1
v4
;

which are equivalent to

P (
3( ~K)) > min(
cK;1 + cK;3

v1
� cK;1

v4
;
cK;2 + cK;3

v2
� cK;2

v3
):

(2) High �p

The proof follows a similar logic as in the case of medium �p. Here we only provide the details

for the steps that are di¤erent. The greedy solution for the stage-2 contingent capacity allocation

problem is:

x1(K;D) = minfD1;K1;K3g = minfD1;K1g; x4(K;D) = minfD1 � x1;K1 � x1;K4g;

x2(K;D) = minfD2;K2;K4 � x4g; x3(K;D) = minfD2 � x2;K2 � x2;K3 � x1g:
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Figure 9: Partitioning of the demand space (assuming high �p)

Partition the demand space as in Figure 9. A capacity investment vector K� 2 R4+ is optimal and

the �rst-order conditions are

(v4 � v2)P (
3(K�)) + v4P (
5(K
�)) = cK;1 � �1 � �1;

v3P (
1(K
�)) = cK;1 � �2 � �2;

(v1 � v4)P (
q+3+4+5(K�)) + v3P (
2(K
�)) + v2P (
3+4(K

�)) = cK;3 � �3 + �1;

(v2 � v3)P (
p+1(K�)) + v2P (
2+3+4(K
�)) = cK;3 � �4 + �2;

�0K� = 0;

�i(K
�
i �K�

i+2) = 0; i 2 f1; 2g;

The rest of the proof is similar to the medium �p case. �

Proposition 4 Proof. The proof is similar to the medium �p case and thus omitted be-

cause both the demand partition and the greedy solution are identical. The modi�cation is that

we consider boundary solution K = (K1;K2; 0;K2) instead because boundary solution �K =

( �K1; �K2; �K1; 0) does not exist for this case. This is evident from the expression of �cT derived

previously. Since �p � �cM ; the numerator of �cT is strictly negative. Hence, cT < �cT can never

be satis�ed. �

Table 3 Proof. We prove the comparative statics for �cT ; the proof for cT is omitted due

to similarity. As mentioned in the main text, the proof boils down to determining the sign of

d �K1=dy: For boundary solution �K = ( �K1; �K2; �K1; 0); the optimization problem is reduced to two
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dimensional. Thus, the Hessian matrix becomes

�H = ��DK �P =

0@ 0 0 v3 v1

0 v3 0 0

1A
0BBBBBB@

I2 I2

I6 �I1 � I6
�I2 � I6 + I7 I6

�I7 0

1CCCCCCA
=

0@ �v3(I2 + I6)� (v1 � v3)I7 v3I6

v3I6 �v3(I1 + I6)

1A :
Taking derivative w.r.t. ~cK = (cK;1; cK;2; cK;3) on both sides of the �rst-order condition and apply-

ing chain rule gives

D2KE�(K;D)D~cK �K = D~cKcK =

0@ 1 0 1

0 1 0

1A = �HD~cK
�K:

Hence,

D~cK
�K = �H�1

0@ 1 0 1

0 1 0

1A
=

1

j �Hj

0@ �v3(I1 + I6) �v3I6 �v3(I1 + I6)

�v3I6 �v3(I2 + I6)� (v1 � v3)I7 �v3I6

1A :
All elements ofD~cK �K are negative, which follows from the negative de�niteness of �H (thus j �Hj > 0):

Therefore

sign(
d �K1
dcK;i

) = �1; i = 1; 2; 3:

Now we prove the part for p0is and c
0
M;is: From the �rst-order condition, we have

�� �P = cK � �� �:

Taking derivative w.r.t. to y(y = pi or cM;i);

@ ��

@y
�P + ��

@ �P

@y
=
@ ��

@y
�P + ��rK �P

@ �K

@y
= 0:

Since

�H = ��DK �P ;

�� =

0@ 0 0 v3 v1

0 v3 0 0

1A ;
@ �K

@y
= � �H�1@

��

@y
�P ;

43



it follows that,

@ �K

@p1
= � �H�1

0@ 0 0 0 1

0 0 0 0

1A �P =
1

j �Hj

0@ �P3v3(I1 + I6)

�P3v3I6

1A >> 0;

@ �K

@p2
= � �H�1

0@ 0 0 1 0

0 1 0 0

1A �P

=
1

j �Hj

0@ �P1v3I6 + �P2v3(I1 + I6)

�P1v3(I2 + I6) + �P1(v1 � v3)I7 + �P2v3I6

1A >> 0;

@ �K

@cM;1
= � �H�1

0@ 0 0 �1 �1

0 �1 0 0

1A �P

=
1

j �Hj

0@ � �P1v3I6 � �P2v3(I1 + I6)� �P3v3(I1 + I6)

� �P1v3(I2 + I6)� �P1(v1 � v3)I7 � �P2v3I6 � �P3v3I6

1A << 0;

@ �K

@cM;2
= � �H�1

0@ 0 0 0 0

0 0 0 0

1A �P =

0@ 0

0

1A :
�

Property 1 Proof. It follows from a similar proof as in Proposition 3 and 4 of Van Mieghem

(1998). �

Property 2 Proof. The following proof applies to medium and low �p cases (the high �p

case can be proved similarly). We proceed to prove the �rst half of the property. In the proof of

Proposition 3, we have shown the Hessian matrix of V (K) is

H =

0BBBBBB@
�a1 � a2 0 a1 a1

0 �a3 � a4 a4 a4

a1 a4 �a1 � a4 � a5 � a6 �a1 � a4 � a5
a1 a4 �a1 � a4 � a5 �a1 � a4 � a5 � a7

1CCCCCCA ;

where ai � 0; i = 1; :::; 7: With a change of variable, let

~V ( ~K) = ~V (K1;K2;K3;Kcom) = V (K1;K2;K3;Kcom�K3):

Calculating the cross partial derivatives, we get

@2 ~V
@K1@K2

= @2V
@K1@K2

= 0; @2 ~V
@K1@K3

= @2V
@K1@K3

� @2V
@K1@(Kcom�K3)

= 0

@2 ~V
@K1@Kcom

= @2V
@K1@(Kcom�K3)

= a1;
@2 ~V

@K2@K3
= @2V

@K2@K3
� @2V

@K2@(Kcom�K3)
= 0

@2 ~V
@K2@Kcom

= @2V
@K2@(Kcom�K3)

= a4;
@2 ~V

@K3@Kcom
= @2V

@K3@(Kcom�K3)
� @2V

@(Kcom�K3)2
= a7:
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Notice that all cross partials are nonnegative, satisfying the condition for supermodularity. Further,

@ ~V
@K1

= @V
@K1

= E�1(K)� cK;1+�1; @ ~V
@K2

= @V
@K2

= E�2(K)� cK;2+�2;
@ ~V
@K3

= @V
@K3

� @V
@K4

= E�3(K)� E�4(K)� �1+�2; @ ~V
@Kcom

= @V
@K4

= E�4(K)� cK;3��2:

Taking partial derivative w.r.t. cK;i gives that all the cross partial terms are nonpositive, proving

the increasing di¤erences result. Given that

E�1(K) = v4P (
5(K));

E�2(K) = v3P (
1(K));

E�3(K) = (v1 � v4)P (
q+5(K)) + v3P (
2(K)) + v1P (
3+4(K));

E�4(K) = (v2 � v3)P (
p+1(K)) + v2P (
2+3(K)) + v4P (
4(K)):

Calculating the cross partial derivatives w.r.t. p1 yields

@2 ~V
@K1@p1

= @E�1(K)
@p1

= P (
5(K))
@2 ~V

@K2@p1
= @E�2(K)

@p1
= 0

@2 ~V
@K3@p1

= @E�3(K)
@p1

� @E�4(K)
@p1

= P (
3(K))
@2 ~V

@Kcom @p1
= @E�4(K)

@p1
= P (
4(K))

The nonnegativitity of all cross partial terms yields the increasing di¤erences property. The second

half of the property can be proved similarly. �

Property 3 Proof. We have already established supermodularity and increasing di¤erences

property and the result is an application of Topkis�monotonicity theorem. �

Proposition 5 Proof. We will show the proof for one of the two cases (the case stated in

the bracket follows a similar logic). We proceed to prove part (ii) and (iii) (part (i) can be proved

similarly). Let �K = ( �K1; �K2; �K1; 0) and �K 0 = ( �K 0
1;
�K 0
2;
�K 0
1; 0) be the boundary solution for (D1; D2)

and (D1; D02), respectively.

Claim: �K
0
2 >

�K2: Suppose to the contrary that �K
0
2 � �K2. Recall the optimality conditions for

the boundary solution �K are

v3P (
1( �K)) = cK;1

v3P (
2( �K)) + v1P (
3( �K) = cK;1 + cK;3;

(v2 � v3)(P (
p+1( �K))) + v2(P (
2+3( �K)) = cK;3 � �4:

To keep P (
1(K)) = P (D1 < K1 �K2)P (D2 > K2) unchanged as we change the demands from

(D1; D2) to (D1; D02), we must have

�K 0
1 � �K 0

2 <
�K1 � �K2;
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which follows from that D02 �rst-order stochastic dominates D2 and the supposition that �K
0
2 � �K2:

Thus,

�K 0
1 < �K1

P (
2+3( �K
0)) = P (D1 > �K 0

1 � �K 0
2; D1 +D2 > �K 0

1) > P (
2+3( �K));

P (
3( �K
0)) = P (D1 > �K 0

1) > P (
3(
�K)):

It follows that

v3P (
2( �K
0)) + v1P (
3( �K

0)) = v3P (
2+3( �K
0)) + (v1 � v3)P (
3( �K 0))

> v3P (
2+3( �K)) + (v1 � v3)P (
3( �K))

= v3P (
2( �K)) + v1P (
3( �K)) = c1 + c3;

contradicting the optimality condition. Hence, �K
0
2 >

�K2: It follows that �K
0
1 >

�K1 in order to satisfy

the second optimality condition. It follows that

sign(
@�cT
@D2

) = sign(
@�cT
@ �P3

)� sign( @
�P3

@ �K1
)� sign(@

�K1
@D2

) = 1� (�1)� 1 = �1;

where @D2 is in the sense of �rst-order stochastic dominance. Hence �cT > �c0T ; which proves part

(ii). Since it is monotonically decreasing in D2 in the sense of �rst-order stochastic dominance, �cT

becomes negative when D2 is large enough, which will happen when E(D2) is large enough. This

proves part (iii). �

Property 4 Proof. The proof boils down to show @�=@D1 = v0@x=@D1 is decreasing in D2:

Consider three scenarios (see Figure 9): (i) if 0 < D1 < K3+K4�K2 or D1 > K1; then, v0@x=@D1
remains unchanged for any value of D2; (ii) if K3 + K4 � K2 < D1 < K3; then as D2 increases,

v0@x=@D1 remains constant throughout 
0;
p; and 
2;but decreases from v1 to v1 � v3 when

crossing the border of 
p and 
2; (iii) if K3 < D1 < K1; then as D2 increases, v0@x=@D1 remains

constant throughout 
q and 
4;but decreases from v1+ v4 to v1+ v4� v3 when crossing the border

of 
q and 
2. �

Proposition 6 Proof. (i) High and medium �p: First notice that the total demand k � �K1:

Otherwise, both �P2 and �P3 are zero, violating the �rst order condition of the boundary solution.

k < �K1 then implies the following set of equations that determine the boundary solution �K:

v3 �P2 + v1 �P3 = cK;1 + cK;3;

v3 �P1 = cK;2;

�P1 + �P2 + �P3 = 1:
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Solving the equation gives �P1 =
cK;2
v3
; �P2 =

v1(v3�cK;2)�v3(cK;1+cK;3)
v3(v1�v3) ; and �P3 =

cK;1+cK;2+cK;3�v3
v1�v3 : It

follows that

�cT � cT =
�p �P3 ��cM � cK;1

1� �P3
� cT

=
(�p+ cT )(cM;2 + cK;2 + cK;3 � p2)
p1 � cM;1 � (cK;1 + cK;2 + cK;3)

=
(v1 � v3)(cK;2 + cK;3 � v2)
v1 � (cK;1 + cK;2 + cK;3)

:

In order to have a feasible boundary solution �K; we must have �P1 > 0; �P2 > 0; and �P3 � 0: It follows

from the expression of �P 0is that v3 � cK;1+cK;2+cK;3 and
cK;1+cK;3

v1
+
cK;2
v3

< 1: These two conditions

further imply that v1 > cK;1 + cK;2 + cK;3: Suppose to the contrary that v1 � cK;1 + cK;2 + cK;3,

then

cK;1 + cK;3
v1

+
cK;2
v3

� cK;1 + cK;3
cK;1 + cK;2 + cK;3

+
cK;2
v3

� cK;1 + cK;3
cK;1 + cK;2 + cK;3

+
cK;2

cK;1 + cK;2 + cK;3
= 1;

contradicting the second condition above. Finally, centralization in the high-price market is optimal

if and only if �cT > cT ; which requires v2 < cK;2+cK;3 given that v1 > cK;1+cK;2+cK;3 and v1 > v3:

The proof for part (ii) is similar to (i). �

Proposition 7 Proof. (i) Medium �p: As the demand curve is reduced to a 45-degree line

starting from the origin, there are four cases to consider depending on where in the demand partition

space the demand curve passes through. Case(1): K�
2 < K�

3 + K
�
4 � K�

2 ; i.e. P (
q) = P (
4) =

P (
5) = 0: The �rst order conditions reduce to

0 = cK;1 � �1; (6)

v3P (
1) = cK;2 � �2; (7)

v3P (
2) + v1P (
3) = cK;3 + �1 � �3; (8)

(v2 � v3)P (
p) + (v2 � v3)P (
1) + v2(P (
2) + P (
3)) = cK;3 + �2 � �4: (9)

�1 = cK;1 > 0 implies that K�
1 = K�

3 and thus P (
p) = P (
4) = 0: (6) + (8) and (7) + (9) and

rearranging give

v3
v1
P (
2) + P (
3) +

�3
v1

=
cK;1 + cK;3

v1
;

1� P (
0)�
v3
v2
P (
p) +

�4
v2

=
cK;2 + cK;3

v2
:
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Since v3
v1P (
2) + P (
3) < 1 � P (
0) �

v3
v2
P (
p); this case is feasible only if

cK;1+cK;3
v1

<
cK;2+cK;3

v2
:

Case (2): K�
2 � K�

3 + K
�
4 � K�

2 and K
�
3 � K�

4 ; i.e. P (
q) = P (
1) = P (
4) = P (
5) = 0:

It follows from the FOCs above that �1 = cK;1 and �2 = cK;2: Hence, P (
p) = P (
2) = 0 and

K�
1 = K

�
3 = K

�
2 = K

�
4 : The FOCs simplify to

v1P (
3) = cK;1 + cK;3 � �3;

v2P (
3) = cK;2 + cK;3 � �4:

Since �3 = �4 = 0; this case is feasible only if
cK;1+cK;3

v1
=

cK;2+cK;3
v2

: Case (3): K�
1 � K�

3 +K
�
4 �K�

1

and K�
4 � K�

3 ; i.e., P (
p) = P (
1) = P (
2) = P (
5) = 0: Similar to Case (2), this case gives

K�
1 = K

�
3 = K

�
2 = K

�
4 and it is feasible only if

cK;1+cK;3
v1

=
cK;2+cK;3

v2
: Case (4): K�

1 < K
�
3 +K

�
4 �K�

1 ;

i.e., P (
p) = P (
1) = P (
2) = 0: This case is a mirror image of Case (1). The simpli�ed FOCs

become

1� P (
0)�
v4
v1
P (
q) +

�3
v1

=
cK;1 + cK;3

v1
;

P (
3) +
v4
v2
P (
4) + +

�4
v2

=
cK;2 + cK;3

v2
:

This case gives K�
2 = K

�
4 and is feasible only if

cK;1+cK;3
v1

>
cK;2+cK;3

v2
: �

Proposition 8 Proof. We provide the proof for the stochastic demand case because the de-

terministic case is similar yet simpler. cT;1 � ��cM ��cK implies that v2� v3 � ��cK : Because

v2�v3 � v4�v1; v2�v3 is the upper bound of pro�t gain of moving one unit of common component

from market 1 to market 2. When �cK � 0; ��cK is the associated capacity cost increase. The

inequality condition implies that investing in any amount of common component in market 2 would

be suboptimal. Similarly for proving the optimality condition of centralization in market 2. �
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