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W e consider firms that feature their products on the Internet but take orders offline. Click and order data are disjoint
on such non-transactional websites, and their matching is error-prone. Yet, their time separation may allow the firm

to react and improve its tactical planning. We introduce a dynamic decision support model that augments the classic
inventory planning model with additional clickstream state variables. Using a novel data set of matched online click-
stream and offline purchasing data, we identify statistically significant clickstream variables and empirically investigate
the value of clickstream tracking on non-transactional websites to improve inventory management. We show that the
noisy clickstream data is statistically significant to predict the propensity, amount, and timing of offline orders. A counter-
factual analysis shows that using the demand information extracted from the clickstream data can reduce the inventory
holding and backordering cost by 3% to 5% in our data set.
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1. Introduction and Related Literature

Recent Internet clickstream tracking technology has
generated the fast growing practice of web analytics
and extensive ongoing research in academia. Indeed,
the Internet has changed the way business works by
providing new information and distribution channels
for both firms and customers. Customers can readily
obtain product information online without physically
visiting a firm. Firms can use clickstream tracking
technology to see in real time who is visiting their
websites and analyze detailed clickstreams to learn
more information in advance.
Clickstream tracking allows firms to “learn about

customers without asking” (Montgomery and Srini-
vasan 2003), but the associated academic research has
been largely focused on online shopping and e-com-
merce: Montgomery (2001) shows that quantitative
models that are commonly used in brick-and-mortar
distribution channels prove to be useful in optimizing
the use of clickstream data. The associated literature
is extensive; see, e.g., Johnson et al. (2003), Moe and
Fader (2004), Montgomery et al. (2004), Sismeiro and
Bucklin (2004), Van den Poel and Buckinx (2005),
Hui et al. (2009) and references therein. This literature
is essentially about the marketing benefits of click-
stream tracking because e-commerce websites serve

primarily as sales channels. Clickstream tracking
allows e-commerce firms to get accurate readings of
the efficiency of their websites, quickly usher a visitor
(referred to as “she” throughout the study) who is
about to purchase an item to a high-speed server,
identify target visitors to show pop-up coupons, and
so on.
In contrast to e-commerce settings, we investigate

“non-transactional websites” that serve predomi-
nantly as a product catalog while orders are taken
offline. Many business-to-business (B2B) settings as
well as some business-to-consumer (B2C) settings fall
in this category. Specifically, this study stems from
our interaction with a US manufacturer of industrial
products, hereafter referred to as “the company.” The
company makes high-end roll-up doors that are cus-
tomized for industrial and commercial buildings with
regards to size, type of material, type of environment,
etc. The doors can go into new buildings or can
replace older doors. Prices for a door range from the
thousands to tens of thousands of dollars. Like many
others, the company provides current and potential
customers with company, product, and contact
information on its website. However, the website is
non-transactional and the company sells its products
offline, either direct or through dealers. The com-
pany hires the services of a web analytics firm that
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specializes in clickstream tracking to help demand
forecasting, procurement, and inventory planning.
Our study focuses on the operational benefit of

clickstream tracking by investigating its use as
advance demand information for procurement, pro-
duction, and inventory planning. We are interested in
how, and to what extent, clickstream data from non-
transactional websites can improve demand forecast-
ing for inventory management. In particular, in this
setting of a B2B business with non-transactional infor-
mational websites, we address the following research
questions: (1) How can we use clickstream data in
inventory management? This requires a tactical
model that explicitly incorporates clickstream data in
operations management. (2) How can we identify the
statistically significant clickstream data and predic-
tion functions (needed in the model) and improve the
demand forecast? (3) How large is the operational
value of using the advance demand information from
clickstreams to reduce inventory holding and backor-
dering costs in our setting?
We believe these questions are timely and impor-

tant for several reasons. The recent fast-growing
research using clickstream data has already demon-
strated the great interest and importance for e-com-
merce firms. The same applies to offline-selling firms.
Understanding consumer online browsing behavior
and its value helps firms make investment decisions
regarding the adoption of clickstream tracking
technology. Manyika et al. (2011) report that “big
data—large pools of data that can be captured, com-
municated, aggregated, stored, and analyzed—is now
part of every sector and function of the global econ-
omy.” Clickstream tracking has allowed individuals
around the world to contribute to the amount of big
data available to companies. Our study examines the
potential operational value that clickstream data, an
important type of big data, can create for companies
and seeks to illustrate and quantify that value. In a
concrete setting of the company, we show that using
the information extracted from the clickstream data
can reduce the inventory holding and backordering
cost by 3% to 5% in many representative parameter
scenarios. The model and empirical methods we use
in our study may be useful for other companies that
aim to exploit big data to gain competitive advantage.
The clickstream data and sales data we study has

significant differences from the data from e-commerce
stores studied in the literature because the company
website is non-transactional. While it has been con-
firmed in the literature that online click behavior is
correlated with purchasing behavior in e-commerce
settings, it is much less clear whether such correlation
persists in non-transactional settings because custom-
ers do not have to visit the website to make a pur-
chase. This procedural separation reduces the

predictive power of web visits to forecast purchase
orders if there is any statistical relationship between
them at all. It is reported that e-commerce sales only
account for 1.2% of all retail sales.1 Hence, the vast
majority of commerce still is executed offline, and
thus our research setting addresses a larger part of
the economy beyond e-commerce.
Due to the procedural separation, non-transactional

websites provide the opportunity for firms to react.
Clearly, in an e-commerce setting like Amazon, the
time lag between clicks and orders could be on the
order of minutes, too short to adjust operational
plans. The longer time separation between clicks and
orders has an important benefit: if it exceeds the pro-
duction or procurement lead time, the firm can
respond to changes in advance demand information.
Matching supply with demand is one of the main
issues for operations management. There is a vast
body of literature modeling advance demand infor-
mation; see, for example, Hariharan and Zipkin
(1995), Raman and Fisher (1996), Chen (2001), Gallego
and €Ozer (2001, 2003), €Ozer and Wei (2004), Tan et al.
(2007), Wang and Toktay (2008), and Gayon et al.
(2009). €Ozer (2011) provides a comprehensive litera-
ture review. All these studies assume that advance
demand information is available and study how to
use it in inventory management. On one hand, our
study is in the same spirit of, and complementary to,
this literature by introducing a practical decision sup-
port model that endows classic inventory manage-
ment with clickstreams as a flow of advance demand
information. On the other hand, our study is the logi-
cal precedent: to what extent can advance demand
information be obtained from clickstreams? Although
the value of advance demand information is well
established and understood theoretically, research on
how advance demand information is obtained in prac-
tice and its empirical evidence seems largely absent in
the operations management literature. €Ozer (2011) offers
several examples of obtaining advance demand infor-
mation in practice such as flexible delivery at the time
of ordering, ordering customized products, and
advance selling. All these practices share the same
feature that advance demand information is obtained
at the time of customer ordering. Clickstream data, in
contrast, provides advance demand information in a
completely different way: first, it can be unrelated to
customer ordering. Second, such information can be
obtained well before customer ordering. (For exam-
ple, the earliest lead time in our data set is 438 days
before a customer actually placed an order and the
mean time is around 90 days.) Hence, this kind of
demand information can be truly “advance.” More
importantly, such information is obtained “without
asking” customers, which is also called “inferring”
(Fay et al. 2009). Our empirical study of this novel
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information technology shows that clickstream data is
useful for operation managers to predict demand and
helps firms “do the right thing at right time in right
quantities.”
Our work is also related to recent empirical study

in the information systems literature of using key-
word search and social mentions to predict future
events, based on the idea that what people are search-
ing for today is predictive of what they will do in the
future (cf. Asur and Huberman 2010, Goel et al. 2010,
Joo et al. 2011, and reference therein). Our research
shares the same theme in spirit in that we all demon-
strate the promise of using online data to forecast
future consumer demand. While their studies are typ-
ically at the aggregate level using public data, our
study shows that an individual firm can actually
exploit its private data from click tracking and
directly translate it to profit.
The main contributions and findings of the study

are as follows:

1. We introduce a practical dynamic decision
support model that augments the traditional
inventory management with clickstreams as
additional state variables in the dynamic pro-
gramming formulation for demand forecasting.

2. We conduct an empirical study to identify (i)
which clickstream variables are statistically sig-
nificant for demand forecasting, (ii) how to
include them into the state variables of the
dynamic model, and (iii) to estimate the extent
to which utilizing the clickstreams creates
operational value. We find that customer click-
ing behavior is a statistically significant predic-
tor of the corresponding offline purchasing
behavior in terms of not only ordering proba-
bilities and ordering amount (in monetary
value), but also ordering timing (lead time).

3. Through a counterfactual study, we show that
using the information extracted from the click-
stream data can reduce the inventory holding
and backordering cost by 3% to 5% in many
representative parameter scenarios.

4. To the best of our knowledge, this study is the
first in the operations management literature
that provides both a model and empirical evi-
dence to demonstrate how the recent click-
stream tracking technology can be used to
improve operational decisions. Our study aims
to stimulate future empirical and theoretical
work in this practice- and data-driven field.

The outline of this study is as follows. The next sec-
tion presents a theoretical model to demonstrate how
clickstream data can be used to improve demand
forecasting and inventory management. In section 3,
we empirically identify the clickstream variables that

are significant for demand forecasting. In section 4,
we quantify the operational value of advance demand
information from the clickstream data using our
model. Section 5 contains the discussion and
limitations.

2. A Model of Using Clickstream Data
in Inventory Management

We start by introducing a tactical model of using
clickstream data in demand forecasting and inventory
management that can serve as a decision support
system in practice. This practical model endows clas-
sic inventory management with clickstreams as a
dynamic flow of advance demand information. In sec-
tion 3, we will empirically identify relevant model
variables. This model will also be our tool for estimat-
ing the operational value of clickstream data in
section 4.
We explain how to use clickstreams in inventory

management first in a single-period newsvendor
model and then in a multi-period dynamic model.
In a single-period model, before the company’s pro-
duction or procurement decisions, clickstreams are
observed to predict demand. For each visitor i who
clicked, the company can use clickstreams to estimate
her purchasing probability Pi � fðXiÞ for i = 1,2,…,
where Xi is a vector of independent variables includ-
ing clickstream variables and f denotes a general pre-
diction function. We shall empirically specify both Xi

and f in the next section. Assuming all the visitors are
independent decision makers, a simple combinatorial
calculation then yields the predicted distribution of
the total demand that can be used to derive the opti-
mal inventory for this single-period newsvendor
model.
To explain how to use clickstream data in a

dynamic setting, consider a discrete-time inventory
control model endowed with clickstream data. Sup-
pose there are T replenishment periods. In each per-
iod t, the company can observe the clickstreams for
each visitor i who clicked in this period. To formulate
the company’s inventory control problem as a
dynamic programming problem, we need a descrip-
tion of the company’s operations.
Timing. At the beginning of each replenishment

period t, the company first satisfies or backorders any
realized demand Dt and observes clickstreams of new
visitors Kt ¼ ðK1;t;K2;t; . . .;KJ;tÞ that arrived between
the beginning of period t � 1 and the beginning of
period t, where J denotes the number of customer
classes to be defined below. All the clickstreams
observed up to the beginning of period t serve as
imperfect advance information of the future demand.
Then the company updates its demand forecast, and
determines its ordering quantity qt for input (e.g., a
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key “patented part”), which would arrive at the
beginning of the next period. This cycle repeats, as
depicted in Figure 1.
Extending the previous single-period model to a

multi-period model introduces significant analytical
complications for at least three reasons: first, the
demand distribution in period t depends on what
happened in previous periods. Second, visitors are
heterogenous. Third, in addition to “purchasing” or
“never purchasing,” a customer now has an addi-
tional decision: wait and perhaps purchase later. The
model has to keep track of the richness of the system
dynamics. We adopt the following approach: (i) to
account for visitor heterogeneity while still retaining
analytical tractability, we classify all visitors into J
classes or categories. Within each class j, each visitor
is homogenous, i.e., each visitor in class j who clicked
in period t but had not clicked before has prior pur-
chasing probability pj;t0 in period t0 for j = 1,2,…,J and
t0 ¼ t þ 1; t þ 2; . . .. Choosing J is at the company’s
disposal. Intuitively, it is natural to assume that visi-
tors who share the same value of the predictors Xi

constitute a class. Similar to the single-period model,
the purchasing probability pj;t0 can be estimated using
Pi � fðXiÞ. The only difference is that we will use the
empirical distribution of the click lead time to predict
when (i.e., in which period) a purchase will occur. (ii)
We assume that each visitor in class j has the prior
probability cj;t0 in period t0 for t0 ¼ t þ 1; t þ 2; . . . of
never purchasing the product. Clearly, 1 � pj;t0 �
cj;t0 � 0, where the equality always holds in the sin-
gle-period model but not necessarily in this model for
the third reason we pointed out. Non-buyers in period
t are defined as visitors who will never purchase the
product in any future period t0 � t. In a single-period
setting, non-buyers are the customers who do not
purchase. Hence, non-buyers include what Moe
and Fader (2004) define as “hard-core never-buyers.”
However, in a dynamic setting non-buyers include
more than those hard-core never-buyers. It is possible
that a customer is interested in purchasing the prod-
uct initially, say at period t1, but becomes a non-buyer
at period t2 [ t1. Using Moe and Fader (2004)’s term,

non-buyers in period t include the “hard-core
never-buyers” in all the future periods t0 � t. Estimat-
ing these probabilities for non-buyers is trivial for the
single-period model given the equality relationship
but can be difficult in the multi-period model. We will
demonstrate how to indirectly estimate them in
section 4.
We are now ready to describe the system dynamics

analytically. Our approach allows for a class-by-class
analysis. Recall that Kj;t denotes the number of new visi-
tors of class j in period t, meaning the visitors of class j
who visited the website in period t but never visited
the website before period t. This definition precludes
the “double counting” as will become clear in the flow
equation. Notice that we count “visitors” rather than
“clicks” given that a visitor typically clicks multiple
times. We will call these Kj;t visitors potential buyers.
For brevity, we shall drop the class subscript by writ-
ing Kt � Kj;t wherever no confusion arises. They
represent potential future demand, as they may con-
vert to real buyers in future periods. For analytical
convenience, we assume that each visitor buys at
most one unit of the product. This assumption is rea-
sonable in our setting of a durable industrial product.
Let the random variable Ztþ1 � Zj;tþ1 denote the total
number of potential buyers of class j at the beginning
of period t + 1, i.e., the cumulative number of custom-
ers of class j who clicked up to period t + 1 and are
still part of the potential buyers for future periods,
i.e., they have not purchased or have not been identi-
fied as non-buyers yet. Then we have the dynamic
flow equation as follows:

Ztþ1ðzt;HtÞ ¼ zt þ Ktþ1 �Dtþ1ðzt;HtÞ � Ltþ1ðzt;HtÞ;
ð1Þ

which is the previous realized number zt, plus the
number of new potential buyers Ktþ1 from the click-
streams observed in period t + 1, minus the demand
Dtþ1 and non-buyers Ltþ1. The non-buyers may not
be identifiable from clickstreams, in which case
Ltþ1 ¼ 0. Typically companies can indirectly esti-
mate the probability that a customer never

Clickstreams
K2

Clickstreams
K1

Clickstreams
K3

Clickstreams
K4

Clickstreams
K5

Figure 1 Description of the Dynamic Programming Model
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purchases from clickstreams. Non-buyers can be
identified in cases where the company can obtain
some offline information by communicating with
the visitors, in which cases the firm should exclude
non-buyers from the clickstreams according to
Equation (1). Notice that the terms in lower case
denote the realizations of the random variables
in upper case. In general, Ztþ1 depends on the entire
“history” Ht � Hj;t ¼ ðk1; . . .; kt; d1; . . .dt; l1; . . .; ltÞ. Let
Zt � ðZ1;t;Z2;t;Z3;t; . . .;ZJ;tÞ and Ht � ðH1;t;H2;t;
H3;t;HJ;tÞ; then the state vector ðZt;HtÞ completely
describes the system in period t. Clearly, the total
demand in period t + 1: Dtþ1 ¼ PJ

j¼1 Dj;tþ1.
According to flow Equation (1), Ztþ1 depends on

the complete history Ht. Working with this general
non-Markovian model is analytically challenging.
From now on, we will work with a Markovian model
by assuming that all zj;t potential buyers have the
same purchasing probability pj;1 and never-purchas-
ing probability cj;1 for any period t � 1 given that
they did not purchase in previous periods. This
assumption implies that pj;t ¼ pj;1ð1 � pj;1 � cj;1Þt�1

and cj;t ¼ cj;1ð1 � pj;1 � cj;1Þt�1 for t � 2. Hence, we
can drop the dependence on Ht, and the vector Zt

suffices to fully describe the system in period t.
The Markovian assumption allows us to formulate

the company’s inventory management problem as a
finite-horizon discounted dynamic programming
problem using x, the inventory position, and z, the
vector of the cumulative number of potential buyers in
each visitor-class over the future. Let Vtðx; ztÞ denote
the minimum expected discounted cost at state ðx; ztÞ
starting from the beginning of period t to the end of
the planning horizon. We assume that any remaining
inventory is salvaged with per-unit revenue equal to
the per-unit procurement cost c and any outstanding
backorders are satisfied with per unit cost of c at the
end of the planning horizon. Then we have2

VTþ1ðx; zTþ1Þ ¼ �cx:

For t = 1,2,…,T, we have the Bellman equation:

where b0 is the usual time discount factor and y is the
order-up-to level as the company’s decision variable.
This formulation is motivated by Gallego and €Ozer
(2001), €Ozer (2011), and references therein where they
include an observed part of lead time demand in clas-
sic inventory models (cf. Porteus 1990).3 While our

inventory model endowed with clickstreams is novel,
the dynamic flow of advance demand information z
extracted from these clickstreams K essentially pro-
vides observable lead time demand in spirit. Using a
similar technique as Gallego and €Ozer (2001), one can
prove that the optimal inventory policy is a “click-
streams-dependent” base stock policy, where the
optimal order-up-to levels are y�t ðztÞ. All the parame-
ters required to evaluate the cost saving due to using
clickstream data in section 4 will be estimated from
the data in our subsequent empirical study.

3. Empirical Analysis

In this section, we will empirically demonstrate that
clickstreams are indeed useful to estimate the pur-
chasing probability Pi ¼ fðXiÞ for i = 1,2,… in our
model in section 2. To this end, we first discuss our
data sets and variable definitions, then specify the
general prediction function f as a simple logit or a ran-
dom-coefficient logit regression equation, and finally
show which click variables among Xi are statistically
significant.

3.1. Background, Data Source, and Characteristics
The company is in the Midwest of the United States
and has some smaller rivals in neighboring states. Con-
sumers can freely shop around and visit websites of
multiple similar providers. The website provides com-
prehensive information to customers; however, due to
the customized nature of the product, committing to
purchasing is done typically over the phone either
through the company directly or through dealers.
The company’s website provides the company pro-

file information, product specification information
based on different industries, contact information for
the company and its dealers, and a webpage where
customers can send an email to the company.
However, price is not shown on the website and is
communicated offline. Customers can acquire infor-
mation from a few other channels such as phone calls,

word of mouth, and brochures from industry confer-
ences. Visiting the website is not a prerequisite for
purchasing the product. We do not have an exact per-
centage of customers that visit the website, as some
customers may visit through private computers or
their internet service providers that prevent identity

Vtðx; ztÞ ¼ min
y� x

cðy� xÞ|fflfflfflffl{zfflfflfflffl}
procurement cost

þb0 hE y�Dtþ1ðztÞð Þþ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
holding cost

þ bE Dtþ1ðztÞ � yð Þþ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
backorder cost

2
64

3
75þ b0E Vtþ1 y�Dtþ1ðztÞ;Ztþ1ðztÞð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

optimal cost�to�go

2
64

3
75

8><
>:

9>=
>;;
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identification.4 Hence, this study focuses on only
those identifiable customers who ever visited the
website.
Let us discuss the current inventory management at

the company we studied. The company has to keep
inventory for a “patented part” (required for assem-
bling an end product) that is supplied from Europe
with a transportation lead time of three months. The
company procures this component every three
months, which we model as one “period” using Fig-
ure 1 in section 2. The supply lead time is one period.
The “demand lead time” (Hariharan and Zipkin 1995,
Gallego and €Ozer 2001, Tan et al. 2007, €Ozer 2011, and
references therein) is approximately zero, as cus-
tomer demand is satisfied in less than two weeks.
(The company can assemble-to-order within two
weeks if all required components are available.) The
challenge for inventory management is that the sup-
ply lead time is much longer than the demand lead
time and that backordering customer demand is
costly. The intangible adverse effect of the future
loss of customer goodwill due to backordering is
estimated by managers at around five times of the
per unit procurement cost.
We use two data sets of the company that sells

high-end roll-up doors in North America. The first
data set is the clickstream data from August 26, 2006
to February 28, 2008. The company started to track
clickstreams from August 2006. The second data set
includes both the historical sales data that dates back
to March 1998 and recent sales data from August 2006
to November 2008. There are 5185 customers, and
9694 visits in the data.
In our setting, web visitors do not identify them-

selves because they do not purchase and reveal con-
tact or payment information online. The firm can only
learn each visitor’s identity through her IP address.
In addition, we study a B2B setting where the custom-
ers themselves are firms. This has benefits and draw-
backs: about 82% of the visits in our clickstream data
come from a company-registered IP address so that
the visitor is easily identified with a company. Then
we can manually match clickstream data with sales
data to investigate the correlation between clicking
behavior and ordering behavior. The other 18% of vis-
its come from large service provider IP addresses
(e.g., @comcast.com, @cox.com, @att.com)—perhaps
visits from home computers or cellular devices, which
prevents the identification of the visitor and the
matching with order data. These visits are deleted
from the data set. While one expects corporate online
browsing behavior to be less frivolous than that in a
B2C setting, another challenge is that we cannot
identify the various individuals who are involved in
the purchasing process. Only IP addresses are
tracked, typically at the level of a firm’s computer

center/connection to the Internet but not at the level
of individual computers inside the firm. Therefore,
the unit of analysis in our data is a firm, and all visits
from a firm are aggregated and indistinguishable
from one visitor. In addition, a potential customer
may also browse the website from her home com-
puter(s). Thus, our clickstream-order data is more
noisy than in e-commerce.
In the clickstream data, the unit of data corresponds

to a customer who clicked and has the following
fields: the name of the customer identified from her IP
address; the clickstream, which is a summary of
the recorded click behavior that includes the time of
visits/clicks; cumulative visits (i.e., the cumulative
number of visits); average time stayed online per visit,
average number of pages visited per visit; and the
detailed page-specific data such as the sequences of
pages visited and the time length.
Each unit in the sales data records the customer

name, the ordering amount (in US dollars), and the
time of ordering.
Before statistical analysis could be started, several

preprocessing tasks were executed. First, we cleaned
the clickstream data by deleting unidentifiable clicks.
The second preprocessing step deleted some organi-
zations that we excluded in our study such as univer-
sities, public organizations, etc. In the ordering data
set, indeed, no universities or public organizations
ever purchased any product from the company. Their
visits may have been research-inspired.
Third, as discussed in the introduction, we aggre-

gated all the visitors within a company as a single
visitor by their company names even if a company
has multiple locations.5 The reason of doing this is
simply because of the limitation in our information
availability, i.e., the clickstream data only shows
the company names, not the persons who actually
visit.
Finally, we matched the clickstream data set with

the sales data set together by the firm/customer
names. We have 9694 visits in our clickstream data set
after preprocessing and matching with the sales
data.6

3.2. Variable Definitions
We use the (binary) indicator variable order as our
dependent variable to denote whether the customer
who clicked did purchase or not from August 2006 to
November 2008, order amount as a dependent variable
to denote the monetary ordering amount, and order
lead time as a dependent variable to denote the
elapsed time between order placement and last time
the customer visited the website.
Which variables should be used to approximate for

customer click behavior? We believe that the answer
depends on the context. What we did is to explore all
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the commonly used click variables that have been
used in the literature (cf. Moe and Fader 2004), for
example, cumulative number of visits, visit duration,
cumulative and average number of pages, etc. At the
same time, we avoid any multicollinearity problem.
We also include webpage-specific variables to capture
more individual heterogeneity. In our setting, the con-
tact information pages appear informative in terms of
predicting purchase propensity.
We have four different kinds of variables that com-

prise our explanatory variables. First, we have “gen-
eral clickstream measures,” which concern data
measured at a rather general level of the clickstreams.
They represent the information at the level of the
session, which is defined as a single visit to the web-
site. Cumulative visits, defined as the cumulative
number of visits, is among the most often used met-
rics in the e-commerce literature (cf. Moe and Fader
2004). Unlike typical e-commerce clickstream data,
one characteristic of our clickstream data is that cus-
tomers typically returned (if they did return) to the
website after some time in the order of “days.” For
the few cases of multiple sessions within a day, we
aggregated these sessions within a day as one visit in
our setting. Average time length per visit is defined as
the total time a visitor stayed on the website divided
by cumulative visits. Average number of pages per visit is
defined similarly.
Second, we have “detailed clickstream measures”

that indicate whether some specific pages were vis-
ited or not. There are essentially two categories of
web pages on the firm’s website: one category of
pages presents product information while the other
category shows the contact information if visitors
want to contact the company or distributors or if
visitors want to become distributors. Intuitively, we
expect visits to pages of contact information to be
more informative. Indeed, there is a lot of variation in
terms of whether these contact-information pages
were visited or not, and we use indicator variables to
account for this variation. In particular, the variables
contact me, contact distributor, become distributor, reach
thanks page keep track of detailed clickstream
information.
Third, given that new customers may derive more

informational value from web browsing than existing
customers, we have “historical order information”
about each visitor, and the dummy variable historical
order is used to indicate whether this is an existing
customer (i.e., a web visitor who has purchased
before visiting the website). Historical order amount
denotes the cumulative amount in US dollars of previ-
ous orders.
Finally, some “company demographics variables,”

i.e., industry control variables, are at our disposal.
We include company industry type variables to

control for the heterogeneity in the latent probability
of ordering the products. The variables, chemistry
industry, food industry, distribution industry, manufac-
turing industry, pharmaceutical industry, transportation
industry, and automobile industry are used as controls
for industry types. Obviously there are companies
not belonging to any of these industries. It should
be recognized that these control variables take into
account the heterogeneity among visitors to some
degree, given that all companies in the same indus-
try are treated as homogenous. Given that our data
does not allow us to pick up the customized fea-
tures to individual customers, we can only treat the
products as homogenous. However, the industry
type controls for the heterogeneity to a certain
degree. Table 1 presents the summary statistics of
our data after preprocessing. From Table 1, we can
indeed observe significant variations among the
ordering behavior variables.

3.3. Econometric Model
We need a specific empirical prediction function fðXiÞ
to test whether and to what extent the clickstream
data is useful for demand forecasting. In the differ-
ent yet related setting of e-commerce, there are a
variety of prediction functions in the literature that
model clicking and purchasing behavior: “conversion
model” (Moe and Fader 2004), probit model
(Montgomery et al. 2004), a “task-completion approach”

Table 1 Summary Statistics

Variables Mean SD Min Max

Ordering behavior
Order 0.015 0.119 – –
Order amount ($) 449.26 6249.27 0 286,567.90
Order lead time (days) 89.28 103.31 0 438

General click measures
Cumulative visits 1.87 2.07 1 30
Average time length
(seconds)

229.97 494.51 0.33 10,879.50

Average pages per visit 5.23 9.03 0.23 314.50
Detailed click measures
Contact me 0.11 0.31 – –
Contact distributor 0.05 0.21 – –
Become distributor 0.003 0.057 – –
Reach thanks page 0.03 0.18 – –

Historical ordering behavior
Historical order 0.04 0.19 – –
Historical order
amount ($)

1867 17,791 0 642,375

Industry control variables
Chemistry industry 0.01 0.11 – –
Food industry 0.02 0.14 – –
Distribution industry 0.01 0.09 – –
Manufacturing industry 0.04 0.19 – –
Pharmaceutical industry 0.02 0.15 – –
Transportation industry 0.01 0.10 – –
Automobile industry 0.01 0.12 – –
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(Sismeiro and Bucklin 2004), logit model (Van den
Poel and Buckinx 2005). We refer readers to Hui et al.
(2009) for a comprehensive literature review. The
closest to ours is the seminal work by Moe and Fader
(2004), who propose a conversion model and compare
with several alternative models such as the logit
model, duration models, Beta-Binomial, and historical
conversion rates. To facilitate the comparison of the
performance of the logit model vs. the alternatives,
we actually used their data,7 and found that the logit
model can perform “better” than the conversion
model, even using their model evaluation criterion in
their setting. To stay focused on the operational value
of clickstreams, we relegate the detailed analysis to
the Online Supplement. Moreover, as argued else-
where (Van den Poel and Buckinx 2005, for instance),
the typical benefits of logit modeling are: (i) logit
modeling is well known, simple (due to its closed-
form expression), and extensively used in the litera-
ture; see, for example, Draganska and Jain (2005,
2006), Train (2003), and Van den Poel and Buckinx
(2005). (ii) The ease of interpretation of logit is an
important advantage over other methods. For exam-
ple, the logit model can be interpreted as choices
made by boundedly rational decision makers (cf.
Huang et al. 2013 and references therein). For justifi-
cations and limitations of logit models, readers are
referred to Cheu et al. (2009). (iii) Levin and Zahavi
(1998) have shown that logit modeling provides good
and robust results in general comparison studies.
We thus adopt a logit model as our prediction

function f, which stems from the random utility model
where we assume customer i’s outside option has nor-
malized utility zero while purchasing yields utility

Ui ¼ CXi þ ei; ð2Þ

where Xi ¼ ½Yi;Zi� is a vector representing customer
i’s observed attributes or characteristics. Conceptu-
ally and purely for pedagogical purposes and con-
venience, we can decompose the customer attributes
to two categories:
The vector Yi includes its general attributes, such as

its economic characteristics, the industry it belongs to
(which affects the relative usefulness of product), its
size, the experiences/history of using the product,
and so on. In our setting, Yi includes a set of variables
to capture the customer’s historical ordering behavior
and a dummy variable to denote which industry it
belongs to.
The vector Zi includes the attributes of customer i’s

customized needs; for example, a customer may need
the product specialized to its business setting, and
this kind of product may only be some particular
firms’ specialization and not others’. In our setting, Zi

is “approximated” by a set of clickstream variables

defined in the previous section. To incorporate (pick
up) potential nonlinear effects, we also use squares of
these variables. The vector Γ denotes the coefficients
of Xi and is to be estimated.
The error terms ei represent the unexplained varia-

tion from Xi. Under the assumption that the error
terms in Equation (2) are independently and identi-
cally distributed with the type-I extreme value distri-
bution, the probability Pi that customer i purchases
from the firm is given by the logit demand formula
(McFadden 1974, 2001)

Pi ¼ fðXiÞ ¼ eUi

1þ eUi
: ð3Þ

The simple logit model has limitations in our set-
ting in that all visitors within each industry share the
same coefficients for click variables, although we used
demographic variables to take into account visitor
heterogeneity.
To incorporate more customer heterogeneity in the

prediction function f, we allow heterogeneity among
the coefficients of click variables even within each
industry by adopting a random-coefficient logit
model.8 Specifically, the utility Ui for individual i can
be written as Ui ¼ biXi þ �i, where bi is a vector of
coefficients that is unobserved for each individual i and
varies randomly over each individual representing
each individual’s “tastes,” and �i is an unobserved
random term that is distributed i.i.d. extreme value.
Suppose bi has density fðbi j h�Þwhere h� are the (true)
parameters of this distribution. Then, conditional on
bi, the probability that individual i purchases is the

standard logit: LiðbiÞ ¼ ebiXi
ð1þebiXi Þ.

The unconditional probability is the integral of the
conditional probability over all possible values of bi:
Tiðh�Þ ¼ R

LiðbiÞfðbi j h�Þdbi. Maximum likelihood
estimation requires the probability of each sampled
individual’s observed purchase. Let I(i) 2 {0,1} indi-
cate whether individual i purchased or not. Then the
unconditional probability for the observed purchase
is Piðh�Þ ¼ R

LIðiÞðbiÞfðbi j h�Þdbi. The log-likelihood
function is LLðhÞ ¼ P

i lnPiðhÞ. Exact maximum like-
lihood estimation is impossible, as the integral cannot
be calculated analytically. Following Train (2003), we
shall approximate the probability through simulation
and maximize the simulated log-likelihood function.

3.4. Hypothesis Testing
In this subsection, we conduct hypothesis testing to
investigate how the clickstream data can be useful for
demand forecasting. Then, we present the empirical
results.
The first hypothesis is to test whether the

clickstream data can be used as advance demand
information:
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HYPOTHESIS 1. Visitor online behavior, as defined by the
general clickstream measures and the detailed clickstream
measures, is significantly correlated with offline ordering
probability/propensity.

Demand/order lead time plays an important role
in operations management. While past research
almost exclusively focused on predicting purchase
probabilities, we also investigate whether we can use
clickstream data as advance demand information to
predict the timing of purchase. Knowing the order lead
time (i.e., the time difference between the time of
ordering and the most recent time of clicking) is bene-
ficial for cost reduction in operations management.
From a psychological perspective, a more frequent
visitor would be more anxious to place orders to sat-
isfy her need. Hence, we want to test our second
hypothesis:

HYPOTHESIS 2. Order lead time is negatively and signifi-
cantly correlated with cumulative visits.

We are also interested in whether click information
is useful for predicting the ordering amount as well:

HYPOTHESIS 3. Online clicking behavior is significantly
correlated with offline ordering amount.

Now we present our regression results. Table 2
shows the logit regression results. From the Wald test
result, our logit regression model is significant at level
0.00%. Some of the general click variables and
detailed page-specific variables are statistically signif-
icant, which indicates that we fail to reject Hypothesis
1, i.e., visitor online click behavior is indeed providing
the firm useful information to predict future ordering
probabilities.
We find that cumulative visits is positively significant

at the 1% level. More frequently visiting the website
indeed reveals a higher probability of ordering.
Table 2 also shows that the detailed click variable

contact distributor is significant for predicting ordering
probability. We conclude that detailed click behavior,
besides general click behavior, is also useful for pre-
dicting ordering probability.
Intuitively, how long a customer has been searching

may affect or reflect her purchasing propensity.
We create a new age factor variable to keep track of
how long a customer has been searching: Searching
time length. This variable measures the time difference
between the most recent time of clicking and the first
time of clicking (in terms of days) as a proxy for the
elapsed time in product searching. As shown in Table
3, it is not statistically significant (p-value = 0.786).
This finding may appear surprising. However, it
might be explained as follows: Cumulative visits mea-

sures the depth of searching, which is indeed statisti-
cally significant. Searching time length measures the
time breadth of searching. A customer may spend a
long time in searching without visiting frequently, or
she may visit frequently within a short period of time.
In our setting, the data suggests that the former
behavior tends to suggest this customer is more likely
to purchase, i.e., visiting depth rather than visiting
time breadth matters more.
More interestingly, from Table 4, not only does

cumulative visits convey useful information about
ordering probability, it also provides relevant informa-
tion about the timing of future orders. Indeed, if a

Table 2 Logistic Regression Results (Dependent Variable: Order)

Variable
All

customers
New

customers
Existing

customers

General click measures
Cumulative visits 0.199�� 0.366�� 0.160�

(0.077) (0.186) (0.091)
Average time length 0.002 0.004�� �0.002

(0.001) (0.002) (0.001)
Average pages per visit 0.026 0.182 0.004

(0.063) (0.160) (0.098)
Square of average time �1.18e�06� �2.50e�06�� �2.87e�07

(6.75e�07) (1.12e�06) (5.18e�07)
Square of average page �0.0001 �0.007 0.002

(0.001) (0.006) (0.003)
Square of cumulative
visits

�0.003 �0.014 �0.002

(0.003) (0.013) (0.004)
Detailed click measures
Contact me or not �0.445 �0.186 �0.488

(0.504) (0.688) (0.628)
Contact distributor 1.418�� 0.600 1.646�

(0.610) (0.792) (0.858)
Reach thanks page 0.214 0.525 �0.145

(0.608) (0.797) (0.850)
Historical ordering
behavior

Yes Yes Yes

Industry control variables
Chemistry industry 0.989 1.714��

(0.969) (0.863)
Food industry �0.202 0.770 �0.418

(0.633) (1.081) (0.630)
Distribution industry �0.822 1.479

(1.460) (0.967)
Manufacturing industry 0.027 0.245 �0.033

(0.509) (1.058) (0.540)
Pharmaceutical industry �0.908 �0.711

(0.604) (0.766)
Transportation industry 0.617 1.084

(1.060) (1.680)
Automobile industry 0.540 1.130 0.352

(0.633) (1.043) (0.651)
Constant �6.067��� �7.381��� �1.599���

(0.319) (0.718) (0.524)
Pseudo R2 0.372 0.111 0.143

Standard errors are reported in parentheses. �p\ 0:10; ��p\ 0:05;
���p\ 0:01. The number of observations for new customers is 4982,
and is 203 for existing customers.
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visitor frequently visits the website, this visitor may
be anxious to buy some products in the near future.
Hence, her order lead time may be shorter than oth-
ers’, ceteris paribus. Table 4 shows the Tobit regres-
sion results using order lead time as the non-negative
dependent variable and all the other variables as
explanatory variables, from which we can see cumula-
tive visits and square of cumulative visits are significant.
Hence, we do not have enough evidence to reject
Hypothesis 2.
From Table 5, we can see cumulative visits, square of

cumulative visits, contact distributor, and historical order
amount are significantly and positively associated
with order amount.9 Intuitively, more expensive order-
ing is associated with more frequent visits. In sum,
we can use cumulative visits to predict both ordering
probability, amount, and the timing. These empirical
findings confirm that clickstream data provides
advance demand information.
Table 2 also shows that the average time length

stayed online is not significant for predicting ordering
probability. This finding is somewhat counterintuitive.
Suppose we see two visitors online, one staying very
long with just a few visits, and the other visiting many
times, but with short staying time each visit. Who has
a higher probability of ordering ceteris paribus? Our

results simply suggest that the second visitor is more
likely to order in the future. However, as will be dis-
cussed, for the sub-population of new customers,
average time length is significant, as shown in Table 3.
Table 2 shows the results for new customers and

existing customers separately. One implication is that
these two classes of customers indeed should be trea-
ted differently in terms of linking their click behavior
to their ordering probability. For new customers, aver-
age time length stayed online is significant to predict
ordering probability. In addition, the relationship takes
a quadratic form, i.e., the positive relationship trend
stops at some critical point above which the relation-
ship changes to be negatively significant. This finding
confirms our intuition: staying long online is not nec-
essarily a good sign. For existing customers, however,
there is no such significant relationship. The reason
could be explained as follows: compared to new cus-
tomers, existing customers have already ordered
some products before and thus may already know
enough information about the firm and the products.
Hence, they probably do not need to spend much
time online to collect information for purchasing deci-
sion-making. Existing customers may have different
motivations to visit the website. While new customers
visit for information searching, existing customers
may visit to get after-sales service. We can also see
that cumulative visits is just marginally significant (sig-
nificant at level 10%) from Table 2.

Table 4 Regression Results: Lead Time as the Dependent Variable

Variable
Tobit

coefficient Variable
Tobit

coefficient

General click measures Industry control
variables

Cumulative visits �14.760�� Chemistry
industry

42.636
(5.596) (79.705)

Average time length 0.263 Food industry 57.048
(0.256) (47.100)

Average pages per visit �8.087 Distribution
industry

41.306
(10.454) (113.371)

Square of average time �0.0004 Manufacturing
industry

�11.167
(0.0003) (37.864)

Square of average page �8.087 Pharmaceutical
industry

�31.219
(10.454) (81.009)

Square of cumulative visits 0.380� Transportation
industry

�102.875
(0.208) (110.032)

Detailed click measures Automobile
industry

�80.148
Contact me or not 33.491 (58.648)

(51.619) Constant 155.462���

Contact distributor �30.564 (34.261)
(58.316)

Become a distributor �13.762
(78.517)

Reach thanks page �15.690
(47.661)

Standard errors are reported in parentheses. �p\ 0:10; ��p\ 0:05;
���p\ 0:01. Pseudo R2 ¼ 0:021.

Table 3 Logistic Regression Results with Searching Time Length:
Order as the Dependent Variable

Variable
Logit

coefficient Variable
Logit

coefficient

General click measures Industry control
variables

Cumulative visits 0.214��� Chemistry
industry

1.136
(0.076) (0.818)

Average time length 0.001 Food industry �0.094
(0.002) (0.602)

Average pages per visit 0.055 Manufacturing
industry

0.074
(0.078) (0.493)

Square of average time �9.64e�07 Pharmaceutical
industry

�0.928
(1.09e�06) (0.968)

Square of average page �0.001 Transportation
industry

0.735
(0.002) (1.171)

Square of cumulative visits �0.003 Automobile
industry

0.630
(0.003) (0.626)

Searching time length 8.71e�06 Constant �6.160���

(0.0001) (0.377)
Detailed click measures
Contact me or not �0.439

(0.532)
Contact distributor 1.724���

(0.613)
Reach thanks page �0.222

(0.596)
Historical ordering behavior
Historical order 3.545���

(0.330)

Standard errors are reported in parentheses. ���p\0:01. Pseudo
R2 ¼ 0:389.
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To include more customer heterogeneity, we also
estimate the random coefficient logit model. Assum-
ing the coefficients of click variables are normally dis-
tributed, we conduct the simulated maximum
likelihood estimation using KNITRO-MATLAB and
report the results in Table 6. The click variables are
jointly significant, suggesting that click information
indeed provides useful information for predicting
purchase probabilities even if visitor heterogeneity is
taken care of. Furthermore, we have the same signs
for these click variables as in the standard logit. From
Table 6, we can also see that there is indeed some het-
erogeneity among visitors, but such heterogeneity is
not significant for the majority of the click variables
such as cumulative visits.
To further examine predictive validity of the click-

stream data for demand, we also estimate the logit
model using only the randomly selected first half of
the data set. Then, we apply the estimated regression
equation to the holdout sample (i.e., the second half
of the data) and obtain the predicted average purchas-
ing probability (also called conversion rate) 15.61%.
Lastly, we compare the predicted average purchasing
probability with the actual purchasing probability
14.65%, and get the prediction error in percentage:
6.49% ( ≅ (15.61% � 14.65%)/14.65%). This demon-

strates that the predictive power of the clickstream
data is fairly good.
We highlight a few findings that are novel compared

with those in e-commerce: First, we include more
detailed webpage-specific variables that are typically
absent in the e-commerce literature (cf. Moe and Fader
2004), and we find that visiting the contact-distributor
page or not is useful for predicting future demand.
Second, we find differences between new customers
and existing customers (e.g., average time length is sig-
nificant for new customers but not for existing custom-
ers). Third, we have the ordering amount information,
which is also absent in the literature.

4. Operational Value of Clickstream
Data

In the previous section, we have provided affirmative
statistical evidence that the clickstream data is useful
for operational forecasting in terms of advance
demand information. In this section, we will discuss
what predictors from the clickstream data companies
should track and evaluate the operational value of the
clickstream data based on the theoretical model in
section 2 and empirical analysis in section 3.

Which predictors should be tracked?Although
the findings here are only for a specific company, the
methods do generalize. In general, companies should

Table 6 Random-coefficient Logit with Clickstream Coefficients
Normally Distributed

Variable Mean SD

General click measures
Cumulative visits 0.428��� 0.002

(0.085) (0.055)
Average time length 0.001 0.001

(0.002) (0.002)
Average pages per visit 0.375�� 0.114

(0.186) (0.098)
Square of average page �0.028� 0.007�

(0.015) (0.005)
Square of cumulative visits �0.005 0.0001

(0.004) (0.0021)
Detailed click measures
Contact me or not �2.911 2.822��

(1.836) (1.227)
Contact distributor 0.614 0.043

(0.899) (1.211)
Become a distributor 1.529 0.915

(2.475) (4.022)
Reach thanks page 0.054 2.476�

(1.708) (1.486)
Historical ordering behavior Yes Yes
Industry control variables Yes Yes

Standard errors are reported in parentheses. �p\ 0:10; ��p\ 0:05;
���p\ 0:01.

Table 5 Regression Results: Order Amount as the Dependent Variable

Variable
Tobit

coefficient Variable
Tobit

coefficient

General click measures Historical
ordering
behavior

Cumulative visits 14,149.12��� Historical order
amount

0.35���

(2499.07) (0.09)
Average time length 31.26 Industry control

variables
(41.87) Chemistry

industry
32,449.68

Average pages per
visit

3121.84 (23,724.33)
(2416.55) Food industry 25,410.78

Square of average
time

�0.03 (18,544.97)
(0.03) Distribution

industry
�15,746.66

Square of average
page

�70.55 (39,951.98)
(77.39) Manufacturing

industry
18,659.26

Square of cumulative
visits

�328.02�� (15,424.23)
(101.40) Pharmaceutical

industry
�26,670.31

Detailed click
measures

(33,357.14)

Contact me or not �20,127.95 Transportation
industry

17,553.83
(16,309.35) (32,321.93)

Contact distributor 34,150.85� Automobile
industry

28,054.29
(18,681.09) (22,635.23)

Become a distributor 15,757.68 Constant �218,810.60���

(37,431.07) (23,605.47)
Reach thanks page 14,755.32

(17,403.75)

Standard errors are reported in parentheses. �p\ 0:10; ��p\ 0:05;
���p\ 0:01. Pseudo R2 ¼ 0:0816.
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first conduct a similar empirical study and estimate
the statistical significance of both general click mea-
sures and detailed click measures as we did. This will
reveal which predictors are most statistically signifi-
cant for the specific setting during that specific time
period. (Indeed, if seasonality is perceived to be signif-
icant, the empirical study and any parametric estima-
tion should be performed repeatedly per season.) For
example, in our setting, cumulative visits, average time
length, and contact distributor are three key predictors
from Table 2. This suggests that the company we have
interacted with should definitely track these measures.
To illustrate how our approach and the dynamic

flow Equation (1) works, we now discuss how the
operational forecasting process can be simulated based
on our data sets. As a simple heuristic and representa-
tive example, we classify the visitors based on whether
their cumulative visits is more than four or not, given
that those visitors who visited less than four times have
a negligible purchasing probability on average accord-
ing to our data. Hence, we effectively assume J = 2
classes: Visitors who visited the website less than four
times belong to the first class j = 1 having pt ¼ 0 for
any t, and all the others are in class j = 2, having posi-
tive pt to be estimated.10 We can thus omit the “class
subscript” j = 2 in the notations for the sake of brevity.
We follow two steps: (a) In each period, the new poten-
tial demand K from the new clickstreams follows a
Poisson distribution11 with expectation lK, which is
estimated from the clickstream data. Given that the
total number of visitors from the data during the one
year and a half is 325, the average number of new visi-
tors per period (i.e., three months) is approximately
lK ¼ 50. (b) We directly estimate purchasing probabil-
ities pn and indirectly obtain never-purchasing proba-
bilities cn from the clickstream data using the empirical
distribution of the click lead time: the mean purchasing
probability for the visitors is 0.1046. There are 69/
87 = 79.3% of visitors whose click lead time is less than
two periods based on the clickstream and sales data.
Hence, all new visitors clicking in any given period
will purchase with probability p1 ¼ 0:1046�
79:3% ¼ 0:083 in the next period. Based on the
assumption pt ¼ p1ð1 � p1 � c1Þt�1, we have pt ¼
apt�1 for t = 2,3,…, where a � 1 � p1 � c1. Hence,
we can use an ordinary least squares regression (OLS)
to estimate a based on the empirical distribution. We
estimated that â ¼ 0:129. Therefore, p2 ¼ 0:129�
0:083 ¼ 0:011, p3 ¼ 0:129 � p2 ¼ 0:001, p4 ¼ 0:129�
0:001 ¼ 0:0002, and c1 ¼ 1 � 0:083 � 0:129 ¼ 0:788.
For the initialization period, t = 0, we set z0 ¼ 0

and we have d1 ¼ 0 and l1 ¼ 0. Then
Z1ðz0Þ ¼ z0 þ K1 � Dj;1ðz0Þ � L1ðz0Þ ¼ K1.
In the next period, t = 1, the company observes k1

(say k1 ¼ 60) visitors on its website so that
Z1 ¼ z1 ¼ 60. Then, Z2ðz1Þ ¼ z1 þ K2 � D2ðz1Þ

�L2ðz1Þ¼ 60 þ K2 � D2ðz1Þ � L2ðz1Þ, where D2ðz1Þ
follows the Binomial distribution B(60;0.083), and
L2ðz1Þ follows the Binomial distribution B(60;0.788).
At the end of period 1, the company observes the
realizations in this period, say, k2 ¼ 66, d2 ¼ 5, and
l2 ¼ 0. Hence, z2 ¼ k1 þ k2 � d2 � l2 ¼ 60 þ 66�
5 � 0 ¼ 121.
In period t = 2, we have the same updating:

Z3ðz2Þ ¼ z2 þ K3 � D3ðz2Þ � L3ðz2Þ, where D3ðz2Þ
¼ D3;k2 þ D3;k1 . The demandD3;k2 captures the conver-
sion of the k2 potential buyers observed in period 1,
and D3;k1 comes from the k1 potential buyers observed
in period 0. It is clear that D3;k2 follows distribution B
(66;0.083) and D3;k1 follows distribution B(55;0.083).
Hence, D3ðz2Þ follows B(121;0.083). Similarly, L3ðz2Þ
follows B(121;0.788). One can continue this updating
for any period t > 2. We omit it for brevity.
Let us apply the model to the current inventory

management at the company we studied. As afore-
mentioned, the company keeps inventory for a “pat-
ented part” (required for assembling an end product)
that is supplied from Europe with a transportation
lead time of three months. The company procures this
component every period (i.e., three months) using
Figure 1 in section 2. The supply lead time is one per-
iod, and the demand lead time is zero.
Before quantifying the operational value in terms of

cost reduction, we can first demonstrate how click-
stream data improves operational forecasting by
reducing demand uncertainty. We compare the vari-
ance of demand when clickstream data is utilized
versus when it is not. Without clickstream data, the
company can only use its prior demand distribution.
Let DL be the lead time demand without clickstream
data utilized; then we have EDL ¼ p1EZ and
VarðDLÞ ¼ p1ð1 � p1ÞEZ þ p21VarðZÞ, where Z is the
total number of potential buyers expressed in flow
Equation (1). Utilizing clickstream data, however, the
company can update its demand forecast after observ-
ing clickstreams. Let DL1 be the lead time demand
with clickstream data utilized; then EDL1 ¼ EDL ¼
p1EZ. Invoking the law of total variance, we obtain
VarðDL1Þ ¼ E½VarðDL1ðZÞÞ jZ� þ Var½EðDL1ðZÞÞ jZ� ¼
p1ð1 � p1ÞEZ þ p21ð1 � p1Þ2 VarðZÞ. It is clear that
VarðDL1Þ\VarðDLÞ. Using the estimated parameters
from our data set, we computed VarðDLÞ � 4:76 and
VarðDL1Þ � 4:04. Hence, clickstream data improves
the “accuracy” of demand forecasting. However, to
evaluate the operational impact of this improvement,
we use the dynamic inventory control model pre-
sented in section 2.
We used the following parameters: c = 80, h = 0.5c,

b = 5c, T = 4, and b0 ¼ 0:95. We solved the dynamic
programming problem based on backward induction,
and we found that the annual expected cost reduction
is 4.6% for these parameters. Given that these
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parameters are approximations, to test the robustness
of the result with respect to the “accuracy” of these
estimated parameters, we performed a numerical
study by varying the parameters within a reasonable
neighborhood of the values used earlier. Table 7
summarizes the results and suggests that the cost
reduction is typically larger than 3%.12

5. Discussion and Limitations

Our primary goal of this study is to show how, and
to what extent, clickstream data from non-transac-
tional websites can improve operational forecasting
and inventory management. We first introduced a
dynamic decision support model that includes click-
streams as state variables in inventory management.
Second, we conducted an empirical study to identify
which clickstream variables are statistically signifi-
cant for demand forecasting and to estimate the extent
to which including these clickstreams reduces opera-
tional costs. We found that clickstream data can be
used to estimate ordering probability, amount, and
timing. We also found that advance demand informa-
tion extracted from the clickstream data can reduce
the inventory holding and backordering cost by 3% to
5% in many representative parameter scenarios.
Our study is motivated by practice and is aimed to

guide better practice of clickstream tracking in opera-
tions management (see also our companion study,
Huang and Van Mieghem 2013). Our model provides
a practical framework to dynamically convert click-
stream data into useful advance demand information
for inventory management. In practice, firms should
develop decision support systems using clickstream
data by taking advantage of various statistical and
computer science tools, such as data mining and
artificial intelligence, to enhance the prediction from
the regression equation (e.g., using more sophisticated
prediction function fðXiÞ) and better extract advance
demand information from the clickstream data.
Our findings must be interpreted cautiously given

the limitations of our study: first, all our hypotheses
are about “correlation” rather than “causality.” Estab-

lishing the causality has been difficult in the litera-
ture, and we are not aware of any study that
establishes whether clicking causes purchasing or
whether it is vice versa. Our data does not allow us to
establish such a causal relationship. That requires
expensive field experiments for future research. Sec-
ond, we only used the visitors who are identifiable in
our clickstream data set, which can create biases for
our empirical study. Companies should consider
mechanisms to improve customer identification of
clickstreams (e.g., use cookies, let customers sign in
and provide more information, etc.). Third, consider-
ing the heterogeneity of visitors, our control variables
are limited. For example, price is negotiated offline
and such information is unobserved by us. While this
is the best our data allows, we can take comfort know-
ing that the random-coefficient logit model further
takes care of the heterogeneity to some degree.
Fourth, we do not conduct time series analysis due to
our limited observations within a short period of
time. Availability of large-scale data sets for a long
period of time would allow us to investigate the
dynamics over time. Fifth, due to analytical tractabil-
ity and data availability, we cannot incorporate multi-
unit demand information for a customer. Hence, this
study provides a lower bound for the operational
value of the clickstream data. Finally, although our
models and methods can be generalized and help
build an integrated decision support tool to be
applied to other settings of offline sales with informa-
tional websites, all the findings herein are based on
the data from a particular industrial firm with a fixed
period of visiting customers. We hope our study stim-
ulates more research in this important, practice-
driven and data-driven area.
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Notes

1http://www.ecommercetimes.com/story/19145.html?wlc=
1292379670 (Retrieved on December 8, 2012).
2This assumption is also made for technical convenience
so that we have the unified expression regardless of the
sign of the inventory level x. In all other non-terminal
period t < T + 1, the backorder cost b per unit of time is
different from the production cost c. Our assumption is

Table 7 Robustness Check of the Operational Value

c h b p1 c1

Cost
reduction in
percentage

80 40 400 0.05 0.85 3.65
80 40 400 0.08 0.92 5.11
80 40 400 0.1 0.8 5.94
80 40 400 0.17 0.73 6.03
80 40 400 0.2 0.7 6.12
80 40 400 0.25 0.65 6.95
80 40 400 0.3 0.6 7.16
100 50 500 0.08 0.79 4.57
110 40 500 0.08 0.79 4.29
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conservative (given c < b) and, hence, provides a lower
bound for the operational value of clickstreams.
3Notice that our model can be adapted to capture demand
from customers who never visited the website. Suppose
there is a separate demand eDt that does not come from
the clickstreams in each period t; then our dynamic pro-
gramming formulation becomes

Vtðx; ztÞ ¼ min
y� x

�
cðy� xÞ þ b0½hEðy�Dtþ1ðztÞ

� eDtþ1Þþ þ bEðDtþ1ðztÞ þ eDtþ1 � yÞþ�
þ b0E½Vtþ1ðy�Dtþ1ðztÞ � eDtþ1;Ztþ1ðztÞÞ�

�
:

4The percentage of buyers who have visited the website
among all the buyers is estimated to be around 80.28%.
The remaining 19.72% of buyers cannot be found in the
cleaned clickstream data.
5We also conducted analysis for the sub-group of custom-
ers who do not have clickstreams from multiple locations.
We found that our qualitative results do not change.
6Admittedly, this matching of clicks with orders could be
noisy if individual companies have high purchase fre-
quency where it would be difficult to match clicks with
specific order times. Luckily, our product is a durable
product (industrial door) with low order frequency per
buyer for whom the matching of identified clicks with
orders was easy. Additionally, there is no censoring prob-
lem in the matching given that we have the entire sales
records for matching with the clickstream data.
7We thank them for generously sharing their data set with us.
8Random-coefficient logit models generalize the standard
logit model by allowing coefficients to vary randomly over
individuals rather than being fixed. The models do not
exhibit the restrictive independence of irrelevant alterna-
tives (IIA) property of the standard logit. As shown in
McFadden and Train (2000), any pattern of substitution
can be represented arbitrarily closely by a random-coeffi-
cient logit model. Random-coefficient logit models can
take different forms in different applications, and their
commonality arises in the integration of the logit formula
over the distribution of unobserved random parameters
(Train 2003, Train and Revelt 1998).
9If we consider only the customers who did order, then the
average order amount is $31,478.62 and the standard devi-
ation is $42,227.71. The minimum order amount is
$4124.00. We also did regression analysis for these custom-
ers only, and our qualitative finding remains unchanged.
10We also did a cluster analysis using the k-means method
without a priori committing to a belief of the number of
classes. Interestingly, the optimal cluster number turns out
to be 2, which, to some degree, justifies our heuristic
choice in this particular setting.
11A Poisson distribution is frequently used in modeling
customers arriving at a counter or call center. Suppose
there are N customers in the market, and each customer
visits the website with probability p. Then the number of
visitors to the website would follow the Binomial distribu-
tion B(N;p). In our setting, N is large and p is small (and
so the expectation lK � Np is of intermediate magnitude).
Then the distribution can be approximated by the Poisson
distribution with mean lK (by the “Law of Rare Events”).

12We also implemented the modified dynamic program-
ming model by including the empirical estimate of the
demand that does not come from clickstreams and found
that the cost reduction is around 2.84%, which is lower
than that when only focusing on web visitors. Buyers from
non-web-visitors (or unidentifiable web-visitors) tend to
dilute the value of using clickstream tracking.
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