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Companion

Performance analysis of parallel networks with collaborating
multi-tasking resources

Some preliminaries. Let B(t) be the configuration used at time t, i.e., B(t) is a column of the

matrix C; see §4. Then,

Tc(t) =

∫ t

0

1{B(s) = c}ds.

Define the state descriptor

X(t) = (Q(t),B(t))

and denote by X its state space. We use x= (q, b) for a point in this state space. A policy is said to

be stationary if the process X(t) is a Continuous Time Markov Chain. This rules out for example,

policies that use residual service or inter-arrival times (like shortest processing time first) but is

otherwise fairly general.

We use standard Markov chain notation throughout: for a function f :X →R, Ex[f(X(t))] is the

expectation of f(X(t)) conditional on the state at time t = 0 being x ∈ X . We write Eπ[f(X(t))]

to denote this expectation when the chain is initialized with a distribution π. Also, we follow the

convention for positive sequences that an =O(bn) means limsupn→∞ an/bn <∞, an = o(bn) means

limn→∞ an/bn = 0, and an = Θ(bn) means that an =O(bn) but an 6= o(bn).

In our proofs we make frequent use the relationship between a continuous time Markov chain

and a discrete time chain sampled at hitting times of a subset B ⊂ X . The following known fact

will be used throughput: Let τ l be the lth hitting time of this set and suppose that Ql =X(τ l) is a

discrete time chain with a steady-state distribution π such that
∑

x∈B πxEx[τ 1]<∞. The CTMC

X(t) is then also positive recurrent with a steady-state distribution ν, and π and ν are related

through

Eν [f(Q(0))] =

∑
x∈B πxEx

[∫ τ1
0
f(Q(s))ds

]∑
x∈B πxEx [τ 1]

; (28)

see e.g. Asmussen (2003)[Proposition VII.5.2].

A.1. Proofs for Section 3

Proof of Proposition 1. Under preemptive priority to the individual tasks, the process

(Q0(t),Q1(t),Q2(t)) is a continuous time Markov chain. Let τ l be the time of the lth return of

the resources to the collaborative task. At these moments the individual queues are empty so that

Q0(τ l), l= 0, . . ., is a discrete time Markov chain.
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Because of preemption, queues 1 and 2 are two independent M/M/1 queues. In particular,

E(q0,0,0)[τ 1] is (independently of q0) the expected time it takes two independent M/M/1 queues,

starting at 0, until the first return to (0,0). In particular, for any q0

E(q0,0,0)[τ 1] =
1

(λ1 +λ2)πP (0,0)
=

1

(λ1 +λ2)πP (0,0)
=

1

(λ1 +λ2)(1− ρa1)(1− ρa2)
<∞,

where πP is the steady state of two independent M/M/1 queues and the probability of (0,0) takes

the form πP (0,0) = (1− ρa1)(1− ρa2). (recall that ρai = λi/µi.)

We will show that the DTMC, Ql
0 = (Q0(τ l), l= 1,2, . . . is stable if(
λ0

µ0

−
(

1− λ1

µ1

)(
1− λ2

µ2

))
< 0. (29)

Since supq0 E(q0,0,0)[τ 1]<∞, Eπ[τ 1]<∞ so that by (28) the CTMC is also stable.

For the stability of the DTMC, notice that E(q0,0,0)[A0(τ 1)] = λ0E(q0,0,0)[τ 1]. Let Di(t)

be the number of service completions in queue i by time t. Then, E(q0,0,0)[D0(τ 1)] =

E(q0,0,0)

[
S0

(
µ0

∫ τ1
0
1{Q0(s)> 0}ds

)]
= E(q0,0,0)

[
µ0

∫ τ1
0
1{Q0(s)> 0}ds

]
. Using the fact that τ 1 is

the time of the first arrival to an individual queue, it easily follows that E(q0,0,0)[
∫ τ1

0
1{Q0(s) >

0}ds] − E(q0,0,0)[τ 1] = 0 as q0 →∞ and, in particular, that limsupq0→∞E(q0,0,0)[D0(τ 1)] = µ0
λ1+λ2

.

Thus,

limsup
q0→∞

(Eq0 [Q1
0]− q0) = limsup

q0→∞

(
E(q0,0,0)[A0(τ 1)]−E(q0,0,0)[D0(τ 1)]

)
≤ λ0

(λ1 +λ2)(1− ρa1)(1− ρa2)
− µ0

λ1 +λ2

≤ µ0

(λ1 +λ2)(1− ρa1)(1− ρa2)

(
λ0

µ0

− (1− ρa1)(1− ρa2)

)
.

The right hand side is negative if (29) holds which concludes the sufficiency argument; see e.g.

(Robert, 2003, Theorem 8.6).

Necessity: Notice that (since task 0 idles whenever the individual queues have work) we can

easily establish that

lim inf
t→∞

1

µ0

1

t
Q0(t)≥ (λ0/µ0− 1) + lim

t→∞

1

t

∫ t

0

1{Q1(s) +Q2(s)> 0}ds

≥
(
λ0

µ0

− 1

)
+

(
1−

(
1− λ1

µ1

)(
1− λ2

µ2

))
≥
(
λ0

µ0

−
(

1− λ1

µ1

)(
1− λ2

µ2

))
> ε> 0.

Thus, if the necessary condition holds Q0(t)/t diverges to infinity almost surely which implies that

the chain is transient.
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We turn to the non-preemptive policy. The process X(t) = (Q(t),B(t)) is, under non-preemptive

priority to the individual tasks, a continuous time Markov chain. We study again the collaborative

queue at moments τ l of return to that queue. Let τ̄ 0 be the first time that resources switch to

the individual tasks. Then, for x= ((q0,0,0), (1,0,0)) (to simplify notation, we write below Eq0 [·]
to mean E(q0,0,0),(1,0,0)[·]), Eq0 [τ̄ 0]≤ 1

λ1+λ2
+m0 (the time until an arrival to one of the individual

queues plus one service time). In expectation there are at most µ0Eq0 [τ̄ 0] service completions on

[0, τ̄ 0) in the collaborative queue so that

Eq0 [Q0(τ 1)]≥ q0 +λ0Eq0 [τ 1]−µ0

(
1

λ1 +λ2

+m0

)
.

The chain Ql
0 =Q0(τ l) is unstable if lim infq0→∞(Eq0 [Q0(τ 1)]− q0)> 0 which holds in particular if

λ0

µ0

> limsup
q0→∞

1
λ1+λ2

+m0

Eq0 [τ 1]
; . (30)

We will show that

lim inf
q0→∞

Eq0 [τ 1]≥ T :=
1

λ1 +λ2

+m0 +
1− (1− ρa1)(1− ρa2)

(λ1 +λ2)(1− ρa1)(1− ρa2)
,

so that the chain is unstable, in particular, if

λ0

µ0

>

1
λ1+λ2

+m0

T
,

as this would imply (30).

To bound Eq0 [τ 1] denote by τ̃(q1, q2) the time it takes for two independent M/M/1 queues to

reach (0,0) starting at (q1, q2). Then, τ 1 = τ̄ 0 + τ̃(Q1(τ̄ 0),Q2(τ̄ 0)). The stopping time τ̃ is easily seen

to be monotone in the initial states of the queues, that is τ̃(q1, q2)≥ τ̃(q̃1, q̃2) when qi ≥ q̃i, i= 1,2.

Conditioning on whether the alarm “sounded” because of an arrival to queue 1 or to queue 2, we

have

Eq0 [τ̃(Q1(τ̄ 0),Q2(τ̄ 0))]≥ λ1

λ1 +λ2

Eq0 [τ̃(1,0)] +
λ2

λ1 +λ2

Eq0 [τ̃(0,1)] =:Z.

The sum Z + 1
λ1+λ2

is the time it takes, starting at 0, for two independent M/M/1 queues to

return to 0 after having left it. By the standard relationship between return times and stationary

distribution in Markov chains, it holds that

Z +
1

λ1 +λ2

=
1

(λ1 +λ2)πP (0,0)
,

where πP (0,0) = (1− ρa1)(1− ρa2) is the steady-state probability of the two M/M/1 queues being

empty. Further, since Eq0 [τ̄ 0] = 1
λ1+λ2

+m0Pq0{Q0(τ 1)> 0} independently of q0 we have, as q0→∞,

that Eq0 [τ̄ 0]→ 1
λ1+λ2

+m0. We conclude that

lim inf
q0→∞

Eq0 [τ 1]≥ lim inf
q0→∞

Eq0 [τ̄ 0] +Z =
1

λ1 +λ2

+m0 +
1−πP (0,0)

(λ1 +λ2)πP (0,0)
.



4 Collaboration and Control in Networks

This establishes (30) which implies the transience of the chain as well as the existence of a

constant γ > 0 such that, almost surely,

lim inf
l→∞

Q0(τ l)

l
≥ γ; (31)

see e.g. (Robert, 2003, Theorem 8.11). We next show that (31) implies that, in probability,

Q0(t)/t→∞ as →∞ and, in particular, that the continuous time chain is transient.

First, each time the resources return to the individual tasks, the expected queue in task i is

in expectation smaller than λi

(
1

λ1+λ2
+m0

)
, and it easily follows that limsupq0→∞Eq0 [τ 1] <∞.

Let N(t) the number of returns to the collaborative task by time t. It then follows from (31) that

lim inft→∞Q0(τN(t)+1)/(N(t) + 1)≥ γ almost surely. Further, by Wald’s lemma 0≤ Eq0 [τN(t)+1 −
t]≤ supq0 Eq0 [τ 1]<∞ and, in particular, τN(t)+1/t→ 1 in probability and (A0(τN(t)+1)−A0(t))/t→
0 in probability. Finally, since Q(τN(t)+1)≤Q0(t) +A0(τN(t)+1)−A0(t), then

Q0(t)

t
≥ Q0(τN(t)+1)

τN(t)+1

τN(t)+1

t
− A(τN(t)+1)−A(t)

t
.

Using (31) we conclude that Q0(t)/t→∞ in probability as required �

Proof of Theorem 1. We first prove that, regardless of whether the policy is preemptive or not,

at least one of the individual queues must be non-negligible. In the second part of the argument we

will prove that there exists a preemptive policy under which one of the queues is negligible in the

appropriate sense. Finally, for the fact that, with non-preemption, both individual queues must be

non-negligible; see the comment and the end of Theorem’s 2 proof.

Let T ai (t) = (CT (t))i be the time allocated to task i by time t and TI(t) = t−T a0 (t) be the time

remaining after allocating T a0 (t) to the collaborative task. In particular, TI(t)≥ T ai (t) for all t≥ 0

and i= 1,2. Then,

Qi(t) =Qi(0) +Ai(t)−Si(T ai (t))

=Qi(0) +λit−µiTI(t) +µi(TI(t)−T ai (t)) +Mi(t),

where Mi(t) :=Ai(t)−λit− (Si(T
a
i (t))−µiT ai (t)). We add the superscript ρBN to make explicit the

dependence on the bottleneck load. Towards contradiction suppose that, for each ρBN, the network

has a steady-state distribution πρ
BN

and that

limsup
ρBN↑1

(1− ρBN)E
πρ

BN [QρBN

i (0)] = 0 for i= 1,2. (32)

Fixing ε > 0 and initializing the network at t= 0 with this distribution, it follows that

(1− ρBN)−2T a,ρ
BN

i (ε(1− ρBN)−2)⇒ (λi/µi)ε, i= 1,2, (33)



Collaboration and Control in Networks 5

where λi = limρBN↑1 λ
ρBN

i . A standard random time change argument leads to

(1− ρBN)MρBN

i (ε(1− ρBN)−2)⇒ M̂i, (34)

where M̂i is a zero mean normally distributed random variable with variance 2ελi. Further, from

the properties of the Poisson process it follows that (1− ρBN)MρBN

i (ε(1− ρBN)−2) is a uniformly

integrable sequence and, consequently, that

(1− ρBN)E[|MρBN

i (ε(1− ρBN)−2)|]→E[|M̂i|]. (35)

Suppose now that ρBN = ρ1 = ρ2. In particular λρ
BN

1 /µ1 = λρ
BN

2 /µ2. (All the below holds under

the relaxed requirement that ρ1−ρ2 = o(1−ρBN)). Let T ρ
BN

−i (t) = T ρ
BN

I (t)−T a,ρBN

i (t). Then, for all

t≥ 0.

QρBN

1 (t)

µ1

− Q
ρBN

2 (t)

µ2

=
QρBN

1 (0)

µ1

− Q
ρBN

2 (0)

µ2

+ (T ρ
BN

−1 (t)−T ρBN

−2 (t)) +MρBN

1 (t)−MρBN

2 (t),

and, in turn,∣∣∣T ρBN

−1 (t)−T ρBN

−2 (t))
∣∣∣=∣∣∣∣∣QρBN

1 (t)

µ1

− Q
ρBN

2 (t)

µ2

−
(
QρBN

1 (0)

µ1

− Q
ρBN

2 (0)

µ2

)
− (MρBN

1 (t)−MρBN

2 (t))

∣∣∣∣∣ . (36)

Fix ε > 0 and let tρ
BN

= ε(1− ρBN)−2. Because of (32)

(1− ρBN)E
πρ

BN

[∣∣∣∣∣QρBN

1 (tρ
BN

)

µ1

− Q
ρBN

2 (tρ
BN

)

µ2

−
(
QρBN

1 (0)

µ1

− Q
ρBN

2 (0)

µ2

)
− (MρBN

1 (tρ
BN

)−MρBN

2 (tρ
BN

)

∣∣∣∣∣
]

−(1− ρBN)E
πρ

BN

[∣∣∣(MρBN

1 (tρ
BN

)−MρBN

2 (tρ
BN

))
∣∣∣]→ 0,

, as ρBN ↑ 1. Plugging this into (36) we get

lim
ρBN↑1

(1− ρBN)E
πρ

BN [|T ρBN

−1 (tρ
BN

)−T ρBN

−2 (tρ
BN

)|] = lim
ρBN↑1

(1− ρBN)E[|MρBN

1 (tρ
BN

)−MρBN

2 (tρ
BN

)|].

By (34), (1− ρBN)(MρBN

1 (tρ
BN

)−MρBN

2 (tρ
BN

))⇒ M̂1,ε − M̂2,ε which is normally distributed with

variance 4ελi so that, for all ρBN sufficiently close to 1,

(1− ρBN)
(
E
πρ

BN [T ρ
BN

−1 (tρ
BN

)] +E[T ρ
BN

−2 (tρ
BN

)]
)
≥ c√ε (37)

for some constant c > 0. Denote the total idleness (summing over resources) by Iρ
BN

+ (tρ
BN

). Then,

E
πρ

BN [Iρ
BN

+ (tρ
BN

)]≥E
πρ

BN [T ρ
BN

−1 (tρ
BN

)] +E
πρ

BN [T ρ
BN

−2 (tρ
BN

)].
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The inequality (37) implies that for ρBN sufficiently close to 1

E
πρ

BN [Iρ
BN

+ (tρ
BN

)]

tρBN =
E
πρ

BN [Iρ
BN

+ (ε(1− ρBN)−2])

ε(1− ρBN)−2
≥ c
√
ε(1− ρBN)−1

ε(1− ρBN)−2
=
c(1− ρBN)√

ε
.

Since ε was arbitrary we have, in particular, that

E
πρ

BN [Iρ
BN

+ (tρ
BN

)]

tρBN ≥ 4(1− ρBN),

for all ρBN sufficiently close to 1. Stationarity, however, requires that

E
πρ

BN [Iρ
BN

+ (tρ
BN

)]≤ 2(1− ρBN)tρ
BN

. (38)

(Recall that ρ1 = ρ2 = ρBN) which is a contradiction. We conclude that there is no stationary

stabilizing control that has (1− ρBN)E
πρ

BN [QρBN

i (0)]→ 0 for both individual queues.

We next show the existence of a preemptive policy that makes one individual queue (but not

both) small and keeps the network stable for any ρBN < 1. In fact, we will prove a stronger result.

Namely, that given ε > 0, there exists a stationary preemptive control that stabilizes Q(t) =

(Q0(t),Q1(t),Q2(t)) and that under the (sequence of) steady state distributions νρ
BN

it holds,

simultaneously, that

limsup
ρBN↑1

(1− ρBN)E
νρ

BN [QρBN

1 (0)] = 0, and lim sup
ρBN↑1

(1− ρBN)1+εE
νρ

BN [QρBN

+ (0)]<∞,

(or similarly, with 1 replaced with 2). Define the process

W+(t) =
2∑
i=0

miQi(t).

We propose the following policy: if, upon a service completion of resource 1, W+(t)≤ (1−ρBN)−2,

resource 1 picks a job from queue 1 (its individual queue) if it is non-empty. If queue 1 is empty at

that point, both resources move to the collaborative task. In other words, whenW+(t)≤ (1−ρBN)−2,

resource 1 prioritizes its individual task while resource 2 prioritizes the collaborative task but

works in its individual task if resource 1 is working in activity 1. When W+(t)> (1− ρBN)−2 both

resources prioritize activity 0 (the collaborative task).

The idea of the proof is conceptually simple. Under our proposed policy, resource 1 is always

busy as long as it has work in either queue 0 or queue 1. Hence, as in a work conserving single-server

queue, is of the order of (1− ρBN)−1. The workload m0Q0(t) in queue 0 (that is a part of resource

1’s workload) will, in particular be of this order. If the workload of resource 2, m0Q0(t) +m2Q2(t)

is greater than (1− ρBN)−(1+ε) >> (1− ρBN)−1, it must be the case that m2Q2(t) is positive and

will hence resource 2 will be working and its workload will decrease at those instances at a speed of

(1−ρBN). In words, the “constrained drift” of W2 (constrained on the workload of resource 1’s being

O(1− ρBN)−1) will be suitably negative. A mechanism for deriving steady-state bounds based on

such “constrained drift” was developed in Gurvich (2013) but the analysis below is self-contained.
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Lemma A.1 Suppose that Q is a J dimensional non-explosive and positive recurrent continuous

time Markov chain on ZJ+ and let π be its steady-state distribution. Suppose further that there exist

functions V,U integrable with respect to π, exclusion set A⊆ ZJ+ and constants c1, c2, c3 such that

|QU(x)| ≤ c1(1 +V (x)) for all x∈ZJ+ and

QU(x)≤−c2V (x) + c3, x∈A.

Then,

Eπ[V (Q(0))]≤ c3

c2

+
c1

c2

Eπ[(1 +V (Q(0)))1{QρBN

(0) /∈A}]. (39)

All auxiliary lemmas are proved in Section A.4 at the end of this companion.

Given a state x = (q0, q1, q2), let w1(x) = m0q0 +m1q1 and w2(x) = m0q0 +m2q2. Consider the

Markov chain QρBN
(t) = (QρBN

0 (t),QρBN

1 (t),QρBN

2 (t)) and denote by QρBN
its generator. Define the

function

VρBN(x) = e(1−ρBN)[w2(x)−(1−ρBN)−(1+ε)]
+

.

The following allows us to apply Lemma A.1 to our setting. We will show that U = V = VρBN

exhibit the desired (constrained) drift condition with the exclusion set

Aρ
BN

:= {x :w1(x)≤ (1− ρBN)−(1+ε/2)}.

Lemma A.2 Consider the scaled Markov chain Q̂ρBN
(t) =QρBN

((1− ρBN)−2t). Let Q̂ρBN
be its

generator. There exist constants c̄1, c̄2, c̄3 that do not depend on ρBN and such that

Q̂ρBN

VρBN(x)≤−c̄2VρBN(x) + c̄3(1− ρBN)−1, x∈AρBN

,

and, |QρBN
VρBN(x)| ≤ c̄1(1− ρBN)−1(1 +VρBN(x)), for all queue values x= (q1, q2, q3).

Lemma A.2 establishes that Q̂ρBN
satisfies the drift requirement of Lemma A.1. The next lemma

completes the requirements and provides some initial crude bounds.

Lemma A.3 Suppose that ρBN < 1. The process QρBN
(t) is positive recurrent (with the steady-

state distribution denoted by πρ
BN

) and, for each k, the kth moment satisfies

E
πρ

BN [W k
1 (0)] =O((1− ρBN)−k), (40)

and

E
πρ

BN [W k
+(0)] =O((1− ρBN)−2k).
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Using these we have that

E
πρ

BN [(1 +VρBN(QρBN

(0)))1{QρBN

(0) /∈AρBN}]≤ ĉ1

√
1 +E

πρ
BN [(W ρBN

+ (0))2]
√

P
πρ

BN{QρBN(0) /∈AρBN}

≤ ĉ2(1− ρBN)−2(1− ρBN)kε,

for constants ĉ1, ĉ2, where the last inequality follows from lemma A.3 that guarantees, by Markov’s

inequality, the existence of ĉ3, such that

P
πρ

BN{QρBN

/∈AρBN}= P
πρ

BN{W1(0)> (1− ρBN)−(1+ε)} ≤ ĉ3(1− ρBN)kε, for all k= 1,2, . . . .

Choosing k≥ 3/ε we finally have a constant ĉ4 such that

E
πρ

BN [(1 +VρBN(QρBN

(0)))1{QρBN

(0) /∈AρBN}]≤ ĉ4,

Replacing in Lemma A.1, c2 = c̄2, c3 = c̄3(1− ρBN)−1 and c1 = c̄1(1− ρBN)−1 (with c̄1, c̄2, c̄3 from

Lemma A.3) we then have

E
πρ

BN [VρBN(QρBN

(0))]≤ c̄3

1− ρBN
+

c̄1

1− ρBN
ĉ4,

and we conclude that

limsup
ρBN↑1

(1− ρBN)E
πρ

BN

[
VρBN(QρBN

(0))
]
<∞.

Recalling that VρBN(x) = e(1−ρBN)[w2(x)−(1−ρBN)−(1+ε)]
+

, this implies that

limsup
ρBN↑1

(1− ρBN)l(1+ε)E
πρ

BN

[
(W ρBN

2 )l(0)
]
<∞, (41)

for each integer l.

To complete the proof it remains to show that

(1− ρBN)E
πρ

BN [QρBN

1 (0)]→ 0, as ρBN ↑ 1.

Here, we take V (x) =m1q1 and U = V 2 and for the exclusion set we take

BρBN

:= {x :w+(x)≤ (1− ρBN)−(1+2ε)},

where w+(x) =m0q0 +m1q1 +m2q2. In contrast to Lemma A.2, no time or space scaling is used

below.

Lemma A.4 There exist constants b, c1, c2 that do not depend on ρBN and such that

QρBN

V̂ 2(x)≤−(1− ρa1)V̂ (x) + b, x∈BρBN

,

and, |QρBN
V 2(x)| ≤ c1(1 +V (x)), for all queue values x= (q1, q2, q3).
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Since w+(x) ≤ w1(x) + w2(x), we have from (41) and (40) that E
πρ

BN [(W ρBN

+ )k(0)] ≤
2k−1(E

πρ
BN [(W ρBN

2 )k(0)] +E
πρ

BN [(W ρBN

1 )k(0)]) =O(1− ρBN)k(1+ε). By Markov’s inequality

P
πρ

BN{W ρBN

+ (0)> (1− ρBN)−(1+2ε)}=O
(

(1− ρBN)−(k+kε)

(1− ρBN)−(k+2kε)

)
=O((1− ρBN)kε)

Then,

E
πρ

BN [|QU(QρBN(0))|1{QρBN

(0) /∈AρBN}]≤E
πρ

BN [c(1 +V (QρBN

(0)))1{QρBN

(0) /∈BρBN

]

≤E
πρ

BN [c(1 +V (QρBN

(0)))1{QρBN

(0) /∈BρBN}]

≤ c
√

1 +E
πρ

BN [(W ρBN

1 (0))2]
√

P{QρBN(0) /∈BρBN}

≤ c(1− ρBN)−1(1− ρBN)kε.

Taking kε≥ 1 we have, as required, that

Eπ[V (QρBN

(0))]≤ b

µ0−λρ
BN

0

+
c

µ0−λρ
BN

0

.

In particular, since limsupρBN↑1 λ
ρBN

0 /µ0 < 1, we have that

limsup
ρBN↑1

(1− ρBN)E
πρ

BN [V (QρBN

(0))] = 0,

which completes the proof. �

Proof of Theorem 2. Suppose that ρ1 = ρ2 = ρBN (the relaxation to ρ1 − ρ2 = o(1− ρBN) is

trivial). Throughput we assume that the arrival rates λρ
BN

i , i= 0,1,2 scale along the sequence so

that none become negligible. That is, lim infρBN↑1 λ
ρBN

0 > 0. For each ρBN, we fix a stationary policy

that induces a steady-state distribution πρ
BN

.

Define

B := {x∈X : b /∈ {(1,0,0), (0,1,1)}} .

This is the set of states in which at least one of the two resources idles. Set τ 0 = 0 and define

recursively

τ j = inf {t≥ τ j−1 :B(t−)∈ {(0,1,0), (0,0,1), (0,1,1)} and B(t)∈ {(1,0,0), (0,0,0)}} .

These are times where the two resources leave the individual tasks. Let N(t) be the number of

such switches by time t, i.e.,

N(t) = sup{m : τm ≤ t}.

Let

τ̄ j = inf {t≥ τ j−1 :B(t)∈ {(0,1,0), (0,0,1), (0,1,1)} .
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This is the first time after the jth visit to the collaborative task that at least one of the resources 1

or 2 begins working on an individual activity. Due to non-preemption there must exist t ∈ [τ̄ j, τ j)

with X(t) ∈ B, i.e., at least one of the servers 1 or 2 must be idle before switching to activity

0. Here, we use also the fact that because of the exponential service times, the probability of a

simultaneous service completions in two tasks is 0.

Let Xj be the time that the process stays in B when visiting it for the first time after τ̄ j. The

random variables X1,X2, . . . , are independent and Xj is at least as long as the time it takes until

some arrival or service completion. In particular, E[Xj]> 1/(2Λ) where Λ =
∑

i(λ0 +µi). Choose a

constant cX such that E[Xj ∧ cX ]≥ 1
2Λ

. Let Ii(t) be the cumulative idleness of resource i by time t.

Let Ii(t) be the accumulated idleness of resource i by time t. The total idleness I+(t) = I1(t)+I2(t)

is bounded from below by the idleness accumulated during visits to B, i.e.,

E
πρ

BN [I+(t)]≥E
πρ

BN

[
N(t)∑
j=1

Xj

]
,

and

E
πρ

BN [I+(t)]≥E
πρ

BN

[
N(t)∑
j=1

Xj ∧ cX
]
≥E

πρ
BN

[
N(t)+1∑
j=1

Xj ∧ cX
]
−E

πρ
BN

[
XN(t)+1 ∧ cX

]
≥ 1

2Λ
E
πρ

BN [N(t) + 1]− cX ,

where the last inequality follows from Wald’s identity. Thus,

E
πρ

BN [N(t)]E[Xj ∧ cX ]≤ (1− ρ1 + 1− ρ2)t+ cX ≤ 2(1− ρBN)t+ cX ,

so that

E
πρ

BN [N(t)]≤ 2Λ(1− ρBN)t+ 2ΛcX (42)

Denote by Zj = τ j+1− τ̄ j the time allocated to individual tasks during the jth cycle. The total

time spent in individual task 1 must satisfy, in stationarity,

E
πρ

BN

[
N(t)+1∑
j=1

Zj

]
≥E

πρ
BN

[∫ t

0

1{B(s)∈ {(0,1,0), (0,1,1)}}ds
]

= tE
πρ

BN [B(0)∈ {(0,1,0), (0,1,1)}] = ρa,ρ
BN

1 t, t≥ 0, (43)

where, recall, ρa,ρ
BN

i = λρ
BN

i /µ0. The same applies to activity 2. Moreover, using (42), we have for

any δ > 0

E
πρ

BN

[
N(t)+1∑
j=1

Zj1{Zj ≥ δ}
]
≥ ρa,ρBN

i t−E
πρ

BN

[
N(t)∑
j=1

Zj1{Zj ≤ δ}
]

≥ ρai t− δE [N(t)]

≥ γρBN

t− 2δ(1− ρBN)Λt− 2ΛcX ,
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Q0

t

Figure 13 A buildup diagram for the collaborative queue

where γρ
BN

= min{ρa,ρBN

0 , ρa,ρ
BN

2 , ρa,ρ
BN

3 }. Letting γ := lim infρBN↑1 γ
ρBN

and setting δρ
BN

=

1
4

γ

2(1−ρBN)Λ
we have

E
πρ

BN

[
N(t)∑
j=1

Zj1{Zj ≥ δρ
BN}
]
≥ 3

4
γt− 2ΛcX .

Taking tρ
BN

= (1− ρBN)−1, we have that for all ρBN sufficiently close to one

E
πρ

BN

N(tρ
BN

)∑
j=1

Zj1{Zj ≥ δρ
BN}

≥ 1

2
γtρ

BN

. (44)

Intuitively speaking, we expect to see in queue 0 the pattern in Figure A.1 with an accumulation of

the order of A0(τ̄ j +Zj)−A0(τ̄ j)≈ λρ
BN

0 Zj during the jth cycle through the individual tasks. The

area of the jth triangle should be of the order λρ
BN

0 Z2
j so that, initializing the chain in stationarity,

the average queue should be bounded below by 1
t
E
πρ

BN

[∑N(t)

j=1 λ
ρBN

0 Zjδ
ρBN

1{Zj ≥ δρ
BN}
]

which can

be further bounded using (44).

To formalize this intuition introduce the event

A
tρ

BN :=

{
ω ∈Ω :

|A0(u)−A0(s)−λρBN

0 (u− s)|
(λρ

BN

0 (u− s))1/2+ε
≤ 1, for all s,u≤ tρBN

, |u− s| ≥ δρBN

}
.

On A
tρ

BN , we have for all j ≤N(t) with Zj ≥ δρ
BN

that

|A0(τ̄ j +Zj)−A0(τ̄ j)−λρ
BN

0 Zj| ≤ (λρ
BN

0 Zj)
1/2+ε.

Noticing that λρ
BN

0 δρ
BN ≥ 1 for all sufficiently large ρBN, we then get∫ t

0

Q0(s)ds≥
N(t)∑
j=1

λρ
BN

0 Z2
j

2
1{Zj ≥ δρ

BN}−
N(t)∑
j=1

Zj(λ
ρBN

0 Zj)
1/2+ε1{Zj ≥ δρ

BN}.

For all z ≥ δρBN

= 1
8

γ

(1−ρBN)Λ
and all ρBN sufficiently close to 1, λρ

BN

0 z2/2− (λρ
BN

0 )1/2+εz1/2+ε ≥ c̄z2

for some constant c̄ that does not depend on ρBN. On A
tρ

BN ,

∫ tρ
BN

0

Q0(s)ds≥
N(tρ

BN
)∑

j=1

c̄Z2
j 1{Zj ≥ δρ

BN} ≥ c̄δρBN
N(tρ

BN
)∑

j=1

Zj1{Zj ≥ δρ
BN},
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where in the last inequality we replaced Z2
j with δρ

BN

Zj. Thus,

E
πρ

BN

1{A
tρ

BN}
∫ tρ

BN

0

Q0(s)ds

≥E
πρ

BN

1{AtρBN}c̄δρ
BN

N(tρ
BN

)∑
j=1

Zj1{Zj ≥ δρ
BN}


=E

πρ
BN

c̄δρBN
N(tρ

BN
)∑

j=1

Zj1{Zj ≥ δρ
BN}


−E

πρ
BN

1{(AtρBN )c}c̄δρBN
N(tρ

BN
)∑

j=1

Zj1{Zj ≥ δρ
BN}


≥ c̄tρBN

(δρ
BN −Pπ{AtρBN})

for a re-defined constant c̄. In the last inequality we used (44) and
∑N(tρ

BN
)

j=1 Zj ≤ tρ
BN

. In particular,

E
πρ

BN

∫ tρ
BN

0

Q0(s)ds

≥E
πρ

BN

1{A
tρ

BN}
∫ tρ

BN

0

Q0(s)ds

≥ c̄δρBN

tρ
BN − c̄P

πρ
BN{(A

tρ
BN )c}tρBN

;

Lemma A.5

tρ
BN

P
πρ

BN{(A
tρ

BN )c}→ 1, as ρBN ↑ 1. (45)

Using (A.5) and stationarity we have

tρ
BN

E
πρ

BN [Q0(0)] =E
πρ

BN

∫ tρ
BN

0

Q0(s)ds

≥ c̄δρBN

tρ
BN

for a re-defined constant c̄. We assume here without loss of generality that E
πρ

BN [QρBN

0 (0)]<∞. If

it does not, our result holds trivially. Dividing by tρ
BN

on both sides and using δρ
BN

= 1
4
γ/(4(1−

ρBN)Λ) we have then

E
πρ

BN [Q0(0)] =
1

tρBN t
ρBN

E
πρ

BN [Q0(0)]≥ c̄ 1

1− ρBN
,

for a re-defined constant c̄ which gives the desired result.

Finally, we note that one could repeat the arguments above taking an individual task i as the

focal activity to conclude that no individual task either can be made “short”. Indeed, the main

difference is that N(t) would be the number of returns to individual tasks. �
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Proof of Proposition 2. Under polling, the process X(t) = (Q(t),B(t)) is a continuous time

Markov chain. We study the collaborative queue Q0 sampled at times in which the resources move

from the individual tasks to the collaborative task. These are return times to the family of states

((q0,0,0), (1,0,0)) with q0 > 0. Formally, set τ 0 = 0 (Q(0),B(0)) = ((q,0,0), (1,0,0)) and define

τ l+1 = inf{t≥ τ l :Q0(t)> 0,Q1(t) +Q2(t) = 0,B(t−)∈ {(0,1,0), (0,0,1)}};

(as the probability of simultaneous service completions is 0 it cannot be thatB(t−) = (0,1,1)). Since

the individual queues are empty at τ l, the discrete time process Ql
0 =Q0(τ l) is a one-dimensional

discrete time Markov chain. It is also aperiodic and irreducible.

For l= 0, . . . ,∞, let

τ̄ l = inf{t≥ τ l :Q0(t) = 0,Q1(t) +Q2(t)> 0}

be the first moment after τ l that resources drain the collaborative activity 0 and return to the

individual activities. Suppose that ρ1 = ρ2 = ρBN (all the below holds trivially under the relaxed

assumption that 1− ρ1 = 1− ρ2 + o(1− ρBN)) so that ρ̄a := max{ρa1, ρa2}= ρa1 = ρa2.

Lemma A.6 Suppose that x= ((q0,0,0), (1,0,0)) for some q0 > 0. Then, Ex[(τ̄ 0)2]<∞,

Ex[τ̄ 0] =
q0

µ0−λ0

, and q̄i :=Ex[Qi(τ̄ 0)] = λi
q0

µ0−λ0

= q0µi
ρai

µ0(1− ρa0)
= µiq̃, (46)

where q̃ := q0ρ̄
a/(µ0(1− ρa0)). Also,

Ex[τ 1− τ̄ 0] =
q̃

1− ρ̄a + Θ(
√
q0) = q0

ρ̄a

(1− ρ̄a)(µ0−λ0)
+ Θ(

√
q0), (47)

and

Ex[τ 1] = Θ(q0). (48)

Lemma A.6 shows that, as the initial collaborative queue length q0 grows, the switching takes
√
q0 more than the fluid hitting time q̃/(1− ρ̄a). The queue that hits zero first will oscillate and

accumulate substantial (specifically order
√
q0) idle time before the resources switch. This is the

mathematical manifestation of the simulation in Figure 7.

Since Q0(τ̄ 0) = 0 by definition, we have that

Ex[Q0(τ 1)] =Ex[A0(τ 1)−A0(τ̄ 0)] = λ0Ex[τ 1− τ̄ 0]

= q0

λ0ρ̄
a

(1− ρ̄a)(µ0−λ0)
+λ0Θ(

√
q0) = q0

ρ̄aρa0
(1− ρ̄a)(1− ρa0)

+ Θ(
√
q0),

and

Eq0 [Q1
0]−Eq0 [Q0

0] =Ex[Q0(τ 1)]−Ex[Q0(τ 0)] =−q0

(
1− ρ̄aρa0

(1− ρ̄a)(1− ρa0)

)
+ Θ(

√
q0)

=−q0

1

(1− ρ̄a)(1− ρa0)
(1− ρBN) + Θ(

√
q0).
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There then exists constant c, η, b such that

sup
q0≥c(1−ρBN)−2

(
Eq0 [Q1

0]− q0

)
≤−ηq0(1− ρBN), and Eq0 [Q1

0]− q0 ≤ b(1− ρBN)−1.

In particular, (
Eq0 [Q1

0]− q0

)
≤−ηq0(1− ρBN) + b(1− ρBN)−1,

This implies that the DTMC is positive recurrent (see e.g. (Robert, 2003, Theorem 8.6)) and

moreover, that under its steady-state distribution π

Eπ[Q0
0]≤ b

η
(1− ρBN)−2;

see (Glynn and Zeevi, 2008, Corollary 4). In turn, Eπ[τ 1] = Θ(Eπ[Q0
0])<∞. By (28) this guarantees

that the CTMC is also positive recurrent. Applying expectations with respect to the stationary

distribution, we get

0 =Eπ[Q1
0]−Eπ[Q0

0] =−Eπ[Q0
0]

1

(1− ρ̄a)(1− ρ0)
(1− ρBN) + Θ(Eπ[

√
Q0

0]),

so that

Eπ[Q0
0]

Eπ[
√
Q0

0]
= Θ

(
1

1− ρBN

)
.

If

Eπ[
√
Q0

0] = Ω((1− ρBN)−1/2), (49)

then there exists a constant c̄ > 0 for which

Eπ[Q0
0]

c̄(1− ρBN)−1/2
≥ Eπ[Q0

0]

Eπ[
√
Q0

0]
= Θ(1/(1− ρBN)),

and, in turn,

Eπ[Q0
0] = Ω((1− ρBN)−3/2).

We postpone the argument for (49) and translate this DTMC bound to one for the continuous

time chain. The following is standard.

Lemma A.7 Fix x and let τ̂ 1 be a stopping time with Ex[(τ̂ 1)2]<∞. Then,

Ex[Q2
0(τ̂ 1)] =Ex

[
Q2

0(0)
]

+ 2λ0Ex

[∫ τ̂1

0

Q0(s)ds

]
− 2µ0Ex

[∫ τ̂1

0

Q0(s)1{Q0(s)> 0}ds
]
. (50)
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Taking τ̂ 1 = τ̄ 0, we have by Lemma A.6 that Ex[(τ̄ 0)2]<∞. A standard argument then also show

that Ex[Q2
0(τ̄ 0)] = 0. Since, by definition, 1{Q0(s)> 0}= 1 for all t∈ [0, τ̄ 0), Lemma A.7 then gives

Ex
[∫ τ̄0

0

Q0(s)ds

]
=

q2
0

2(µ0−λ0)
,

for all x= ((q0,0), (1,0,0)). Let ν be the steady-state distribution of the CTMC and suppose that

Eν [Q0(0)] <∞ (otherwise, our result holds trivially). Since Eπ[τ 1] <∞, we have by (28) that

Eπ
[∫ τ1

0
Q0(s)ds

]
<∞ and, since τ 1 ≥ τ̄ 0, also that Eπ

[∫ τ̄0
0
Q0(s)ds

]
<∞ and Eπ[(Q0

0)2]<∞. We

have that

Eν [Q0(0)] =
Eπ[
∫ τ1

0
Q0(s)ds]

Eπ[τ 1]
≥ Eπ[

∫ τ̄0
0
Q0(s)ds]

Eπ[τ 1]
≥ Eπ[(Q0

0)2]

2(µ0−λ0)Eπ[τ 1]
≥ E2

π[Q0
0]

2(µ0−λ0)Eπ[τ 1]
,

where the last step follows from Jensen’s inequality. By (48), Eπ[τ 1] = Θ(Eπ[Q0
0]) and we conclude

that

Eν [Q0(0)] = Ω(Eπ[Q0
0]) = Ω((1− ρBN)−3/2),

as in the statement of the theorem.

It only remains to argue (49). This follows from a simple bound. Consider a two class single

server polling queue with (λ0,m0) and (λ1,m1) as the parameters for the two classes. Let Q̃l
0 be

the length of queue 0 in this queue upon returns to queue 0 and let π̃ be the stationary distribution

of this discrete time chain. It is a simple argument that, in stationarity, Q̃0
0 ≤st Q0

0. By (van der

Mei, 2007, Theorem 2 and Remark 1), there exists C, ε > 0 such that Pπ̃{Q̃0
0 >C(1− ρBN)−1} ≥ ε.

The stochastic ordering then implies that Eπ[
√
Q0

0] = Ω((1− ρBN)−1/2) as needed. �

Proof of Proposition 3. Let τ l be the time of the lth return of the resources to the individ-

ual tasks. The process Ql = (Q0(τ l),Q1(τ l), . . . ,QJ(τ l)) is a discrete time Markov chain and has

Q0(τ l) = 0 for all l = 1, . . .. We will prove that this discrete time chain is positive recurrent and

has a steady-state distribution πD. Since, for any initial state with an empty collaborative queue,

x= (0, q1, q2),

Ex[τ 1]≤ S

λ0

+
S+λ0E[Ts]

µ0−λ0

,

we have EπD [τ 1] < ∞. This subsequently guarantees, by (28), that the chain Q(t) =

(Q0(t), . . . ,QJ(t)) is positive recurrent.

The following result will be useful in the study of the discrete chain.

Lemma A.8 Let X = ((X l
1, . . . ,X

l
J); l = 0,1, . . .) be an irreducible and aperiodic Markov chain

on ZJ+ with transition probability Px{·}. Suppose that for each coordinate i there exists a one
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dimensional Markov chain Yi = (Y l
i ; l= 0,1, . . .) with transition probability Piy{·} such that for each

x∈ZJ+ and all y ∈Z+

Px{X1
i ≥ y} ≤ Pixi{Y

1
i ≥ y}, for all i. (51)

Suppose further that each Yi is aperiodic, monotone (Pix{Y 1
i ≥ y} ≤ Piz{Y 1

i ≥ y} for all x≤ z and

all y) and positive recurrent. Then X is positive recurrent.

To generate the bounding chains Yi, consider a two-class single-server queue with two queues

labeled 0 and i and corresponding arrival and service time means λ0,m0 and λi,mi. The server

follows a threshold rule: When queue 0 reaches S jobs in the queue, the server moves to queue 0

as soon as its current processing is complete plus a switchover time Ts which is distributed as the

maximum of J exponential random variables with means m1, . . . ,mJ .

Let τ il be the return of this server to queue i and let Y l
i be the length of queue i upon the

return of the server to that queue. Then, Y l
i is a (one-dimensional) discrete time Markov chain

that satisfies the comparison (51). Indeed, in the original chain, the ”switchover” time will be at

most as the maximum of exponential above. It is also monotone and aperiodic. We omit the simple

formalization of these facts.

Using Lemma A.8, it only remains to prove that, for each i, Y l
i is positive recurrent. We fix i

and omit the subscripts from Y . Set τ 0 = 0 and formally define l≥ 1

τ l = inf{t≥ τ l−1 :Q0(t−) = 1, Q0(t) = 0}.

At τ l the resource moves back to queue i. We will show that limsupqi→∞ (Eqi [Y 1]− qi)≤−c, which,

in particular, implies the existence of q̄i such that(
Eqi [Y

1]− qi
)
≤−c/2, (52)

for all qi ≥ q̄i. This guarantees that the discrete chain Y l is positive recurrent. Since it is easily

seen to be irreducible and aperiodic, it is tight and converges weakly to steady-state distribution.

Let Di(t) be the number of service completions by time t in queue i. Then,

Eqi [Di(τ 1)−Di(τ 0)] = (µi−λi)
(
S

λ0

+miPqi{Y 1 > 0}
)
.

The expected time until the “alarm” to switch the activity 0 sounds is S/λ0. If Qi is positive when

the alarm sounds, there will be an additional service before the resource actually moves. Between

the alarm and until the resource moves there are arrivals but no service completions. The time that

the server works in queue 0 equals in expectation to (S+λ0E[Ts])/(µ0−λ0) so that the arrivals to

queue i on [0, τ 1) satisfy

Eqi [Ai(τ 1)−Ai(τ 0)]≤ λi(E[Ts]−mi) +
λi(S+λ0E[Ts])

µ0−λ0

.
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In sum,

Eqi [Y
1]− qi ≤−

(
S

λ0

+miPqi{Y 1 > 0|Y 0 = qi}
)

(µi−λi)

+λi(E[Ts]−mi) +
λi(S+λ0E[Ts])

µ0−λ0

As qi→∞, Pqi{Y 1 > 0} → 1 (the probability of serving all qi customers until the alarm sounds

goes to 0 as the initial queue grows – we omit the simple argument) and we get

limsup
qi→∞

(
Eqi [Y

1]− qi
)

=−
(
S

λ0

+mi

)
(µi−λi)

+λi(E[Ts]−mi) +
λ1(S+λ0E[Ts])

µ0−λ0

.

Dividing both sides by η := λ0λi and multiplying by δ := ρa0ρ
a
i /(S/λ0 +mi) (recall ρai = λi/µi) we

have that

limsup
qi→∞

δ

η

(
Eqi [Y

1]− qi
)

≤−(1− ρa0 − ρai ) +
ρai (1− ρa0)(E[Ts]−mi) +

(
S
λ0

+E[Ts]
)
ρa0ρ

a
i − ρa0ρai

(
S
λ0

+mi

)
S
λ0

+mi

≤−(1− ρa0 − ρai ) +
ρai (E[Ts]−mi)

S
λ0

+mi

.

The right-hand side is strictly negative if

ρa0 + ρai +
ρai (E[Ts]−mi)

S
λ0

+mi

< 1,

as in the statement of the Proposition. Finally, the fact that limsupρBN↑1(1− ρBN)EQρBN

+ (∞)<∞
is a special case of Theorem 6. �

A.2. Proofs for Sections 5 and 6

Proof of Theorem 3. This theorem is a direct corollary of the representation for W net that

precedes it. �

Proof of Theorem 4. We start with an observation about hierarchical networks and the set Y
of solutions to the SSPCs dual

max
y∈RJ+

y′(m ∗λ)

s.t. y′C ≤ e′.
Take a bottleneck resource j. Let yj be the vector given by yjl = 1 for all activities l : j ∈R({l})

and yjk = 0 otherwise. That yj is an optimal solution to the dual follows from then from
∑

l y
j
l λlml =
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ρBN = ρnet (where ρBN = ρnet follows from the hierarchy and the results of GVM). Further, as a

feasible configuration contains at most one of a resource’s activities, we have (yj)′C ≤ e′. Thus, for

every input parameters λ,m there exists an integer optimal solution to the dual corresponding to

a bottleneck resources. This guarantees that all extreme points of the polyhedron y′C ≤ e, y ≥ 0

are convex combinations of such (bottleneck-based) vectors.

A configuration k that does not use a bottleneck resource j has ((yj)′C)k = 0 for each bottleneck

j and in particular 1− (yj)′Ck = 1. Hence, only configurations that do not use bottleneck resource

j can contribute to the network availability idleness. Further, by assumption, such a sub-optimal

configuration is used only when none of the bottleneck resources has work in any of its queues.

In turn, the network availability idleness under yj is bounded above by the average amount of

time than bottleneck j has no work. In parallel networks this is further bounded by (1− ρBN) as

required. Thus, we have

limsup
t→∞

1

t

∑
k:π∗

k
=0

(1− (yj)′C)k)I
a
k (t)≤ (1− ρBN).

Let ȳα =
∑

j αjy
j be a convex combination of such bottleneck-based extreme points. Then,

limsup
t→∞

1

t

∑
k:π∗

k
=0

(1− (ȳα)′C)k)I
a
k (t) =

∑
j

αj limsup
t→∞

1

t

∑
k:π∗

k
=0

αj(1− (yj)′C)k)I
a
k (t)≤ (1− ρBN),

as required. �

A.3. Proofs for Section 7

Proof of Theorem 5. The key observation is that under hierarchical preemptive priorities

the queues served by any given resource evolve marginally like a multiclass single-server queue.

Consider, for example, the network in Figure 11 and the activities a1, a2, a3. When there is work

in a1, resources 1 and 2 are working in a1. When there is work in a2 but none in a1 these resources

are working in a2. Preemption and hierarchy guarantee that resource 3 will also move to a1 when

resources 1 and 2 do so. The process (Q1(t),Q2(t),Q3(t)), has the distribution of a three-class

M/M/1 queue with utilization λ1m1 + λ2m2 + λ3m3 ≤ ρBN < 1. In particular, as ρBN ↑ 1 and for

any initial state x,

limsup
t→∞

Ex[Q1(t) +Q2(t) +Q3(t)] =O
(

1

1− ρBN

)
.

Repeating the same for all resources in the network we conclude that

limsup
t→∞

Ex[e′Q(t)] =O
(

1

1− ρBN

)
.

Since the chain Q(t) = (Q1(t), . . . ,QJ(t)) is irreducible this guarantees its positive recurrence; see

e.g. (Asmussen, 2003, Corollaries 4.7 and 4.8). In turn,

Eπ[e′Q(0)] = limsup
t→∞

Ex[e′Q(t)] =O
(

1

1− ρBN

)
.
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�

Proof of Theorem 6. The non-preemptive case presents two challenges relative to Theorem

5: resources may idle waiting for the thresholds to be reached (coordination idleness) and, once

thresholds are reached, waiting for other resources (switching idleness). For coordination idleness,

hierarchy will guarantee that when a resource’s queues are sufficiently long there is no coordi-

nation idlenesses – the thresholds coordinate the transition of resources. We will also show that

switching idleness is kept sufficiently small by choosing sufficiently large threshold coefficients Ki

(in S =Ki(1−ρBN)−1). Combined, these will guarantee that when a resource’s workload is large, it

decreases at rate that is proportional to (1−ρBN). Such a drift sets the ground for the application

of standard Lyapunov-based bounds. What follows is the formalization of the above.

For simplicity of notation, we do not superscript all processes by ρBN but the reader should keep

in mind that all statement are made for ρBN sufficiently close to 1 and that the statement “there

exists a constant c” points to the existence of a constant that does not depend on ρBN.

It is useful to recall that, in networks with hierarchical architectures, activities on an (acyclic)

path from the top level to the bottom level share a resource and, moreover, that all of a resource’s

activities lie on a single such path; in Figure 11 the activities on the path a1−> a2−> a4 share

resource 2. Similarly a1−>a2−>a3 correspond to resource 1. We refer to these are resource paths.

For a resource path p and given a state x= (q, b), let wp(x) =
∑

i∈pmiqi. Define Wp(t) =wp(Q(t))

and introduce the scaled versions

Ŵp(t) = (1− ρBN)Wp(t(1− ρBN)−2), ŵp(x) = (1− ρBN)wp(x), w̄p =
∑
i∈p

Kimi,

where Ki, recall, is the threshold coefficient in Si =Ki(1− ρBN)−1.

We assume throughout that all resources are bottlenecks (or asymptotic bottlenecks, i.e., that

(1−ρk) = (1−ρBN)+o(1−ρBN)). This allows for a somewhat cleaner proof. The general case works

similarly but different scaling is required for different resources.

Central to our argument is establishing the existence of threshold coefficients K1, . . . ,KJ as well

as constants t0, K̄, δ such that for all ρBN sufficiently close to 1

sup
x∈X :ŵp(x)>K̄

(
Ex[Ŵp(t0)]− ŵp(x)

)
≤−δt0. (53)

This linear drift is the key. The following lemma then deduces a geometric drift from the linear

one.

Lemma A.9 There exist thresholds K1, . . . ,KJ and constants γ < 1 and b, t0, θ > 0 such that for

all resource paths p and all x∈X
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Ex
[
eθŴp(t0)

]
≤ γeθŵp(x) + b. (54)

Notice that (54) implies the existence of γ < 1 and b such that

∑
p

Ex
[
eθŴp(t0)

]
≤ γ

(∑
p

eθŵp(x))

)
+ b.

In particular, since the chain X(t) is non-explosive and (under our policy) irreducible, this guar-

antees that the CTMC is positive recurrent and has a steady-state distribution ν; see (Robert,

2003, Theorem 8.13).

Taking expectations with respect to ν on both sides of (54) we have

Eν [eθŴp(0)]≤ b

1− γ , (55)

and by Jensen’s inequality that

(1− ρBN)Eν [Wp(0)] =Eν [Ŵp(0)]≤ c,

for a constant c that does not depend on ρBN. Since we can repeat this argument for all paths, this

proves (26).

We turn to prove (53). Each of the queues satisfies

Qi(t) =Qi(0) +Ai(t)−Si(T ai (t)) =Qi(0) +λit−µiT ai (t) +Mi(t),

where T ai (t) = (CT )i(t), Mi(t) =Ai(t)−λit+µiT
a
i (t)−Si(T ai (t)). In turn, for all t≥ 0,

Wp(t) =
∑
i∈p

miQi(t) =Wp(0) + t(
∑
i∈p

λimi− 1) + (t−
∑
i∈p

T ai (t)) +
∑
i∈p

miMi(t).

Let Tp(t) =
∑

i∈p T
a
i (t). We decompose t−Tp(t) into two components: (i) idleness incurred at times

when the total work exceeds w̄p (so that at least one queue is above its threshold) and (ii) idleness

incurred when Ŵp is below w̄p. Specifically, Tp(t) = Tp,S(t) + Ip(t) where

Tp,S(t) =

∫ t

0

1{Wp(s)> w̄p, dTp(s) = 0}ds, and Ip(t) =

∫ t

0

1{Wp(s)≤ w̄p, dTp(s) = 0}ds.

Thus,

Wp(t) =wp(x) + (
∑
i∈p

λimi− 1)t+Tp,S(t) + Ip(t) +
∑
i∈p

miMi(t)

=wp(x)− (1− ρBN)t+Tp,S(t) + Ip(t) +
∑
i∈p

miMi(t).
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Since Mi is a zero mean martingale and Ŵp(t) = (1− ρBN)Wp((1− ρBN)−2t), we have

Ex[Ŵp(t)]− ŵp(x) =−t+Ex[T̂p,S(t)] +Ex[Îp(t)], (56)

where

T̂p,S(t) = (1− ρBN)Tp,S(t(1− ρBN)−2) and Îp(t) = (1− ρBN)Ip(t(1− ρBN)−2).

The following lemma is instrumental to the proof. It is here that collaboration hierarchy is used.

Consider again the network in Figure 11. When Wp(s) > w̄p, there is at least one queue on this

path that exceeds its threshold. Suppose it is a1. If not already working there, all resources 1,2

and 3 will, by our policy, switch to a1 as soon as they complete their current processing. Idleness

incurred at such times corresponds to switching delays and the cumulative effect of these can be

made small by choosing the thresholds to be sufficiently large.

Lemma A.10 Given ε > 0, there exists a choice of threshold coefficients Ki and constants t0, K̄

such that

sup
x∈X

Ex[T̂p,S(t)]≤ εt, (57)

for all t≥ 0 and

sup
x∈X :ŵp(x)>K̄

Ex[Îp(t0)]≤ εt0. (58)

Plugging (57) and (58) into (56) implies, in particular, the existence of constants t0, K̄ (that do

not depend on t0) such that

sup
x∈X :ŵp(x)>K̄

(
Ex[Ŵp(t0)]− ŵp(x)

)
≤−(1− 2ε)t0,

which proves (53) and concludes the argument for (26) in the statement of the theorem.

We turn to prove (27). The proof is similar in spirit but focuses on non-leaf nodes. For what

follows, p is a partial path. A path that starts at the top but ends before reaching the bottom. In

Figure 11 a1 alone as well a1−>a2 are such paths.

We will prove that there exists t0, K̃, c such that

sup
x∈X :wp(x)≥w̄p(1−ρBN)−1+K̃

Ex[(Wp(t0)− w̄p(1− ρBN)−1)+]− (wp(x)− w̄p(1− ρBN)−1)+ ≤−c. (59)

Notice that here is no time or space scaling. Similarly to before this will allow to show that
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Lemma A.11 Take a non-leaf node j. There exists constant γ < 1 and θ, b, t0, K̃ > 0 such that

Ex
[
eθ(Wp(t0)−w̄p(1−ρBN)−1)+

]
≤ γeθ(wp(x)−w̄p(1−ρBN)−1)+ + b.

Thus, under the stationary distribution

Eν [eθ(Wp(0)−w̄p(1−ρBN)−1)+ ]≤ b

1− γ

This guarantees that

Eν [Wp(0)]≤ w̄p
1− ρBN

+ c,

for some constant c and, in particular, that (27) holds.

It remains to establish (59). Starting similarly as before we have that

Ex[Wp(t)]−wp(x)≤−cpt+Ex[Tp,S(t)] +E[Ip(t)],

where cp =
∑

i∈p λimi−1. By hierarchy, a resource is shared by all activities in a path. Since we do

not include the leaf nodes, we have that
∑

i∈p λimi < ρ
BN−minl λlml. In turn, as ρBN approaches

1, cp ≥minl λlml remains bounds away from 0. The following analogue of Lemma A.10 concludes

the argument. Here, in contrast to that lemma, Tp,S and Ip are not scaled.

Lemma A.12 Fix ε > 0. There exist t0, K̃ > 0 such that

sup
x∈X :wp(x)≥w̄p(1−ρBN)−1+K̃

Ex[Tp,S(t)]≤ εt,

for all t≥ 0, and

sup
x∈X :wp(x)≥w̄p(1−ρBN)−1+K̃

Ex[Ip(t0)]≤ εt0.

� .

A.4. Proofs of Auxiliary Lemmas

Proof of Lemma A.1. Under the condition that Q is non-explosive and QU(x)≤ (c(1+U(x)))

it is known that Dynkin’s formula holds: for each x, and all t≥ 0,

Ex[U(Q(t))] =U(x) +Ex
[∫ t

0

QU(Q(s))ds

]
;
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see e.g. (Klebaner, 2005, Theorem 9.19). Provided that Eπ[U(Q(0))]<∞ it also holds

Eπ[U(Q(t))] =Eπ [U(Q(0))] +Eπ
[∫ t

0

QU(Q(s))ds

]
;

By stationarity Eπ [U(Q(t))] =Eπ [U(Q(0))] for all t≥ 0 so that Eπ
[∫ t

0
QU(Q(s))ds

]
= 0 and

0 =Eπ
[∫ t

0

QU(Q(s))ds

]
=Eπ

[∫ t

0

QU(Q(s))1{Q(s) /∈A}ds
]

+Eπ
[∫ t

0

QU(Q(s))1{Q(s)∈A}ds
]

≤−c2Eπ
[∫ t

0

V (Q(s))ds

]
+ c3t+Eπ

[∫ t

0

QU(Q(s))1{Q(s) /∈A}ds
]
.

In particular,

c2Eπ
[∫ t

0

V (Q(s))ds

]
≤ c3t+Eπ

[∫ t

0

QU(Q(s))1{Q(s) /∈A}ds
]
.

Since |QU(x)| ≤ c1(1 + V (x)) and U,V are π integrable we can interchange expectation and inte-

gration to get

Eπ[V (Q(0))]≤ c3

c2

+
c1

c2

Eπ[(1 +V (Q(0)))1{Q(0) /∈A}].

�

Proof of Lemma A.2. Recall w2(x) =m0q0 +m2q2. Let wρ
BN

2 (x) =w2(x)− (1−ρBN)−(1+ε) and

A0 = {(q, b)∈X : q1 > 0, b0 = 1}. The set A0 contains the states in which resource 2 works in activity

0 and let A2 = {(q, b)∈X : q2 > 0, b2 = 1} be those on which it works in activity 2. Then,

Q̂ρBN

V 2
ρBN(x) =

λ0(1− ρBN)−2

[
e(1−ρBN)[w

ρBN

2 (x)+1/µ0]+ − e(1−ρBN)[w
ρBN

2 (x)]+
]

+

λ2(1− ρBN)−2

[
e2(1−ρBN)[w

ρBN

2 (x)+1/µ2]+ − e(1−ρBN)[w
ρBN

2 (x)]+
]

+

µ0(1− ρBN)−2
1{x∈A0}

[
e(1−ρBN)[w

ρBN

2 (x)−1/µ0]+ − e(1−ρBN)[w
ρBN

2 (x)]+
]

+

µ2(1− ρBN)−2
1{x∈A2}

[
e(1−ρBN)[w

ρBN

2 (x)−1/µ2]+ − e(1−ρBN)[w
ρBN

2 (x)]+
]
. (60)

Fix a constant K ≥ 3max{1/µ0,1/µ2}. Notice that if x is such that w2(x)≤ (1− ρBN)−(1+ε) +K,

then for all ρBN sufficiently close to 1,

Q̂ρBN

VρBN(x)≤ b(1− ρBN)−1,

for some constant b > 0. For instance, as ρBN ↑ 1,

(1− ρBN)−2

[
e(1−ρBN)[w

ρBN

2 (x)+1/µ0]+ − e[w
ρBN

2 (x)]+
]
≤ (1− ρBN)−2

[(
e(1−ρBN)K − 1

)]
=O(1− ρBN)−1,
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and the argument is identical for the remaining summands in (60).

Otherwise, for all ρBN sufficiently close to 1 and x ∈ AρBN
:= {x : w1(x) ≤ (1 − ρBN)−(1+ε/2)}

with w2(x) > (1− ρBN)−(1+ε) +K we have both m0q0 ≤ (1− ρBN)−(1+ε/2) << (1− ρBN)−(1+ε) and

m0q0 +m2q2 ≥ (1− ρBN)−(1+ε) +K and it must be the case that q2 > 0. In particular, resource 2 is

working in one of the queues 0 or 2. For the values of x∈AρBN
for which w2(x)> (1−ρBN)−(1+ε) +K,

wρ
BN

2 (x)≥max{1/µ0,1/µ2} (so that the terms inside []+ are positive) and it is easily verified that

QρBN

VρBN(x)≤−VρBN(x) + b(1− ρBN)−1,

for a re-defined constant b. Finally, the fact that |QρBN
V 2
ρBN(x)| ≤ c(1−ρBN)−1(1+V 2

ρBN(x)) follows

easily from (60) using the fact that ex = 1 +x+ o(1) as x→ 0. For example, e(1−ρBN)w
ρBN

2 (x)+1/µ0 −
e(1−ρBN)w

ρBN

2 (x) = e(1−ρBN)w
ρBN

2 (x)(e(1−ρBN)(1/µ0)− 1)≈ (1− ρBN)(1/µ0)e(1−ρBN)w
ρBN

2 (x). �

Proof of Lemma A.3. The bound on the workload for resource 1 is trivial as this resource never

idles as long as it has work. Viewed marginally, queues 0 and 1, follow a two-class M/M/1 queue.

For the total workload W+(t), we take the Lyapunov function VρBN(x) := [x− (1− ρBN)−2]+. Since

above (1−ρBN)−2 both resources work, it is easy to show that QρBN
VρBN(x)≤−(1−ρBN)VρBN(x)+b

which gives the desired result as this implies that the chain is positive recurrent (see e.g. (Robert,

2003, Proposition 8.14)) and also, by a standard argument, that

0≤Ex
[
V 2
ρBN(QρBN

(t))
]

= V 2
ρBN(x) +Ex

[∫ t

0

QρBN

V 2
ρBN(QρBN

(s))ds

]
≤ V 2

ρBN(x)− (1− ρBN)Ex
[∫ t

0

VρBN(QρBN

(s))ds

]
+ bt.

For any given x∈X , V (x)/t→ 0 as t→∞ we have that

limsup
t→∞

1

t
Ex
[∫ t

0

V (QρBN

(s))ds

]
≤ b.

For each M , ergodicity guarantees that

E
πρ

BN [V (QρBN

(0))∧M ] = limsup
t→∞

1

t
Ex
[∫ t

0

V (QρBN

(s))∧Mds

]
≤ limsup

t→∞

1

t
Ex
[∫ t

0

V (QρBN

(s))ds

]
≤ b,

Taking M to infinity and applying the monotone convergence theorem gives the result. This argu-

ment can be repeated with higher moments by taking V k for arbitrary integer k. �
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Proof of Lemma A.4. Take x ∈ BρBN
:= {w+(x) ≤ (1− ρBN)−(1+2ε)}. For all ρBN sufficiently

close to 1 and all x ∈ BρBN
, w+(x)≤ (1− ρBN)−2. In particular, resource 1 prioritizes queue 1 in

these states so that

QρBN

U(x) = λ1[(m1q1 +m1)2− (m1q1)2] +µ11{q1 > 0}[(m1q1−m1)2− (m1q1)2]

≤−2(λ1m1− 1)m1q1 + 2λ1m
2
1

=−2(1− ρa1)V (x) + 2λ1m
2
1.

Furthermore, regardless of x, QρBN
U(x) ≤ λ1[(m1q1 + m1)2 − (m1q1)2] ≤ 2λ1m

2
1q1 + λ1m

2
1 and

QρBN
U(x) ≥ −2µ1m

2
1q1 − 2λ1m

2
1 so that |QρBN

U(x)| ≤ 2(λ1 + µ1)(m1 ∨ 1)2(1 + m1q1) = 2(λ1 +

µ1)(m1 ∨ 1)(1 +U(x)). �

Proof of Lemma A.5. There exists a Brownian motion W such that

P

{
sup

0≤t≤tρBN

∣∣∣∣A0(t)−λ0t√
λ

−W(t)

∣∣∣∣≥C21 log(tρ
BN

) +x

}
≤C22e

−C23x

for all x> 0 and fixed constants C21,C22 and C23; see Csörgo and Horváth (1996)[Theorem 2.2.1].

Fixing c̄ and taking x= c̄(1− ρBN)−1 we have (with possibly re-defined constants)

P

{
sup

0≤t≤tρBN

|A0(t)−λ0t−
√
λW(t)| ≥ c̄(1− ρBN)−1

}
≤C22e

−C23(1−ρBN)−1

.

For ρBN sufficiently close to 1 (and some κ> 0)

P{(A
tρ

BN )c} ≤C22e
−C23(1−ρBN)−1

+P

{
sup

0≤s≤t≤tρBN
:|t−s|≥δρBN

|W(t)−W(s)|
|t− s|1/2+ε

≥ 1 + ε

}

≤C22e
−C23(1−ρBN)−1

+P

{
sup

0≤t≤tρBN

|W(t)| ≥ κ((1− ρBN)−1)1/2+ε

}

Notice that tρ
BN
C22e

−C23(1−ρBN)−1→ 0 and it remains to show that

tρ
BN

P

{
sup

0≤t≤tρBN

|W(t)| ≥ κ((1− ρBN)−1)1/2+ε

}
→ 0.

By known fact for Brownian motion P{sup0≤s≤T |W(s)|>K} ≤ e−K
2

2T , so that

P

{
sup

0≤s≤tρBN

|W(s)|>κ
}
≤ e−

κ2((1−ρBN)−1)
1+2ε

2tρ
BN ≤ e−c̃(1−ρBN)

−2ε

for a constant c̃. This concludes the proof since for any ε > 0, (1 − ρBN)−1e−c̃(1−ρ
BN)
−2ε

→ 0 as

ρBN ↑ 1. �
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Proof of Lemma A.6. Let x = ((q0,0,0), (1,0,0)), τ̄ 0 is the hitting time of 0 in an M/M/1

queue with parameters λ0,m0. It is known that Ex[τ̄ 0] = q0/(µ0− λ0) and that Ex[(τ̄ 0)2]<∞; see

e.g. (Robert, 2003, Chapter 5.3). Since q1 = q2 = 0 and there are no service completions in the

individual tasks on [0, τ̄ 0) Qi(τ̄ 0) is, conditional on τ̄ 0, a Poisson random variable with parameter

λiτ̄ 0. thus, Eq0 [Qi(τ̄ 0)] = λiEq0 [τ̄ 0] = λiq0/(µ0−λ0) = q̃µi. This proves (46).

From Robert (2003)[Proposition 5.5] is follows that τ̄ 0(q)/q→ 1
µ0−λ0

in probability and from the

central limit theorem and an application of the random time change theorem that, jointly,

1√
q0

(Qi(τ̄ 0)−λiq0/(µ0−λ0)) =
1√
q0

(Qi(q0(τ̄ 0/q0))−λiq0/(µ0−λ0))⇒Xi.

The independence of X1,X2 follows from the independence of the arrival processes. The proof of

(47) then builds on the following:

Consider two independent M/M/1 queues with arrival rate λi < µi for the ith queue and with

ρ1 = ρ2 = ρ < 1. Fix the sequence of initial conditions (Qq
1(0),Qq

2(0)) = (qµ1 +Xq
1 , qµ2 +Xq

2 ) where

Xq
1 ,X

q
2 satisfy (

X
q
1√
q
,
X
q
2√
q
)⇒ (X̂1, X̂2) and X̂i are independent zero mean normal random variables

distributed with standard deviation σxi . Let

τ q = inf{t≥ 0 : (Qq
1(t),Qq0

2 (t)) = (0,0)}.

Then, as q→∞,
τ q − q

1−ρ√
q
⇒max{Y1, Y2}, (61)

where Yi i= 1,2 are independent zero-mean random variables with

V ar(Yi) =

√
σ2
B +

σ2
x

µ2(1− ρ)2
,

and

σ2
B =

1 + ρ

µ2(1− ρ)3

is the variance of an M/M/1 busy period (starting at 1 until hitting 0). If the sequence Xq
i is

uniformly integrable, so is the sequence
τq− q

1−ρ√
q

and consequently

E[τ q] =
q

1− ρ +
√
qE[max{Y1, Y2}] + o(

√
q)

Notice that, since E[maxY1, Y2]> 0, this last result is exactly (47). Equation (48) then follows

by combining (46) and (47). To conclude the proof it remains to prove (61). To that end, consider

the individual-queue’s hitting time

τ i(qi) = inf{t≥ 0 :Qi(t) = 0},
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where the argument qi captures the dependence on the initial condition.

Note that

τ q = max{τ 1(q+Xq
1 ), τ 2(q+Xq

2 )}=
q

µ−λ + max

{
τ 1(q+Xq

1 )− q

µ−λ, τ 2(q+Xq
2 )− q

µ−λ

}
,

and so,
τ q − q

µ−λ√
q

= max

{
τ 1(q+Xq

1 )− q
µ−λ√

q
,
τ 2(q+Xq

2 )− q
µ−λ√

q

}
. (62)

We next apply the central limit theorem for the hitting time of each of the individual queues and

the continuous mapping theorem using the continuity of the max operation. The weak convergence

for each individual queue is known; see e.g. Robert (2003)[Proposition 5.5]. We prove it here so

that we can use the same infrastructure for uniform integrability.

The hitting time of queue i to 0 is a sum of q +Xq
i M/M/1 busy periods (starting at 1 and

reaching 0) – notice that the time going from q to q−1 is identically distributed as that from q−1

to q− 2 and from 1 to 0. In other words

τ i(qi) =

q∑
i=1

Zi

where Zi has the distribution of the M/M/1 busy period and, in particular,

E[Zi] =
1

µ−λ and V ar(Zi) =
1 + ρ

µ2(1− ρ)3
=: σ2

B.

The strong law of large numbers gives

τ i(q+Xq
i )

q
→ 1

µ−λ,

and by the central limit theorem∑q+X
q
i

i=1 Zi− q+X
q
i

µ−λ√
q

⇒ τ̂ , as q→∞,

where E[τ̂ ] = 0 and V ar(τ̂) = σ2
B. Further, by the assumption on Xq

i∑q+X
q
i

i=1 Zi− q
µ−λ√

q
⇒ τ̂ − X̂

µ−λ := Y.

In particular,

V ar(Y ) = σ2
B +

σ2
x

µ2(1− ρ)2
.

Plugging this into (62) we have that

max{
τ 1(q+Xq

1 )− q
µ−λ√

q
,
τ 2(q+Xq

2 )− q
µ−λ

q
}⇒max{Y1, Y2},
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which concludes the convergence argument. It only remain to establish uniform integrability but

this is immediate from the assumptions as then (by independence of the Zi and their independence

from Xq
i )

E

∑q+X
q
i

i=1 (Zi− 1
µ−λ)

√
q

2≤E

∑q+|Xqi |
i=1 (Zi− 1

µ−λ)
√
q

2
=E

1

q

q+|Xqi |∑
i=1

(
Zi−

1

µ−λ

)2
=

q+E|Xq
i |

q
E[Z2].

By assumption E[Z2] = σ2
B <∞ and since (again, by assumption) limsupq E[|Xq

i |]/
√
q <∞ we

have that the right hand side is bounded uniformly in q and the uniform integrability of each of

the sequences follows. Finally, we use the fact that(
max

{
τ 1(q+Xq

1 )− q
µ−λ√

q
,
τ 2(q+Xq

2 )− q
µ−λ√

q

})2

≤
(
τ 1(q+Xq

1 )− q
µ−λ√

q

)2

+

(
τ 1(q+Xq

2 )− q
µ−λ√

q

)2

.

�

Proof of Lemma A.7. By Dynkin’s formula, for each t > 0,

Ex[Q2
0(τ̂ 1 ∧ t)] =Ex[Q2

0(0)] + 2Ex

[∫ τ̂1∧t

0

(λ0−µ01{Q0(s)> 0})Q0(s)ds

]

Using the fact that Ex[Q0(τ̂ 1)] ≤ Ex[q0 + A0(τ̂ 1)] ≤ q0 + λ0Ex[τ̂ 1] < ∞ and that

Ex[
∫ τ̂1∧t

0
Q0(s)ds] ≤ Ex[q0τ̂ 1 + A0(τ̂ 1)τ̂ 1] ≤ q0Ex[τ̂ 1] + λ0Ex[(τ̂ 1)2] < ∞ we can apply the dom-

inated convergence theorem and take t → ∞ to conclude that Ex[(Q0(τ̂ 1))2] = Ex[Q2
0(0)] −

2Ex
[∫ τ̄0

0
(λ0−µ01{Q0(s)> 0})Q0(s)ds

]
. �

Proof of Lemma A.8. We first show that the conditions of the lemma guarantee that if one

initializes X in state xi and Yi in state xi, then for all l= 1, . . . ,,

X l
i ≤st Y l

i , (63)

where ≤st is standard stochastic ordering. We can argue this by induction. For l = 1, it holds by

assumption that Px{X1
i ≥ y} ≥ Pxi{Y 1

i }. The following argument is an adaptation of Derman and

Ignall (1975).

Suppose the result holds for all l= 1, . . . , n− 1.

Px{Xn
i ≥ y}−Pxi{Y n

i ≥ y} ≤
∑
z=0∞

(
Px{Xn−1

i = z} sup
x:xi=z

Px{X1
i ≥ y}−Pixi{Y

n−1
i = z}Piz{Y 1

i > y}
)

≤
∞∑
z=0

Piz{Y 1
i > y}

(
Px{Xn−1

i = z}−Pixi{Y
n−1
i = z}

)
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=
∞∑
r=0

∑
z≥r

(
Px{Xn−1

i = z}−Pixi{Y
n−1
i = z}

)
(Pir{Y 1

i > y}−Pir−1{Y 1
i > y})

=
∞∑
r=0

(
Px{Xn−1

i ≥ r}−Pixi{Y
n−1
i ≥ r}

)
(Pir{Y 1

i > y}−Pir−1{Y 1
i > y}),

where the second inequality follows from the assumption on the one step transition probability,

the first equality is based on telescoping sums (and we take P i
−1 ≡ 0). In the last row, Px{Xn−1

i ≥
r} − Pixi{Y

n−1
i ≥ r} ≥ 0 by the induction assumption and Pir{Y 1

i > y} − Pir−1{Y 1
i > y} ≥ 0 by the

assumed monotonicity of Yi. This concludes the induction argument and establishes (63).

Since Y l
i is assumed to be positive recurrent and aperiodic we have that Y l

i is a tight sequence

(that converges to the steady-state distribution of Yi). By the stochastic ordering X l
i is also a tight

sequence for each i and so is, in turn, the sum of the coordinates X l
+ =

∑J

i=1X
l
i . We conclude the

chain X l is tight. Since it is irreducible and aperiodic, it is also positive recurrent; see (Asmussen,

2003, Proposition I.4.1). �

Proof of Lemma A.9. It suffices to argue that, given t0 there exists θ, θ̄ > 0 such that for all

ρBN sufficiently close to 1.

sup
x∈X

Ex[(Ŵp(t0)− ŵp(x))2eθ(Ŵp(t0)−ŵp(x))+ ]≤ θ̄, (64)

and

sup
x∈X

Ex[eθ(Ŵp(t0)−ŵp(x))]≤ θ̄. (65)

From (Gamarnik and Zeevi, 2006, Theorem 6) (see also the first display in the proof of Theorem

5 there) it follows that these bounds together with the linear drift (53), guarantee (54).

To establish the bounds (64) and (65), recall that

Ŵp(t) = ŵp(x) + (1− ρBN)

(∑
i∈p

λi
µi
− 1

)
(1− ρBN)−2t+ T̂p,S(t) + Îp(t) + M̂p(t)

where M̂p(t) =
∑

i∈pmiM̂i(t). Recall also that, by definition, Îp(t) does not increase when Ŵp > w̄p.

In particular, using (Ghamami and Ward, 2013, Lemma 8.3), we have the existence of a constant

c̄ such that

sup
0≤u≤s≤t

|Ŵp(s)− Ŵp(u)| ≤ w̄p + c(1− ρBN)

(∑
i∈p

λi
µi
− 1

)
(1− ρBN)−2t

+ c̄

(
sup

0≤u≤s≤t
|T̂p,S(s)− T̂p,S(u)|+ sup

0≤u≤s≤t
|M̂p(s)− M̂p(u)|

)
≤
(∑
i∈p

λi
µi
− 1

)
(1− ρBN)−2t+ 2c̄T̂p,S(t) + 2c̄ sup

0≤s≤t
|M̂p(s)|,

for all t≥ 0. For the second inequality we used the fact that T̂p,S(t) is increasing in t. Exponential

bounds for the Poissonian martingale are standard and those for the idleness terms follow from

Lemma A.10 proved below. �
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Proof of Lemma A.10. We provide only the essential ingredients of this proof with some

standard details being omitted.

Notice that, because of hierarchy, dTp(t) = 0 and Ŵp(t) > w̄p =
∑

i∈pKimi can hold simulta-

neously only when the resource that defines the path (say resource k) is waiting for the other

resources to switch to an activity that exceeded its threshold. Hierarchy guarantees that these

other resources switch as soon as they complete their current processing.

In particular, Tp,S(t)≤∑Nu(t)

i=1 Xi where Nu(t) is the number of up-switches and Xi is the switch-

ing time. We say that an up switch occurs at t if there exists i∈ p such that Ti(t−) = 1, Ti(t) = 0,

and there is an activity j on the path p, at a higher collaboration level than j, that exceeds its

threshold. At time t, resource k either starts processing at the highest level activity that exceeds

its threshold or is idling (waiting for other resources). Each Xi is stochastically smaller than a

maximum of J exponentials with rate µ1, . . . , µJ and, in particular, E[Xi]≤
∑

jmj.

Let d be the number of levels in the collaboration graph. We say that a down switch occurs at

time t if there exists i ∈ p such that Ti(t−) = 1, Ti(t) = 0,Qi(t) = 0 and all the queues at a higher

level are below their threshold. At time t, resource k either starts processing at a lower level activity

or idles. Notice that if t is such that Nu(t)≥ 2d there must be at least one down-switch by time t.

Thus, Nu(t)≤ 2dNd(t) where Nd(t) is the number of down-switches by time t. The policy dictates

that down-switches occur only when a queue is drained starting at its threshold or above (how

much above depends on the time it took the resources to switch). Let Zi be the random variable

for the time it takes to drain queue i starting at its threshold. Then,

E[Zi] =
Ki(1− ρBN)−1

µi−λi
.

For a sufficiently large constant b, we have that E[Zi∧b]≥ Ki
2

(1−ρBN)−1/(µi−λi), so that applying

standard renewal argument we have that

Ex[Nd(t)]≤ tmin
i

{
2

Ki

(µi−λi)(1− ρBN)

}
.

Taking Ki such that 2
Ki

(µi−λi)≤ ε/
∑

jmj we have that Ex[Nd(t)]≤ ε∑
jmj

(1− ρBN)t so that

Ex[T̂p,S(t)] = (1− ρBN)Ex[Tp,S(t(1− ρBN)−2)]≤ 2d(1− ρBN)E[Nd(t(1− ρBN)−2)]E[Xi]≤ εt.

A simple extension of the above gives a bound on the exponential moment of T̂p,S, i.e., that

given t0 > 0 there exist θ, θ̄ > 0 such that

sup
x∈X :ŵp(x)>K̄

Ex[eθT̂p,S(t0)]≤ θ̄.

Finally, notice that Îp(t)≤
∫ t

0
1{Ŵp(s)≤ w̄p}ds. The path workload Ŵp(t) is bounded stochas-

tically from below by the workload in a multiclass M/M/1 queue (with the single server being a
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focal resource of the path). For the latter, Eq[
∫ t

0
1{ŴMM1(s)≤ w̄p}ds]≤ tPq{τ w̄ ≤ t} where τ w̄ is

the hitting time of the scaled M/M/1 workload ŴMM1 to w̄ starting at q. It is a standard argument

that Pq{τ w̄ ≤ t} ≤ εt for q= w̄+ K̄ with sufficiently large K̄. �

Proofs of Lemmas A.11 and A.12. These are in fact easier versions of the proofs of Lemmas

A.9 and A.10. We omit the details. �
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