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We characterize a firm’s optimal factor adjustment when any number of factors
face “kinked” linear adjustment costs so that all factor accumulation is costly to
reverse. We first consider a general non-stationary case with a concave operating
profit function, unrestricted form of uncertainty and a horizon of arbitrary length.
We show that the optimal investment strategy follows a control limit policy at each
point in time. The state space of the firm’s problem is partitioned into various
domains, including a continuation region where no adjustment should optimally be
made to factor levels. We then consider two specific model classes and exploit their
special structure to derive expressions for their continuation regions. Journal of
Economic Literature Classification Numbers: D92, E22, E24.  © 1997 Academic Press

1. INTRODUCTION

When it is costly to reverse investment in capital or labor, a firm’s invest-
ment decisions governing factor use take on an important dynamic quality.
This occurs, for example, when a firm faces labor firing costs or when it cannot
recoup the acquisition price of capital when it is resold. In that case, the firm
will use current information and its assessment of the future when deciding on
the optimal stock level of each factor whose accumulation is costly to reverse.
This paper presents a general model of dynamic investment in multiple factors
(which may include various forms of labor and capital) under uncertainty. We
show that the optimal investment strategy follows a control limit policy at
each point in time, and then examine in more detail the implications of multi-
factor costly reversibility in two specific classes of models.

* We benefitted from the comments of Michael Harrison, Evan Porteus, Avinash Dixit, and
seminar participants at Stanford University, the University of Michigan, the University of
Pennsylvania, and the National Bureau of Economic Research.
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The possibility that investment may be costly to reverse has been
recognized in the literature at least as far back as 1968, cf. Arrow [5], but
has received more attention recently in a stochastic framework. Work by
Bernanke [ 8], McDonald and Siegel [ 30] and Dixit [ 14] analyzes invest-
ment in projects or firms of discrete size. Later work by Pindyck [ 34] and
Bertola [9] extends earlier models by allowing incremental investment.
Most of this literatures studies investment in a single factor, implicitly
assuming that no other factors are present or that they can be instan-
taneously and costlessly adjusted (and thus can be “maximized out” of the
profit function). This literature emphasizes the finding that the marginal
revenue product of capital sufficient to justify irreversible investment is
greater than the Jorgensonian [23] user cost of capital; Abel and Eberly
[2] show that in this case, the marginal revenue product of capital is equal
to the user cost of capital appropriately calculated in the presence of costly
reversibility. A similar focus on single factor investment is found in most of
the operations research literature that studies capacity expansion, inspired
by the seminal work of Manne [ 28, 29]. Luss [26] presents an extensive
survey. More recent research has focused on expansion under uncertainty,
e.g., Davis, Dempster, Sethi and Vermes [ 13], Bean, Higle and Smith [6],
and Paraskevopoulos, Karakitsos and Rustem [33].

While the literature above has taken labor to be perfectly flexible and
has focused on investment in capital, costly changes in employment have
recently brought more attention to investment in labor. Costly reversibility
of labor investment has been recognized at least since the seminal work of
Oi [32], but modeling costly reversibility by “kinked”, linear costs of
adjustment! was done only more recently. This allows the same analytical
methods applied to investment in the papers above to be used to analyze
employment decisions under uncertainty. Bentolila and Bertola [7] use
this approach in a single factor (homogeneous labor) model to suggest that
firing costs can rationalize the dynamics of European unemployment since
the 1970s.

Multiple factor inputs have been considered in econometric models with
quadratic costs of adjustment. These models typically focus on multiple
types of capital inputs, as in Wildasin [40], Hayashi and Inoue [21]
and Chirinko [12], although Nadiri and Rosen [31] and Galeotti and
Schiantarelli [19] explicitly include costs of adjusting both capital and
labor. The operations management literature has begun to investigate
single-period, multi-factor models to study simultaneous investment in

' The cost to adjust a factor level either up or down is assumed to be linear (as modeled
by equation (3) in the next section), but both directions may have different marginal costs,
leading to a “kink” in the cost function or discontinuity in the slope of the cost function at
zero adjustment.
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flexible and dedicated manufacturing resources; see for example Fine and
Freund [18]. Most closely related to our work is that of Dixit [15]. He
assumes a linearly homogeneous, supermodular profit function to study the
optimal investment dynamics in two factors, capital and labor, with
kinked, linear adjustment costs in an infinite horizon model, which is a
special case of the general framework we present here. Like Dixit, we show
that the “flexibility” of a factor is determined endogenously, and in addi-
tion, we are able to derive the specific determinants of “flexibility” for a
parametric model that satisfies Dixit’s functional restrictions.

This paper presents a framework to study multi-factor investment under
uncertainty? and has the following outline. The next section models the
investment problem and formulates the research question in terms of our
model primitives. Section 3 establishes minimal conditions on the operating
profit function and the investment adjustment cost function for the exist-
ence of an optimal control limit investment policy, called an “Invest/Stay
put/Disinvest (ISD)” policy, whose characteristic properties are presented.
The state space of the dynamic investment problem is partitioned into
various domains, including a “continuation region” where no adjustment
need be made in the vector of current factor levels. From any one of the
domains outside this continuation region, the optimal investment action is
to adjust the vector of factor levels to a specified new point on the bound-
ary of the continuation region. This control limit policy is optimal for any
number of factors, with linear or convex adjustment cost functions, for con-
cave operating profit functions, with non-stationary data, with either a
finite or infinite planning horizon, and with essentially no restriction on the
form or nature of uncertainty confronting the firm. Section 4 discusses the
investment dynamics that result when optimal ISD policies are used.

As a first application of the general theory, Section 5 considers a station-
ary finite horizon model with IID periods and presents a closed form
expression that characterizes the optimal investment strategy. More
insights can be gained from a richer class of stationary infinite horizon
models, called stationary Markov models, that place specific restrictions on
the operating profit function and the stochastic process governing uncer-
tainty. Section 6 shows that for these models the threshold for adjusting
each factor depends positively on the levels of other factors, so that the
more labor (for example) that the firm has, the more willing it is to invest
in capital, or other factors. We also show that there exists an equilibrium

2 Our model formulation also can be regarded as a multiperiod generalization of certain
convex stochastic problems with linear constraints. As such, it is related to investment-
consumption problems (e.g., Abrams and Karmarkar [3], Fama [17]), cash balance models
(e.g., Eppen and Fama [16]), models of economic growth (e.g., Brock and Mirman [11]),
and multidimensional stochastic production and inventory problems (e.g., see Karmarkar’s
[24, 257 models and extensive literature overview).
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ordering of factor inputs that determines the frequency with which a factor
is adjusted, or alternately, the “flexibility” of a factor. Section 7 studies a
special subclass of stationary Markov models, called Brownian isoelastic
models, whose thresholds that define the continuation region of the
optimal investment strategy can be expressed in terms of the marginal
profitability of a factor. In that case, the average profitability is propor-
tional to marginal and may be used as a proxy. However, the presence of
other factors that are costly to reverse reduces the importance of the costly
reversibility of any single factor. In particular, the level of the marginal
revenue product that justifies investing in a factor is decreased by the
presence of those other factors, so that ignoring the presence of other costly
reversible factors overestimates (by an arbitrarily large amount) the
threshold associated with any single factor. Section 7 also derives the
endogenous parameters that determine the equilibrium “flexibility”
ordering of factor inputs and presents closed form solutions to the special
case of irreversible investment. We offer concluding remarks in Section 8.

We conclude this section with some notational conventions. We will
not distinguish in notation between scalars and vectors. All vectors are
assumed to be column vectors, and primes denote transposes, so u'v is the
inner product of u# and v. The ith component of an n-dimensional vector is
denoted by v, (or by z, , for a time-indexed vector z,). For 1 <i<j<n, the
subvector (v;, ..., v;) is denoted by v"/; for j=0, we define v = 0. Deleting
the ith component in v yields the n—1 dimensional vector v =
(V15 Ugs s Uy 1, Ui 15 U,)'. Vector inequalities and exponents should be
interpreted componentwise, as well as max(0, #) and max(0, —u) which are
denoted by u™ and u—, respectively. N is the set of non-negative integers
and R is the real line. Finally, Vg(x) denotes any subgradient of a concave
function g at the point x, i.e., g(y) <g(x)+ Vg(x)' (y — x) for all x, y in the
domain of g.

2. NOTATION, MODEL PRIMITIVES,
AND THE RESEARCH QUESTION

Consider a firm that employs # different factors of production and that
has the option to change the stock level of each factor at the beginning of
each period 7€ {1, ..., T'} (for simplicity, a discrete-time model is adopted).
At each such point in time, the firm will base its investment decision on the
information then available and on its assessment of the uncertain future.
Information availability and uncertainty, which are crucial to any invest-
ment strategy, are modeled by a standard probabilistic framework with a
probability space (2, #, P) and filtration F={%, .., #;} as primitives.
The filtration [ is an increasing family of sub-o-fields that shows how
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information arrives and uncertainty is resolved as time passes, with %,
representing the information available at the beginning of period 7. We say
that a process Q= (Q,, .., Q) is adapted if Q, is Z,-measurable for all
te{l,.., T} (informally, Q, depends only on information available at the
beginning of period ¢). Having observed that information and given its
prior investment decision, the firm must choose a non-negative n-vector
K,eR" whose ith component represents the level of factor i to be made
available for production during period .

Given this choice of factor levels and given that state of the world w e 2
obtains, the operating profit® earned in period ¢ is 7n,(K,, w). For each
te{l,.., T}, the function 7(-, -), also called the operating profit function,
is assumed jointly measurable, 7,(K,,-) is %-measurable* for each
K,eR", and 7 (-, w) is concave for each w e Q.

To illustrate this framework consider the following example. A firm sells
m products in a competitive market where prices are uncertain. Let p,
represent the unit price vector for period ¢, which is observed at the begin-
ning of the period before K, is chosen. According to the philosophy of con-
tinuous improvement, the firm is improving its manufacturing technologies,
but not in a deterministic fashion. The firm’s technology matrix A4, for
period ¢ also is observed at the beginning of the period, before K, is chosen.
Assume for simplicity that production costs are zero. We let %, be the
o-field generated by {p,, 4,, .., p,, A,}. Assuming that the firm’s produc-
tion quantities x, are linearly constrained, the firm will set period ¢ produc-
tion according to the linear program:

max plw) x, (1)
s.t. A (o) x,<K,. (2)

The maximal value of the objective is the operating profit function z,(-, w),
which is indeed concave for each w and .

When changing investment levels from vector K, _; to K,, the firm incurs
an adjustment cost C,(K,—K,_;). We will focus on kinked piece-wise

3 Thus, following Arrow [5, p.2], we focus on any number of costly reversible factors and
assume that “all other inputs and outputs to the production process are flows. Then for any
fixed stock of [costly reversible factors], there is at any moment a most profitable current
policy with regard to the flow variables; we assume the flow optimization to have taken place
and therefore have defined a function relating operating profits (excess of sales over costs of
flow inputs) as a function of the stock of [capital and labor].”

4 It may seem restrictive to require that 7,(K,, -) be % -measurable, but starting with a more
general formulation where the period ¢ profit function depends on events observed during that
period, one may simply define 7,(K,,-) as a conditional expectation given %, and our for-
mulation then pertains.
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linear convex functions C, (noting that our results readily extent to func-
tions C, that are jointly convex in (K,_,, K,)):

CAx)=cix™ —rix™, (3)

where the marginal investment costs ¢, and disinvestment revenues r,
usually are positive. However, disinvestment in some factors (for example,
labor) may be costly, or even prohibitively expensive, which means that
investment is irreversible. Also, investment may be encouraged (for exam-
ple, subsidized) and could conceivably generate a cash inflow. Thus, both
¢, and r, can have positive and negative components that can be infinite if
investment or disinvestment is prohibitively expensive. We focus on factors
that are costly to reverse,’ such that ¢, —r, >0. Also, we assume that the
present value of a unit of used capacity cannot be higher than a new unit,
ie., ¢,=0" " 'r for t=t¢, .., T, where 6 >0 is the one-period discount factor
(which also could be dynamic).

The final element of the formulation is a salvage value function f(K, w)
(mnemonic for final), where f(-,-) is assumed jointly measurable and
f(-, w) 1s concave for each we Q. We interpret f(K, w) as the firm’s final
(salvage) value, possibly negative, for factor vector K given that state w
obtains.

Formally, an investment strategy is an adapted process # = (K|, ..., K;)
such that (i) 0<K,< oo as. for all ze{l,.., T} and (ii) the discounted
control costs are absolutely® summable a.s.,

T
Z 5[(|}’t|’(K,,I—K,)++|C,|,(K,—K,,1)+)<OO a.s.. (4)

t=1

The initial factor levels vector K, e R". is given as problem data. The firm’s
expected net present value, evaluated at the beginning of period 1, under
strategy ¢~ starting with initial levels K|, is

U(KOaf%/):E Z 5171(751(an)_Ct(Kt_thl))'}’éTf(KTaw) . (5)

t=1

We assume that the firm’s objective is to maximize its expected net present
value. Denoting the set of all strategies by I, the research problem then is
to determine a strategy 4 € K that maximizes v(K,, #4").

S Optimal factor levels of costlessly reversible factors are found by optimizing the
(extended) operating profit function. We assume that these factors have been maximized out
and therefore don’t appear in the operating profit function.

¢ Investment and disinvestment rates are not necessarily positive and may be infinite, in
which case adjustment should not be allowed.
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3. THE OPTIMAL INVESTMENT STRATEGY

3.1. Optimality Equations

Let #,=(K,, .., K;) for t>1 denote a partial investment strategy, and
set " = A, to simplify notation. In the usual way, we suppress dependence
of z, and f on w, writing’ n(K,) and f(K;) to mean n(K,, -) and f(K, -).
Let v(K,_,, #,, w) be the firm’s expected net present value, evaluated at
beginning of period ¢ and conditioned on the available information, given
that we start with factor levels K, | and strategy .#; is implemented:

Ul(Klfls ’%/1‘9 CO)

_E| Y 6K — CUK.— K, ) 457 f(Ky) 7} (). (6)

Denote the set of all partial investment strategies 24, by K,. The optimal
value function when starting at the beginning of period ¢ with factor levels
vector K, _, is

VK, )= sup v(K, .7, ®). (7)

Hre K,

The optimal value functions are adapted and satisfy the following recursive
optimality equations for te {1, .., T}:

V,(K,,l, w) = Ssup {TE,(K,, CL)) - Cr(Kr_thl)

Hie K,
+OE[V,1(K) | Z1(w)} (8)
Vii(Ky, ) =f(Kz, ). 9)

We will assume that the supremum of (8) is attained by a unique
admissible strategy, which we call the “optimal investment strategy”. (Refer
to Maitra [27] and Blackwell, Freedman and Orkin [10] for conditions
guaranteeing measurability of the optimal value functions.) With convex
adjustment costs, the concavity of the operating profit functions 7, is
inherited by the optimal value functions:

THEOREM 1. The optimal value function V (-, ) is concave for every
weQ and te{l, .. T}.

Proof. The terminal function fis concave by assumption. Now use induc-
tion on ¢ and assume V, ., is concave. We use a concavity preservation

" Notice that w dependence is suppressed in two ways: (K, (o), ).
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lemma® from Heyman and Sobel [22, p.525, Prop.B-4] on (8):
{K,>0} =R" is nonempty, 4=R?* is a convex set, and 7,(K,, ®)—
C(K,—K,_)+E[V,, (K, | #](w) is jointly concave in (K,_,, K,)e 4
as a sum of jointly concave functions.’ Thus V, is also concave in K, ;. |I

COROLLARY 1. V,(-, w) is continuous and has non-increasing left and
right partial derivatives, which are equal almost everywhere, for every we Q
and te{l, .., T}. (Royden [38, p.113])

Thus, the subgradient VV, is unique and equal to the gradient of V,,
except on a set of Lebesgue measure zero.

3.2. ISD Policies

A policy for period ¢ is a decision rule that prescribes a specific action
at the beginning of period ¢ for each K,_; € R” and we Q. An investment
strategy prescribes a policy for each period. Formally, a policy for period
¢t is a function x,: R, xQ - R" : (K,_,, w)— K, where x (-, -) is jointly
measurable and x,(K,_;,-) is Z-measurable for each K, _,eR" . An
investment strategy is then 4" = (x,(K,), x(K,), ..., K 7(K+_,)), where K, =
x,(K,_,) suppressing the w dependence in the notation. The next section
will show that it is optimal to invest according to a certain kind of control
limit policy which we call an ISD (Invest/Stay put/Disinvest) policy. We
define the ISD policy as follows:

DEFINITION 1. A policy x, for period re{l,.., T} is an ISD policy
if there exist two functions K/(K,_,,w) and K/(K,_,,®) mapping
R" x Q — R" such that, for any ie {1, .., n}:

2. the ith components, K/,(K, ,, ) and K/",(K, |, w), depend on
the pre-adjustment levels K, , ;) of the other factors, but not on K,
3.

St

Kfi(Klfl’w) if thl,i<Ktl;i(K171:w):
KoK, 0)=<K"(K,_,0) if K_ ;>K"(K,_,0), (10)
K, ., otherwise.

8 Lemma 1 (Concavity Preservation). If Y(x) is a non-empty set for every xe X, the set
A={(x,y):xeX,ye Y(x)} is a convex set, and g(x, y) is jointly concave on A, then h(x)=
SUp, ¢ yx) &(X, ¥) is a concave function on any convex subset of {x € X: h(x)> —o0}.

° The specific form —C(K,— K, _)=r)(K,_,—K,)* —c)(K,—K,_,)™ is jointly concave as
a sum of two halfplanes with r,<c,
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Invest S, Stay put 7 VDisi>nvest

1
0 kK" k" K

t t t-1

Fic. 1. Structure of a one-dimensional (n=1) ISD policy.

An ISD policy adjusts each factor level i according to a control limit
policy: there are two critical numbers K, <K/’ such that level i is
increased to K/, if K, , ;< K/, decreased to K/ if K, , ;> K/, and not
adjusted otherwise. An ISD policy is monotone in the action: the three
possible actions occur in at most three connected zones that are ordered
from invest /— stay put S — disinvest D along any coordinate axis of the
state variable K. An ISD policy for the single factor case (n=1) has the
structure shown in Fig. 1.

For ease of notation, we will state all results in this section in terms of
a function g,: R” xQ— R, where g,(-, ) is closed concave' for each
w € Q. For example, one may think of g,(K,, ®) as the firm’s expected net
present value, evaluated at the beginning of period ¢ and conditioned on
the available information, given that factor levels have been adjusted to K,
and an optimal (partial) investment strategy is implemented:

g,(K,,a))=7z,(K,,a))+5E[ Vt+1(Kt) | %](a})’ (11)

which is closed concave (g,(-, w) is concave, continuous (and thus semi-
continuous), and finite (since V,,., is finite a.s.)). ISD policies are
intimately connected to the concave optimality equations (8), which the
firm has to solve under optimal investment decision-making at the
beginning of each period:

THEOREM 2. Consider g,: R". x Q2 — R, with g (-, ) closed concave for
each weQ as above. If the solution k(K,_,, ®) to the following concave
optimization problem

G(thl’w)z sup {gt(Klbw)_Ct(Kt_thl)}ﬂ (12)

K eR",

where K, € R". and w € Q, is unique, then k, is an ISD policy.

Proof. We must show that the solution x can be expressed in terms
of two functions K (K,_,, w) and K(K,_,, w) mapping R" xQ— R"_,

19 A function A(-) is closed concave if it is concave, finite, and lower semi-continuous on its
domain (Rockafellar [37, p. 52]).
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that satisfy the three conditions in Definition 1. For ease of notation, let
x=K, |, y=K,, and suppress the ¢ and w dependence in the notation.

Case 1. n=1. The optimization problem becomes

G(x)=sup {r(x—y)* —c(y—x)" +g(»)}.

y=0

With r < ¢, the objective function is concave and first order (sub)differential
conditions are sufficient. For x =0, an optimal value for y is

yE=sup{{0} U {y:Vg(y)=c}}. (13)

Concavity yields that this invest-up-to level y* is optimal for all x < y*. For
arbitrary large x, an optimal value for y is

y¥=inf{{oo} u{y: Ve(y)<ri}, (14)

which is also optimal for all x > y*. Concavity yields that it is optimal to
“stay put” whenever y“ < x <y”, ie., the optimal value for y is x in that
case. Thus, letting K and K” be the constant functions y* and y, respec-
tively, we have that:

1. KF<K”.
2. K* and K are independent of the pre-adjustment level x.
3.
K* if x<KF~,
k(x)=< K7 if x>K" (15)
X otherwise.

Thus, the constant functions K* and K define an ISD policy x that
solves the optimization problem G for n=1.

Case 1. n>1. The n-dimensional functions K and K*' are defined
componentwise as follows. Fix any ie {1, 2, .., n}. Recall that v is the
n— 1 dimensional vector which obtains after deleting the ith component in
ve R" For x, yeR"_, let

H(x,y;)= sup {r(/i)(x(i)_y(i))+_C(’i)(y(i)_x(i))++g(y)}' (16)

ypeR" !
We can rewrite the original optimization problem G as:

G(x) =sup {ri('xi_yi)+ —ci(yi—x)~" +H(x(i)9yi)}' (17)

yi=0
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Because H(x(;,-) is concave according to Lemma 1, we can use the
reasoning of Case I: Define the ith component of the n-dimensional func-
tion K* and K“ as

Ki(x)=sup{{0} u{y:V, H(xo)a y)=cil, (18)

K”( )= {{00} {yiV,H(x), y) <1} (19)
It follows directly that
L KA <KI()

2. K{(x) and K/(x) depend on the pre-adjustment levels x,, of the
other factors, but not on x;,.

3.
K (x) if x,<Kf(x),
Ki(x) =< K"(x) it x;>K"(x), (20)
X otherwise.

Thus, for each factor i, there exists an optimal policy that is ISD for
factor i. Now, since the solution to the optimization problem is unique, all
solutions found by each of the n policies described above all lead to the
same optimal point (the factor level after adjustment for all n factors).
Thus, each policy found in each of the n separate problems must be the
same, so that this unique policy is ISD w.r.t. all of the n different
factors. ||

Remark. The proof shows that the two n-dimensional functions K* and
K*, that define the ISD policy, can be constructed from n parametric
optimization problems of dimension n— 1.

We will refer to an ISD policy that solves optimization problem (12) as
an ISD policy generated by g,. If the objective function in (12) is strictly
concave, there is a unique optimal ISD policy that solves G. The concavity
of g, yields additional properties to such an ISD policy:

ProPErRTY 1. An ISD policy K, for period t generated by g, is charac-
terized by a connected set S,(w) < R". for each w € £, where

S(w)={KeR" :r,<Vg/(K, w)<c,}, (21)

as follows:

1. If K, ,eS,(w), no adjustments are made: x (K,_,,w)=K,_,.

2. If K,_, ¢S/ (w), an adjustment to a point k,(K,_,,®) on the
boundary of S(w) is made.
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Proof. First notice that S,(w) is the g,(-, w)-subdifferential map from
the convex set N,={veR":r,<v<c,}. As such, S,(w) is a connected set
because g, is closed concave (Abrams and Karmarkar [ 3, p. 346].) We will
prove the rest of the Property by induction on n using the notation and
results in the proof of Theorem 2. The proof for n=1 follows directly from
the proof of Theorem 2 where a one-dimensional ISD policy generated by
g, which solves the optimization problem G, is characterized by

S=[K" K"]={KeR' :r<Vg(K)<c}. (22)

Now assume the theorem is valid for n —1 > 1. We show that the theorem
also holds for n. The induction hypothesis yields that an » — 1 dimensional
ISD policy in x;, generated by g(-,y;), which solves the optimization
problem H(-, y,), is characterized by

S'y)=1{K,eR" " "r < Vi, 8Ky, yi) < i) (23)

G is solved by a one-dimensional ISD policy in x, generated by H(x;, -)
and characterized by

Sx;) ={K,eR" :r, <V H(x;, K;) <c,}. (24)

Now, only if x, € S'(y,) and x,e S*(x,), then it is optimal not to adjust:
Y@y =X and y,=Xx;, so that y=x. Thus, the set S in which the optimal
n-dimensional ISD policy makes no adjustments is

S={xeR" :x;eS"(y), x;€S*(x)}, (25)
={xeR" :x,eS"(x;), x;€S*(x)}, (26)
= {xe R :r; < meg(x(i)’ x;)< Ciy Vi S Vx,H(x(f)s x;) < Ci}' (27)

If xe S, H(x;, x;) =g(x;, x;) and (changing dummy variable to K):
S={KeR" :r<Vg(K)<c}. (28)

Finally, if x ¢ S, either adjustment y,, is on the boundary of S'(y;) and/or
y; is on the boundary of S?(x,) so that the adjustment y is on the bound-
ary of S'(y;) xS (x;)=S. 1

Thus, if the factor levels vector K, ; is within S,(w), it is optimal “to
stay put” on all dimensions, ie., to keep the same vector of investment
levels for the next period (K, = K,_,). Therefore, the set S, is also called the
“region of inaction”, “central domain”, or “continuation region”. (We will
use these terms interchangeably.) The proof also shows a “dimensionality

reduction” property of ISD policies generated by a concave function: If we
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fix ke{l,..,n—1} components of K, | for n> 1, then the adjustments of
the remaining n — k components are governed by an n — k dimensional ISD
policy generated by the (concave) induced objective function that obtains
after optimizing the k components in (17).

PrROPERTY 2. If g, w) is twice differentiable for each w e 2, then the
boundaries of S, (w) for factor k are increasing (decreasing) in direction j if
the jk cross partial g')(-, ) is positive (negative).

This result follows directly by differentiation in (21). Moreover, if
g,(-, ) has continuous second partial derivatives, g'%(-, w)=g¥(-, )
and the control limits for factors k and j are either both increasing or both
decreasing in direction j and k respectively. An operating profit function
with positive (negative) cross partials is supermodular (submodular) and its
inputs are economic complements (substitutes) so that a higher optimal
investment threshold in factor k justifies a higher (lower) optimal invest-
ment threshold in factor j and vice versa, in agreement with Property 2.
The following corollary generalizes the result of Dixit, who shows in [15]
that the supermodularity of stationary operating profit functions is
inherited by the optimal value functions E[V,,(-)| %] in the infinite
horizon case, so that the boundaries of the continuation region are
increasing.

COROLLARY 2. Let g,=n,+0E[V, | %] If the operating profit
Sfunctions 7w (-, w) and the salvage function f(-, w) are supermodular for
each we Q and te{l, .., T}, then g (-, ) is also supermodular for each w
and t.

Proof.  We will show by induction on ¢ that V/,_, is supermodular. The
corollary is then immediate because a positive linear combination of the
supermodular functions 7, and V,,, is also supermodular. Clearly
Vyior=f 18 supermodular. Now assume V, ., is supermodular and
follow the reasoning of Dixit [15, p.11]: he shows that each term
¢, (K, —K, )" —r. (K,,—K,_, ;)" of the adjustment cost function is
submodular (jointly in K, ; and K, ; ;). Thus —C,(K,—K,_,) is super-
modular as a positive linear combination of supermodular functions. The
maximand in the optimality equation 8 is also supermodular by positive
linearity. Finally, maximizing over K, preserves supermodularity in the
remaining variable K, _;, as shown by Topkis [ 39, p. 314], so that V' (-, w)
is supermodular for each w. ||

PROPERTY 3. If the continuation region S,(w) is a proper subset of R".
with a non-empty interior, then the collection of points whose optimal level
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after adjustment is a point K on the boundary of S, (w) is T(K, w) R".,
where T (K, w) is an affine convex cone:'!

T(K, o)
={K+x:xeR" x'(v=Vg/(K, w)) =0 forallve R" withr,<v<c,}. (29)

Proof. Equation (29) clearly defines a convex affine cone and follows
from the convex duality results of Karmarkar [24, pp. 340-342] (refer to
Rockafellar [ 37] for a comprehensive treatment). Using Karmarkar’s nota-
tion with A=[1,, —1,], where 1,, is the n-dimensional identity matrix, we
have that D= {v:inf Vg <v <sup Vg} as the set of all vectors v for which
inf, {v'y —g(y)} is bounded, and D'={veR":r<v<c}. Thus, interior
D ninterior D' # ¢ if Vg is not constant (with sufficient condition that S
be not empty and not equal to the positive octant R, ) and interior S # J,
in which case (29) holds. ||

[S,= & corresponds to the uninteresting case where one will either dis-
invest in any factor ke {1, 2, ..., n} completely (sup V, g, <r,) or invest up
to arbitrarily high levels (infV, g,>c¢,).] Consider for example a one-
dimensional ISD policy for period ¢ generated by g, which has two cones
with vertices K and K. If K > 0, the infimum in (13) is attained because
g, is concave and

T(K})
={K/'+K:KeRand (v—c¢,) K=0forallve Rwherer,<v<c,} (30)
=(—o0, K] (31)

If KX=0 and the infimum is not attained, (29) degenerates to a point:
K,(0)=0. In any case, T(KF)NR,.=[0,K"]. Similarly, for a finite
boundary point K, T(K")=[K", o). The structure of an ISD policy
generated by a (supermodular) concave function in n=2 dimensions is
shown in Fig. 2. The four corner points are the vertices of four convex
cones. If we hold one component of K,_, fixed, the adjustment for the
other component is governed by a one-dimensional ISD policy. An
n-dimensional ISD policy generated by g, has a central domain with 2n
faces, which partition R”, in 3” regions of specific investment action.

PrOPERTY 4. Let, for each weQ, the equations Vg, (K, w)=c, and
Vg (K, w)=r, have unique solutions in KeR"_, denoted K!(w) and KP(w)

"' T(K) is an affine coine if 7(K)— K is a cone. Thus, if y € T(K) then K+ a(y — K)e T(K)
forall aeR, .
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F1G. 2. Structure of a two-dimensional ISD policy generated by a supermodular concave
function.

respectively. Then K} is the invest-up-to level for all K, < K! and KP is
the disinvest-down-to level for all K, ;> KP.

Proof. This base-stock level result follows directly from (29) which
yields the cones T(K/, w) = {K/(w) — x:xeR”} and T,(K”, w) =
{KP(w)+x:xeR"}. 1

Remark. 1f g, is strictly concave, then K/ and K are unique if they
exist.

3.3. Optimality of ISD Policies

THEOREM 3. An ISD policy generated by n,(-, @)+ 0E[V,. ()| Z#](w)
is optimal for t, for every te{l, .., T} and we Q.

Proof. Follows from Porteus’ framework [ 35, 36] of preservation and
attainment of structured policies and optimal functions. The set of struc-
tured policies consists of all ISD policies generated by a closed concave
function, and let G* be the set of functions g(-, @) that are closed concave
on R” for each w. The optimality equations preserve concavity according
to Theorem 1, and Theorem 2 shows that the optimal value function is
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attained by an ISD policy generated by g for any g e G*, because we have
assumed that the optimal investment strategy is unique. ||

All results essentially apply to the infinite horizon case (7 — oo) under
mild technical conditions. A variety of conditions are available from the
dynamic programming literature to insure the existence of a solution to the
optimality equations. We shall assume the simple but realistic assumption
that factor levels are finite and bounded and that the discount factor is
strictly smaller than 1, acknowledging that the results hold under much
more general'> conditions. Summarizing, the Infinite Horizon Assumptions
are: (i) Factor levels are (uniformly) bounded, i.e., there exists a real num-
ber M such that K, < M for all e N, and (ii) the discount factor is strictly
smaller than one, ie., 0 <1.

THEOREM 4. If the additional infinite horizon assumptions hold, then the
optimal value functions V (-, w) are concave for every w e Q and every te N,
and an ISD policy generated by n,(-, w)+0ELV,, ()| F1(w) is optimal
for t, for every te N and w e Q.

Proof. Again use Porteus’ framework [36] of structured policies and
optimal functions: Let 4* be the set of ISD policies generated by a closed
concave function and let Z°=Z* be the set of functions z(-, w) that are
closed concave on the compact set [0, M]" for each we Q. Because we
have shown optimality under finite horizon, we only need to check that the
infinite horizon assumption IH in [ 36, p. 425] holds:

(a) The set of closed concave functions is complete on a compact set
under the L' (supremum) norm.

(b) Using Porteus’ notation, we have that p(H;(v)u, H!(v)z) <N
for all structured policies v and regular functions u,ze Z?, , = Z°, because
all operating profit functions, values, and terminal functions are bounded

(for each w) on the compact set because they are concave.

(c) H(v) is o-Lipschitzian on Z,, ,=2Z (the set of all functions
z(-, w) that are continuous on [0, M]" for each w) for all structured
policies v and m >t and 6”"M — 0 as m — o0 because J < 1.

Although not strictly necessary, Porteus’ Assumption RP also holds, and
invoking Porteus’ Theorems 5.1. and 5.2. ends this proof. ||

12 B g, the boundedness assumption can be relaxed with the assumption that total discounted
expected operating profits 3, 6’E, |7,(-, )| are finite and convergent under the supremum L'
norm. More relaxation involves increasingly more technical conditions for which we refer to
the dynamic programming literature, e.g. Porteus [36].
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4. INVESTMENT DYNAMICS

A continuation region with a non-empty interior stems from investment
that is costly to reverse: If investment in factor k is costly to reverse, its
marginal adjustment costs r, , <c, , create a nonlinearity in the adjustment
cost function C,. It is this nonlinearity that generates the stay-put or
“hysteresis” zone in the kth coordinate direction whose width is an increas-
ing function of the degree of irreversibility, ¢, , —r, . Hysteresis is the
failure of an effect to reverse itself as its underlying cause is reversed.
Similar phenomena, such as imperfect mechanic elasticity under tension or
compression and remaining magnetism in magnetic materials, were
originally found in many physical materials. A firm that increases invest-
ment in all factors up to the “invest-up-to” level K~ when its current level
K is smaller than K%, does not disinvest in all factors when the cause is
reversed (current level larger than K*), but only when its factor level is
larger than the “disinvest-down-to” level K (and K*<K" if r<c).
Moreover, if investment in factor k is irreversible, K//= + oo, and its
investment can never be reversed. On the other hand, if the investment is
reversible or “frictionless”, r, , =c, ;, there is no hysteresis zone in coor-
dinate direction k (if the generating function g, is strictly concave), and one
will make adjustments almost always.

An ISD policy is another instance of the principle in economics whereby
marginal revenue equals marginal cost with optimal decision making.
Imagine that we make an infinitesimal adjustment dz, to the level z; of fac-
tor i at time ¢. If the adjustment is positive, the investment cost is ¢, ;dz;
and the corresponding increase in the expected net present value of total
future returns is dn,+ 0 dE[ V, ., | #1=Vn,(2) dz;4+0V.E[ V,, \(2) | #] dz,,
suppressing the o dependence in the notation (the > sign is needed at non-
differentiable points z). Clearly, it is optimal to invest whenever c, ;<
Vin,(z)+0V,E[V,,.1(z) | % ]. Analogously, if the adjustment is negative,
the disinvestment revenue is —r, ;dz; and the decrease in future returns is
not larger than —V,n(z) dz,—oV,E[V,,(z) | #]dz,. Thus it is optimal
to disinvest if r, ;> V,n,(z)+JdV,E[V,,(z)| Z]. Theorem 3 shows that
these two conditions are disjoint and sufficient because V is concave. If
neither of the two conditions holds, it is optimal to make no adjustment.

It is insightful to relate the dynamics of optimal investment according to
ISD policies to the research on Brownian control theory, promulgated by
Harrison [20]. When the time period becomes arbitrarily small, one can
instantaneously adjust investment levels. If we assume enough regularity, a
control problem in continuous time is obtained, where the central region S,
may move continuously over time. Only the initial investment adjustment
may represent an “impulse” control to the boundary of S, if the initial state
K, is outside S,. All subsequent optimal controls are the multidimensional
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generalization of what Harrison calls “barrier” or “instantaneous” controls.
No control is needed as long as K, remains inside S,. When K, “hits” the
boundary of S,, the minimal amount of control is exercised so as to pre-
vent K, from “leaving” S,. Thus, the optimal investment dynamics are
similar to the dynamics of a point K, floating inside a (possibly moving)
domain S,, being reflected on its boundaries.

In the remaining sections of the paper we study two specific classes of
investment models. The first class of models has an IID structure, which
makes the model very amenable to analysis and allows us to derive the cen-
tral region S, in closed form. The second class of models has uncertainty
modeled by a stationary Markov process and assumes supermodular,
linearly homogeneous operating profit functions. For this class, we show
that factors are always adjusted in a fixed sequence. This fixed sequence
relates to the flexibility of a factor, which is endogenously specified in our
model. Finally, Section 7 studies a subset of the second class and considers
a geometric Brownian motion as the generator of uncertainty and an
isoelastic, Cobb-Douglas-like operating profit function. Assuming
arbitrarily small time periods and sufficient regularity, we obtain a rich
class of models that are still amenable to analysis and provide more
detailed information on the optimal investment dynamics and factor
flexibility.

5. OPTIMAL INVESTMENT IN AN IID STRUCTURE

In general, the continuation region S,(w) depends on the period and on
the information available at the beginning of that period. We say that the
periods are independent if F,=\):_, % for all re{l,.., T}, where the
o-fields 9, ..., %, are independent, and if the operating profit functions do
not depend on previous information, i.e., there exist deterministic functions
I1, such that 7,(-, ) =1I,(-). In that special case, conditional expectations
reduce to unconditional expectation, E[ V,, ,(z) | # (w)=EV,, (z), and
the continuation region depends only on the period but not on the infor-
mation available at the beginning of that period. The probabilistic
w-dependence modeling information flows no longer is needed and the
model greatly simplifies to an exercise in real (deterministic) analysis.

As a first example of the results that can be obtained with the general
theory, consider a class of models with the simplest imaginable dynamic
structure: an IID structure. In addition to (1) independent periods, an 11D
structure requires that (2) the probability measures for w; and w;, where
w=w,w,--wr, are identical, and (3) the operating profit function and
adjustment cost function are stationary, ie., n,==, ¢,=c¢, r,=r for all
te{l,.., T}. The IID structure is the most amenable to analysis. Information
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flow is at its bare minimum (the w-dependence can be dropped), and the
multi-period dynamics essentially collapse to a single period model:

ProrosITION 1. Let the structure be IID such that n (-, w,)=1I(-) for
all t and w, and the salvage function be identical to the disinvestment func-
tion, f(K, w)=r'K. Starting from any initial investment level Kye R",, the
optimal investment strategy makes no factor level adjustments after the
beginning of period 1 (that is, K,=K,= --- =K, under the optimal
strategy). Moreover, the stay-put region, or continuation region, characteriz-
ing the optimal ISD policy for period 1 is given by:

1-0
1—o6"

Slz{Ke[R"_F:(lé)r<VH(K)< (céTr)}. (32)

Proof. The kernel of the proof is that the continuation regions are
nested, ie., S; =S,< --- =5,. We prove this by induction. It is immediate
that

Sr={KeR" :(1-0)r<VII(K)<c—dr}, (33)

and because the continuation regions are deterministic, either S, contains
S;_, or it does not. Assume S;_, =S, so that K, ,=K;eS;_, and
Vi(Kp_y)=I(Ky_y)+0r'Ky_,. Thus,

._52
STlz{Kem;(1_5)r<VH(K)<°1+5V}, (34)

which is indeed contained in S, because ¢ >r. Now assume that S, , =
S,.,€---=S;ysothat K, ,,=--- =K;€eS,,, and

Vt+2(Kt+1) :(1 +o+ .- +§T7r72) H(Kt+l) +5T7r71r/K[+1’ (35)
and

S,+1={K€[R§"+:(1—5)r<VH(K)<11_gft(c_§Ttr)} (36)

Again, either S,,, contains S, or it does not. Assume S,=S,,,, so that
K,=K,, €S, and the same reasoning yields

1-¢

c—éT“’r)}. (37)

Because c=r, [(1—0)/(1—6"""")](c—6" "1 <[(1—-36)/1—56"")](c—56"""r),
so that S, , indeed contains S, which proves the theorem. |i
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Thus, the IID structure allows us to characterize the optimal investment
strategy in analytic closed form. Moreover, this formulation is stated only
in terms of the marginal revenue product VII(K) of the factors and the
marginal adjustment costs. It is interesting that the disinvest control
surfaces are constant, but the invest control surfaces depend on the time
horizon 7. The continuation region is contracting as 7 increases and
converges geometrically to a fixed region for the infinite horizon case,
(T — o0). The optimal investment-up-to points on the invest control
surface are increasing in 7.

6. INVESTMENT AND FLEXIBILITY IN LINEARLY
HOMOGENEOUS STATIONARY MARKOV MODELS

In this section we consider a second class of investment models, called
linearly homogeneous stationary Markov models, that is characterized as
follows. In addition to our general model assumptions, these models study
a stationary, infinite horizon setting, where the form of uncertainty is
defined by a one-dimensional Markov process X={X,(w)eR,:weL,
t=0,1,2,..} with given initial value Xy(w). Also, at any time 7>0, the
stationary concave operating profit function only depends on current factor
levels K, and on information modeled by X, (and not on earlier informa-
tion). Therefore, since X (hereafter, suppressing dependence on w) is a
Markov process, we can write the operating profit function as n(K,, X,).
Finally, we assume that 7(K, X)) is increasing in X and supermodular and
linearly homogeneous in X and K. Investment dynamics for this class of
models with two factors are discussed in detail by Dixit [15], and this
section generalizes his results to an arbitrary number of factors.

Because all model primitives are stationary, the optimal value function is
also stationary and, given the Markov nature of the uncertainty, we can
write V(K,, X,).

ProrosITION 2. In linearly homogeneous stationary Markov models,
V,V(K,, X,) is homogeneous of degree zero and increasing in K, ; (Vi#j) and
X,. Thus, the continuation region can be specified as

S(X,)={KeR" : r <VVK/X, 1)<c}. (38)

Proof. Because we have a stationary, infinite horizon setting, with the
operating function n and the adjustment cost function C being super-
modular and linearly homogeneous in X and K, the optimal value function
V is also supermodular and linearly homogeneous in X and K. (Corollary 2
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shows the preservation of supermodularity in a finite horizon, non-
stationary setting. Dixit [15] shows the preservation of supermodularity
and homogeneity in a two-factor, infinite horizon, stationary setting, but
his argument directly generalizes to an arbitrary number of dimensions.)
Therefore, its partial derivatives are each increasing in X and K;, Vi#/, and
homogeneous of degree zero. ||

The first implication of Proposition 2 is that factor j will not always be
adjusted when it reaches a fixed level (relative to the stochastic term X'), as
in the single factor case. Rather, the threshold for increasing factor j
depends positively on the amount of other factors held by the firm. Second,
Proposition 2 shows that stationary Markov models as defined here have
a fixed central region in a K,/X,-axis system. To appreciate the significance
of this result, it is useful to first make a transformation of variables
k;=log(K,;/X). In this axis-system, the central domain S is a time-inde-
pendent volume as shown in Fig. 3 for a stationary Markov model with
three factors. (Fig. 3 shows S as a parallelepiped for expository simplicity.
Generally, stationary Markov models will have a central region that is a
“curvi-linear parallelepiped”).

Assume an initial state k, in the interior of the region of inaction
(otherwise an initial impulse control will adjust k, to the boundary of S).
Depending on whether the stochastic term X, increases or decreases, the

DD DDD

Fi1G. 3. Investment dynamics for a stationary Markov model with three factors.
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state vector k, will move down or up on a straight line parallel to the
vector (1, 1, 1) when not adjusted. Say, X increases. Then, k, will eventually
hit the lower “ISS (Invest, Stay put, Stay put)” boundary of S, and invest-
ment in the first factor will prevent k, from leaving S. (For clarification,
this process is magnified assuming a small discrete time step; assuming suf-
ficient regularity, a limiting argument would show that in continuous time,
k, never leaves S.) As long as X decreases, scaled factor levels k, will move
on a curve on the ISS boundary face (the projection of the original (1, 1, 1)
line onto that boundary face) and will eventually intersect with the front
boundary face. At that time, simultaneous investment in factors 1 and 2
will prevent k, from leaving S. The trajectory can be continued and the
result is that in equilibrium, the scaled factor level vector k, “lives” inside
the (thick lined) parallelepiped—note that at any time X, can change direc-
tion so that k, will move into this parallelepiped on a (1, 1, 1) line. (Before
an equilibrium is reached, variations in relative factor levels arising from
initial conditions may cause the sequence of adjustment to differ, but once
all factors have been adjusted at least once, this possibility is eliminated.)
The following proposition formalizes this feature of the optimal investment
strategy.

PRrOPOSITION 3. For linearly homogeneous stationary Markov models,
there exists an equilibrium weak ordering (or labeling) of the n factors such
that, for each i€ {1, 2, ..,n}, factor j>i will only be adjusted after factor i
has been adjusted, and when adjusted, factor j will be adjusted simultaneously
with and in the same direction as factor i.

Remark. The ordering can be weak in the sense that it can be that fac-
tors i and i+ 1 are always adjusted simultaneously. In Fig. 3 that would
happen for factors 2 and 3 if the points III and DDD are positioned
such that the thick lined equilibrium parallelepiped would be a planar
parallelogram.

Proof. The proposition follows directly from the graphical interpreta-
tion of the investment dynamics in k=Ilog(K/X) space provided S is a
(curvi-linear) parallelepiped that “contains displacements along (1, 1, ..., 1)”
in the sense that for at least one k €.S and an ¢ > 0, the displacement vector
k+¢(1,1,..,1)eS. We can generalize Dixit’s [ 15] proof to n dimensions
as follows. From the supermodularity of V, it follows that all boundary
faces of S are increasing and thus monotone. Therefore, it suffices to show
that factor i’s boundary surfaces have slopes <1, while all other surfaces
have slopes >1, in any (k;, k;) subspace with i #j and the other k,_, ; and
X considered fixed.

Fix any i (1 <i<n) and totally differentiate factor i’s boundary condi-
tions V,V(K, X')=¢; (r;) which yields that the two factor i (dis)investment
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surfaces have normal vector VV, (K, X)=VV;(K, X). Thus, the slope of
the (dis)investment boundary of factor 7 in any (k,, k;) subspace with i’ # j
and the other k,,, ; and X considered fixed is

dk, dK./K,  KVyK, X)
dk;,  dK,/K, K,V (K, X)

(Vi',j with i’ #).

Concavity of V" yields that V; ;< 0, while supermodularity yields V, ;_;>0,
so that dk, /dk; <0 if i # i’ #j and non-negative if either i’ or j equals i. In
addition, Euler’s identity for ¥, which is homogeneous of degree zero yields

XV, x(K,X)+ Y KV, (K, X)=0=—K,V, , =K, V, (Vj#i).

i i
Jj=1

Therefore, the slope of the factor i (dis)investment boundary with 7# i’ #j
satisfies

dhy o by b
Vx5 1 x 1,]JW 1 1).
di; S7 Sk, S S die / /

i

Thus, in any (k;, k;) subspace (Vj#i), the (dis)investment boundary of
factor i has all its slopes non-negative but not larger than 1, while all other
increasing boundaries have slopes not smaller than 1. ||

Thus, after all factors have been adjusted at least once, equilibrium is
reached and only a few of the 2 faces of the inaction region are ever hit and
always in the same sequence. The equilibrium ordering of the factors in Fig. 3
is 1, 2, 3: factor 3 will only be adjusted after factor 2 has been adjusted, and
factor 2 will follow factor 1. Moreover, adjustment in factor 2 and/or 3 is
simultaneous and in same direction as adjustment in factor 1. Finally, factor
1 will be adjusted most often and can therefore be called the “most flexible”
factor. In general then, some factors will be systematically adjusted more
often than other factors, and thus be systematically “more flexible” than
other factors. Specifically, any factor will always be adjusted along with
“more flexible” factors and prior to “less flexible” factors. Proposition 3
guarantees the existence of an equilibrium ordering, and shows that in our
model the flexibility of factors is determined endogenously. From our argu-
ment, it is clear that the ordering follows the ordering of the width of S
measured along the coordinate directions (due to homogeneity, the ordering of
widths is preserved when measured at different positions). Our general results
indicate that the width of the region of inaction is increasing in the difference
between the acquisition and resale prices of capital. In the next section, we will
show that for specific forms of the Markov process X and the operating profit
function 7, it is the fractions r;/c; that endogenously determine factor flexibility.



368 EBERLY AND VAN MIEGHEM
7. INVESTMENT IN BROWNIAN ISOELASTIC MODELS

7.1. Model Specification and Assumptions

In this section we consider a subset of the stationary Markov models of
the previous section with specific functional forms and arbitrarily small
time step so that the firm operates in continuous time and discounts future
profits at a constant rate p >0 over an infinite horizon. Specifically, we
assume that the Markov process X is a one-dimensional geometric
Brownian motion with instantaneous drift u, where —oo <u<p, and
standard deviation ¢ >0, and that the linearly homogeneous, super-
modular operating profit function has the specific form (suppressing time
subscripts wherever possible hereafter):

n 1—0 n
n(K,X):hX(’<]_[ K}’f> where /7>0, ) y;=land0<0,y,<1.

i=1 i=1

(39)

This operating profit function can be derived from a constant returns-to-
scale Cobb-Douglas production function and a constant elasticity demand
function.” Finally, we now allow factors to depreciate at rate 4>0 and
study the equilibrium regime. We call a linearly homogeneous stationary
Markov model that satisfies these assumptions a Brownian isoelastic model.
For these models, we will express VI in terms of the marginal operating
profit Vz. For now we will assume that the factors are labelled such that
the equilibrium factor adjustment sequence of Proposition 3 is 1,2, .., n,
and later we will show how to construct the sequence from the problem
data.

Because the form (39) for (K, X)) satisfies the requirements of Section 2,
a limiting argument on the time-step shows that the optimal policy is of the
ISD form. In continuous time, the optimality equation (8) takes the form
of the Bellman equation

pV(K, X)=n(K, X)+ E[DV(K, X)]/dt

—hXO ] K2~ 4 uXV o+ 162XV — AVV)Y K. (40)

i=1

where D is the total derivative and VV is the vector of partial derivatives
with respect to the elements of K (when differentiating with respect to the
stochastic process X, we will write V' explicitly). The left-hand side of
the Bellman equation can be interpreted as the required rate of return on

13 This is the same function used by Bertola [9] and Dixit [ 14], generalized to allow for
multiple factor inputs.
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the firm, pV(K, X'), which must equal net profits (the dividend) plus the
expected capital gain. Because the Bellman equation must hold identically
in the range of inaction (when none of the factors is adjusted), it can be dif-
ferentiated with respect to each factor. The marginal value of an additional
unit of each type of capital, ;= V', therefore obeys the partial differential
equation for each j=1, ..., n:

(p+4)q;(K X)= 7r,<j(K, X)+E[Dg;(K, X)]/dt

=7,(1=0) hK; ' X" [T K="+ uXq; «

i=1

+%‘72qu/; xx—AVq) K. (41)

Section 3 shows that the marginal value function ¢=VJV equals the
marginal cost ¢ at the investment boundaries and the marginal revenue r
at the disinvestment boundaries. This boundary condition is known as
“smooth pasting” in the control literature. One additional boundary condi-
tion, known as “high contact”, is a direct generalization of one-dimensional
control problems and requires that the marginal benefit and marginal cost
of adjusting be equalized both before and after the infinitesimal adjustment.
This condition requires that at the investment and disinvestment bound-
aries for factor j,

High Contact Condition: ¢; (K, X) =0, Vi<]. (42)

7.2. Analytic Expressions for the Optimal Investment Strategy

This section presents analytic expressions for the marginal value function
¢=VV and the continuation region S of the optimal investment strategy
for a Brownian isoelastic model. It will be useful to introduce the following
quantities. Let £* >1 and ¢~ <0 be the two roots of the quadratic equa-
tion

L2 + (A= 40 E=(p+ 1) =0, (43)
and define the scalar R(0)>0 as
RO)=p+A—0(u+ )+ 1501 —0). (44)

Also, let e denote a vector of ones of variable length and denote the
n-vector that is composed of ¢ and the (n—i+ 1)-vector K”” by

(e, Ki")=(1,1,..1,K,, .. K,,). (45)
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ProprosITION 4. For a Brownian isoelastic model in equilibrium, the
function ¢*(K, X) defined componentwise as

q; (K, X)
=R(0) g (K, X)+ K Z ALK Tl =077 (e, K), X)

i=1

+K; z B,K, HFEim0n=0nk (e, K*7), X), (46)

i=1

where A; and B, are constant vectors, y,=0, and a=E,'/0>1 and
p=E- /9<0 satlsfles the optimality equation (41) and defines constant
vectors F<¢ which specify an equilibrium ISD investment strategy with
central domain

S(X,)={KeR" :i<Vn(K, X,)<c}. (47)

Proof. For any j=1,.,n, the partial differential equation (41) has
particular solution R(0) ! Tk (K, X), where R(0) is as defined in (44), and
a continuum of homogeneous solutions of the form CX™TI/_, K7,
where C; is an arbitrary constant and 7 ,9,=0 (because q,(K X) is
homogeneous of degree zero in its arguments) The expression (46) i
among this class of solutions and it is verified by direct substitution that
this candidate solution satisfies the partial differential equation (41).

The system of equations defined by (46) has a triangular form. Beginning
with factor 1, (46) becomes

nKl(Ka X)

g7 (K, X) = R(O)

+A11n01(<1(Ka X)+Bllnf(l (K5 X)s (48)

which is monotone increasing in 7, (K, X). From Proposition 2, we can
rewrite the first two inequalities that define the boundaries of the range of
inaction in terms of two constants 7} < ¢, as 7} <7, (K, X) < ¢,. For factor
2, (46) becomes

ﬂKz(Ka X) Kl

g5 (K, X)= R(0) K

{AZITCK1(K X)+ BZanl(K X)}
+ A5 [ K3 D (e, K*7), X) 1%
+ B[ K3~ Dy ((e, K*7), X)]7. (49)

From Proposition 3, when in equilibrium factor 2 is adjusted factor 1 is
also adjusted simultaneously and in the same direction, so when factor 2 is
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adjusted upward 74 (K, X') =7, and when factor 2 is adjusted downward,
7k (K, X) = ¢,. Using this fact and the fact that from the form of the operat-
ing profit function, 7, (K, X) =nx,(K, X)(y,K,/y,K,), the expression in (49)
can be rewritten and evaluated at the investment boundary to obtain

y.i Ky K _“ _
q;‘(K,X)zy ;(10)?1 fl{AZIr1+BZ]r{’}
1 2 2
— K I—y(1=0)]a — K 1—y(1=0)1 8
raa|B0(R) a2 (R) T
71 \K; 71 \K,
—e,. (50)

Thus, at the simultaneous investment boundary for factors 1 and 2, the
ratio K, /K, always equals a constant. Since 7m., (K, X)=7r, at the equi-
librium investment boundary for factor 2, and given the form of the
operating profit function, this implies that 7 (K, X') always equals a con-
stant at the investment boundary for factor 2. A similar argument holds at
the disinvestment boundary for factor 2, so that the boundaries of the con-
tinuation region may be written as 7, <7k, (K, X) <¢,. Continuing, using
the triangular form of the system of equations defined by (46), we find that
n (K, X) always equals a constant value when factor j is adjusted upward,
and similarly when adjusted downward. Thus, in equilibrium, the central

domain may be written in terms of the marginal profitability of capital,
yielding (47). 1

Proposition 4 proposes a solution g* for ¢ that satisfies the partial dif-
ferential equation (41) and determines an ISD investment strategy by its
central region which satisfies the boundary conditions. The next proposi-
tion shows that the same expression ¢* that is proposed for ¢ in (46)
obtains when calculating the expected present value of marginal revenue
products directly using the unique ISD strategy with central domain
specified by (47).

ProrosITION 5. For a Brownian isoelastic model in equilibrium, the ISD
investment strategy with central domain S(X,) specified by (47) yields the
marginal value of an additional unit of a factor j=1, ..., n given by

V.V(K,, X,)=q](K,, X,), (51)
where q7(K,,X,) is defined by (46).
Proof. See Appendix A. ||

Because the operating profit function (39) is strictly concave, V is strictly
concave inside the region of inaction and the Brownian isoelastic investment



372 EBERLY AND VAN MIEGHEM

model has a unique optimal ISD investment strategy. Therefore, Proposi-
tions 4 and 5 together establish that the proposed solution ¢* given by (46)
indeed is the marginal value of an additional unit of a factor ¢ =V of that
unique optimal ISD strategy, and that the unique optimal ISD policy has
central domain (47). Thus, even though the Brownian isoelastic model has
dynamic persistence, the thresholds for optimal investment can be written in
terms of a factor’s current marginal profitability (as in the earlier IID model
of Section 5) because of its Markovian structure. That is, when current
marginal profits reach an upper threshold investment occurs in a factor, and
similarly, when marginal profits reach a lower threshold, disinvestment
occurs in that factor.

7.3. Endogenous Characterization of Factor Flexibility

Proposition 3 guarantees the existence of an equilibrium factor adjust-
ment sequence. The following proposition shows how this sequence can be
constructed. Specifically, in a symmetric version of the Brownian isoelastic
case where y, =y, Vi, j, it is the ratio of the acquisition prices to the resale
prices, ¢/r, that determines the relative degree of flexibility of the factors.

PROPOSITION 6. In a Brownian isoelastic model, factor i is more flexible
than (that is, is adjusted more often and before) factor j if and only if
(¢;/r;) <(¢;/r,). If the model is symmetric so that factors are otherwise identi-
cal, (y;=y; and either c,=c; or r,=r;, Vi, ), then

“Scd e dcd (52)

Proof. From Proposition 3, in linearly homogeneous Markov models, the
ordering of the factors (from most flexible to least flexible) follows the ordering
of the width of S measured along the coordinate directions. Our general results
indicate that the width of the continuation region is increasing in the difference
¢;—r;. If factors are identical except for the secondary market discount ¢; —r;,
then y; =y, and either c,=c; or r;=r,, Vi, j. Thus, for otherwise identical fac-
tors, the width of the continuation region is increasing in ¢;/r;. ||

7.4. Optimal Irreversible Investment

If r=0 in a Brownian isoelastic model, investment in all factors is
irreversible' and a closed form solution is obtained for the investment
threshold for each factor.

!4 Because Brownian isoelastic models have positive marginal operating profits Vz, the
expected present value ¢ of marginal operating profits is also positive. Therefore, the firm
would never disinvest in factor ;j (thus making factor j irreversible) if its resale value of capital,
r;, were negative or zero.
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PROPOSITION 7. For irreversible investment (r=0) in a Brownian iso-

elastic model, the central domain is
S(X,):{KGR’;:Vn(K,X,)gc‘:(x(e)R(e)c} (53)

a(f)—1
Proof. With irreversible investment the marginal profitability of any
factor j can become arbitrarily close to zero. Therefore, to prevent marginal
profit raised to the power <0 from becoming infinite, the constants
B;; in (46) must be zero. Totally differentiate ¢,(K, X') and impose the
high contact condition to obtain the condition Y. ;¢ (K, X)dK;+
q;x(K, X)dX =0, remembering that ¢;(K, X') is homogeneous of degree
zero. From Proposition 3, no adjustment is made to factor i >, so dK;=0
in all the terms in the summation, yielding ¢ (K, X)dX=0, which
requires ¢,x(K, X)=0 along the boundaries for adjusting factor j. Using
the expression for ¢;(K, X) in (46), differentiating and multiplying by X

yields for all je {1, .., n}:

971'1(/-(K, X) 0 Z/: 7A K“Z" 0“(17(} (( K' n) X)—O
7]{(0) [od =VU.

1*1

qu(Ks X) X=

Using this expression to eliminate the summation terms in expression (46)
for ¢;(K, X') and imposing the boundary condition ¢;= c;, we obtain

9;(K, X)= Q—R(g) 1-=

(K, X) { 1}
=c;.
At the investment boundary the threshold value of the marginal
profitability of factor j that justifies investment in factor j is thus given by

G=" e (54)

PropOSITION 8. If in a Brownian isoelastic model factors 1, ..., [ are irre-
versible and the remaining n— [ factors are costlessly reversible (r'*' =0 and

plr b=+ my then the central domain is



374 EBERLY AND VAN MIEGHEM
where

0
= =0, 56
T a=o L, (56)

(with strict inequality when 1 <n), and the irreversible investment boundaries
are strictly decreasing in the total share, ' _ | v,, of the irreversible factors.

Proof. 1If factors [+ 1, ..., n are costlessly adjustable, their optimal levels
are found by maximizing the operating profit function = of the Brownian
isoelastic model; the marginal operating profit of each costlessly adjustable
factor is set equal to the Jorgensonian user cost, ( p+2)c;. The effective
operating profit function becomes a function #(K ", X,) of the irreversible
factor levels only:

(K}, hX” ]_[ K (I=m, (57)
i=1
where
A "yl _g)]r,»(la))n/ﬁ 0
h= <h [ and = >0.
= L T SN )
(58)

Using the maximized operating profit function #(K /", X,), Proposition 7
applied to this equivalent model with [ irreversible factors gives the
threshold for investing in irreversible factor j </ is given by

_ o(17) R(n)
¢(l)= ) —1 (59)
Differentiation of (59) yields
o) _1 ..,
p =50 &Fe;>0. (60)

H

Letting I'=Y!_,y;, we have X7, ,7,=1-X!_,7,=1—1T, so that

on/oI’ < 0. Together we have

o¢, oc; oy
—L=—JT <. 6l
ar—agar~ | (61)
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Although expression (55) is similar in form to (53), notice that both the
root a and the discount factor R differ in the two expressions and

¢;(l)y>ci(n)=¢; for j<lI<n, (62)

which implies that the investment threshold decreases in I Thus, the fewer
factors are irreversible, the higher is the investment threshold and the
smaller is the region of inaction.

The magnitude of the effect of overall irreversibility on factor j’s
threshold can be obtained from the derivative in (61). The effect of the
additional irreversible factors on the threshold is increasing in ¢ which
has a positive effect on the threshold for investment. This result implies that
as y; becomes small, the threshold as calculated in the single-irreversible
factor case (/=1) becomes large relative to the multiple factor case, and
this effect is exacerbated the more the threshold is driven up by uncer-
tainty.

We can now compare optimal investment for a Brownian isoelastic
model with two' factors under three scenarios: Scenario I assumes that
investment in both factors is frictionless (¢ =r), a situation in which the
marginal operating profit of each factor is always equal to Jorgensonian
user cost. Scenario II assumes that investment in factor 2 is frictionless and
in factor 1 irreversible (¢, =r, and r, =0). Finally, scenario III assumes
that investment in both factors is irreversible (r =0). Under scenario I, the
optimal choice of relative factor levels occurs at the intersection of the two
arcs equating the marginal operating profit of each type of capital to its
Jorgensonian user cost. This investment point is labeled as point J in Fig. 4
and relative factor use K,/K, is given by the slope of the line from the
origin through point J. Under scenario II, the dashed (concave) arc con-
taining point 7 gives the optimal threshold for adjusting the level K, of the
irreversible first factor for every value of K,. Since K, is continuously
optimally chosen, however, it is still chosen along the convex arc contain-
ing point J, the Jorgensonian factor choice. The firm exists along the arc
that contains 7/, and increases K, only when K, /X falls sufficiently that the
firm reaches point /. At this point, relative factor use K, /K, is lower than
in the Jorgensonian case, but may be higher as K, /X rises beyond point J.
Under scenario IIT with both factors being irreversible, the region of inac-
tion S is unbounded (the disinvestment boundaries of Fig. 4 are at + o0)
and the firm exists in the shaded area beyond the intersection at point M.
Observe that point M is above point I, implying that the firm chooses a
higher value of K,/K, when both factors are irreversible than when only

15 The two factor case is used for geometric simplicity, but the results hold (and can in fact
be strengthened) with any number of irreversible factors.
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KI, E/Xr

FiG. 4. Comparison of optimal investment with two irreversible factors (M), one
irreversible factor and one frictionless factor (7), and two frictionless factors (J).

factor 1 is irreversible. This occurs because the firm prefers to use the
flexible factor 2, increasing its relative investment, when factor 1 is the only
irreversible factor. When this relative advantage is removed and both fac-
tors are irreversible, the distortion of factor use is eliminated. The point M
where investment in both factors occurs is along the line from the origin
through point J, so that desired factor shares are not affected by the
irreversibility constraint.'® In this case, the marginal revenue product that
justifies investment is above the Jorgensonian level, but below the single-
irreversible-factor level.'”

8. CONCLUSIONS

This paper has studied optimal choice of many factors with costly rever-
sibility. Costly reversibility of factors arises when a firm faces labor firing
costs or when it cannot recoup the price of capital when it is resold.

16 This result relies on the homotheticity of the production function, so that optimal factor
shares are not affected by the scale of production.

17 This result relies on decreasing returns in the profit function, either from physical
decreasing returns to factor inputs or from market power. If the profit function exhibits
constant returns to scale, then points J, I, and M will all lie at the same point.
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Because not all of the expected present value of future payments is
recovered when factor use is reduced, the firm will be more reluctant to
change factor levels. This reluctance is described by a region of inaction
that characterizes optimal investment in our general investment model.
Within this region it is optimal not to adjust factor use, but from anywhere
outside the region or at its boundaries, it is optimal to adjust factors to a
specific point on the boundary of the range. This paper presents various
properties of the general optimal strategy.

Additional insights are obtained by applying the general framework to
two specific model classes. Investment models with an IID structure allow
an analytic, closed form expression for the entire investment strategy, even
under a finite horizon. The second class of models assumes a one-dimen-
sional stochastic process as the generator of uncertainty, and a super-
modular, linearly homogeneous operating profit function. The familiar
Cobb-Douglas related operating profit function belongs to this class. A key
result is that it is possible to characterize the entire investment dynamics
and endogenously infer from that a “flexibility” ordering of the factors.
This implies an attractive model feature that is potentially empirically
observable: costly reversibility implies that investment and hiring, for
example, will exhibit periods of inactivity and episodes of accumulation or
decumulation. We also show that it is possible to express investment
threshold rules in terms of the marginal profitability of a factor, which may
expedite empirical analysis of optimal factor investment.

A. PROOF OF PROPOSITION 5

A.l. Preliminary Properties

In this section, we first derive some properties of the ISD investment
strategy with central domain S(X,) specified by (47) in terms of the
marginal profitability Vz. (Hereafter we will refer to this specific ISD
strategy as “the proposed ISD strategy”.) The Laplace transform of the hit-
ting times under the proposed ISD strategy is evaluated using the following
Lemma (cf. [20] for a proof in the case of a standard Brownian motion
and [9] for the extension to the geometric case).

LeEMMA 2. Let x, follow a geometric Brownian motion so that dx,=
mx dt + sx dz, where dz is the increment of a standard Brownian motion. If
T is defined as the length of the interval until the first hitting time for the
process x to either a or b, where a <x,<b, then

x:\* x
Ete"TZE,[EW;xt+r:a]+Er[e‘yf;xwrr:b]:(ar) +<bt> ’ (Al)
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where E, is the expectations operator taken at time t, {~ <0<1<{* are
the roots of the quadratic equation 0= —v+ (m—3s?) {+ 3s°C, and we
follow [20] in using the notation E,[z; A] to denote the product of the
conditional expectation and probability, E,[z|A] P(A4)= jA zdP,.

To evaluate the hitting time T, let'® x,=K§;k;10 =07, ((e, K['"), X,)
and v=p+ 4, so that m=0[ u+ A —15*(1 —0)] and s* = 0%¢>."° The quad-
ratic equation, written in terms of {6, is the same as the quadratic equation
in (43), so that the roots £* ={"0 and £~ ={ 0. In terms of the notation
in the text, we obtain f=¢7/6 and a=¢7 /0. The properties of the roots
(x>1 and f<0) of (43) are verified by observing that the f"(£) >0 and
using the properties f(0) = —(p+ 1) <0 and f(1)= —p +u <O0.

Consider the following n “restricted ISD strategies”: under the ith
restricted strategy, the first i factors®® K'*’ are adjusted according to the
(restricted) proposed ISD strategy with domain {K''eR’ : F''<
V'r(K, X,)<c'"'}, while the last n—i factors K'*'"” remain unadjusted
(but do depreciate at rate A). Denote the expected present value of
marginal and total profits from factor i under the ith restricted strategy by
y; and Y, respectively:

Vi =yi(K, X))

=E, [ m (DK /3 KL e 1 X, ) e ds, (A2)
Y, = YK, X,)

=E, [ n([K K e LX) e d (A3)

Six useful results regarding these present value calculations follow
immediately:

LemMmA 3.  Under the ith restricted strategy, we have that for any j> i

o0
B[ mgKoo X ) e 0 s =(1-0) 5, (Ad)
0 Js
18 Note that e denotes Euler’s number, whereas e represents a vector of all ones.
Y Equivalently, we could define x, = nx(K,, X,) and using Lemma 8 obtain the definition
of x, above. The dynamic properties of x, are identical in both cases.
20 Recall the notation for subvectors: for i<n, we have K=[K"' K'*1"] where K'''=
(K, ... K;) and K'*""= (K, |, ... K,). For i=n, let K'*!"=1.
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Proof. K; is a fixed factor for j>i (and thus K/ 1! =K/*'"e~*). The
lemma is immediate from the fact that

nKj([K] ! K[l'+11nefls]’ Xt+s)

1+s°

_(1=0)
K

Js t

n([K/ KT e 1, X, ) e, (A5)

t+s°
using the homogeneous form of the operating profit function. |

Lemma 4. If no factors are ever adjusted (the “0th restricted strategy”),
we have that

R KX
Yo.=E,| n(Ke t X ) ds RO (A6)

Proof. Because all factors 1, ..., n are assumed to depreciate geometri-
cally with no other adjustments, Y, , is the expected discounted present
value of a process following a geometric Brownian motion. [j

LEmMMA 5. If only factor 1 is ever adjusted (the first restricted strategy),
we have that

(K X)) o,
Vi, ZW"F (lﬂKl(Kt, Xt) + bnlﬁq(Kn Xt)s (A7)
where a and b are constants and o and [ solve the quadratic (43) as pre-
viously.

Proof. Because factors 2,..,n are assumed fixed, Lemma 5 follows
directly from a single factor investment problem with costly reversibility, as

in[97. 1

LEMMA 6. Under the ith restricted strategy, y; , is constant on the invest-
ment and disinvestment boundaries for factor i: there exist constant vectors
@ and ¢ such that

Proof. y, , can be calculated by recognizing that y, , =g, , in the special
case where ;=0 and ¢; » oo for j>i; in this case, factors j...n are “irre-
versible” and ‘non- expandable in the terminology of [1]. Now, for any
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ISD policy characterized by a continuation region S, the marginal value
g =VV is constant outside and on the boundary of S. Indeed, V is linear
outside S with ¢;=V,;V equal to ¢; or r;, depending on whether the ISD
rule prescribes investment or disinvestment to bring the firm to the
boundary of S. That is, any ISD policy (optimal or not—note that the
optimality of an ISD policy depends on its choice of S) satisfies the smooth
pasting conditions. Therefore, at the factor i boundaries of the ith restricted
ISD policy, this “special” ¢, , is constant and thus so is y; ,. |

Consider the proposed ISD policy and fix any time > 0. Define T, as
the time when any element of K is next adjusted, so that 7', — ¢ is the inter-
val until the first factor adjustment, 7, — T, is the interval between the first
and second adjustment, and so on. The proposed ISD policy then yields
two useful properties of factor ratios:

LemmA 7. Under the proposed ISD policy, we have that K, /K, 1=
K. /K, Yi<].

Proof. The central domain (47) of the proposed ISD policy has
non-curvilinear boundaries in log(K/X)-space. The discussion leading to
Proposition 3 (and appropriate labeling of the factors) then shows that fac-
tor j>i will only be adjusted after factor i, and factor 7 is not adjusted
before its first hitting time, 7, so the ratio of factor stocks is unchanged
between time ¢ and time 7. |

LeEmMA 8.  Under the proposed ISD policy, factor proportions are con-
stant on the investment and disinvestment boundaries for factor j:

;Y

Jjii

K;/K;= Jorall i<j if mg(K X,)=¢,

rfyj: Jorall i<j if mg(K X)=r;

Jii

K./'/Ki =

Proof. From the discussion leading to Proposition 3, when factor j> i
is adjusted, it will be adjusted simultaneously and in the same direction as
factor i. The central domain (47) of the proposed ISD policy shows that,
along the investment boundary for any factor j, n4 (K, X)=¢;, and along
the disinvestment boundary for any factor j, 74 (K, X)=r,. Applying this
condition to both factors i and j, using the form of the operating profit
function, and taking the ratio we obtain the two constant ratios K;/K,
along the investment and disinvestment boundaries, respectively. ||
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LeMMA 9.  Under the proposed ISD policy, Y, , is proportional to K; , on
the investment and disinvestment boundaries for factor i: there exist constant
vectors {; and {; such that

Proof. Under the ith restricted policy, factors i+ 1:n are not adjusted,
so the operating profit function 7n(K,, X,) may be equivalently written
as a function of the exogenous process X/[I;_,,, KW'~ and the
adjustable factor vector as K/’ Then the operating profit function
and Y,, are linearly homogeneous in the composite X, ,=[X’
[T/, K =00+ 0 =05kl and the vector K,'*. Under the
proposed ISD policy, when factor i is adjusted, 7. (K,, X,) =¢; (if at the
investment boundary) or ng(K,, X,)=7; (if at the disinvestment bound-
ary). Using the form of the operating profit function and the fact that (from
Lemma 8) K;, is proportional to K, ,, for /<i, along the investment and
disinvestment boundaries we have that X7 TT;_,,, K;"\' = is proportional
to K}, ==1m1=9 Since 37_, y,=1, this implies that X, , is proportional
to K, ;.

Therefore, since Y, , is linearly homogeneous in the composite X, , and
K/, and all of these elements are proportional to K, ,, then Y, , is propor-
tional to K; ,. 1

A.2. Calculating q of the Proposed ISD Strategy by Decomposition

First, as argued in the proof of Lemma 6, the marginal value g=VV
obtained under the proposed ISD strategy with central domain S(X,)
specified by (47) is constant outside and on the boundary of S, satisfying
the smooth pasting conditions. Therefore, it only remains to be shown that
the marginal value ¢ obtained under the proposed strategy for a point
inside of S equals g*.

Bertola [ 9] shows that in the single factor case, the marginal value of an
additional unit of capital, ¢,(K,, X,), equals the expected present value
of marginal operating profits. His argument generalizes directly to an
arbitrary number of factors in the environment we consider and we can
write the marginal value of an additional unit of any factor j as

G)(K X)=Vig(K X)=E, | (K, X ) o™ ds. (AR)

Choose a time ¢ at which the firm is in the interior of its continuation
region S(X,), specified by (47). Set T, =t and define the hitting times 7, for
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the proposed ISD strategy as in Lemma 7. For any j (1 <j<n), rewrite
¢;(K, X) in (A8) as

J

Ti—t A
qj(Kt, Xt)z Z Etf nKI(KtJrS,X[Jrs)e*(p-%—a).rds

i=1 Ti—1—1t
FE [ mg(Kepn X e 0t ds (A9)
Tj—1t

(Notice that 7, may be equal to 7, ,: If factor 1 is next adjusted alone,
then 7, < T, for all i=1, .., j. If however, factors 1, ..., j are next adjusted
simultaneously, then 7', =T, = --- =T in the summation above.) In order
to evaluate (A9), any element in its summation can be written as

Ti—1t
—(p+A)s
Erj 7TI<,(Kr+saXt+s)e r ds
Ti—1—1t

Ti—1 , ,
=Etf n_Kj([Kl:lfl’ K::nefis]’ X,er) ef(p-ﬁ—i)sds

t+s
Ti—1—1t

o)
=Ben T | D (LKL K e K ) e ds
, T

0
—Etei(/)JrA)(ﬂi[)f 7T1</(|:K1:l71 Kszinef)._\']’ XT,-+5-) (:'7U)+A)S dS.

0 Ti+s
(A10)
Recognizing that i — 1 <j in (A9), we use Lemma 3 to obtain
Ti—1t )
B[ mg(Kpw X ) e 00 ds
Ti—1—1t
—E e (ptATiii—0 =0 Y 7,
- t
K/}Thl
7E,€7(p+;')(T[7[) y,(l—@) Y,;LT,.. (All)

Kj. T;

We evaluate this expression first in the special case of i =1, and then in the
general case of i =2, ..., n. Then we evaluate the last term in equation (A9).
First, use Lemmas 3 and 4 to evaluate the first term (i=1) in (A9):
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T —1t
—(p+A)s
B (Koo X,o) e 5 ds
0

:7}./'(1_9) Y,, To R p—(p+T1—1) ))](1—9) Yo, 7,

K/l Ty ' KL T
(KraX) 7(p+/1)(T|7t) Vj(l—e) n(KTpXTl) (A12)
R RI(J', i .

From the expression (47) of the continuation region of the proposed ISD
policy under analysis, we know that at time 7';, when the first factor is
adjusted, 74 (K, X) must equal either the lower bound 7, or the upper
bound ¢,. Using this information and the law of iterated expectations, the
last term in (A12) becomes:

1—0) n(Ky, Xv,)

E,e (7 +aT1i—0 75

RK; 1,
=Ele7(p+i)(T171)ETl yjKl, Tanl(KTl’ XTI)
Ry K, 7y
K, .c ,
= Bl N (T =]
14 ¢
Ky 7 .
Hp S BLe U (T =),
15,1

where the last equality uses Lemma 7. Using Lemma 2 the expected hitting
times can be evaluated to obtain

T —t
— )ﬂ K3
B | K X ) e ds

T (K, X)) K, K,
ZJT Ay Kj””KI(KmX)‘l‘Bn Kj’anl(K , X)), (A13)

Using the same method, the remaining terms in the summation form of ¢,
(for i=2,..,n) in (A9) can be evaluated. Applying Lemma 9, rewrite the
first term in (All) using

Yifl, Ti—1__

ETi—l K
Js Ti-1
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and the second term using (also making use of Lemma §)

2 7:‘%‘71 K; Kin,
(A15)
Substituting (A14) and (A15) into the expression in (All) and invoking

Lemma 7, we obtain

Ti—t
— /1 s
B[ mg(Keen Xo)e 9 ds
Ti—1—1t

_ K, .
ETi_1|:Cil Kl’t;nK;_l(Til)=Ci1:|

ot

=9,(1—0) E,e 7+ HTi-1-0

K, _ _
+E4 | [Q_l K l’t;nKil(Ti—]):ri—1:|

s t

v K
Eﬂ{éil_'yllu;nKi(Ti):c,]
CiflVin,t

—v(1—=0E —(p+AUTi—1)
7 (1=0)E,e P K,

—t 71717)1 K',

{E, {c ,nK(T,-)=r,}

(A16)

Using Lemma 2, the hitting times can be evaluated, producing the
expression

Ti—1t
(p+4)
B (K, X e vrds
—1—1

K, )
L El ’Ko(Z/\ 0}/\(17(})71. ((e’ Ktlfl:n)’ X,)

i—1,
Ji

=A

K, (. i ,
— I, i (1 —86 —1:
+ By KPEcon1=0nf (e, KI~1"), X,)

i
s t

K. i )
Ay K Eo O (e K i), X))

Js t

K;
+B; ’KI 'Kﬁzk o1 =07 8 L((e, Ki), X,). (A17)

gt
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Note that for i =2 the first two terms in this expression are identical to the
last two terms in (A13), up to the constants. More generally, each term in
the summation in (A9) adds two such terms to the expression for ¢;. The
final term in the expression for ¢; in (A9) is evaluated using the boundary
values of ¢, of the proposed ISD investment rule (which satisfies the
smooth pasting conditions):

Etf nlg(Kt+sth+s)ei(p+i)st

Tj—1
o0

_ —(p+ANT;—1 —(p+A)s
— e~ (P HANT, >f T (Kgaos X)) e~ 9% ds
0

—B,e ¢+ AT=04.(T)

=E{Eg[e "t 0 q,(T)) = ¢;]
+Eq[e” "0 q,(T) =11}

= 4K Eicon =00 (e, K/7), X,)

+ BK/Th0n =00 (e, K[7), X,). (A18)

Substituting (A13), (A17), and (A18) into the expression for ¢; in (A9)
we obtain (46), where A4;=3>,4,;, and B;=3%,B,; for each factor

j=1,..n 1|

1
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