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Abstract

This paper presents a model of consumer boycotts where the discrete choices of concerned

consumers are represented as a stochastic processes. Boycotts are interpreted as a form of voting

where consumers are trying to shape the behavior of firms.We solve for the limiting distribution

of the process and analyze its properties. We then discuss how the model relates to standard

game-theoretic approaches to the same phenomenon and show that our model selects one of the

many solutions of the corresponding game-theoretic treatment. The type of solution selected

depends on the costs and benefits of boycotts to consumers. Specifically, boycotts will occur if

and only if they are efficient for consumers.
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1 Introduction

The regulation of economic activity is one of the main arenas of political competition. The impetus

for changes to regulatory regimes frequently originates with concerned citizens, often motivated by

social or ethical concerns. Examples include areas such as product safety, fair lending standards,

or environmentally responsible lending practices. Traditionally, concerned citizens, which we will

call "activists" henceforth, have used public institutions such as legislatures, executive agencies,

and courts to advance their agenda. Winning majorities in elections for public office then becomes

a critical step to success. In recent years, however, many activists have concluded that public

processes respond too slowly and can be blocked too easily by special interest. In response they

have turned to "private politics" instead. Private politics refers to actions by private interests

such as activists that target private agents, often in the institution of public sentiment (Baron

and Diermeier 2007; Diermeier 2007). Michael Brune, executive director of the Rainforest Action

Network (RAN), a leading global activist group, commented that “Companies were more responsive

to public opinion than certain legislatures were. We felt we could create more democracy in the

marketplace than in the government.” (Baron and Yurday 2004) Democracy in the marketplace

means that citizen consumers express in markets their assessment of firm and industry practices.

Consumer boycotts are the most widely used strategic tool of political activists to change corpo-

rate practice (Baron 2003, Friedman 1999, Shaw 1996). Yet, they represent a puzzling phenomenon

to the modern theory of collective action (e.g. Granovetter 1978, Oliver and Marwell 1988, Oliver

1993, Olson 1965). Consumers are not part of an existing identifiable group or social network,

nor do they share a common identity or social activities, all factors that the existing literature

has identified as facilitating collective action. In addition, there are no readily available selective

incentives, the social benefits of a boycott are not exclusionary, and there usually is no repeated

interaction among participants. Thus, since these factors are absent, consumer boycotts should not

occur.

Still boycotts do occur, and in many cases they are highly successful. In one of the few quantita-

tive studies of boycott success, Wolman (1914) reports that 72% of the concluded labor-sponsored

boycotts at the turn of the century were successful in attaining their stated objective. Indeed they

2

This article is published in Mathematical and Computer Modelling 48 (2008) 1497-1509.



were so successful that businesses began to devise political and legal strategies to effectively make

them illegal. Their actions bore fruit in both Supreme Court decisions and Federal legislation that

effectively outlawed “coercive” secondary boycotts in labor disputes (Friedman 1999).

Today, boycotts are the weapon of choice used by political activists with various agendas ranging

from environmental concerns, global labor standards, to animal welfare or opposition to genetically

modified food products. Boycotts critically rely on the participation of concerned consumers who

are consumers that also care about the social dimension of a product such as its environmental

impact or the way the product is manufactured or marketed. Concerned consumers are an increas-

ingly important segment of the market. They may be willing to pay a higher price for a socially

responsible product, or will switch to alternative products if their preferred products are considered

socially unacceptable. In the oil industry, concerned consumers are estimated to represent up to

70% of all consumers.1

To fix ideas consider the famous example of the confrontation between Shell and Greenpeace

over the decommissioning of the Brent Spar oil storage facility (e.g. Diermeier 1996, Jordan 2001).

In 1991 Shell UK, the British operating company of multinational Royal Dutch/Shell Group, was

facing the necessary disposal of the Brent Spar, an aging North Sea oil storage facility and tanker

loading buoy. Regulatory guidelines (in this case by the UK. Ministry of Energy and Environmental

Affairs) govern petroleum companies in the process of offshore facilities disposal; companies are

required to rigorously evaluate disposal options and submit their preference, the Best Practical

Environment Option (BPEO), for government approval. Two options survived Shell’s screening

process: on-shore dismantling and deep-water disposal. The former requires the transport of the

buoy to shore for dismantling while the latter involves towing the structure to a deep-water disposal

sight for sinking. Shell UK submitted deep-water disposal as their BPEO concluding that it was

both less costly and less likely to result in mishaps that could be dangerous to the environment

and the workers. In February of 1995, the British government accepted Shell’s BPEO, deep-water

disposal.

Meanwhile, one of the world’s largest environmental groups, Greenpeace International, had

become aware of Shell’s plan and had commissioned their own study concluding that removal

1Presentation by Steve Percy, former President of BP America. Kellogg School of Management. October 28, 2002.
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to shore was a better option than deep-water disposal. Greenpeace subsequently acquired satellite

communications and video equipment, and on April 30, 2005, 14 activists and 9 journalists boarded

the Brent Spar rig. After a three week occupation, the activists were expelled by Shell and local

authorities using water cannons, an act that one Greenpeace official, Harold Zindler, characterized

as having “portrayed Shell as unresponsive and inconsiderate big business.” In response German

motorists engaged in an informal boycott of Shell stations which led to a drop in sales of up to

40%.

On June 20, Shell announced that they would abandon the sinking of the Brent Spar rig. The

Chairman stressed that while Shell still believed deep-water disposal to be the best environmental

option, Shell UK was in an “untenable position” because of its failure to convince stakeholders

in the North Sea. Shell also started an advertising campaign admitting mistakes and promising

change, despite a University of London study arguing that deep-sea disposal would likely have

been less dangerous to the environment than on-shore dismantling. Shell’s additional costs were

estimated at around $60 million.

Despite their practical importance, boycotts have not attracted much interest among political

economists. This is particularly true of formal analyses.2 In this paper we focus on the decision

problem faced by concerned consumers. That is, we are interested in the dynamics of boycott

participation where a large number of consumers needs to take coordinated and costly action.

2 The Basic Model

As our base-line model, we consider the interaction between (potentially) concerned consumers.

These consumers have the usual consumption preferences but they also care about the social char-

acteristics of a product. Interaction is modeled as a complete information non—cooperative game

with simultaneous moves.

The decision of consumers whether to participate in a boycott can easily be modeled. First

2Recently, however, David Baron has proposed a series of formal models of private politics, i.e. actions by interest

groups against private parties such as firms with the goal of changing a firm’s behavior or industry standards (Baron

2002, 2003b, 2003c). His models focus predominantly on the interaction between activists and a firm, and the media,

not the dynamics of boycott participation. For a recent model of strategic activism see Baron and Diermeier (2007).
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consider only concerned consumers. Assume that concerned Shell costumers need to decide whether

to switch their consumption decision to BP in order to force Shell to abandon deep-water disposal

of the Brent Spar. On the dimension of the private qualities of the product (quality, price, location

of nearest gas station, etc.) these consumers have a preference for buying Shell. That is, if they

switch to BP they will pay a private cost . If the alternative product (here “BP”) is a cheap

substitute,  will be low. We also assume that on the social dimension, all concerned customers

believe that on-shore disposal is better for the environment than deep-water disposal. This social

benefit is denoted  which we normalize at  = 1. This benefits has the features of a public good. If

Shell decided to change its decommissioning strategy all concerned consumers would benefit from

the decision whether they bore the cost of participating in the boycott or not. A boycott thus

results in a drop of sales for Shell. We assume that if the drop is substantial enough, Shell will

yield to pressure and choose on-shore disposal.

In the complete information case, the focus on Shell’s concerned customers is without loss of

generality. Concerned consumers with a strict private preference for BP, e.g. because of better gas

station location, have a dominant strategy to buy from BP. On the other hand, Shell customers

that do not care about the Brent Spar or believe deep-water disposal is the preferred environmental

option, have a dominant strategy to buy Shell. That is, the only customers who face a strategic

dilemma are concerned Shell customers. For them it is only worthwhile to participate in the boycott

if enough other consumers participate as well. That is, they face a collective action problem (Olson

1965).

The model thus corresponds to an -player ( ≥ 2) discrete public goods game as defined e.g.

by Palfrey and Rosenthal’s (1984) where  stands for the (net) opportunity cost of participating

(e.g. the extra distance a driver has to drive to buy his gasoline from BP rather than Shell) while

 (0    ) stands for the (collective) benefit of stopping the Brent Spar from being sunk. This

benefit constitutes a pure public good. If (and only if) a sufficient number of consumers  (with

1   ≤ ) boycott the bad product (Shell), the management of Royal Dutch/Shell will decide to

dismantle to Brent Spar on-shore.

Formally, agents have two choices: they can either boycott (labeled choice 1) or decide not to
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participate in a boycott (choice 0). Let  denote the number of agents participating; similarly, let

− denote that number excluding agent . Since an agent’s payoff depends only on his action and

on the number of other players participating, we can write an agent ’s pay-off as (;−), where

 ∈ {0 1} represents the agent’s choice. Agent ’s payoffs can be summarized in the following

matrix:

Payoffs (;−) −   − 1 − =  − 1 − ≥ 

 = 0 0 0 

 = 1 − −  − 

As Palfrey and Rosenthal have shown, the game has many equilibria. Specifically, there are
¡



¢
pure strategy equilibria (each with exactly  boycotting consumers), and one pure strategy equi-

librium where no boycott takes place. In addition, there are equilibria where some agents use

mixed strategies. These agents must be indifferent between  and their pivot probability, i.e., the

probability that their participation will lead to the provision of the collective good. Palfrey and

Rosenthal show that as  →∞ mixed strategy equilibria disappear. That is, in large populations

either the collective good is provided for sure or not at all.

The importance of the Palfrey-Rosenthal model for our application lies in the fact that it demon-

strates how boycotts can occur as equilibrium phenomena even if there is only a single interaction.

Boycotts are thus consistent with rational action taken by concerned consumers. However, the

game theoretic approach also faces some limitations. First, the Palfrey-Rosenthal game has many

equilibria, some with a protest level of zero. Game-theoretic analysis, however, only specifies which

outcomes are consistent with the incentives specified in the game. It does not indicate which one is

more likely. Specifically, for large populations, the Palfrey-Rosenthal model implies that either boy-

cotts will not occur with probability one, or (also with probability one) they will occur at exactly

the efficient level. In the game-theoretic context we are thus left with an equilibrium multiplicity

problem. Second, note that the two types of equilibria exist for all   1 and 0    . Thus,

the model cannot explain any of the following empirical phenomena: calls for boycotts are more

likely to be successful if cheap substitute products are available (i.e.  is low), if the issue has high

importance of salience (i.e.  is high), or if the company can ill afford to loose a large number of
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customers (i.e.  is high) (Friedman 1999). Third, for protests to occur, agents must be able to

solve a complex coordination problem (especially in large populations) with no apparent coordina-

tion device because all equilibria where the collective good is provided are asymmetric if    .

That is, although the game is symmetric in payoffs and actions, the predicted behavior is not: some

agents participate while others free-ride. This leaves us with a puzzle: how do large populations

manage to overcome a stark coordination problem, especially if there is no apparent coordination

device like previous experience or existing social structures?

A common solution to the problem of equilibria is to invoke the theory of “focal points”

(Schelling 1960) based on the observation that agents use salient features of a particular equilibrium

to coordinate. However, many focal mechanisms such as prior experience or related conventions

(e.g. Schelling’s famous example of meeting in a foreign city at the train station at noon) are

not available in the case of boycotts. Extensive media coverage may be interpreted as providing a

focal point. However, the mechanism of how coordination is achieved through the media remains

unclear. Below we will suggest such a mechanism.

Theoretical sociologists have developed an alternative formal methodology to study collective

action: so-called “threshold” or “critical mass” models (Granovetter 1978, Oliver and Marwell

1988, Schelling 1978).3 Individuals in a population are assumed to vary in their willingness to

participate in a collective action such as a boycott. These variations may stem from differences in

costs and benefits (Oliver and Marwell 1988), or may be directly specified as propensities to act as

a function of the number of others who are already acting (Granovetter 1978). Collective action

will occur only if there is a sufficiently large critical mass of agents who are willing to take the first

step and thus trigger mass participation. Whether collective action occurs thus depends on the

distribution of individual participation thresholds in the populations. In contrast to game-theoretic

approaches critical mass models explicitly model the dynamic nature of collective action. However,

while there have been some informal attempts to explicitly model the implicit adjustment processes

(e.g. Schelling 1978), a rigorous treatment of the their underlying dynamics is still lacking.4 We

3These models have experienced a recent renaissance as “tipping point” models (Gladwell 2000).
4Most of the theoretical development of tipping models relies exclusively on numerical examples and simulations

(e.g. Granovetter 1978, Oliver 1993).
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propose a dynamic model to bridge this gap.

3 A Probabilistic Model

To explicitly analyze coordination in large populations we present a stochastic, dynamic model

of collective action.5 This approach differs from standard game-theory in two respects: (a) the

behavioral assumptions, and (b) the predictive concept. In contrast to standard game-theoretic

models, the model does not assume common knowledge of the game form or perfect foresight by

voters. Rather, agents adjust their actions according to some behavioral rule. Moreover, the model’s

predictions are not given by an equilibrium, but by a probability distribution. Specifically, we use

the game’s normal form to define a Markov process and then use the process’ limiting distribution

as our solution concept.

The Markov process consists of an action rule and a selection rule. In classical game theory

agents are assumed to use best-response correspondences as their action rule. That is, behavior is

completely determined by the incentives specified in the game (unless the agent is exactly indif-

ferent between two actions). We generalize this assumption to allow for random choice behavior.6

Specifically, we use a random utility model (McFadden 1978). So, while each agent’s mean utility

is fixed, individual realizations may vary. This approach seems especially appropriate in models of

boycotts where the perceived costs and benefits may well vary over time as a consequence of media

coverage and other idiosyncratic sources of information.

Let (|
−) denote the conditional probability that in period +1 agent  will play action 

given that the current configuration of play is . Under the standard extreme-value assumptions7

for the error term each individual’s choice for all  ∈  will be characterized by the probability

distribution:

(|
−) =

exp[(;
−)]P

0∈
exp[(0;

−)]


5There is a large related literature on the use of stochastic models in economics. See Blume (1997), Fudenberg

and Levine (1998) or Young (1998) for detailed overviews,
6The case of (pure) best-response is discussed in detail in section 7.
7See McFadden (1978) for details.
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which is equivalent to the familiar log-linear choice rule. It captures the assumption that the pair-

wise probability ratios of choosing actions are proportional to the respective pay-off differences. The

log-linear choice model is closely connected to the best-response correspondence. The parameter 

formally captures the degree to which the deterministic component of utility (given by the payoff

matrix) determines choice. A low  corresponds to the case where a participation decision is not

much influenced by the incentives specified in the model. For  = 0 choice is completely random.

That is, for all possible configurations,  will play each action with probability 12. For  → ∞,

log-linear choice converges to a distribution that puts positive probability only on best-responses

to 
−.

In addition to an action rule we need to define a selection rule that specifies when agents act.

In the Palfrey-Rosenthal game agents are assumed to act simultaneously. In our model they act

sequentially: In each period  one specific agent out of  is randomly chosen with probability

1 The agent then looks at the current configuration  of actions in the population and chooses

an action according to (|
−). The next period, again a player is chosen at random, and so

on. Given the current configuration, an actor will then probabilistically adjust her participation

behavior to improve her pay-off.

The model can now be summarized as follows. In each period one agent is randomly selected

to change his behavior. That agent’s action then is drawn from a log-linear behavioral rule given

the current configuration of play. The realization of that action then determines the next period’s

configuration of play; again an agent is chosen (with replacement) and so forth. The key idea of

our model is to “decompose” the simultaneous choice of classical game-theory (where agents form

conjectures about each others beliefs) into a dynamic adjustment process. As in game-theoretic

models, some features of the model are mainly technical, while others are of substantive importance.

One of the technical assumptions pertains to selecting exactly one agent in each period. This

does not imply that agents cannot change their behavior “fast.” After all, periods between revisions

can be arbitrarily small.8 The informational implication of this assumption, however, is critical.

That is, when revising their actions, agents have full information about the state of the dynamic

8While we adopt a discrete framewrok for simplicity, our analysis continues to hold for agents that adjust their

actions in continuous time provided that the time between revisions is exponentially distributed.
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system. This assumption is a natural base-line, but it also models an informational environment

where boycott activity is reported in the mass media 9

Among the substantive assumptions perhaps the most important pertains to bounded rational-

ity. Agents do respond to incentives, but not perfectly. For example, they optimize conditional on

the current behavior in the population without anticipating the future strategic consequences of

their actions. Agents need not believe that other actors reason in the same way as they do, or that

they have the same payoff function. Indeed, they do not expect that their action may influence the

future decisions of other participants. Agents simply adopt the action that maximizes their current

pay-off given information about the global state of the system.

Our stochastic model defines a discrete time, discrete state Markov process (or Markov “chain”).

Formally, we have a family of random variables { :  ∈ N} where  assumes values on the state

space  = {0 1 2     } The value of  is updated at the beginning of each period , such that,

given the value of , the values of  for    do not depend on the values of  for   .

The probability of +1 being in state  (that is, +1 = ) given that  is in state  is called

the transition probability  
 . In our model, these transition probabilities are fully specified by the

log-linear choice rule and the selection process. Since both stochastic components are independent

of the time variable , we have a Markov chain with stationary transition probabilities, denoted by

the transition matrix  . A Markov process is completely defined once its transition matrix  and

initial state 0 (or, more generally, the initial probability distribution over 0) are specified.

A Markov chain with transition matrix  is said to be regular if for some  the matrix 

has only strictly positive elements. The following two conditions are jointly sufficient for regularity

(Taylor and Karlin 1994; p.171):

1. For every pair of states  and  there is a path 1   for which 112 · · ·   0

2. There is at least one state  for which   0

The most important fact concerning a finite, regular Markov chain is the existence of a unique

9Alternative informational structures that could be investigates include agents observing a random sample of

population behavior (e.g. Diermeier and Van Mieghem 2008) or only the actions in some local neighborhood (e.g.

Blume 1993). See also Young (1998).
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limiting distribution, denoted by the column vector , where

 = lim
→∞

Pr{ = |0 = }

and   0 for all  ∈  (Taylor and Karlin 1994). Thus,  is the long-run ( → ∞) probability

of finding the process in state , irrespective of the initial state. A second interpretation of the

limiting distribution is that  also gives the long-run mean fraction of time that the process is in

state .

It can easily be shown that  is the unique distribution that solves  =  .10 These equations

are called the global balance equations because, rearranging  =
P

  yields

(1− ) =
X
 6=

,

which can be interpreted as saying that the probability “flow” out of state  must equal the prob-

ability flow into state .

Because at most one individual can change his behavior in any period,  can change by at

most 1 at a time. That is, we have  = 0 if |−|  1. Such Markov process is called a birth-death
process. To simplify notation, denote +1 by the “birth” probability  (i.e., the probability that

the number of participants increases by one) and −1 by the “death” probability  (i.e., the

probability that the number of participants decreases by one). Hence,  = 1 −  − . For a

birth-death process, the balance of probability flow satisfies a stronger property:

−1−1 =  ⇔


−1
=

−1


 (1)

These equations are called detailed balance equations. It is easy to verify that they indeed also solve

the global balance equations, which now read

( + ) = −1−1 + +1+1

Since in a birth-death process the limiting probability ratio equals the transition probability ratio,

we easily can derive a closed form solution of the limiting distribution in our probabilistic model.

10To see this, let 
()

 = Pr{ = |0 = } denote the “-step” transition probabilities. We have that  (+1) =

 () . Now letting →∞ and using the definition that  = lim→∞ 
()

 , yields  =  .
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4 Results

To analyze the limiting behavior of the participation model, we must first specify the transition

matrix  . Given that only direct-neighbor transitions are possible, we only need to specify the birth

and death parameters  = +1 = Pr{ =  + 1| = } and  = −1. The transition

probabilities have two components. First, we have the probability that any one agent is selected

to make a decision, which we call the “selection probability.” Second, there is the probability that

a given action is chosen, which we call the “action probability.” The probability that any action

is taken depends on the current configuration, i.e., the configuration  just before the revision

time. If actor  did not participate, we characterize him as being of sub-type ( 0); otherwise he

is of sub-type ( 1) Given that  = , the probability that the randomly picked actor  is of a

subtype ( 0) or ( 1) is, respectively,

0() =
 − 


and 1() =






This characterizes the selection probabilities.

Action probabilities are determined by the individual choice rule. It is useful to rewrite our

pay-off matrix by sub-type. For example, the second row captures the next period pay-off of an

agent that switches from non-participation to participation, conditional on the configuration of play

(expressed by the columns).

Payoffs (|)    − 1  =  − 1  =    

Type ( 0):  = 0 0 0 1 1

Type ( 0):  = 1 − 1−  1−  1− 

Type ( 1):  = 0 0 0 0 1

Type ( 1):  = 1 − − 1−  1− 

Given log-logistic choice, actor  selects payoff action  with probability (|
−). This allows us
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to specify the action probability matrix as:

Action Probabilities    − 1  =  − 1  =    

Type ( 0):  = 0 1
1+−

1
1+(1−)



+(1−)


+(1−)

Type ( 0):  = 1 −
1+−

(1−)
1+(1−)

(1−)
+(1−)

(1−)
+(1−)

Type ( 1):  = 0 1
1+−

1
1+−

1
1+(1−)



+(1−)

Type ( 1):  = 1 −
1+−

−
1+−

(1−)
1+(1−)

(1−)
+(1−)

which simplifies to:

Action Probabilities    − 1  =  − 1  =    

Type ( 0):  = 0 1
1+−

1
1+(1−)

1
1+−

1
1+−

Type ( 0):  = 1 −
1+−

(1−)
1+(1−)

−
1+−

−
1+−

Type ( 1):  = 0 1
1+−

1
1+−

1
1+(1−)

1
1+−

Type ( 1):  = 1 −
1+−

−
1+−

(1−)
1+(1−)

−
1+−

The birth probabilities stem from a sub-type ( 0) changing his action to “participate” ( = 1),

while death probabilities derive from a demonstrating sub-type ( 1) changing his action to “not

demonstrate” ( = 0). We can then calculate the total transition probability by de-conditioning

on subtype as:

 =

⎧⎪⎨⎪⎩
−
1+− 0() if  6=  − 1
(1−)
1+(1−) 0() if  =  − 1

 =

⎧⎪⎨⎪⎩
1

1+− 1() if  6= 

1
1+(1−) 1() if  = 

Notice that our Markov chain is regular. Hence, it has a limiting distribution  that solves the

detailed balance equations:

∀ 6=  − 1 : +1


=
0()

1(+ 1)
− =

 − 

+ 1
− (2)

for  =  − 1 : 

−1
=

(1−)0( − 1)
1()

=
 −  + 1


(1−) (3)

We can solve this recursive system of equations to characterize the limiting distribution. Intuitively,

to calculate any  we will define an arbitrary reference state, in our case 0 and then “chain” the

13

This article is published in Mathematical and Computer Modelling 48 (2008) 1497-1509.



detailed balance conditions together along a path from 0 to  This allows us to derive each  as

a function of 0. The probability of the reference state (and thus the probability of every state)

can then be derived using the normalization condition
P

=0  = 1

Proposition 1 The limiting distribution for the participation model is:

 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
¡



¢
−0 if   

¡



¢
−0 if  ≥ 

where 0 is a normalization factor with (1+−) ≤ −10 ≤ (1+−) such that
P

=0  = 1

Proof : From (2), we have that ∀ ≤  − 1 :

 =

Ã
−1Y
=0

0()

1(+ 1)

!
−0 =

( − 1)( − (− 1))
1 · 2 ·    ·  −0 =

 !

!( − )!
−0

From (3) and (1) it follows that:

 =
−1


−1 =
(1−)( − ( − 1))



 !

( − 1)!( − ( − 1))!
−(−1)0 =

 !

!( − )!
−0

Finally, reapplying (2) yields that ∀   :

 =

Ã
−1Y
=

0()

1(+ 1)

!
−(−) =

( − (− 1))( − (− 2))( − )

( + 1) · ( + 2) ·    ·  −(−)

=
( − (− 1))( − (− 2))( − )

( + 1) · ( + 2) ·    ·  −(−)
 !

!( − )!
−0

=
 !

!( − )!
−0

Applying the binomial theorem
P



¡



¢
 = (1 + ) directly yields the bounds for 0. That is

given (2), we have

1 =

X
=0

 = 0

"
−1X
=0

µ




¶
− +

X
=

µ




¶
−

#


Hence

X
=0

µ




¶
− ≥ −10 ≥

X
=0

µ




¶
−

¥
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Notice that the limiting distribution  combines the results of the selection process, as rep-

resented by the combinatorial
¡



¢
, and the results of the action process, represented by − or

−. To characterize the long-run behavior of the probabilistic model we now need to identify

the maxima of . These are characterized in the next proposition. First, we need a definition:

Definition For any  ∈ R define bc as the largest integer  with  ≤  and de as the smallest
integer  with  ≥  and let

[] :=

⎧⎪⎨⎪⎩ bc ifbc ≥ de,

de if bc ≤ de.

Proposition 2 There exist two critical numbers ∗ and ∗

∗ = max
½
0
− − 1
1 + −

¾
and ∗ =

 + 1

1 + −(1−)
 (4)

with ∗  
2
 ∗ such that the following holds:

(i) If  = 1, then  has a unique maximum at⎧⎪⎨⎪⎩  =  = 1 if −1
2

− ≤ 1

[∗]  1 if −1
2

−  1.

(ii) If   1 and  ∈ (∗ ∗), then  has a unique maximum at [∗].

(iii) If   1 and  ∈ (∗ ∗), then  has two maxima, one at [∗] and another at , of which  is

the most-likely long-run state if

[∗]   ⇔ () := (1− ( − [∗]) ) +
−1X
=[∗]

ln
 − 

+ 1
 0 (5)

Otherwise the most likely long-run state is [∗].

Proof : Define  : [0  ] → R :  → () = −
1+

−. Note that  is continuous and strictly

decreasing over its domain [0  ] with (0) = − and () = 0. From (2), it follows that

the odds ratio +1 = () is strictly decreasing in  (with a possible jump at  =  − 1).

Notice that if  were extended to a continuous variable ,  would reach an interior maximum

at ∗ ∈ (0) where (∗) = 1 or at  = 0 otherwise. If −  1, then  is continuous and

monotone decreasing with (0)  1 and () = 0, so that there exists a unique ∗ and solving
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(∗) = 1 for ∗ yields ∗ = −−1
1+− . We now must consider the implications of the integer

constraints on  and the possible jump at  =  − 1.

First consider the case where  = 1. For  to have a maximum at  =  = 1 we need 10 =

(1−)  1 which always holds because  ≥ 2 and (1 − ) ≥ 0, and 21 =
−1
2

− ≤ 1

which is also sufficient for a unique maximum at  =  = 1 because +1 is strictly decreasing

in  ≥ 1 If −1
2

−  1 then also (0) = −  1 so that ∗ := ∗ and [∗] constitutes the

unique maximum for 

Now consider   1. If − ≤ 1, then 10 ≤ 1 so that  reaches a maximum at [∗] = 0.

If −  1, then as before [∗] constitutes a maximum for  We now need to check for other

(possible) maxima, which can only occur around the “jump” at  = − 1, namely at  = − 1 or

at  = .

Suppose   ∗. For two maxima we need   [∗ ]̇. But since +1 is increasing below ∗

we have [∗]  1 so that  =  cannot be a maximum. For  =  − 1 to be a maximum, we

need

−1   ⇔  −  + 1


(1−)  1⇔   ∗

Notice, however, that ∗  
2
 ∗ (because 0 ≤ −(1−) ≤ 1 and 0 ≤ − ≤ 1 given that  ≥ 0

and 0    1). Therefore, there cannot be a second maximum if   ∗.

Suppose   ∗. If −1 = b∗c = [∗] then, since +1 is decreasing above ∗  cannot be

a maximum, and since − 1 = [∗] there cannot be a second maximum. If − 1  [∗] then, since
+1 is decreasing above 

∗ there can only be a second maximum at  For a second maximum

at  we need −1   ⇔   ∗

To characterize the most likely long-run state note that (2) and (3) imply

[∗]   ⇔ !( − )!

[∗]!( − [∗])!  −((−[
∗])−1) (6)

Condition (5) then follows immediately.¥

The proposition states that the most likely state is either [∗] or . Notice that  is the state

where an efficient number of people participates, while state [∗], on the other hand, represents

random participation. That is, [∗] is entirely driven by the error component in the log-logistic

choice rule; it is independent of the threshold  and depends only on  , , and  Indeed, as we
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Figure 1 The limiting distribution  assumes one of four possible cases, depending on the parameters ∗, ∗

and .

reduce randomness at the individual level so that  →∞ (and approach best-response in the limit),

[∗] approaches 0.

While the integer restriction on  complicates Proposition 1, the basic intuition can be conveyed

informally. From Proposition 1, it follows that the limiting distribution  has two components. At

 = −1 the probability distribution  “jumps” from one component to the other. It thus suffices

to characterize the maxima of the components and then identify possible maxima at the “jump”

from  = −1 to  =  The detailed balance equations (2) immediately imply that the probability

ratio +1 is strictly decreasing in . So either, there is a corner solution at  = 0 or one interior

maximum where the probability ratios are approximately equal to one. Hence, for  smaller than

the interior maximum, a maximum would have to be at  − 1 But, as we show, in the proof of

Proposition 2, in this case the jump is too small. So, there can only be a second maximum at 

larger than the interior maximum. The conditions for such a maximum are given by (5). Ignoring

the knife-edge case of  = 1 we thus have four possible cases displayed in Figure 1.
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5 Discussion

Proposition 2 now allows us to derive our model’s predictions concerning mass collective behavior.

Note that the qualitative features of the limiting distribution change as a function of the cost  the

threshold  the responsiveness  and the size of the population  We need to distinguish three

cases:

1. There is one maximum at [∗], perhaps at 0

2. There are two (local) maxima, one at [∗] the other at  with  the most likely long-run

state (global maximum).

3. There are two (local) maxima, one at [∗] the other at  with [∗] the most likely long-run

state (global maximum).

To see the effect of changes in  consider an example at  = 50  = 05 and  = 25, for which

∗ = 104, ∗ = 396 and [∗] = 11. Figure 2 illustrates how the qualitative features of the limiting

distribution change in response to changes in .

At low   ∗ (here   104) there is a unique maximum at [∗] which thus must be the most

likely long-run state. This corresponds to the case with permanent (very) low participation. Any

participation is solely driven by randomness at the individual level. For example, using the random

utility interpretation, on average there are some individuals that have an incentive to participate on

their own. Note that as individual choice approaches best response behavior ( →∞) ∗ converges

to 0

For higher  (here  = 17) there are two maxima with  the most likely long-run state. This

captures the case of an unstable polity with frequent demonstrations and sustained levels of political

protest.

At even higher  ( = 20) [∗] becomes the most likely long-run state, but  is still a local max-

imum. This case most closely corresponds to the empirical regularities outlined in the introduction.

Political protest is possible, but it will be rare and comparatively short-lived.
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Figure 2 Four cases for the distribution  depending on the threshold level . Other parameters are fixed

at  = 50,  = 25, and  = 05.

For very high   ∗ (here  = 45  396), we are back at the case where [∗] is the most likely

long-run state without a local maximum at .

A similar pattern can be observed for . For general  and  we characterize maxima and long

run states in Figures 3 to 5.

Note that for  → 0, the critical numbers ∗ → ( − 1)2 and ∗ → ( + 1)2. Hence,  has

a single maximum at 2. In this case individual behavior is not at all governed by the incentives

given in the model, it is purely random. This randomness at the individual level corresponds to a

collective process with a binomial distribution. As  increases, however, the white areas (unique

maximum at [∗]) are shrinking. Even for moderately high  ( = 10) the largest region is the grey

area (global maximum at [∗] local maximum at ). This effect is present independent of the size
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Figure 3 Strategy regions in ( )-space for different values of  for  = 50.
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Figure 4 Strategy regions in ( )-space for different values of  for  = 500.
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Figure 5 Strategy regions in ( )-space for different values of  for  = 500 000.

of the population 11 It becomes, however, more pronounced as  increases. For very large  we

virtually only have two regions: If individual randomness is high (low ), we have larger regions

with [∗] as the most likely long-run state, but as individual behavior is better characterized by

our normal form, we also have a local maximum at .12

The existence of a local maximum at  even for very large  is one key insight from our model.

It implies that at least some times agents are able to spontaneously coordinate on collective action.

Note that these states are efficient and asymmetric (i.e.  agents participate, while − agents stay
11Note that even in the case of  = 500 000 there exists a small region where  is the most likely long-run state

(case 2), but this region is too small to be picked up by the figure.
12This result may surprise readers familiar with Olson’s (1965) seminal work on collective action. Olson’s central

thesis was that large groups are much less likely than small groups to solve the free-rider problem. Subsequent work,

however, has challenged Olson’s thesis (e.g. Marwell and Oliver 1988, Oliver 1993). In her comprehensive survey of

the literature Oliver (1993; p.275) concludes: “Put simply, in some situations the group size effect will be negative,

in others positive. You have to know the details of a particular situation before you can know how group size will

affect the prospects for collective action.”
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home). Nevertheless, mass collective action may occur in the absence of any apparent coordination

device.

6

As discussed in section 3, the parameter  indicates how closely individual choice behavior ap-

proaches best response correspondences. For example, as  → ∞, log-linear choice converges to

a distribution that puts positive probability only on best-responses to −. We can use therefore

use our analysis to select among the strict Nash-equilibria in Palfrey and Rosenthal’s participation

game. If  → ∞, then ∗ → 0 and ∗ →  so that there exist two maxima for large, but finite

, corresponding to either zero turnout or minimal critical turnout . These maxima thus are

analogues to the pure Nash equilibria in the Palfrey and Rosenthal model. Note that in the limit of

 →∞, the probabilistic model approaches the best-response model with the noted exception that

at most one of the maxima corresponds to a stochastically stable state. This can be interpreted

as the selection of one of the pure Nash equilibria in an environment with arbitrarily small (but

persistent!) perturbations.

From (5), it follows that the selection depends on the sign of (), which, for  →∞, is positive

if   1 and negative if   1. Hence, the key factor that drives the selection is the sign of

1−  If   1, then the unique long-run prediction is collective action at  =  (almost surely);

otherwise, the unique long-run prediction is  = 0 (almost surely). Note that the selection does

not depend on  . That is, once we control for  the absolute group size plays no explanatory role.

As we demonstrated in Figures 3-5, the case where   1 is rare, especially if  is large.

Intuitively it captures the case where even if the benefit of unit 1 was private (not public as

assumed in our model), it could be redistributed among the minimum  participants needed for a

revolt to cover their show-up cost . That is, form the point of view of concerned consumers the

selected equilibrium satisfies an efficiency property. However, the analysis in Figures 3-5, of course,

presupposes that each parameter configuration is “equally likely.” But it follows from the model

that strategic activists will try to lower costs, increase collective benefits, or decrease the threshold

. According to the model once the threshold of   1 is crossed, we will switch to a regime
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where high participation in a boycott is very likely. Such a switch, technically a phase transition

in -space, formally captures the fact that this particular phenomenon “has legs.”

[[-]]

[[The result implies that activists should design their campaigns carefully such that participation

costs and thresholds  are low, while collective benefits are high. For example, activists should

select industries where consumers have cheap substitutes, and, within the targeted industry, should

target companies (or company units) with lowest switching costs. The Shell-Greenpeace controversy

illustrates both points. First, vertically integrated oil companies are good targets since consumers

have low costs of switching; filling up one’s car at a BP instead is enough. Second, activists

that seek to change industry-practice should target a single firm in the same industry. In the

case of the Brent Spar, Shell was targeted because of its strong global brand recognition. Third,

activists may target unrelated business units of the same company if this lowers switching costs

for consumers or increases perceived benefits. In the Brent Spar case Greenpeace targeted Shell

Germany (not Shell UK, the truly responsible party) even though Shell Germany had nothing to

do with the initial decision to seek approval for deep-water disposal (Diermeier 1996). The reason?

Greenpeace expected a better strategic environment in Germany where global environmentalism

has wide appeal and recycling is a national passion.

Companies, on the other side, should anticipate these incentives and then could assess their

risk of being the target for an activist campaign. Possible counter-strategies include industry-wide

standards or self-regulation, which may lower the benefits of targeting a specific company. Such

strategic interactions between companies and activits are discussed in more detail in Baron and

Diermeier (2007).]]

7 Conclusion

This paper provides a formal model of consumer boycotts as a collective action problem between

concerned consumers. We show that in this model a unique equilibrium is selected. The type of

equilibrium depends on the switching costs, the threshold for success, and the importance of the

social dimension of the boycott to concerned consumers. If switching costs are sufficiently low, an
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optimal number of agents will join the boycott, leading to mass participation.

We then discuss the model’s consequences for activists’ strategies. The following empirical

phenomena are consistent with the model:

1. Activists should frequently rely on secondary boycotts, i.e. boycotts where the target is not

the business entity engaged in the offensive practice. Secondary targeting should also occur in

cases where the primary target is a well-known consumer brand. Targeting is predominantly

driven by switching costs and multiplier effects. This can lead to complicated targeting chains.

2. In cases where activists try to change industry practice, they will not target the firm that

caused the most egregious offense, but the most vulnerable. Activists should also limit their

actions to a single target.

3. Union-sponsored boycotts should occur predominantly in cases of rights violations or exploita-

tive working conditions, not in wage disputes.

The model provides a general, flexible model, that can be incorporated into more comprehensive

models of strategic activism and counter-strategies by firms and industries (e.g. Baron and Dier-

meier 2007). However, the formal and empirical analysis of such interactions is still in its infancy.

We hope that our approach can serve as a “work-horse” model to facilitate such analyses.
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