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This technical companion serves as a supplementary material. We first show the proof of Propo-
sition 5 of the paper when the retailer follows a ConDOI policy. We extend our main theoretical
conclusions to three settings: (1) the retailer follows a ConDOI policy with an optimal demand fore-
cast; (2) the retailer follows the general linear replenishment policy (GOUTP) and general demand
(MMFE); and (3) the product is subject to price promotions. We empirically measure the forecast
accuracy of high-promotional products and display the forecast accuracy improvement summary
for all methods at the product level. We then discuss two properties of the value of information:
the impact of the replenishment policy and the forecast lead time. Finally, we show the proofs of

propositions in the paper.

1 Theorem and proof of the paper

We next show that when Assumption A3 is violated, the result of Theorem 2 can still hold as long
as we post an assumption on the forecast lead time. That is, when Xgl(B) X;(B) is of finite degree
for any 7, the value of information sharing is not positive for any forecast lead time. Let 05, denote
Z?:o 0;, and let ¢;_s denote the degree of xg(B) 'x,;(B). We define j as argmax; ¢;. We define
a set of forecast lead time H that satisfies 6, =0 for 1 <n < g;_g.

Theorem 1  Under Al, when A2 is not satisfied, if there exist two processes with different co-
efficients, x;(B) # x;(B) for some i,j, then Var(32) 1 (St — Seea)| Us ) < Var(S)y (Seps —
§t7t+l)lﬂf) for any finite forecast lead time h, where h < max;{q;} and h ¢ H.

Proof: The proof of Theorem 2 (in the main body of the paper) remains the same, except for the
following changes on the contradiction of the degree between (19) and (20). We now assume that
XEI(B)Xi(B) is of finite degree for any i. Since there exists n such that 0,_, # 0 for 1 <n < qj—S,
the degree with respect to e{ in equation (20) of the paper is at least ¢;—s + h — ¢;—g, which is
equivalent to h. According to (19), the degree with respect to e{ is h — 1. As a result, for any finite
forecast lead time h < max;{q;}, the degree with respect to eg is strictly larger in (20). We have

reached a contradiction.m

Note that h = 1 does not satisfy H, and this means that when A2 is violated, the result of
Theorem 2 holds for the 1-step-ahead forecast.



Proof of Proposition 5

The retailer follows the demand replacement policy. Recall that the centered order is
the summation of two MA processes Oy — O;—1 = €, — Aés—1 + 0+ — 6:—1. We denote the aggregate
MA process (or the order process) as S; = 1, + 6n,_,, where Var(n,) = v. It satisfies the covariance
equations, —\o? — 02 = v6 and (1 + A\?)o? + 202 = v(1 + 6%). We substitute § with v in the above
equation to obtain a function f(v,\) with variable v and parameter A such that the solution of
f(v,A) = 0 is the variance of ;. The function f(v, \) satisfies f(v,\) = v? — (1 +A\*)o? +202)v +
(—Ao? = 02)2.

The aggregate process S; has invertible and noninvertible representations. Fixing A, f(v,\) =0
has two solutions: the variance of the invertible process and the variance of the noninvertible
process. We denote the former as v*. The value of information sharing is 1 — (62 + 0%) /v*. We will
prove that v* is decreasing in A.

We have 0f (v, \)/0v = 2v— ((14+A?)02 +20%). Since the invertible solution 6 is smaller than 1,
20" = 2((1+ A2 +202) /(1 +6%) > (1 + A?)o? + 202, Thus, 0f(v,\)/0v > 0 at v*. Since f(v,\)

*

is continuous, df(v,A)/0v > 0 in an open interval of v*(\). v* is decreasing in A. Therefore, it

suffices to show that df(v,\)/OA > 0. We have
af (v, A
fgi\) =202(= v+ \o? + 03) = —2020(0 + \). (1)
The covariance generating functions of the two MA processes are g. = 02(1 —Az)(1 —Az~1) and
gs = 02(1 — 2)(1 — z7 1), where z = cos(w) — isin(w) = e™™. The covariance generating function

for the aggregated process is g, = v(1 + 0z)(1 + 6z~1), where g, = g + gs,
(1= )1 =Xz H) 4031 —2)1 -2z =v(d +602)(1 +0271). (2)

Let z = 1, and (2) becomes 02(1—\)2 = v(1+6)2. Since v* > 02 +0%, then (1+6)? < (1— )2
Since 14 60 and 1 — X are both positive, § + A\ < 0. Therefore, the right hand side of (1) is positive
and v* is decreasing in A.

The retailer follows the ConDOI policy. The order under the ConDOI policy is (1 +T'5;)e; —
(AN + AT'By + TBy)et—1 + AT'Bger—2 + 0¢ — 2041 + dt—2. Let a = T'5y/(1 +T'S,). We denote the

aggregate process as Sy = n; + 011m;,_1 + 021, _o, with the covariance equations,

o3 +are? = 6y, (3)

—402 — (A4 a) 1+ aN)o? = 01(1+62)v,
60F 4+ (1+AN+a)?+a?2\)o? = (1462 +63)w.
As before, we substitute 6; and #y with v in (3) to obtain a function f(v,\) in v and A.

The function f(v, \) satisfiesf (v, \) = v2(v +7(2))? + v2v(1)% + (v +7(2))%(7(2)? — v(0)v), where
7(2) = 0% + aro?, y(1) = 402 — (A +a)(1 + aN)a?, (0) = 602 + (1 + (A + a)? + a®X\?)o2.



We need to prove that v* is decreasing in A. Following the same argument from before, it is
equivalent to prove df(v,\)/OA > 0. We take derivatives of f(v, \) with respect to A

AN oy 4@V @22+ (12) = 71(0)) + 29(2)] + 2027 (1)(1) — (0 + 4(2)) 207 (0)

oA
= —20%02(1 4+ 62)[01(1 + 20X + a?) + (1 4 02) (A + a + Aa®) — a(Bs + 62 — 6%))]

(4)

= 203021+ 02)[(+ A — aX+ 01 4 02)(afy + 1+ 0) — (—aX+ 0o)(1 + ) (01 + 0 +1)]

For the process 1, + 611;,_1 + 021m,_s, the invertible solutions of 1 + 6ym + #am? lie outside the
unit circle. Since 1+ #1m + 6am? = 1 at m = 0, the function takes positive value at m = 1,
01+ 02 +1>0. Since 1 — XA — a + aX > 0, the function 1 — (A + a)m + adm? takes positive value
at m = 1.

The covariance generating functions satisfy o2(1—Az)(1—az)(1-Az" Y (1—az 1) +02(1—2)%(1—
272 = 0(14+0124+0922) (1401271 +02272). Let z = 1, we have 02(1—A—a+aX)? = v(1+601+0)2.
Since v > 02 + 02, (14+601 +602)> < (1—A—a+aX?and 1 +60; +02 <1—X—a+a) Since
v(2) > 0 and (1) < 0, 03 is positive and 6; is negative. Since §; + 602 +1 > 0 and 6; < 0,
aby + 1402 > 01+ 02+ 1>0. Therefore, (¢ + X — aX+ 01 + 02)(ab; + 1+ 02) < 0.

We next prove —a\ + 62 > 0. If 05/0 = 0, then 02 = aA. If o05/0. — oo, then 02 = 1. As
0s/0. increases from 0 to 0o, 2 changes continuously from a to 1. If there exists a 62 < a\, there
must be a #3 = aX when o5/0. # 0. We have

(14 aX) (1= N1 —a) —2(1 —aN)?)ar(1l - —a+al) (1 +aN)o?o? — (1 — aN)io}

=0.
a1+ ad)?(aro? + o3)

Since 2 >14+aX 1—aX>1—-Xand 1 —aX >1—a, then (1 +a)X)(1 —A)(1 —a) < 0. Since
l—aA>0,14A—a—aX>0, A< 0and —(1— 04)\)40§ < 0, the numerator is negative. Since the
denominator is positive, the equation is violated. Therefore —aX + 65 > 0.

The right hand side of (4) is positive at v*. Following the same argument as before, v* is

decreasing in A. m

2 The Retailer’s Demand Forecast is Optimal

In Section 3, we assume that the retailer’s demand forecast Lg is a moving average of past H
demands. In this section, we assume that the retailer has an optimal demand forecast. The rest
assumptions are the same as in Section 3,4 and 6. We show that under this assumption, the value
of information sharing is still strictly positive.

We assume that demand follows an ARMA process, Dy = pu+py D1+ paDi—a+- -+ p,Dt—p+

€t — A1€i—1 — A2€4—2 — - - - — Ag€4—q. The optimal forecast for week t+1 is ﬁt+1 =pu+pDi+py Dy 1+
e+ pth_pH — A€ — Aa€r—1 — -+ — Ag€t—q+1. The optimal forecast for week ¢t + k (k > 1) is
Digir=p+pDiggor+- -+ ppDe+ -+ PpDtik—p — Metr1€1—-1 — -+ — Ag€t1k—q- Therefore, the



optimal demand forecast is linear in historical demand and historical demand signals,

Lr p—1 q—1

A 2 / /

my = Dt,t+k = E Bth—j + E Cr€t—k-
k=1 j=0 k=0

where B} is the coefficient of past j** demand and ¢, is the coefficient of past ith,
Under the ConDOI policy with order smoothing, the order-up-to level is yI'i) + (1 — v) ;1.

The order becomes
p—1 qg—1 (o) . p—1 qg—1

O = Dy+v | Y TBDj+ Y Teheri | =Y (A=) [ D T8 Diij+ ) Teher—i;
=0 k=0 i=1 =0 k=0

0= (1 =)0 (5)

i=1

We define ¢)(B) = 1+ 72?23 IB.BI — 4232, Z?;é(l — )" ITB; B as thelparamet.er associ-
ated with demand observations, ¢(B) = 72%;(1) Dc,BF — 4232, Zg;:‘)(l — )0, BF as the
parameter associated with demand shocks. Recall that x(B) is the order smoothing parameter

defined in Section 4. We rewrite equation (5) as Op = ¥(B)Dy + ¢(B)er + k(B)d¢. Applying the
backshift operator, we have 7(B)O; = 7(B)4(B)D; +7(B)¢(B)e; + k(B)d;, and the order becomes

n(B)Or = i+ [@(BYb(B) +7(B)(B)| e + (B)s(B)S:.
where y is the process mean, ¢(B)Y(B) +m(B)¢(B) is the demand shock coefficient and 7(B)x(B)
is the decision deviation coefficient.

Following the same spirit of Proposition 3, we need to prove that o(B)y(B) + (B)p(B) #
m(B)k(B). Since 1(1) = 1, ¢(1) # 0 (due to the invertibility assumption) and ¢(1) = 0, we have
©(1)h(1)+7m(1)¢(1) # 0, which means the demand shock coefficient does not include the polynomial
1 — B. We already know that m(B)k(B) contains 1 — B. Henceforth, the demand shock coefficient
differs from the decision deviation coefficient, and thus, the value of information sharing is strictly

positive for any forecast lead time.

3 MMFE demand and GOUTP policy

In this section, we show that the value of information is strictly positive under a more general
structure: the martingale model of forecast evolution (MMFE) demand and generalized order-
up-to policy (GOUTP) policy studied in ? and ?. The MMFE model is a generalized demand
model. Most time-series demand models can be interpreted as a special case of the MMFE model.
The generalized order-up-to policy (GOUTP) is a stationary and affine mapping from the forecast

revision to the order quantity. For the following analysis, we follow ? and ?’s notations.



MMFE demand. Under the MMFE structure, demand in period ¢ is

q
Dy =p+ Z&H’,t, (6)
i=0

where p is the demand mean and €;—;, is the incremental information obtained in period ¢ —¢ with
respect to demand Dy, or more specifically, e;—; ; = ﬁt_m — lA)t_i_lyt. If forecasting demand beyond
q periods yields a constant prediction, then e;¢1; = 0 for all ¢ > ¢. For all ¢, e;—;; is mutually
independent, stationarily and normally distributed.

The incremental information the retailer obtains in period t, with regard to future demands, is
summarized in a forecast revision vector e; = |1, €4 441, ...Et7t+q]T. We assume that &; is indepen-
dent and identically distributed with a multivariate normal N (0, ), where the variance-covariance
matrix is X = E{etstT}. The independently distributed e€; implies independence between ;4
and €;_; 41 for any k, k" and j > 0.

According to the Projection Theorem, we can decompose ;44 into )\gam + ag’t +q Where 5%7,5 +q
is independent of e¢;. We decompose €; into st,t[l,)\?,...,)\g]T + [0,5}’t+1,...,5%’t+q}T. For no-
tational convenience, let 6?7,5 represent £;;. We then further decompose [O,E;t 115 ...,E%’t +q]T into

et 1100, 1, DY I AT 410,067 49, o 6744 ,)7 - Finally, & can be rewritten as

er = e LALAY, AT el [0, 1Ay, AT e+ e ,[0,0,..,0, 17,

where €7, is independent of ef ,,  for any p # ¢ and &}, must be nonzero. We can rewrite demand
in equation (6) as Dy = p + ¢°(B)el, + -+ + ¢9(B)el ., ,, where ¢'(B) = 14+ X{B + -+ + A\, BY.
Demand Dy is the summation of multiple MA processes. We assume the demand is in the invertible
representation. 7 shows that the aggregate MA process has an invertible representation, if at least
one of the processes is invertible. Therefore, we assume the coefficient ¢*(B) is in the invertible
representation for at least one ¢ < q.

GOUTP with decision deviations. Under a GOUTP policy, the inventory level at the end of

a period is a stationary and affine combination of forecast revisions
q
T
I, =m+ E w; €4, (7)
i=0

where m is the order mean and w; is a weight vector defined as w; = [w; o, w; 1, ...wm]T for i > 0.
We define w_1 = 0 for notional convenience.

In practice, the order decision may depend on unobservable variables such as the transportation
constraint, batching delivery and full truck load policy. As before, we introduce the error term in

the order-up-to level to capture idiosyncratic shocks in decision making. We also model the decision



deviation n; as an MMFE process (see ? for the same assumption)

p
ng = g Ot—it,
=0

where the mean of decision deviation is zero, d;—; ; is the incremental information obtained in period
t — ¢ with respect to the decision deviation n;. p is the effective forecast horizon for decision devia-
tions. As before, we define 8; = [0+, 0t 141, ...(5t,t+p]T, which follow an i.i.d. zero mean multivariate
normal distribution. Following the same decomposition procedure, the decision deviation vector

can be written as:

8 = Sl p, 1S,y )]+ 6810 [0,1, pihy oo )T -+ 67,,,00,0,...,0,1] "

We can rewrite decision deviations as n; = ng(B)égt + -+ ¢U(B)df ,, ,» where Y(B)=1+p B+
cee 4 ,uéBq . The optimal mean squared forecast error implies that §; and €, are uncorrelated for
s#t (see 7).

The order-up-to-level is the target inventory level plus the decision deviation,

q p
T
Iy =m+ g w; €t + E Ot—ip-
i=0 i=0

Accordingly, the centered order takes the form:

p+1 q+1
Or—p=> (ei—ei 1) 6 i+ (wi—wi1+e) e, (8)
i=0 i=0

where e; is the unit vector with the (i + 1)th element equal to one.
Recall that we use B to shift variables backward in time. Note that B sets both time notations

ko _ k :
backward, Beg,,;, =¢€; 1,4, 1. We rewrite (8) as

Or—p = [(1=B)"(B)+¢°(B)let; + -+ [(1 - B)p(B) + ¢*(B)lel 11y (9)
+(1 - B) [¢0(B)5g,t + ¢1(B)5%,t+1 +eee wp(B)‘Sf,Hp] )

q q q
ore AB) = S 3w 3w
Jj=0 j=0 §=0

¢'(B) = 1+ X B+ +\,BYand ¢'(B) =1+ p{B+ -+ B’

For notational convenience, A? =0for j<korj>gq,and )\;? =1for j =k.
Positive value under the MMFE and GOUTP model. So far, we have decomposed orders



into p + ¢ + 2 MA processes with respect to demand signals and decision deviations in (9),

Xi = [¢#(B)+¢ (B)1 = B)lej s for 0<i<gq, (10)
Y, = ¢'(B)(1-B) i,t—l—i’for 0<i<p,

where ¢'(B) + ¢*(B)(1 — B) is the demand signal coefficient, and ¢*(B)(1 — B) is the decision

deviation coefficient. ei’t 4; is independent across t and ¢, 5% +; 1s independent across ¢ and 4, and

51’;’15 4 s independent with 52,3 4; for s #t. We assume that Ef# 4; is not a linear' combination of

EEZH and 5{»15% for any i, j, and d; 4., is not a linear cornbinatéon of (5;7?“ and €i7t+i for any 1, .

We normalize the coefficient of &; to one; thus X; = C;'(¢'(B) + ¢*(B)(1 — B))(Cie;) where
L .

Ci=1+ Zj:O wO,j)\;.

The centered order becomes the aggregate process,

q p
O—p=>Y X/ +> Y.
=0 =0

Since only contemporaneous demand signals and decision deviations are correlated, we can apply

Theorem 2 to obtain the following proposition.

Proposition 2 Under the MMFE demand and the GOUTP policy with decision deviations, if both
demand shocks and decision deviations are nonzero, the value of information sharing is strictly

positive for any finite forecast lead time h < max(q,p).

The sketch of the proof is as follows. According to Theorem 2, if the coefficients for any two
processes are different, then the value of information sharing is positive. Since ¢?(1)(1—1) = 0 for
any i and ¢'(1) # 0 for at least one i (due to the invertibility assumption), then the polynomial
1 — B is not a factor in any demand shock coefficient. Since ¢7(1)(1 — 1) = 0 for any 7, then
1 — B is a factor in the decision shock coefficient. Therefore, the demand signals evolve differently
from decision deviations, which implies that the value is strictly positive for any forecast lead time.
We further strengthen our result under a more general linear and stationary demand and policy

structure.

4 Empirical Results

4.1 Order Parameters

We present the estimated order parameters in Table 1. The first column records the (p, d, q) value
of the ARIMA demand, and the next ten columns are the corresponding demand parameters; i.e.,
the 128 OR product follows an ARIMA(3, 1,0) demand process, Dy — Dy_1 = —0.72(Dy—1 — Dy_2) —
0.56(Dy—2 — Dy_3) —0.31(D¢—3 — Dy—4) + €. For all products, demand is best estimated by d = 1.



Table 1: Estimated order parameters.

Brand Product (p,d,q) 1 Po P3 Pa Ps A1 A2 A3 A4 As
Orange 128 OR (3,1,0) -0.72 -0.56 -0.31
Juice (0.10)  (0.11)  (0.10)
128 ORCA (4,1,0) -0.70 -0.63 -0.40 -0.29
(0.10) (0.11) (0.12) (0.10)
12 OR (4,1,0) -0.88 -0.61 -0.48 -0.27
(0.10)  (0.13) (0.13)  (0.10)
12 ORCA (0,1,1) 0.89
(0.06)
59 ORST (4,1,0) -0.80 -0.57 -0.47 -0.25
(0.10)  (0.12)  (0.13)  (0.10)
59 ORPC (5,1,0) -0.79 -0.72 -0.57 -0.48 -0.37
(0.10)  (0.12) (0.13) (0.12) (0.10)
Sports 500 BR (2,1,0) | -0.62 -0.40
Drink (0.09)  (0.09)
500 GP (0,1,5) 0.75 0.05 0.28 0.05 -0.25
(0.10) (0.13) (0.13) (0.13) (0.10)
PD LL (0,1,1) 0.57
(0.08)
PD OR (0,1,1) 0.66
(0.08)
PD FRZ (0,1,1) 0.66
(0.08)
1GAL GLC (5,1,0) -0.69 -0.57 -0.53 -0.43 -0.37
(0.10) (0.11) (0.11) (0.11) (0.10)
1GAL FRT | (0,1,1) 0.91
(0.05)
1GAL OR (5,1,0) -0.77 -0.52 -0.56 -0.50 -0.27
(0.10)  (0.12) (0.12) (0.12)  (0.10)

Note. The number in parentheses denotes the standard error of the estimate.
4.2 Forecast Accuracy Summary at the Product Level

Table 2 presents the forecast accuracy percentage improvements in MAPE and MSE at the product
level. We carry out two sets of comparisons: the improvement with respect to the NolnfoSharing
forecast and the improvement of the InfoSharing forecast relative to the three statistical methods.
The star mark means that the forecast improvement with respect to the NolnfoSharing method is
statistically significant. The InfoSharing forecast in bold means a statistically significant improve-
ment over the unbold forecasts.

Table 2 delivers two messages. First, when the supplier lacks knowledge of the replenishment
policy, downstream demand information is not bringing statistically significant improvements for
all products. For example, for the Reg D and O method under MAPE, only 6 products can benefit
from information sharing statistically significantly. Second, incorporating the replenishment policy
yields the greatest or one of the greatest improvements. The InfoSharing method has statistically
higher improvement at p < 0.1 than all other forecast methods for 5 out 14 products under the
MAPE metric and for 6 out of 14 products under the MSE metric.



Table 2: Forecast accuracy improvement summary for all methods at the product level. All methods that
include downstream sales perform better than the NolnfoSharing method. The InfoSharing forecast accuracy
is higher than any statistical method.

MAPE percentage improvement MSE percentage improvement
Vector Reg D Reg D Info Vector Reg D Reg D Info
Brand Product ARIMA and O Sharing | ARIMA and O Sharing
Orange 128 OR 11.1% 122%° | -14.6% | 45.0% | 8.7% 14.0%" | 0.4% 18.1%
Juice 128 ORCA | -18.3% | 8.1% 1.9% 30.3%" | -0.5% 7.8% 18.8%" | 26.5%"
12 OR 31.6% 15.7% 50.2%" | 58.6% | 32.4%"" | 33.8%"" | 35.1%"" | 53.4%""
12 ORCA | 40.8%"" | 40.0%"" | 38.0% " | 50.2%"" | 30.5% 36.3% 57.3% " | 53.1%""
59 ORST 16.1%" | 4.1% 5.0% 18.8%" | 13.2%" | 10.9% 10.7% 7.1%
59 ORPC 12.8%™ | 29.1%™ | 23.8%™ | 27.7%"" | 16.2%"" | 31.0%"" | 11.4% 29.4%""
Sports 500 BR 21.2% 26.2% 25.5% 39.8% | 54.1%" | 487% | 41.7%" | 62.5%
Drink 500 GP 30.9%" | 25.7% 26.5% 36.0%"" | 53.1%"" | 42.9%" | 38.7%" | 68.4% "
PD LL 2.8% -15.5% | -184% | 4.7% 5.6% 30.9% 31.3% 51.3%
PD OR 26.8%" | 26.2%"" | 26.2%"" | 44.2% " | 43.3%" | 81.0%" | 81.0%" | 81.1%"
PD FRZ 22.1% 8.2% 11.4% 39.5%" | 44.5%"" | 8.2% 9.2% 56.9% "
1GAL GLC | 23.7%"" | 30.3%"" | 26.4%"" | 38.0% " | 50.1%"" | 42.9%" | 40.1%" | 54.2%""
1GAL FRT | 24.3%"" | 21.4%" | 17.2% 29.9%"" | 46.4%"" | 40.3%™" | 31.3%" | 54.0% "
IGAL OR | 16.9%" | 18.3%" | 14.0% 30.4%" | 30.2% 21.2% 18.3% 44.8%""

** At level p < 0.05, the accuracy improvement over the NolnfoSharing method is significant.
* At level p < 0.1, the accuracy improvement over the NolnfoSharing method is significant.
Note. Significant accuracy improvement over the NoInfoSharing method is marked by a star. Significant (p = 0.1)

accuracy improvement of the InfoSharing method over the other unbold methods is in bold.

5 Promotional Products

5.1 Theoretical Analysis

In this section, we study the impact of promotional activities on the value of information sharing.
When there is a price promotion, we observe a spike in the demand during the discount activity
and a slump after the activity. The growth in demand depends on the price discount rate and
how long the activity lasts. Such a phenomenon might cause a non-stationary demand mean or a
non-stationary covariance matrix. Therefore, we build a model to capture the promotional effect
and address its impact on the value of information sharing.

According to the CPG company that we study, the supplier and the retailer pre-schedule the
promotional schedule at the beginning of a year, and thus know the discount activity in advance.
(There are other promotional strategies in practice. For example, ? shows an empirical finding that
inventory has significant effect on sales promotions, i.e. high inventory leads to high promotions.)
Therefore, we assume an exogenous promotion schedule, where the price varies over time (a fixed
price discount rate throughout a relative long period since it is equivalent to no promotion).

We assume that when there is no promotion, the underlying demand process D, follows an
ARIMA process, m(B)D; = p + ¢(B)e;. We use X/ to represent the observation for promotional

products and X; to represent the baseline or the depromotionalized process, where X can be O or



D. When there is a price promotion in week ¢, the actual demand increases in proportion to the

underlying demand,
Df = TtDt, (11)

where 7, > 0; we call this the promotional rate. We assume that r; primarily depends on the week
during a promotional activity (e.g. the first week of a promotional activity) and the promotional
depth. We assume that the replenishment decision deviates more from the theory when the discount
rate is larger (which is a reasonable assumption but is not technically required). The decision
deviation becomes r)d; at time ¢ when there is a promotion, where rJ > 0.

As before, the retailer’s demand forecast made at time t is the sum of the future Ly periods’
demand forecast. The demand forecast in period k is the promotional rate in period k multiplied

by the underlying demand forecast for period k,

Lr
mt = Zrt+kﬁ£+k'
k=1
We choose a simple setting to illustrate the intuition where the retailer adopts the ConDOI policy
with v = 1 and Lr = 1. The order then becomes r;D; + I‘rtﬂﬁﬁtﬂ - Frtf)ﬁ_lyt. Recall that
ﬁﬁtﬂ = Zf:o BjD:—j and a; = I'3;. We rewrite the order as

H H
P 5 5
O; =1Dy+ 141 E ajDyj — 1t E ajDi 15+ 1y —rp_101-1.
j=0 j=0

We define the policy parameter in period ¢ as 1,(B) = ry + rey1a0 + ZlH:J{l (aires1 — a;_17¢) B,
where ag 1 = 0. We define the decision deviation parameter in period t as s;(B) = r{ —r)_,B.
Both ,(B) and k(B) are nonstationary with the existence of promotional activities. We replace
m(B)D; = p+ ¢(B)e; in the order equation, and the order can be written as a non-stationary

ARIMA process,
H
m(B)O = |ri+ (ry1 — 1) Y aj| 7(B)u+ ¥y (B)p(B)er + w(B)ri(B)6:.
j=0

The order mean changes over time. We first remove the promotional lift from the order so that
the process mean becomes a constant. We depromotionalize the order by dividing the promotional

rate of orders r? = 1, + (re11 — 1) Zfzo a; in period ¢; then orders become

7(B)O; = n(B)O; 1 = m(B)u+vy(B)p(B)et/ry + m(B)re(B)dy/ry (12)

where 1,(B)p(B)/r is the coefficient associated with demand signals of degree g. and ¢ (B)/r?
is the coefficient associated with decision deviations of degree g;s.

The coefficient of € is (airi41 — ai—17¢)/(re + (re41 — 7¢) Z]H:o aj). It changes if the promotion
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rate in period ¢ differs from ¢ + 1. Thus, ¢,(B)/r{ is time-variant. If { # 70, then ry(B) is
time-variant. The order process might not preserve the same structure as the demand in (11), since
OF /r? might be time-variant.

When there is no information sharing, we assume the supplier can correctly estimate the pro-
motional rate of orders rtO with the price and orders data. By removing the promotional lift, we
obtain the baseline order process. We then use the baseline O, to forecast the future baseline order.
We measure the forecast accuracy at the baseline level (we have qualitatively equivalent results if
measuring at the promotional level.)

When there is information sharing, we assume the supplier can correctly estimate the pro-
motional rate r; with the demand and price data and policy parameters such as a;. Since the
promotional rate depends on the week and the promotional depth, the supplier can infer the pro-
motional rate in future periods. We then use historical demand together with estimated parameters
to forecast future baseline orders.

In Section 5 of the paper, we show that the value of information sharing is strictly positive
for any forecast lead time, when the retailer faces a stationary demand. The following proposition

confirms the same result for nonstationary demand.

Proposition 3 If both the demand and decision shocks are nonzero, and the retailer follows the
ConDOI policy with v =1 and Lr = 1, the value of information sharing is strictly positive for any
forecast finite lead time h < max{qe,qs}.

When the baseline order process is stationary, we can apply the same argument as before: the
different evolution patterns of two signal series drive the positive value of information sharing.
When the baseline order process is non-stationary, the baseline order yields a suboptimal predictor
for the next period if the process representation changes. The value of information sharing is
strictly positive even when the estimator is optimal. Therefore, we derive the same conclusion for
the product with non-stationary demand.

Remark.The above result is driven by assumptions on correctly estimated parameters in both
information sharing and no information sharing scenarios. The actual empirical estimation might
violate this assumption. If the estimated demand and policy parameters are biased, the forecast
accuracy may suffer in both cases. It then becomes unclear whether the value of sharing demand
is still strictly positive. We next empirically evaluate the forecast accuracy improvement for high

promotional products and display forecast results for all product lines.
5.2 Empirical Analysis

5.2.1 The empirical model without information sharing

We conduct a three-step forecasting procedure using price and order information. We first estimate
the promotional lift and remove it to generate the baseline order. We then fit an ARIMA(p, d, q)
model to predict the future baseline order. We finally add back the promotional lift on the predicted

future baseline order.

11



The promotional lift is determined by the week during a promotional activity and the degree
of promotional discount. Let p denote the regular price. We measure the promotional discount in
time t as discount; = (p—p¢)/p. We generate five week dummy variables: Week_Be fore; (if t is the
week before the promotional activity), Week_First, (if t is the first week during the promotional
activity), Week_Between; (if t is one of the promotional weeks excluding the first and the last
one), Week_Last; (if t is the last promotional week) and Week_After; (if t is the week after the

promotional activity). To estimate the promotional lift, we estimate the following equation,

log Of = c+ agWeek_Before; x discount; + a1 Week_First; x discounty
+aoWeek_Between; x discount; + agWeek_Last; x discount;

+agWeek_Aftery x discount; + &¢.

The promotional rate of orders is r? = exp(agWeek_Before; x discount; + ayWeek_First; x

discount;+agsWeek_Between; x discount;+a3Week _Last; x discount; +a4Week_A fter; x discounty).
We then generate the baseline order as O; = exp(c + ;) by removing the promotional lift. We
apply the NolnfoSharing forecasting method illustrated in Section 4.3 to forecast the future order
OAt,tH. The final order forecast adds the promotional lift back 05 1= rg_lOAMH.

5.2.2 The empirical model with information sharing

We apply the InfoSharing forecasting method illustrated in Section 4.2. We estimate the replen-

ishment policy parameters by
OtP = CthP + ClDtp_l + CQDf_Q + Cthp_g — ’YIt—l + d¢. (13)

We also try to run regressions on baseline demand instead of actual demand in 13. Actual demand
outperforms baseline demand in both in-sample and out-of-sample tests. To forecast the order in
t + 1, we need to forecast future demand. We follow the three-step procedure discussed above
to forecast ﬁfwr The order prediction for period ¢t + 1 is Oft+1 = CUDg,Dt+1 + 1 DF + oD +
csDE 5 —yIL.

5.2.3 Empirical Results

Figure 1 displays the MSE percentage improvement with respect to the promotional depth. The
points with promotional depth < 0.14 correspond to our studied low-promotional products in the
last column of Table 2. The first observation is that the value of information sharing is positive for
most promotional products. Sharing downstream demand information is still valuable for upstream
forecasts for high-promotional products. Second, we observe an insignificant correlation between
forecast improvements and promotional depth. Multiple factors might impact the value differently.
For example, price variations cause the order series to have a higher uncertainty, which indicates a

larger room for improvement. On the other hand, the empirical model might not exactly capture the

12



Figure 1: Insignificant relationship between the MSE percentage improvement and the forecast lead time.
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underlying dynamics of the system, and this might affect the two forecasting scenarios in different
directions. If the order structure is non-stationary (in demand signals and decision deviation
signals), the optimal estimators (of the ARIMA model for orders or the replenishment policy)
obtained in the current week might be suboptimal for future weeks, which might affect the forecast
precision of the two scenarios differently. In addition, when there is information sharing, the
estimating equation of the replenishment policy might not correctly estimate parameters for the
high promotional products, because the method by which the retailer forecasts future demand and
how it determines orders becomes more complicated than the policy assumed in our model. Future
research is needed to understand how promotional activities affect the information transmission

and the value of sharing downstream demand.

6 The Value With Respect to Policy Parameters and Forecast
Lead Time

6.1 Impact of the Inventory Policy Parameters

We study the impact of the moving average weight 5, and the DOI level I' on the value of infor-
mation sharing.

Impact of ;. The theoretical analysis focuses on a simple setting where the retailer faces an
ARIMA(0,1,0) demand process and follows a ConDOI policy (it means v = 1), since more com-
plicated cases preclude analytically tractable solutions. Then the order process becomes Oy =
Dy +1ByD; +1B8,Dy—1 —I'BgDi—1 — I'81Dy—2, where By + 3; =1 and I'5; > —1. Let v denote
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Figure 2: Under an ARIMA(0,1,1) demand with A and a ConDOI policy with order smoothing with v = 0.5
and I' = 2, the MSE percentage improvement strictly decreases in f3,
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the variance of order signals. We can write the two processes associated with demand signals and

decision deviations as:

X;
Xi

(1 + Fﬁo)&: + F(l — 2B0)5t—1 — F(l — 50)8t_2,
0t — 2041 + d¢—2.

The 1-step-ahead mean squared error percentage reduction is 1 — ((14I'8y)%02 +02)/v. As B,
changes, both the numerator and the denominator vary. The following proposition demonstrates

that, if 5, < 8, or By > 0 > 3, the value of information sharing decreases with f3,.

Proposition 4 If the retailer faces an ARIMA(0,1,0) demand and follows a ConDOI policy with
Bo < B or By > 0> B, then the value of information sharing strictly decreases with B.

Although the proposition does not cover the case of 8, > 8; > 0, we conduct a numerical study
to show the same result. We present the relationship of MSE percentage improvement with respect
to By in Figure 2. The DOI level is 2 and the order smoothing level is 0.5. In each sub-figure, the
three lines from top to bottom correspond to 8y = —0.2,0.5 and 1.5. The three columns from left
to right correspond to A = 0,0.5 and 0.9.

The numerical result in Figure 2 aligns with Proposition 4. A larger weight on current week’s
demand means a lower benefit of including downstream demand, regardless of the decision deviation
weight, demand parameters and the order smoothing level.

Impact of v. We conduct a numerical study on v and show its impact on the value of information
sharing. We present the MSE percentage improvement with respect to v in Figure 3. The DOI
level is set to 2 and the moving average weight of demand is (5, /3;) = (0.5,0.5). In each sub-
figure, the three lines from top to bottom correspond to v = 0.9,0.5 and 0.1. The three columns
from left to right correspond to A = 0,0.5 and 0.9. Figure 3 shows that a higher order smoothing
level induces a higher benefit of including downstream demand, regardless of the decision deviation

weight, demand parameters and replenishment policy parameters.
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Figure 3: Under an ARIMA(0,1,1) demand with A and a ConDOI policy with order smoothing with 5, = 0.5
and [' = 2, the MSE percentage improvement strictly decreases in +.
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6.2 Impact of Forecast Lead Time

In this section, we numerically study the impact of forecast lead time on the forecast accuracy
improvement.

We first introduce the hth-step-ahead forecast, which is defined as S’t,t+h- The value for the
hth-step-ahead forecast is positive if and only if Var(Syp, — St,t+h| U; fol) < Var(Siip — S't,t+h|Qf).
Recall that the h-step-ahead forecast is the sum of forecasts over the lead time, and the value is
positive if and only if Var(3", (Serq — See)| Ui 05) < Var(r, (Seyr — Seeqt)|2F). We next
study how the value of information sharing depends on lead time for these two metrics.

Figure 4 presents the MSE percentage improvement with respect to the forecast lead time for the
hth-step-ahead forecast, and Figure 5 shows that for the h-step-ahead forecast. The DOI level is 2
and the order smoothing level is 0.5. The moving average weight of demand is (8, 3;) = (0.5, 0.5).
The three columns from left to right correspond to A = 0, A = 0.5 and A = 0.9. Figure 4 shows
that when forecasting the hth-step-ahead forecast, the value of information strictly decreases in
the forecast lead time, regardless of the decision deviation weight, policy parameters and demand
parameters. This is because future signals are less dependent on historical demand, and thus, the
future uncertainty is less likely to be resolved with information sharing. This implies a limited
potential gain in farther forecasts. In comparison, Figure 5 shows that when forecasting the sum
of h-step-ahead forecasts, the value of information might increase in the forecast lead time under

certain conditions.

7 Proofs of Propositions in the Technical Companion

Proof of Proposition 3: If either MA process 1, (B)p(B)e; /1P or 7(B)r(B)d:/rd is non-stationary,
and the aggregate process 1,(B)p(B)e; /P + w1 (B)ki(B)d;/r? is stationary, we can apply The-
orem 2 by checking whether the coefficients of the two processes are different. We first condition
the case where 7(1) = 0. Then 7(1)x;(1)/r{ = 0. Since v,(1)/r¢ = 1 and (1) # 0 (invertibility
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Figure 4: Under an ARIMA(0,1,1) demand with A and a ConDOI policy with order smoothing with
v =0.5,I'=2 and 8, = 0.5, the MSE percentage improvement of the hth-step-ahead forecast decreases in

the forecast lead time.
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Figure 5: Under an ARIMA(0,1,1) demand with A and a ConDOI policy with order smoothing with
v=0.5,I' =2 and S, = 0.5, the MSE percentage improvement of the h-step-ahead forecast decreases in the

forecast lead time.
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assumption), we have 1, (B)@(B)/r® # 0. Therefore, m(1)r(1)/rP # 1, (B)o(B)/r®. Second,
we consider another case where m(B) = 1. Then 7(1)r(1)/r? = (10 —r? )/r?. We know that
VY (Dp(1)/rf = (1). Since for promotional products, the sign of 7 — r{ | at the beginning of
a promotional activity differs from when an activity ends, then 7(1)r:(1)/r° # ,(1)@(1)/r? for
some period t. According to Theorem 2, the value of information sharing is strictly positive.

We next analyze the case where any of the two processes is non-stationary and the aggregate
process 1, (B)p(B)e; /70 + 7(B)ky(B)d;/r? is non-stationary. With information sharing, since the
supplier knows the promotional rate ;41 at time t, we can apply the detailed order structure,
and thus the forecast error has the least unresolved uncertainty. Without information sharing, the
ARIMA estimator of orders obtained in the current period might be suboptimal for future periods.

The future order forecast error might be enlarged by such non-optimality.m

Proof of Proposition 4: Recall that the aggregate process (or the order process) is S; =
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n; 4 0111 + 02m;_o. We denote (1 + ag)?0? + 02 as vghare. The MSE percentage improvement
is (v — Ughare)/v. Recall that a; = ;" and ay = S,I'. We prove vgpare/v is increasing in ag or
equivalently v/vgpare is decreasing in ag. Let v’ denote v/vgpare-

The aggregate MA process satisfies the covariance equations

[0(2; — (1 + ao)(F — ao)a?] /'US'hare = 921]/ (14)
[_40% + (1 + 2(10 - F)(F - 2610)0?] /US'hare = 01(1 + 92)U/
605 + ((1+ a0)® + (T = 2a0)* + (T — a0)*)0?] /vshare = (1+ 67 +63)0"

Substituting 6; and #y with v/, we derive a function f(v’,ag) with variable v' and parameter ag,
f(vya0) = 0* (v +7(2))* + 0*7(1)* + (v +7(2))* (1(2)* = 7(0)v) ,

where 7(2) = [0% — (1 + ao)(I" — a0)0?]/vshare, ¥(1) = [402 + (1 + 2ag — T)(I" — 2a9)0?] /vshare
and (3) = [60% + (1 4+ a0)? + (I' — 2a0)? 4+ (I' — ag)?)02] /vshare- The goal is to prove the invertible
parameter v’ of f(v',ap) = 0 is decreasing in ag, which is equivalent to prove df (v, ag)/9ag > 0.

We first take derivatives of f(v';ag) with respect to ag,

af(vlv aO)

day 200" +7(2))7'(2) [0 + (4(2) = 7(0))v" +27(2)°] + 207 (1)7(1) = (v' +7(2))*0'7'(0).

We then substitute 7/(2), 4/(1) and +/(0) with #; and 65 from the covariance equations,

m 01 [(AT — 8ag — 2)vshare — 2(ao + 1)(—403 + (1 + 2ag — I)(I' — 2ag)0?)]
+(1 4 62) [(3T — 6ag — 1)vghare + 2(ao + 1)(603 + (1 + ag)® + (I' — 2a0)* + (I' — ap)?)o?)]
—l—(92 + 92 ) [(2&0 +1- F)vShare — 2(a0 + 1)(0’5 — (1 + ao)(F — ao)af)]

= 05 [(01 + 65 + 1)(92 — 01 — 3)(—0,0 —a; — 1) + 2(01 + 65 + 1) -+ 6(1 + 92)(1 + ag)]

+Jz [(ao + 1)2(91 +(92 + 1)(F + 1)(92 — (91 + 1) + B]

where A = 20302(1 —1—92)1)5}%&7,6 and B = 2(ag+1)(1+02)(—(ao—a1)(a1 +1)+a?) —2(ag+1)01 (ao—
ay)(ap+ai;+2)—2(ap+1)01(1+aq). The coefficient of vgpare is 0bviously positive. The derivation
is positive if and only if the coefficient of o2 and o are positive.

Positive ag. Since ag+a; = I', then —ag — a1 — 1 is negative. Since 05 — 61 — 3 is also negative,
6(1 + 602)(1 4 ag) and 2(6; + 02 + 1) are positive, the coefficient of 02 is positive.

Positive o2. (ag+1)%(01 +602+1)(ao+ay +1)(02 — 61 + 1) is positive. The coefficient of 1+ 65
is larger than that of 61, —(ap — a1)(a; + 1) +a? > —(ap — a1)(ag + a1 +2) — (1 + a1).

If ap < aj, then —(ag — ay)(a; + 1) + af is positive. Recall that 1+ 0y > 6;. If 6; and
—(ag —a1)(ag+ a1 +2) — (14 a;) are both positive or both negative, then B is positive. If 6; < 0
and —(ag — a1)(ao + a1 +2) — (1 +a1) > 0, then B > 2(ag + 1)(01 + 02 + 1)((a1 — ag)? +a? + (1 +
ap—a1)(1+ay)) > 0. If 61 > 0 and —(ag — a1)(ap + a1 +2) — (1 + a1) < 0, then since 1 + 03 > 64,
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B > 0.

If a; < —1, then —(ag — ay)(ay + 1) + a? is positive. Since —(ag —a1)(ap+ a1 +2) — (1 +a;) <
—2ap + a1 — 1, which is negative, —(ap —a1)(ao + a1 +2) — (14 a1) is negative. Since 6; is negative
and 1 + 6 is positive, B > 0.

If —1 < a; <0 < ag, we rearrange the coefficient of o2 to (ag + 1)(01 + 02 + 1)[(T' — a1 + 1)(T +
1)(02 — 01 + 1) + 2a2 — 2(T — 2ay) (a1 + 1)] + 201 (ap + 1)[—(ap — a1)(ap + 1) — 1 — a; — a?]. Since
—(ap —a1)(ap+1) — 1 —a; —a? < 0 and 67 < 0, the second part is positive. Since a; < 0, 62 > 0
and 0; < 0. We then have 3 —6; +1 > 1. As aresult, (I'—ay +1)(I' +1)(02 — 01 +1) +2a3 —2(T —
2a1)(a; +1) > 6a? —3(I' — 1)a; +1+T2. Since —6I' — 5(1+T'?) < 0, then 6a —3(I' — 1)a; +1+T?

is positive. Therefore, the coefficient of o2 is positive.m
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