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This technical companion serves as a supplementary material. We first show the proof of Propo-

sition 5 of the paper when the retailer follows a ConDOI policy. We extend our main theoretical

conclusions to three settings: (1) the retailer follows a ConDOI policy with an optimal demand fore-

cast; (2) the retailer follows the general linear replenishment policy (GOUTP) and general demand

(MMFE); and (3) the product is subject to price promotions. We empirically measure the forecast

accuracy of high-promotional products and display the forecast accuracy improvement summary

for all methods at the product level. We then discuss two properties of the value of information:

the impact of the replenishment policy and the forecast lead time. Finally, we show the proofs of

propositions in the paper.

1 Theorem and proof of the paper

We next show that when Assumption A3 is violated, the result of Theorem 2 can still hold as long

as we post an assumption on the forecast lead time. That is, when χ−1
S (B)χi(B) is of finite degree

for any i, the value of information sharing is not positive for any forecast lead time. Let θ̃k denote∑k
j=0 θj , and let qi−S denote the degree of χS(B)−1χi(B). We define j as argmaxi qi. We define

a set of forecast lead time H that satisfies θ̃h−n = 0 for 1 ≤ n ≤ qj−S .

Theorem 1 Under A1, when A2 is not satisfied, if there exist two processes with different co-

efficients, χi(B) 6= χj(B) for some i, j, then Var(
∑h

l=1(St+l − Ŝt,t+l)| ∪i ΩXi

t ) < Var(
∑h

l=1(St+l −
Ŝt,t+l)|ΩS

t ) for any finite forecast lead time h, where h ≤ maxi{qi} and h /∈ H.

Proof: The proof of Theorem 2 (in the main body of the paper) remains the same, except for the

following changes on the contradiction of the degree between (19) and (20). We now assume that

χ−1
S (B)χi(B) is of finite degree for any i. Since there exists n such that θ̃h−n 6= 0 for 1 ≤ n ≤ qj−S ,

the degree with respect to εjt in equation (20) of the paper is at least qi−S + h − qi−S , which is

equivalent to h. According to (19), the degree with respect to εjt is h− 1. As a result, for any finite

forecast lead time h ≤ maxi{qi}, the degree with respect to εjt is strictly larger in (20). We have

reached a contradiction.

Note that h = 1 does not satisfy H, and this means that when A2 is violated, the result of

Theorem 2 holds for the 1-step-ahead forecast.
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Proof of Proposition 5

The retailer follows the demand replacement policy. Recall that the centered order is

the summation of two MA processes Ot −Ot−1 = εt − λεt−1 + δt − δt−1. We denote the aggregate

MA process (or the order process) as St = ηt+ θηt−1, where Var(ηt) = v. It satisfies the covariance

equations, −λσ2
ε − σ2

δ = vθ and (1 + λ2)σ2
ε + 2σ2

δ = v(1 + θ2). We substitute θ with v in the above

equation to obtain a function f(v, λ) with variable v and parameter λ such that the solution of

f(v, λ) = 0 is the variance of ηt. The function f(v, λ) satisfies f(v, λ) = v2− ((1 + λ2)σ2
ε + 2σ2

δ)v+

(−λσ2
ε − σ2

δ)
2.

The aggregate process St has invertible and noninvertible representations. Fixing λ, f(v, λ) = 0

has two solutions: the variance of the invertible process and the variance of the noninvertible

process. We denote the former as v∗. The value of information sharing is 1− (σ2
ε +σ2

δ)/v
∗. We will

prove that v∗ is decreasing in λ.

We have ∂f(v, λ)/∂v = 2v− ((1+λ2)σ2
ε +2σ2

δ). Since the invertible solution θ is smaller than 1,

2v∗ = 2((1 + λ2)σ2
ε + 2σ2

δ)/(1 + θ2) > (1 + λ2)σ2
ε + 2σ2

δ . Thus, ∂f(v, λ)/∂v > 0 at v∗. Since f(v, λ)

is continuous, ∂f(v, λ)/∂v > 0 in an open interval of v∗(λ). v∗ is decreasing in λ. Therefore, it

suffices to show that ∂f(v, λ)/∂λ > 0. We have

∂f(v, λ)

∂λ
= 2σ2

ε (−λv + λσ2
ε + σ2

δ) = −2σ2
εv(θ + λ). (1)

The covariance generating functions of the two MA processes are gε = σ2
ε (1−λz)(1−λz−1) and

gδ = σ2
δ(1 − z)(1 − z−1), where z = cos(ω) − i sin(ω) = e−iω. The covariance generating function

for the aggregated process is gη = v(1 + θz)(1 + θz−1), where gη = gε + gδ,

σ2
ε (1− λz)(1− λz−1) + σ2

δ(1− z)(1− z−1) = v(1 + θz)(1 + θz−1). (2)

Let z = 1, and (2) becomes σ2
ε (1−λ)2 = v(1 +θ)2. Since v∗ > σ2

ε +σ2
δ , then (1 +θ)2 < (1−λ)2.

Since 1 + θ and 1− λ are both positive, θ+ λ < 0. Therefore, the right hand side of (1) is positive

and v∗ is decreasing in λ.

The retailer follows the ConDOI policy. The order under the ConDOI policy is (1 + Γβ0)εt−
(λ + λΓβ0 + Γβ0)εt−1 + λΓβ0εt−2 + δt − 2δt−1 + δt−2. Let α = Γβ0/(1 + Γβ0). We denote the

aggregate process as St = ηt + θ1ηt−1 + θ2ηt−2, with the covariance equations,

σ2
δ + αλσ2

ε = θ2v, (3)

−4σ2
δ − (λ+ a)(1 + αλ)σ2

ε = θ1(1 + θ2)v,

6σ2
δ + (1 + (λ+ a)2 + α2λ2)σ2

ε = (1 + θ2
1 + θ2

2)v.

As before, we substitute θ1 and θ2 with v in (3) to obtain a function f(v, λ) in v and λ.

The function f(v, λ) satisfiesf(v, λ) = v2(v + γ(2))2 + v2γ(1)2 + (v + γ(2))2(γ(2)2 − γ(0)v), where

γ(2) ≡ σ2
δ + αλσ2

ε , γ(1) ≡ −4σ2
δ − (λ+ a)(1 + αλ)σ2

ε , γ(0) ≡ 6σ2
δ + (1 + (λ+ a)2 + α2λ2)σ2

ε .
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We need to prove that v∗ is decreasing in λ. Following the same argument from before, it is

equivalent to prove ∂f(v, λ)/∂λ > 0. We take derivatives of f(v, λ) with respect to λ

∂f(v, λ)

∂λ
= 2(v + γ(2))γ′(2)[v2 + (γ(2)− γ(0))v + 2γ(2)2] + 2v2γ′(1)γ(1)− (v + γ(2))2vγ′(0) (4)

= −2v3σ2
ε (1 + θ2)[θ1(1 + 2αλ+ α2) + (1 + θ2)(λ+ α+ λα2)− α(θ2 + θ2

2 − θ2
1)]

= −2v3σ2
ε (1 + θ2)[(α+ λ− αλ+ θ1 + θ2)(αθ1 + 1 + θ2)− (−αλ+ θ2)(1 + α)(θ1 + θ2 + 1)]

For the process ηt + θ1ηt−1 + θ2ηt−2, the invertible solutions of 1 + θ1m+ θ2m
2 lie outside the

unit circle. Since 1 + θ1m + θ2m
2 = 1 at m = 0, the function takes positive value at m = 1,

θ1 + θ2 + 1 > 0. Since 1− λ− α+ αλ > 0, the function 1− (λ+ α)m+ αλm2 takes positive value

at m = 1.

The covariance generating functions satisfy σ2
ε (1−λz)(1−αz)(1−λz−1)(1−αz−1)+σ2

δ(1−z)2(1−
z−1)2 = v(1+θ1z+θ2z

2)(1+θ1z
−1+θ2z

−2). Let z = 1, we have σ2
ε (1−λ−α+αλ)2 = v(1+θ1+θ2)2.

Since v > σ2
ε + σ2

δ , (1 + θ1 + θ2)2 < (1 − λ − α + αλ)2 and 1 + θ1 + θ2 < 1 − λ − α + αλ. Since

γ(2) > 0 and γ(1) < 0, θ2 is positive and θ1 is negative. Since θ1 + θ2 + 1 > 0 and θ1 < 0,

αθ1 + 1 + θ2 > θ1 + θ2 + 1 > 0. Therefore, (α+ λ− αλ+ θ1 + θ2)(αθ1 + 1 + θ2) < 0.

We next prove −αλ + θ2 > 0. If σδ/σε = 0, then θ2 = αλ. If σδ/σε → ∞, then θ2 = 1. As

σδ/σε increases from 0 to∞, θ2 changes continuously from αλ to 1. If there exists a θ2 < αλ, there

must be a θ2 = αλ when σδ/σε 6= 0. We have

((1 + αλ)(1− λ)(1− α)− 2(1− αλ)2)αλ(1− λ− α+ αλ)(1 + αλ)σ2
εσ

2
δ − (1− αλ)4σ4

δ

αλ(1 + αλ)2(αλσ2
ε + σ2

δ)
= 0.

Since 2 > 1 + αλ, 1 − αλ > 1 − λ and 1 − αλ > 1 − α, then (1 + αλ)(1 − λ)(1 − α) < 0. Since

1− αλ > 0, 1 + λ− a− aλ > 0, λ < 0 and −(1− αλ)4σ4
δ < 0, the numerator is negative. Since the

denominator is positive, the equation is violated. Therefore −αλ+ θ2 > 0.

The right hand side of (4) is positive at v∗. Following the same argument as before, v∗ is

decreasing in λ.

2 The Retailer’s Demand Forecast is Optimal

In Section 3, we assume that the retailer’s demand forecast LR is a moving average of past H

demands. In this section, we assume that the retailer has an optimal demand forecast. The rest

assumptions are the same as in Section 3,4 and 6. We show that under this assumption, the value

of information sharing is still strictly positive.

We assume that demand follows an ARMA process, Dt = µ+ρ1Dt−1 +ρ2Dt−2 + · · ·+ρpDt−p+

εt−λ1εt−1−λ2εt−2−· · ·−λqεt−q. The optimal forecast for week t+1 is D̂t+1 = µ+ρ1Dt+ρ2Dt−1 +

· · · + ρpDt−p+1 − λ1εt − λ2εt−1 − · · · − λqεt−q+1. The optimal forecast for week t + k (k > 1) is

D̂t,t+k = µ+ ρ1D̂t+k−1 + · · ·+ ρkDt + · · ·+ ρpDt+k−p − λk+1εt−1 − · · · − λqεt+k−q. Therefore, the
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optimal demand forecast is linear in historical demand and historical demand signals,

m̂′t ≡
LR∑
k=1

D̂t,t+k =

p−1∑
j=0

β′jDt−j +

q−1∑
k=0

c′kεt−k.

where β′j is the coefficient of past jth demand and c′i is the coefficient of past ith.

Under the ConDOI policy with order smoothing, the order-up-to level is γΓm̂′t + (1 − γ)It−1.

The order becomes

Ot = Dt + γ

p−1∑
j=0

Γβ′jDt−j +

q−1∑
k=0

Γc′kεt−k

− γ2
∞∑
i=1

(1− γ)i−1

p−1∑
j=0

Γβ′jDt−i−j +

q−1∑
k=0

Γc′kεt−k−j


+δt −

∞∑
i=1

γ(1− γ)i−1δt−i. (5)

We define ψ̃(B) ≡ 1 + γ
∑p−1

j=0 Γβ′jB
j − γ2

∑∞
i=1

∑p−1
j=0(1 − γ)i−1Γβ′jB

i+j as the parameter associ-

ated with demand observations, φ(B) ≡ γ
∑q−1

k=0 Γc′kB
k − γ2

∑∞
i=1

∑q−1
k=0(1 − γ)i−1Γc′kB

i+k as the

parameter associated with demand shocks. Recall that κ(B) is the order smoothing parameter

defined in Section 4. We rewrite equation (5) as Ot = ψ̃(B)Dt + φ(B)εt + κ(B)δt. Applying the

backshift operator, we have π(B)Ot = π(B)ψ̃(B)Dt+π(B)φ(B)εt+κ(B)δt, and the order becomes

π(B)Ot = µ+
[
ϕ(B)ψ̃(B) + π(B)φ(B)

]
εt + π(B)κ(B)δt,

where µ is the process mean, ϕ(B)ψ̃(B)+π(B)φ(B) is the demand shock coefficient and π(B)κ(B)

is the decision deviation coefficient.

Following the same spirit of Proposition 3, we need to prove that ϕ(B)ψ̃(B) + π(B)φ(B) 6=
π(B)κ(B). Since ψ̃(1) = 1, ϕ(1) 6= 0 (due to the invertibility assumption) and φ(1) = 0, we have

ϕ(1)ψ̃(1)+π(1)φ(1) 6= 0, which means the demand shock coefficient does not include the polynomial

1−B. We already know that π(B)κ(B) contains 1−B. Henceforth, the demand shock coefficient

differs from the decision deviation coefficient, and thus, the value of information sharing is strictly

positive for any forecast lead time.

3 MMFE demand and GOUTP policy

In this section, we show that the value of information is strictly positive under a more general

structure: the martingale model of forecast evolution (MMFE) demand and generalized order-

up-to policy (GOUTP) policy studied in ? and ?. The MMFE model is a generalized demand

model. Most time-series demand models can be interpreted as a special case of the MMFE model.

The generalized order-up-to policy (GOUTP) is a stationary and affine mapping from the forecast

revision to the order quantity. For the following analysis, we follow ? and ?’s notations.
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MMFE demand. Under the MMFE structure, demand in period t is

Dt = µ+

q∑
i=0

εt−i,t, (6)

where µ is the demand mean and εt−i,t is the incremental information obtained in period t− i with

respect to demand Dt, or more specifically, εt−i,t = D̂t−i,t−D̂t−i−1,t. If forecasting demand beyond

q periods yields a constant prediction, then εt,t+i = 0 for all i > q. For all i, εt−i,t is mutually

independent, stationarily and normally distributed.

The incremental information the retailer obtains in period t, with regard to future demands, is

summarized in a forecast revision vector εt = [εt,t, εt,t+1, ...εt,t+q]
T . We assume that εt is indepen-

dent and identically distributed with a multivariate normal N(0,Σ), where the variance-covariance

matrix is Σ = E{εtεTt }. The independently distributed εt implies independence between εt,t+k

and εt−j,t+k′ for any k, k′ and j > 0.

According to the Projection Theorem, we can decompose εt,t+q into λ0
qεt,t + ε1

t,t+q where ε1
t,t+q

is independent of εt,t. We decompose εt into εt,t[1, λ
0
1, ..., λ

0
q ]
T + [0, ε1

t,t+1, ..., ε
1
t,t+q]

T . For no-

tational convenience, let ε0
t,t represent εt,t. We then further decompose [0, ε1

t,t+1, ..., ε
1
t,t+q]

T into

ε1
t,t+1[0, 1, λ1

2, ..., λ
1
q ]
T + [0, 0, ε2

t,t+2, ..., ε
2
t,t+q]

T . Finally, εt can be rewritten as

εt = ε0
t,t[1, λ

0
1, λ

0
2, ..., λ

0
q ]
T + ε1

t,t+1[0, 1, λ1
2, ..., λ

1
q ]
T + · · ·+ εqt,t+q[0, 0, ..., 0, 1]T ,

where εpt,t+p is independent of εqt,t+q for any p 6= q and ε0
t,t must be nonzero. We can rewrite demand

in equation (6) as Dt = µ + φ0(B)ε0
t,t + · · · + φq(B)εqt,t+q, where φi(B) = 1 + λi1B + · · · + λiqB

q.

Demand Dt is the summation of multiple MA processes. We assume the demand is in the invertible

representation. ? shows that the aggregate MA process has an invertible representation, if at least

one of the processes is invertible. Therefore, we assume the coefficient φi(B) is in the invertible

representation for at least one i ≤ q.
GOUTP with decision deviations. Under a GOUTP policy, the inventory level at the end of

a period is a stationary and affine combination of forecast revisions

It = m+

q∑
i=0

wT
i εt−i, (7)

where m is the order mean and wi is a weight vector defined as wi = [wi,0, wi,1, ...wi,q]
T for i ≥ 0.

We define w−1 = 0 for notional convenience.

In practice, the order decision may depend on unobservable variables such as the transportation

constraint, batching delivery and full truck load policy. As before, we introduce the error term in

the order-up-to level to capture idiosyncratic shocks in decision making. We also model the decision
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deviation nt as an MMFE process (see ? for the same assumption)

nt =

p∑
i=0

δt−i,t,

where the mean of decision deviation is zero, δt−i,t is the incremental information obtained in period

t− i with respect to the decision deviation nt. p is the effective forecast horizon for decision devia-

tions. As before, we define δt = [δt,t, δt,t+1, ...δt,t+p]
T , which follow an i.i.d. zero mean multivariate

normal distribution. Following the same decomposition procedure, the decision deviation vector

can be written as:

δt = δt,t[1, µ
0
1, µ

0
2, ..., µ

0
p]
T + δ1

t,t+1[0, 1, µ1
2, ..., µ

1
p]
T + · · ·+ δpt,t+p[0, 0, ..., 0, 1]T .

We can rewrite decision deviations as nt = ϕ0(B)δ0
t,t + · · ·+ϕq(B)δqt,t+q, where ϕi(B) = 1 +µi1B+

· · · + µiqB
q. The optimal mean squared forecast error implies that δt and εs are uncorrelated for

s 6= t (see ?).

The order-up-to-level is the target inventory level plus the decision deviation,

It = m+

q∑
i=0

wT
i εt−i +

p∑
i=0

δt−i,t.

Accordingly, the centered order takes the form:

Ot − µ =

p+1∑
i=0

(ei − ei−1)Tδt−i +

q+1∑
i=0

(wi −wi−1 + ei)
Tεt−i, (8)

where ei is the unit vector with the (i+ 1)th element equal to one.

Recall that we use B to shift variables backward in time. Note that B sets both time notations

backward, Bεkt,t+i = εkt−1,t+i−1. We rewrite (8) as

Ot − µ = [(1−B)ϕ0(B) + φ0(B)]ε0
t,t + · · ·+ [(1−B)ϕq(B) + φq(B)]εqt,t+q (9)

+(1−B)
[
ψ0(B)δ0

t,t + ψ1(B)δ1
t,t+1 + · · ·+ ψp(B)δpt,t+p

]
,

where ϕi(B) =

q∑
j=0

w0,jλ
i
j +

q∑
j=0

w1,jλ
i
jB + · · ·+

q∑
j=0

wq,jλ
i
jB

q,

φi(B) = 1 + λi1B + · · ·+ λiqB
q and ψi(B) = 1 + µi1B + · · ·+ µipB

p.

For notational convenience, λkj = 0 for j < k or j > q, and λkj = 1 for j = k.

Positive value under the MMFE and GOUTP model. So far, we have decomposed orders
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into p+ q + 2 MA processes with respect to demand signals and decision deviations in (9),

Xi
t = [φi(B) + ϕi(B)(1−B)]εit,t+i, for 0 ≤ i ≤ q, (10)

Y i
t = ψi(B)(1−B)δit,t+i, for 0 ≤ i ≤ p,

where φi(B) + ϕi(B)(1 − B) is the demand signal coefficient, and ψi(B)(1 − B) is the decision

deviation coefficient. εit,t+i is independent across t and i, δit,t+i is independent across t and i, and

εit,t+i is independent with δis,s+i for s 6= t. We assume that εit,t+i is not a linear combination of

ε−it,t+i and δjt,t+i for any i, j, and δit,t+i is not a linear combination of δ−it,t+i and εjt,t+i for any i, j.

We normalize the coefficient of εt to one; thus Xi
t = C−1

i (φi(B) + ϕi(B)(1 − B))(Ciεt) where

Ci = 1 +
∑L

j=0w0,jλ
i
j .

The centered order becomes the aggregate process,

Ot − µ =

q∑
i=0

Xi
t +

p∑
i=0

Y i
t .

Since only contemporaneous demand signals and decision deviations are correlated, we can apply

Theorem 2 to obtain the following proposition.

Proposition 2 Under the MMFE demand and the GOUTP policy with decision deviations, if both

demand shocks and decision deviations are nonzero, the value of information sharing is strictly

positive for any finite forecast lead time h ≤ max(q, p).

The sketch of the proof is as follows. According to Theorem 2, if the coefficients for any two

processes are different, then the value of information sharing is positive. Since ϕi(1)(1− 1) = 0 for

any i and φi(1) 6= 0 for at least one i (due to the invertibility assumption), then the polynomial

1 − B is not a factor in any demand shock coefficient. Since ψj(1)(1 − 1) = 0 for any j, then

1−B is a factor in the decision shock coefficient. Therefore, the demand signals evolve differently

from decision deviations, which implies that the value is strictly positive for any forecast lead time.

We further strengthen our result under a more general linear and stationary demand and policy

structure.

4 Empirical Results

4.1 Order Parameters

We present the estimated order parameters in Table 1. The first column records the (p, d, q) value

of the ARIMA demand, and the next ten columns are the corresponding demand parameters; i.e.,

the 128 OR product follows an ARIMA(3, 1, 0) demand process, Dt−Dt−1 = −0.72(Dt−1−Dt−2)−
0.56(Dt−2−Dt−3)− 0.31(Dt−3−Dt−4) + εt. For all products, demand is best estimated by d = 1.
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Table 1: Estimated order parameters.
Brand Product (p, d, q) ρ1 ρ2 ρ3 ρ4 ρ5 λ1 λ2 λ3 λ4 λ5

Orange 128 OR (3, 1, 0) -0.72 -0.56 -0.31
Juice (0.10) (0.11) (0.10)

128 ORCA (4, 1, 0) -0.70 -0.63 -0.40 -0.29
(0.10) (0.11) (0.12) (0.10)

12 OR (4, 1, 0) -0.88 -0.61 -0.48 -0.27
(0.10) (0.13) (0.13) (0.10)

12 ORCA (0, 1, 1) 0.89
(0.06)

59 ORST (4, 1, 0) -0.80 -0.57 -0.47 -0.25
(0.10) (0.12) (0.13) (0.10)

59 ORPC (5, 1, 0) -0.79 -0.72 -0.57 -0.48 -0.37
(0.10) (0.12) (0.13) (0.12) (0.10)

Sports 500 BR (2, 1, 0) -0.62 -0.40
Drink (0.09) (0.09)

500 GP (0, 1, 5) 0.75 0.05 0.28 0.05 -0.25
(0.10) (0.13) (0.13) (0.13) (0.10)

PD LL (0, 1, 1) 0.57
(0.08)

PD OR (0, 1, 1) 0.66
(0.08)

PD FRZ (0, 1, 1) 0.66
(0.08)

1GAL GLC (5, 1, 0) -0.69 -0.57 -0.53 -0.43 -0.37
(0.10) (0.11) (0.11) (0.11) (0.10)

1GAL FRT (0, 1, 1) 0.91
(0.05)

1GAL OR (5, 1, 0) -0.77 -0.52 -0.56 -0.50 -0.27
(0.10) (0.12) (0.12) (0.12) (0.10)

Note. The number in parentheses denotes the standard error of the estimate.

4.2 Forecast Accuracy Summary at the Product Level

Table 2 presents the forecast accuracy percentage improvements in MAPE and MSE at the product

level. We carry out two sets of comparisons: the improvement with respect to the NoInfoSharing

forecast and the improvement of the InfoSharing forecast relative to the three statistical methods.

The star mark means that the forecast improvement with respect to the NoInfoSharing method is

statistically significant. The InfoSharing forecast in bold means a statistically significant improve-

ment over the unbold forecasts.

Table 2 delivers two messages. First, when the supplier lacks knowledge of the replenishment

policy, downstream demand information is not bringing statistically significant improvements for

all products. For example, for the Reg D and O method under MAPE, only 6 products can benefit

from information sharing statistically significantly. Second, incorporating the replenishment policy

yields the greatest or one of the greatest improvements. The InfoSharing method has statistically

higher improvement at p < 0.1 than all other forecast methods for 5 out 14 products under the

MAPE metric and for 6 out of 14 products under the MSE metric.
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Table 2: Forecast accuracy improvement summary for all methods at the product level. All methods that

include downstream sales perform better than the NoInfoSharing method. The InfoSharing forecast accuracy

is higher than any statistical method.

MAPE percentage improvement MSE percentage improvement
Vector Reg D Reg D Info Vector Reg D Reg D Info

Brand Product ARIMA and O Sharing ARIMA and O Sharing

Orange 128 OR 11.1% 12.2%* -14.6% 45.0%** 8.7% 14.0%** 0.4% 18.1%**

Juice 128 ORCA -18.3% 8.1% 1.9% 30.3%* -0.5% 7.8% 18.8%* 26.5%**

12 OR 31.6% 15.7% 50.2%* 58.6%* 32.4%** 33.8%** 35.1%** 53.4%**

12 ORCA 40.8%** 40.0%** 38.0%** 50.2%** 30.5% 36.3% 57.3%** 53.1%**

59 ORST 16.1%* 4.1% 5.0% 18.8%* 13.2%* 10.9% 10.7% 7.1%

59 ORPC 12.8%** 29.1%** 23.8%** 27.7%** 16.2%** 31.0%** 11.4% 29.4%**

Sports 500 BR 21.2% 26.2% 25.5% 39.8%** 54.1%** 48.7%** 41.7%* 62.5%**

Drink 500 GP 30.9%* 25.7% 26.5% 36.0%** 53.1%** 42.9%* 38.7%* 68.4%**

PD LL 2.8% -15.5% -18.4% 4.7% 5.6% 30.9% 31.3% 51.3%

PD OR 26.8%** 26.2%** 26.2%** 44.2%** 43.3%* 81.0%* 81.0%* 81.1%*

PD FRZ 22.1% 8.2% 11.4% 39.5%* 44.5%** 8.2% 9.2% 56.9%**

1GAL GLC 23.7%** 30.3%** 26.4%** 38.0%** 50.1%** 42.9%* 40.1%* 54.2%**

1GAL FRT 24.3%** 21.4%* 17.2% 29.9%** 46.4%** 40.3%** 31.3%* 54.0%**

1GAL OR 16.9%* 18.3%* 14.0% 30.4%* 30.2% 21.2% 18.3% 44.8%**

** At level p < 0.05, the accuracy improvement over the NoInfoSharing method is significant.
* At level p < 0.1, the accuracy improvement over the NoInfoSharing method is significant.

Note. Significant accuracy improvement over the NoInfoSharing method is marked by a star. Significant (p = 0.1)
accuracy improvement of the InfoSharing method over the other unbold methods is in bold.

5 Promotional Products

5.1 Theoretical Analysis

In this section, we study the impact of promotional activities on the value of information sharing.

When there is a price promotion, we observe a spike in the demand during the discount activity

and a slump after the activity. The growth in demand depends on the price discount rate and

how long the activity lasts. Such a phenomenon might cause a non-stationary demand mean or a

non-stationary covariance matrix. Therefore, we build a model to capture the promotional effect

and address its impact on the value of information sharing.

According to the CPG company that we study, the supplier and the retailer pre-schedule the

promotional schedule at the beginning of a year, and thus know the discount activity in advance.

(There are other promotional strategies in practice. For example, ? shows an empirical finding that

inventory has significant effect on sales promotions, i.e. high inventory leads to high promotions.)

Therefore, we assume an exogenous promotion schedule, where the price varies over time (a fixed

price discount rate throughout a relative long period since it is equivalent to no promotion).

We assume that when there is no promotion, the underlying demand process Dt follows an

ARIMA process, π(B)Dt = µ + ϕ(B)εt. We use XP
t to represent the observation for promotional

products and Xt to represent the baseline or the depromotionalized process, where X can be O or

9



D. When there is a price promotion in week t, the actual demand increases in proportion to the

underlying demand,

DP
t = rtDt, (11)

where rt > 0; we call this the promotional rate. We assume that rt primarily depends on the week

during a promotional activity (e.g. the first week of a promotional activity) and the promotional

depth. We assume that the replenishment decision deviates more from the theory when the discount

rate is larger (which is a reasonable assumption but is not technically required). The decision

deviation becomes rδt δt at time t when there is a promotion, where rδt > 0.

As before, the retailer’s demand forecast made at time t is the sum of the future LR periods’

demand forecast. The demand forecast in period k is the promotional rate in period k multiplied

by the underlying demand forecast for period k,

m̂t =

LR∑
k=1

rt+kD̂
R
t,t+k.

We choose a simple setting to illustrate the intuition where the retailer adopts the ConDOI policy

with γ = 1 and LR = 1. The order then becomes rtDt + Γrt+1D̂
R
t,t+1 − ΓrtD̂

R
t−1,t. Recall that

D̂R
t,t+1 =

∑H
j=0 βjDt−j and aj = Γβj . We rewrite the order as

OPt = rtDt + rt+1

H∑
j=0

ajDt−j − rt
H∑
j=0

ajDt−1−j + rδt δt − rδt−1δt−1.

We define the policy parameter in period t as ψt(B) = rt + rt+1a0 +
∑H+1

i=1 (airt+1 − ai−1rt)B
i,

where aH+1 = 0. We define the decision deviation parameter in period t as κt(B) = rδt − rδt−1B.

Both ψt(B) and κt(B) are nonstationary with the existence of promotional activities. We replace

π(B)Dt = µ + ϕ(B)εt in the order equation, and the order can be written as a non-stationary

ARIMA process,

π(B)OPt =

rt + (rt+1 − rt)
H∑
j=0

aj

π(B)µ+ ψt(B)ϕ(B)εt + π(B)κt(B)δt.

The order mean changes over time. We first remove the promotional lift from the order so that

the process mean becomes a constant. We depromotionalize the order by dividing the promotional

rate of orders rOt = rt + (rt+1 − rt)
∑H

j=0 aj in period t; then orders become

π(B)Ot ≡ π(B)OPt /r
O
t = π(B)µ+ ψt(B)ϕ(B)εt/r

O
t + π(B)κt(B)δt/r

O
t , (12)

where ψt(B)ϕ(B)/rOt is the coefficient associated with demand signals of degree qε and κt(B)/rOt

is the coefficient associated with decision deviations of degree qδ.

The coefficient of εt is (airt+1 − ai−1rt)/(rt + (rt+1 − rt)
∑H

j=0 aj). It changes if the promotion

10



rate in period t differs from t + 1. Thus, ψt(B)/rOt is time-variant. If rδt 6= rδt+1, then κt(B) is

time-variant. The order process might not preserve the same structure as the demand in (11), since

OPt /r
O
t might be time-variant.

When there is no information sharing, we assume the supplier can correctly estimate the pro-

motional rate of orders rOt with the price and orders data. By removing the promotional lift, we

obtain the baseline order process. We then use the baseline Ot to forecast the future baseline order.

We measure the forecast accuracy at the baseline level (we have qualitatively equivalent results if

measuring at the promotional level.)

When there is information sharing, we assume the supplier can correctly estimate the pro-

motional rate rt with the demand and price data and policy parameters such as ai. Since the

promotional rate depends on the week and the promotional depth, the supplier can infer the pro-

motional rate in future periods. We then use historical demand together with estimated parameters

to forecast future baseline orders.

In Section 5 of the paper, we show that the value of information sharing is strictly positive

for any forecast lead time, when the retailer faces a stationary demand. The following proposition

confirms the same result for nonstationary demand.

Proposition 3 If both the demand and decision shocks are nonzero, and the retailer follows the

ConDOI policy with γ = 1 and LR = 1, the value of information sharing is strictly positive for any

forecast finite lead time h ≤ max{qε, qδ}.

When the baseline order process is stationary, we can apply the same argument as before: the

different evolution patterns of two signal series drive the positive value of information sharing.

When the baseline order process is non-stationary, the baseline order yields a suboptimal predictor

for the next period if the process representation changes. The value of information sharing is

strictly positive even when the estimator is optimal. Therefore, we derive the same conclusion for

the product with non-stationary demand.

Remark.The above result is driven by assumptions on correctly estimated parameters in both

information sharing and no information sharing scenarios. The actual empirical estimation might

violate this assumption. If the estimated demand and policy parameters are biased, the forecast

accuracy may suffer in both cases. It then becomes unclear whether the value of sharing demand

is still strictly positive. We next empirically evaluate the forecast accuracy improvement for high

promotional products and display forecast results for all product lines.

5.2 Empirical Analysis

5.2.1 The empirical model without information sharing

We conduct a three-step forecasting procedure using price and order information. We first estimate

the promotional lift and remove it to generate the baseline order. We then fit an ARIMA(p, d, q)

model to predict the future baseline order. We finally add back the promotional lift on the predicted

future baseline order.

11



The promotional lift is determined by the week during a promotional activity and the degree

of promotional discount. Let p denote the regular price. We measure the promotional discount in

time t as discountt = (p−pt)/p. We generate five week dummy variables: Week Beforet (if t is the

week before the promotional activity), Week Firstt (if t is the first week during the promotional

activity), Week Betweent (if t is one of the promotional weeks excluding the first and the last

one), Week Lastt (if t is the last promotional week) and Week Aftert (if t is the week after the

promotional activity). To estimate the promotional lift, we estimate the following equation,

logOPt = c+ a0Week Beforet × discountt + a1Week Firstt × discountt

+a2Week Betweent × discountt + a3Week Lastt × discountt

+a4Week Aftert × discountt + εt.

The promotional rate of orders is rOt = exp(a0Week Beforet × discountt + a1Week Firstt ×
discountt+a2Week Betweent×discountt+a3Week Lastt×discountt+a4Week Aftert×discountt).

We then generate the baseline order as Ot = exp(c + εt) by removing the promotional lift. We

apply the NoInfoSharing forecasting method illustrated in Section 4.3 to forecast the future order

Ôt,t+1. The final order forecast adds the promotional lift back ÔPt,t+1 = rOt+1Ôt,t+1.

5.2.2 The empirical model with information sharing

We apply the InfoSharing forecasting method illustrated in Section 4.2. We estimate the replen-

ishment policy parameters by

OPt = c0D
P
t + c1D

P
t−1 + c2D

P
t−2 + c3D

P
t−3 − γIt−1 + δt. (13)

We also try to run regressions on baseline demand instead of actual demand in 13. Actual demand

outperforms baseline demand in both in-sample and out-of-sample tests. To forecast the order in

t + 1, we need to forecast future demand. We follow the three-step procedure discussed above

to forecast D̂P
t,t+1. The order prediction for period t + 1 is ÔPt,t+1 = c0D̂

P
t,t+1 + c1D

P
t + c2D

P
t−1 +

c3D
P
t−2 − γIt.

5.2.3 Empirical Results

Figure 1 displays the MSE percentage improvement with respect to the promotional depth. The

points with promotional depth ≤ 0.14 correspond to our studied low-promotional products in the

last column of Table 2. The first observation is that the value of information sharing is positive for

most promotional products. Sharing downstream demand information is still valuable for upstream

forecasts for high-promotional products. Second, we observe an insignificant correlation between

forecast improvements and promotional depth. Multiple factors might impact the value differently.

For example, price variations cause the order series to have a higher uncertainty, which indicates a

larger room for improvement. On the other hand, the empirical model might not exactly capture the

12



Figure 1: Insignificant relationship between the MSE percentage improvement and the forecast lead time.

underlying dynamics of the system, and this might affect the two forecasting scenarios in different

directions. If the order structure is non-stationary (in demand signals and decision deviation

signals), the optimal estimators (of the ARIMA model for orders or the replenishment policy)

obtained in the current week might be suboptimal for future weeks, which might affect the forecast

precision of the two scenarios differently. In addition, when there is information sharing, the

estimating equation of the replenishment policy might not correctly estimate parameters for the

high promotional products, because the method by which the retailer forecasts future demand and

how it determines orders becomes more complicated than the policy assumed in our model. Future

research is needed to understand how promotional activities affect the information transmission

and the value of sharing downstream demand.

6 The Value With Respect to Policy Parameters and Forecast

Lead Time

6.1 Impact of the Inventory Policy Parameters

We study the impact of the moving average weight β0 and the DOI level Γ on the value of infor-

mation sharing.

Impact of β0. The theoretical analysis focuses on a simple setting where the retailer faces an

ARIMA(0, 1, 0) demand process and follows a ConDOI policy (it means γ = 1), since more com-

plicated cases preclude analytically tractable solutions. Then the order process becomes Ot =

Dt + Γβ0Dt + Γβ1Dt−1 − Γβ0Dt−1 − Γβ1Dt−2, where β0 + β1 = 1 and Γβ0 > −1. Let v denote

13



Figure 2: Under an ARIMA(0,1,1) demand with λ and a ConDOI policy with order smoothing with γ = 0.5

and Γ = 2, the MSE percentage improvement strictly decreases in β0
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the variance of order signals. We can write the two processes associated with demand signals and

decision deviations as:

X1
t = (1 + Γβ0)εt + Γ(1− 2β0)εt−1 − Γ(1− β0)εt−2,

X2
t = δt − 2δt−1 + δt−2.

The 1-step-ahead mean squared error percentage reduction is 1− ((1 + Γβ0)2σ2
ε + σ2

δ)/v. As β0

changes, both the numerator and the denominator vary. The following proposition demonstrates

that, if β0 ≤ β1 or β0 ≥ 0 ≥ β1, the value of information sharing decreases with β0.

Proposition 4 If the retailer faces an ARIMA(0, 1, 0) demand and follows a ConDOI policy with

β0 ≤ β1 or β0 ≥ 0 ≥ β1, then the value of information sharing strictly decreases with β0.

Although the proposition does not cover the case of β0 > β1 > 0, we conduct a numerical study

to show the same result. We present the relationship of MSE percentage improvement with respect

to β0 in Figure 2. The DOI level is 2 and the order smoothing level is 0.5. In each sub-figure, the

three lines from top to bottom correspond to β0 = −0.2, 0.5 and 1.5. The three columns from left

to right correspond to λ = 0, 0.5 and 0.9.

The numerical result in Figure 2 aligns with Proposition 4. A larger weight on current week’s

demand means a lower benefit of including downstream demand, regardless of the decision deviation

weight, demand parameters and the order smoothing level.

Impact of γ. We conduct a numerical study on γ and show its impact on the value of information

sharing. We present the MSE percentage improvement with respect to γ in Figure 3. The DOI

level is set to 2 and the moving average weight of demand is (β0, β1) = (0.5, 0.5). In each sub-

figure, the three lines from top to bottom correspond to γ = 0.9, 0.5 and 0.1. The three columns

from left to right correspond to λ = 0, 0.5 and 0.9. Figure 3 shows that a higher order smoothing

level induces a higher benefit of including downstream demand, regardless of the decision deviation

weight, demand parameters and replenishment policy parameters.
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Figure 3: Under an ARIMA(0,1,1) demand with λ and a ConDOI policy with order smoothing with β0 = 0.5

and Γ = 2, the MSE percentage improvement strictly decreases in γ.
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6.2 Impact of Forecast Lead Time

In this section, we numerically study the impact of forecast lead time on the forecast accuracy

improvement.

We first introduce the hth-step-ahead forecast, which is defined as Ŝt,t+h. The value for the

hth-step-ahead forecast is positive if and only if Var(St+h− Ŝt,t+h|∪iΩXi

t ) < Var(St+h− Ŝt,t+h|ΩS
t ).

Recall that the h-step-ahead forecast is the sum of forecasts over the lead time, and the value is

positive if and only if Var(
∑h

l=1(St+l − Ŝt,t+l)| ∪i ΩXi

t ) < Var(
∑h

l=1(St+l − Ŝt,t+l)|ΩS
t ). We next

study how the value of information sharing depends on lead time for these two metrics.

Figure 4 presents the MSE percentage improvement with respect to the forecast lead time for the

hth-step-ahead forecast, and Figure 5 shows that for the h-step-ahead forecast. The DOI level is 2

and the order smoothing level is 0.5. The moving average weight of demand is (β0, β1) = (0.5, 0.5).

The three columns from left to right correspond to λ = 0, λ = 0.5 and λ = 0.9. Figure 4 shows

that when forecasting the hth-step-ahead forecast, the value of information strictly decreases in

the forecast lead time, regardless of the decision deviation weight, policy parameters and demand

parameters. This is because future signals are less dependent on historical demand, and thus, the

future uncertainty is less likely to be resolved with information sharing. This implies a limited

potential gain in farther forecasts. In comparison, Figure 5 shows that when forecasting the sum

of h-step-ahead forecasts, the value of information might increase in the forecast lead time under

certain conditions.

7 Proofs of Propositions in the Technical Companion

Proof of Proposition 3: If either MA process ψt(B)ϕ(B)εt/r
O
t or π(B)κt(B)δt/r

O
t is non-stationary,

and the aggregate process ψt(B)ϕ(B)εt/r
O
t + π−1(B)κt(B)δt/r

O
t is stationary, we can apply The-

orem 2 by checking whether the coefficients of the two processes are different. We first condition

the case where π(1) = 0. Then π(1)κt(1)/rOt = 0. Since ψt(1)/rOt = 1 and ϕ(1) 6= 0 (invertibility
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Figure 4: Under an ARIMA(0,1,1) demand with λ and a ConDOI policy with order smoothing with

γ = 0.5,Γ = 2 and β0 = 0.5, the MSE percentage improvement of the hth-step-ahead forecast decreases in

the forecast lead time.
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Figure 5: Under an ARIMA(0,1,1) demand with λ and a ConDOI policy with order smoothing with

γ = 0.5,Γ = 2 and β0 = 0.5, the MSE percentage improvement of the h-step-ahead forecast decreases in the

forecast lead time.
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assumption), we have ψt(B)ϕ(B)/rOt 6= 0. Therefore, π(1)κt(1)/rOt 6= ψt(B)ϕ(B)/rOt . Second,

we consider another case where π(B) = 1. Then π(1)κt(1)/rOt = (rδt − rδt−1)/rOt . We know that

ψt(1)ϕ(1)/rOt = ϕ(1). Since for promotional products, the sign of rδt − rδt−1 at the beginning of

a promotional activity differs from when an activity ends, then π(1)κt(1)/rOt 6= ψt(1)ϕ(1)/rOt for

some period t. According to Theorem 2, the value of information sharing is strictly positive.

We next analyze the case where any of the two processes is non-stationary and the aggregate

process ψt(B)ϕ(B)εt/r
O
t + π(B)κt(B)δt/r

O
t is non-stationary. With information sharing, since the

supplier knows the promotional rate rt+1 at time t, we can apply the detailed order structure,

and thus the forecast error has the least unresolved uncertainty. Without information sharing, the

ARIMA estimator of orders obtained in the current period might be suboptimal for future periods.

The future order forecast error might be enlarged by such non-optimality.

Proof of Proposition 4: Recall that the aggregate process (or the order process) is St =
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ηt + θ1ηt−1 + θ2ηt−2. We denote (1 + a0)2σ2
ε + σ2

δ as vShare. The MSE percentage improvement

is (v − vShare)/v. Recall that a1 = β1Γ and a0 = β0Γ. We prove vShare/v is increasing in a0 or

equivalently v/vShare is decreasing in a0. Let v′ denote v/vShare.

The aggregate MA process satisfies the covariance equations

[
σ2
δ − (1 + a0)(Γ− a0)σ2

ε

]
/vShare = θ2v

′ (14)[
−4σ2

δ + (1 + 2a0 − Γ)(Γ− 2a0)σ2
ε

]
/vShare = θ1(1 + θ2)v′[

6σ2
δ + ((1 + a0)2 + (Γ− 2a0)2 + (Γ− a0)2)σ2

ε

]
/vShare = (1 + θ2

1 + θ2
2)v′

Substituting θ1 and θ2 with v′, we derive a function f(v′, a0) with variable v′ and parameter a0,

f(v, a0) = v2 (v + γ(2))2 + v2γ(1)2 + (v + γ(2))2 (γ(2)2 − γ(0)v
)
,

where γ(2) = [σ2
δ − (1 + a0)(Γ − a0)σ2

ε ]/vShare, γ(1) = [−4σ2
δ + (1 + 2a0 − Γ)(Γ − 2a0)σ2

ε ]/vShare

and γ(3) = [6σ2
δ + ((1 +a0)2 + (Γ− 2a0)2 + (Γ−a0)2)σ2

ε ]/vShare. The goal is to prove the invertible

parameter v′ of f(v′, a0) = 0 is decreasing in a0, which is equivalent to prove ∂f(v′, a0)/∂a0 > 0.

We first take derivatives of f(v′, a0) with respect to a0,

∂f(v′, a0)

∂a0
= 2(v′ + γ(2))γ′(2)

[
v′2 + (γ(2)− γ(0))v′ + 2γ(2)2

]
+ 2v′2γ′(1)γ(1)− (v′ + γ(2))2v′γ′(0).

We then substitute γ′(2), γ′(1) and γ′(0) with θ1 and θ2 from the covariance equations,

∂f(v′, a0)

A∂a0
= θ1

[
(4Γ− 8a0 − 2)vShare − 2(a0 + 1)(−4σ2

δ + (1 + 2a0 − Γ)(Γ− 2a0)σ2
ε )
]

+(1 + θ2)
[
(3Γ− 6a0 − 1)vShare + 2(a0 + 1)(6σ2

δ + ((1 + a0)2 + (Γ− 2a0)2 + (Γ− a0)2)σ2
ε )
]

+(θ2 + θ2
2 − θ2

1)
[
(2a0 + 1− Γ)vShare − 2(a0 + 1)(σ2

δ − (1 + a0)(Γ− a0)σ2
ε )
]

= σ2
δ [(θ1 + θ2 + 1)(θ2 − θ1 − 3)(−a0 − a1 − 1) + 2(θ1 + θ2 + 1) + 6(1 + θ2)(1 + a0)]

+σ2
ε

[
(a0 + 1)2(θ1 + θ2 + 1)(Γ + 1)(θ2 − θ1 + 1) +B

]
where A = 2v′3σ2

ε (1+θ2)v−2
Share and B = 2(a0 +1)(1+θ2)(−(a0−a1)(a1 +1)+a2

1)−2(a0 +1)θ1(a0−
a1)(a0 +a1 +2)−2(a0 +1)θ1(1+a1). The coefficient of vShare is obviously positive. The derivation

is positive if and only if the coefficient of σ2
ε and σ2

δ are positive.

Positive σ2
δ . Since a0 +a1 = Γ, then −a0−a1−1 is negative. Since θ2−θ1−3 is also negative,

6(1 + θ2)(1 + a0) and 2(θ1 + θ2 + 1) are positive, the coefficient of σ2
δ is positive.

Positive σ2
ε . (a0 + 1)2(θ1 + θ2 + 1)(a0 +a1 + 1)(θ2− θ1 + 1) is positive. The coefficient of 1 + θ2

is larger than that of θ1, −(a0 − a1)(a1 + 1) + a2
1 > −(a0 − a1)(a0 + a1 + 2)− (1 + a1).

If a0 ≤ a1, then −(a0 − a1)(a1 + 1) + a2
1 is positive. Recall that 1 + θ2 > θ1. If θ1 and

−(a0 − a1)(a0 + a1 + 2)− (1 + a1) are both positive or both negative, then B is positive. If θ1 < 0

and −(a0 − a1)(a0 + a1 + 2)− (1 + a1) > 0, then B ≥ 2(a0 + 1)(θ1 + θ2 + 1)((a1 − a0)2 + a2
1 + (1 +

a0 − a1)(1 + a1)) > 0. If θ1 > 0 and −(a0 − a1)(a0 + a1 + 2)− (1 + a1) < 0, then since 1 + θ2 > θ1,
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B > 0.

If a1 < −1, then −(a0 − a1)(a1 + 1) + a2
1 is positive. Since −(a0 − a1)(a0 + a1 + 2)− (1 + a1) <

−2a0 + a1− 1, which is negative, −(a0− a1)(a0 + a1 + 2)− (1 + a1) is negative. Since θ1 is negative

and 1 + θ2 is positive, B > 0.

If −1 < a1 ≤ 0 ≤ a0, we rearrange the coefficient of σ2
ε to (a0 + 1)(θ1 + θ2 + 1)[(Γ− a1 + 1)(Γ +

1)(θ2 − θ1 + 1) + 2a2
1 − 2(Γ− 2a1)(a1 + 1)] + 2θ1(a0 + 1)[−(a0 − a1)(a0 + 1)− 1− a1 − a2

1]. Since

−(a0 − a1)(a0 + 1)− 1− a1 − a2
1 < 0 and θ1 < 0, the second part is positive. Since a1 < 0, θ2 > 0

and θ1 < 0. We then have θ2−θ1 +1 > 1. As a result, (Γ−a1 +1)(Γ+1)(θ2−θ1 +1)+2a2
1−2(Γ−

2a1)(a1 + 1) ≥ 6a2
1− 3(Γ− 1)a1 + 1 + Γ2. Since −6Γ− 5(1 + Γ2) < 0, then 6a2

1− 3(Γ− 1)a1 + 1 + Γ2

is positive. Therefore, the coefficient of σ2
ε is positive.

18


	Theorem and proof of the paper
	The Retailer's Demand Forecast is Optimal
	 MMFE demand and GOUTP policy
	Empirical Results
	Order Parameters
	Forecast Accuracy Summary at the Product Level

	Promotional Products
	Theoretical Analysis
	Empirical Analysis
	The empirical model without information sharing
	The empirical model with information sharing
	Empirical Results


	The Value With Respect to Policy Parameters and Forecast Lead Time
	Impact of the Inventory Policy Parameters
	Impact of Forecast Lead Time

	Proofs of Propositions in the Technical Companion

