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Abstract

Th is article examines the joint impact of three types of operational fl exibility in a theoretical 
model of a two-product fi rm that makes capacity, production and pricing decisions at three 
points in time with an underlying continuous-time information evolution. Mix fl exibility is 
measured by the cost of switching production between the two products. Volume fl exibility 
is measured by the fraction of production cost that is variable at the time when the production 
decision is made. Finally, time fl exibility is measured by the relative timing of the production 
decision. We show that mix and volume fl exibilities are substitutes in creating fi rm value 
but both are complementary to time fl exibility. We discuss the implications of these results 
for the optimal investment in diff erent aspects of fl exibility. We also relate these results to 
corporate strategy and show how diff erent types of fl exibility impact the benefi ts of corporate 
diversifi cation.
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I. INTRODUCTION

Flexibility measures the ability to adapt to change and oft en has multiple dimensions that 
impact on value jointly yet diff erently. Th is paper considers three specifi c types of fl exibility 
and examines their value, relationships and implications for corporate diversifi cation. We 
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consider a two-product fi rm that makes capacity, production and pricing decisions at three 
decision epochs with an underlying continuous-time information evolution. Initially, the 
fi rm chooses product-specifi c capacity levels based on an imperfect forecast of future product 
demand curves. At a later point in time, called the “update time,” the fi rm updates its forecast 
and chooses production levels. Th e output of each product is constrained by the existing 
capacity but the fi rm has the option to convert, at a cost, one product-specifi c capacity to 
another. Finally, when the selling season comes and actual demand curves are observed, the 
fi rm sets prices and realizes sales.

We measure the fi rm’s ability to adapt to dynamically evolving demand forecast along 
three dimensions:

1. Mix fl exibility, also known as product or resource fl exibility, is the ability to change 
production mix. We measure it by the cost of converting one unit of product-specifi c 
capacity to the other product. Th e lower this cost, the higher mix fl exibility. In practice, 
mix fl exibility depends on machine changeover costs, workforce cross-training, etc.

2. Volume fl exibility is the ability to change production volume. We measure it by the 
fraction of total unit cost incurred aft er the update time. Two arguments explain why 
volume fl exibility is high when this fraction is large. When unit capacity cost is low 
relative to the unit production cost, the fi rm installs relatively large capacity that is less 
likely to constrain production volume. In addition, the bulk of the unit cost is still variable 
at the update time, and therefore, the fi rm has the incentive to adapt its volume to the 
updated forecast. Factors that determine volume fl exibility include capital intensity of the 
production process or the fl exibility of supply contracts.

3. Time fl exibility is the ability to delay the production decision until more accurate forecast 
becomes available. In our model, it is measured by the timing of the production decision 
between capacity selection and the selling season. In practice, time fl exibility depends 
primarily on production lead times.

We show that mix and volume fl exibilities are substitutes in creating fi rm value, but are both 
complements with time fl exibility. Th us, e.g., a fi rm with inherently greater mix fl exibility 
should invest more in time fl exibility and less in volume fl exibility. Furthermore, we show 
that the marginal values of mix and time fl exibility are decreasing in demand correlation 
whereas the marginal value of volume fl exibility increases in demand correlation. Th erefore, 
as demand correlation increases, a fi rm should invest more in volume fl exibility and less in 
mix and time fl exibilities.

We also relate our results to corporate diversifi cation. Th e strategy literature has 
recognized that diversifi cation coupled with technological or organizational fl exibility may 
create value by reducing uncertainty in capacity planning through demand pooling. In 
addition to showing that the value of diversifi cation increases in mix and time fl exibility and 
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decreases in volume fl exibility and demand correlation, we provide insights into the trade-
off s between related and unrelated diversifi cation.

Whereas the literature on mix (product, resource) fl exibility is extensive (e.g., Fine and 
Freund 1990, Van Mieghem 1998, and Chod and Rudi 2005), time and volume aspects of 
fl exibility have received less attention. Our model of volume fl exibility is similar to 
postponement fl exibility in Chod, Rudi and Van Mieghem (2010), who examine its 
relationship to fi nancial hedging, whereas our concept of time fl exibility builds on Chod and 
Rudi (2006), who examine the benefi ts of risk pooling under forecast updating.

In its research question, our paper is closely related to Goyal and Netessine (2011), who 
also ex amine the relationship between product (mix) and volume fl exibility of a two-
product price-setting fi rm. Th ey model volume fl exibility as the ability to adjust, at a 
quadratic cost, capacity levels up or down once demand uncertainty is resolved. Th eir 
model of product fl exibility corresponds to the special case of our mix fl exibility with zero 
capacity switching cost and full time fl exibility. Netessine and Goyal show that adding 
product fl exibility to volume fl exibility does not necessarily benefi t the fi rm, even if it is 
costless, because of possible diseconomies of scope. In our model, increasing product (mix) 
fl exibility is always benefi cial but, as volume fl exibility increases, the marginal value of mix 
fl exibility decreases.

Netessine and Goyal also show that whereas the value of product fl exibility always 
decreases in demand correlation, the value of volume fl exibility can increase or decrease in 
demand correlation depending on whether the products are complements or substitutes. In 
our model, we focus on the impact of demand correlation on the marginal value of each type 
of fl exibility.

Our work is also related to the literature on corporate diversifi cation (see e.g., Martin and 
Sayrak 2003 for a comprehensive survey). Among the fi rst articles explaining corporate 
diversifi cation with resource fl exibility is Teece (1982), who studies a fi rm that chooses a 
product mix according to constantly changing market conditions which create opportunities 
in diff erent markets at diff erent times. Since then, the link between diversifi cation and 
diff erent types of fl exibility has been discussed in several other papers (e.g., Levy and Haber 
1986, Von Ungern-Sternberg 1989, and Matsusaka 2001). We contribute to this literature by 
formalizing in a rigorous mathematical model the idea that in the presence of demand 
uncertainty and transaction costs in the factor market, mix fl exibility may justify corporate 
diversifi cation. We also show how the diversifi cation premium depends on the three 
dimensions of fl exibility.

Th e remainder of this paper is structured as follows. Section 2 presents the model 
which is solved in Section 3. Th e value of fl exibility and the interplay among diff erent 
types of fl exibility are examined in Section 4. Section 5 discusses the link between 
fl exibility and market diversifi cation. Section 6 concludes. All proofs are relegated to 
Appendix 2.
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II. MODEL

Consider a two-product fi rm that must make three decisions at three diff erent points in time. 
Uncertainty and information availability are formalized by a standard probabilistic 
framework with a probability space (Ω, F, P) and fi ltration F = {Ft, t ≥ 0} as primitives. 
Expectation conditional on Ft (information available at time t) is denoted as Et.

At time 0, the fi rm chooses a vector K ∈ R+
2  of two product-specifi c capacity levels 

incurring a constant marginal capacity cost cK. (We assume, for simplicity, that all costs, 
capacity consumption rates and demand parameters are identical for both products.) At the 
update time τ ∈ [0, T], the fi rm chooses the output vector Q ∈ R+

2  that will be produced at a 
constant marginal production cost cQ. Although the aggregate output cannot exceed total 
capacity, i.e., Q1 + Q2 ≤ K1 + K2, the fi rm has the option to convert, or “switch”, capacity i to 
capacity j ≠ i. Th e cost of converting one unit of capacity is denoted as cS ≥ 0, and we refer to 
it as switching cost.

Finally, at time T, production is complete and uncertainty is resolved. Th e fi rm sets output 
prices p ∈ R+

2  and sells the output vector q (p, Q) ≤ Q earning revenue π(p, Q) = p′q (p, Q), 
where the prime denotes transpose. Given that no model dynamics occur aft er the start of 
the sales season, we compress the latter into an instantaneous sales event at time T, aft er 
which the fi rm is liquidated. We suppress the time value of money so that the fi rm terminal 
value, denoted as v(T), is equal to the sales revenue minus the capacity investment, capacity 
switching and production costs:

(1) v T c K c Q K c QK i S i i Q i
i

( ; ) ( ) ( max ( , ) )K Q p p Q, , , = − + − +
=

∑π 0
1

2

.

Th e fi rm makes the three decisions, (K, Q, p), with the objective to maximize its value. Th e 
fi rm value at time t ∈ [0, T], denoted as v (t), is the expectation of the fi rm terminal value 
conditional on information available then, i.e., v (t) = Etv (T). Th e optimality equations 
simplify as follows:

p* (Q) = arg maxv (T; K, Q, p), (2)
  p∈R+

2

Q* (K) = arg maxv (τ; K, Q, p* (Q)) s.t. Q1 + Q2 ≤ K1 + K2, (3)
  Q∈R+

2

K* = arg maxv (0; K, Q* (K), p* (Q* (K))). (4)
  K∈R+

2

An optimal strategy (K*, Q*, p*) is a solution (K*, Q*(K*), p*(Q*(K*))) to (2)– (4). Finally, we 
let v* (t)= v (t; K*, Q*, p*) be the fi rm value at time t, when the optimal strategy is followed.
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We assume that in each of the two product markets, the fi rm is a monopolist facing an 
iso-elastic demand curve that is subject to a multiplicative random shock εi(T), i = 1, 2. Th us, 
the inverse demand curve in market i at time T is

p T qi i i
b=ε ( ) /1 ,

where b ∈ ( –∞, – 1) is the constant price elasticity of demand.
Th e vector of random shocks, ε = {ε (t), t ≥ 0}, is assumed to follow a two-dimensional 

geometric Brownian motion. Th us, ln ε(t) is a bivariate normal random vector with mean 
ln ε(0) and covariance matrix t∑, where ∑ii = σ2 and ∑ij = ρσ2 if i ≠ j. Th e information available 
at time t includes the history of ε (t) or, formally, the fi ltration F is generated by ε.

Th e fi rm’s fl exibility has the following three dimensions:

1. Mix fl exibility ϕ is the fi rm's ability to convert one type of capacity to another aft er updating 
the demand forecast. Since this ability depends on the switching cost cS, we defi ne mix 
fl exibility as ϕ = 1/cS. With zero mix fl exibility (ϕ = 0), the fi rm does not have the option to 
switch capacity. With perfect mix fl exibility (ϕ → ∞), both products rely on the same capacity.

2. Volume fl exibility γ is the ability to vary product volumes aft er the demand forecast is 
updated. We proxy volume fl exibility by the fraction of the total unit cost (bar the 
switching cost) that is incurred aft er the update time, i.e., γ = cq/ (cK + cq). With zero 
volume fl exibility (γ = 0), the fi rm has incentive to always utilize full capacity, i.e., the 
aggregate production volume is fully determined at time zero. With perfect volume 
fl exibility (γ =1), the aggregate production volume is not constrained by capacity, and the 
average total cost (assuming no capacity switching) is independent of production volume. 
In general, the higher the volume fl exibility, the larger the optimal capacity and the lower 
the impact of production volume on the average total cost.

3. Time fl exibility τ measures how long the fi rm can wait before making the production 
decision. With no time fl exibility (τ = 0), the fi rm chooses the output quantities at time 0. 
With perfect time fl exibility (τ = T), the fi rm can postpone the production decision until 
all uncertainty is resolved.

III. OPTIMAL STRATEGY

We solve for the optimal strategy by backward induction starting with the pricing decision 
(2). It is a well-known property of the iso-elastic demand function that a monopoly always 
maximizes its revenue from a given output by selling all units at the market clearing price. In 
other words, q (p* (Q), Q) = Q and

(5) p T Qi i i
b* /( ) ( ) ,Q =ε 1  i = 1, 2.
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Figure 1. Th e state space of the demand prospects ε(τ) is partitioned into eight events that specify 
diff erent optimal production vectors. If ε(τ) ∈ Ω678, the total capacity is fully utilized. If ε(τ) ∈ Ω4578, 
some capacity conversion or switching is optimal.
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Th erefore, the fi rm’s revenue under the optimal pricing policy is  π (p* (Q), Q) = εi i
b

i
T Q( ) /1 1

1

2
+

=
∑ . 

Th e optimal output vector (3) maximizes the fi rm value at time τ, which can be written as

(6) v (τ ; K, Q, p* (Q))=
 
Eτ εi i

b
Q i S i i K i

i

T Q c Q c Q K c K( ) max ( , ) ./1 1

1

2

0+

=

− − − −( )∑

Since b < –1, this objective function is strictly concave and the optimal output vector Q *(K) 
is the unique solution to the Kuhn-Tucker optimality conditions. To characterize the optimal 
output vector, we partition the state space of the updated “demand prospects” ε (τ) into eight 
events Ω1, …, Ω8 as illustrated in Figure 1. We also defi ne Ωi1 i2…in ≡Ωi1∪Ωi2∪…∪Ωin. Th e 
formal defi nitions of Ω1,  …, Ω8 as well as the corresponding optimal output vectors are 
characterized in Appendix 1. Th e intuitive interpretation of these eight events is as follows:

Event Ω1 (K): Th e prospects of both markets are poor and neither capacity is fully utilized:
Qi

* < Ki, i = 1, 2.
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Event Ω2 (K): Th e prospects of market 1 are relatively good while those of market 2 are 
poor. Capacity 1 is fully utilized but capacity 2 is not and no capacity switching occurs: 
Q1

* = K1 and Q2
* < K2. (Th e event Ω3 is symmetric: Q1

* < K1 and Q2
* = K2.)

Event Ω4 (K): Th e prospects of market 1 are very good so that not only full capacity 1 but 
also some of capacity 2 is used to make product 1: Q1

* > K1. Th e prospects of market 2, however, 
are poor so that only a fraction of the remaining capacity 2 is used to make product 2:
Q2

* < K2 – (Q1
* – K1). (Th e event Ω5 is symmetric: Q2

* > K2 and Q1
* < K1 – (Q2

* – K2).)
Event Ω6 (K): Th e prospects of both markets are good enough to justify full utilization of 

both capacities and not suffi  ciently diff erent to justify capacity conversion: Qi
* = Ki, i = 1, 2.

Event Ω7 (K): Th e overall market prospects are very good so that both resources are fully 
utilized. Furthermore, the prospects of market 1 are signifi cantly better than those of 
market 2 warranting conversion of some capacity 2 to make product 1: Q1

* > K1 and Q2
* = 

K2 – (Q1
* – K1). (Th e event Ω8 is symmetric: Q2

* > K2 and Q1
* = K1– (Q2

* –K2).)
Th e capacity investment problem (4) is also concave and the optimal capacity vector is 

characterized by the fi rst order condition. If furthermore cS > 0, the optimal capacity vector is 
unique. (If cS = 0, only the total capacity matters, i.e., there is a continuum of optimal capacity 
vectors characterized by the fi rst order conditions, all of which represent the same total capacity.)

Proposition 1 If cS > 0, there exists a unique optimal capacity vector K* which satisfi es K1 = K2 
and

(7) 
Pr ( ( ))

( )
( )

* * *

*

*

Ω Ω78
11

2
1 1

1
78K KE ∂

∂

∂

∂
− −

∂ −

∂=

∑ Q
K

p Q
Q

c c
Q K

K
i

i

i i

i
Q S

⎛⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+
∂

∂
−

⎛

⎝
⎜

⎞

⎠
⎟+Pr ( ( ))

( )
( ) Pr ( ( ))

*

Ω Ω Ω26
1 1

1
26 4K K KE p K

K
c cQ SS Kc= ,

where p* = p* (Q* (K)) is given by (5) and Q* = Q* (K) is given in Appendix 1.

Proof: All proofs can be found in Appendix 2.
Optimality condition (7) sets the marginal value of capacity 1 equal to the unit capacity 

investment cost cK. Th e marginal value of capacity (left -hand side of (7)) stems from the 
marginal sales revenue and the potential savings in the switching costs net of the marginal 
production cost and the potential increase in the switching cost, and it depends on the 
specifi c capacity allocation at the update time.

To evaluate the benefi ts of fl exibility, it is useful to consider a fi rm without any fl exibility, 
i.e., a fi rm that must choose its output vector at time zero. Formally, a non-fl exible fi rm is a 
limiting case of the fl exible fi rm with no time fl exibility (τ = 0) or, alternatively, with no mix 
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and volume fl exibilities (ϕ = 0 and γ = 0). Let p~, Q~ and K~ be the price, output and capacity 
vectors of a non-fl exible fi rm. Furthermore, let c∼K ≤ cK and c∼q ≤ cq be the unit capacity and 
production costs of a non-fl exible fi rm, refl ecting the fact that fl exibility typically comes at a 

cost. Finally, let v∼ (t; K~, Q~, p~), or v∼(t) for short, denote the value of a non-fl exible fi rm at time 

t, and let v∼* (t) ≡ v∼ ( t; K~*, Q~*, p~ *) be its value if the optimal strategy is followed. Th e optimal 
capacity and value of a non-fl exible fi rm can be both obtained in closed form.

Corollary 1 Th e optimal capacity vector and value of the non-fl exible fi rm are, respectively,

� �
� �

K K
b

c c
T

Q K
i

b

1 2 0
1 1* *= =
+

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

/
( )E ε  and �

� � � �v
c c

b
K KQ K* * *( ) ( )0

1 1 2=
+

+
+ .

In the next section, we defi ne the value of fl exibility and discuss how it depends on the three 
dimensions of fl exibility.

IV. VALUE OF FLEXIBILITY AND ITS DRIVERS

We defi ne the value premium for fl exibility as the relative diff erence between the value of a 
fl exible and a non-fl exible fi rm:

∆F
v v

v
≡

−∗ ∗

∗

� �
�

( ) ( )
( )

0 0
0

Th e value premium for fl exibility is in general diffi  cult to study analytically. However, it can 
be examined analytically in the special case of perfect mix fl exibility and zero volume 
fl exibility (cq = cs = 0). In this case, the value of fl exibility stems from risk pooling and the 
revenue maximizing option, and can be expressed in closed form.

Lemma 1 If cq = cs = 0, the value premium for fl exibility simplifi es into

∆F
K

K

b

i

b
c
c

T
T

=
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− − −

� 1

0

ε

ε
τ

( )
( )E  – 1, where ε

ε ε
τ

τ τ

( )
( ) ( )

.
/

T
T Tb b b

=
+⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

− − −

E
E E

0
1 2

1

2

Whether fl exibility creates value depends on the benefi t of fl exibility relative to its cost. We 
defi ne the maximum sustainable cost of fl exibility δ as the maximum ratio of the cost of 
fl exible and nonfl exible capacity for which fl exibility creates value, i.e.,

∆F > 0 ⇔ c
c

T
T

K

K i

b
b

�
<
⎛

⎝

⎜
⎜

⎞

⎠

⎟
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+ε

ε
δτ

( )
( )E0

1

.
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It follows from the Minkowski inequality that ||ε(T) ||τ ≥ E0εi(T), i.e., δ > 1. Th is means that 
in general a fi rm benefi ts from fl exibility as long as its cost is not too high. Th e next three 
lemmas characterize the eff ects of time fl exibility, demand variability and demand correlation 
on the optimal capacity, fi rm value, fl exibility premium and the maximum sustainable cost 
of fl exibility δ. Th e longer the fi rm can wait before exercising the option to switch capacity, 
the higher the value of this option and the higher the optimal capacity investment.

Lemma 2 If cq = cs = 0, the optimal capacity, fi rm value, fl exibility premium and 
the maximal sustainable cost of fl exibility increase in time fl exibility τ:

τ τ τ τ
δ( ) , * ( ) , , .* *∂

∂
+ ≥

∂

∂
≥

∂

∂
∆ ≥

∂

∂
≥K K v andF1 2 0 0 0 0 0

Similar to fi nancial options, volatility increases the value of the option to switch and, hence, 
the value of a fl exible fi rm. It also increases the optimal capacity level.

Lemma 3 If cq = cs = 0, the optimal capacity, fi rm value, fl exibility premium and the maximal 
sustainable cost of fl exibility increase in demand volatility σ:

σ σ σ σ
δ( ) , * ( ) , , .* *∂

∂
+ ≥

∂

∂
≥

∂

∂
∆ ≥

∂

∂
≥K K v andF1 2 0 0 0 0 0

As expected, higher demand correlation reduces the value of the switching option. It also 
leads to a lower capacity investment.

Lemma 4 If cq = cs = 0, the optimal capacity, fi rm value, fl exibility premium and the maximal 
sustainable cost of fl exibility decrease in demand correlation ρ:

K K v andF( ) , * ( ) , , .* *∂

∂
+ ≥

∂

∂
≥

∂

∂
∆ ≥

∂

∂
≥

ρ ρ ρ ρ1 2 0 0 0 0 0δ

While it is intuitive that higher demand volatility and lower demand correlation both increase 
the value of fl exibility, it is less obvious that they also result in a higher optimal capacity level, 
K K1 2

* *+ . In the newsvendor model of Eppen (1979), the optimal fl exible capacity increases in 
demand volatility and correlation if, and only if, the capacity exceeds the expected demand. 
In that model, the eff ect of demand volatility and correlation on the optimal capacity depends 
on whether it increases or decreases the probability that all capacity will be used. With zero 
production cost (cQ = 0), that probability is always one. However, with endogenous pricing, 
higher demand volatility and lower demand correlation increase the expected output prices 
and, hence, the marginal value of capacity. Next, we use a numerical analysis to examine the 
general case of nonnegative production and switching costs (cQ ≥ 0 and cS ≥ 0).
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A. THREE DIMENSIONS OF FLEXIBILITY: COMPLEMENTS OR 
SUBSTITUTES?

Both mix and volume fl exibilities mitigate the expected cost of mismatch between capacity 
and demand resulting from the capacity investment being made under demand 
uncertainty. Mix fl exibility reduces this mismatch cost by providing the opportunity to 
reallocate capacity based on the additional information revealed by the update time. 
Volume fl exibility means cheaper and more abundant capacity which makes it easier to 
vary production volume at the update time when more information is available. Because 
mix and volume fl exibility are two distinct ways of reducing the mismatch cost, one 
would expect them to be strategic substitutes. At the same time, both mix and volume 
fl exibilities become more valuable as the update time moves closer to the selling season 
when more information is available. One would therefore expect both mix and volume 
fl exibilities to be complementary with time fl exibility. We can formalize these notions as 
follows.

Conjecture 1 Mix and time fl exibilities are strategic complements: 
∂ ∆

∂ ∂
≥

2

0F

ϕ τ
 for any volume 

fl exibility.

Conjecture 2 Volume and time fl exibilities are strategic complements: 
∂ ∆

∂ ∂
≥

2

0F

τ γ
 for any mix 

fl exibility.

Conjecture 3 Volume and mix fl exibilities are strategic substitutes: 
∂ ∆

∂ ∂
≤

2

0F

ϕ γ
 for any time 

fl exibility.

Our numerical investigation supports all three conjectures, as illustrated in Figure 2 for a 
representative set of parameter values. (All numerical results are based on simulation using 
50,000 demand scenarios. In the boundary cases that were also solved analytically, the 
simulation errors were below 1%.)

Figure 2a shows the value premium for fl exibility ∆F for volume fl exibility γ = 0.5, time 
fl exibility τ ∈ [0,1] and mix fl exibility ϕ ∈ {0, …,∞} (i.e., switching cost cs ∈ {0, …, ∞}). We 
observe that the marginal value of time fl exibility ∂∆F/∂τ increases in mix fl exibility ϕ, which 
confi rms Conjecture 1 that mix and time fl exibilities are strategic complements. Th is has two 
managerial implications:

1. Th e closer to the selling season a fi rm chooses its output mix, or the more demand 
information it has at that time, the more it should invest in product-fl exible technology, 
workforce cross-training and other enablers of mix fl exibility.

2. Th e easier (cheaper) it is for a fi rm to convert one type of capacity to another, the more the 
fi rm should invest in obtaining accurate and timely market information and/or in 
postponing the point of product diff erentiation.
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Figure 2. Th e eff ects of mix, volume and time fl exibilities on the fl exibility premium ∆F for 
independent demands. (T = 1, b =  –2, cK + cQ = 0.2, ε (0) = 1, σ = 1 and ρ = 0.)
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Figure 2b illustrates the complementarity of time and volume fl exibilities for time fl exibility 
τ ∈ [0,1], volume fl exibility γ ∈[0, 1] and mix fl exibility ϕ = 20 (i.e., switching cost cS = 0.05). 
We notice that the marginal value of time fl exibility ∂∆F/∂τ increases in volume fl exibility γ, 
confi rming Conjecture 2. Th e managerial implication is again twofold:

1. Th e more information a fi rm can gain by waiting, the more it should strive to postpone 
purchasing, hiring or production decisions.

2. And vice versa, the more of its quantity commitments a fi rm can postpone, the more it 
should invest in improving demand forecast prior to making these commitments.

Finally, Figure 2c shows how the fl exibility premium ∆F depends on volume fl exibility 
γ ∈ [0,1] and mix fl exibility ϕ ∈ {0, …,∞} for time fl exibility τ = 0.5. Th e marginal value of 
volume fl exibility ∂∆F/∂γ decreases in mix fl exibility ϕ indicating that mix and volume 
fl exibilities are strategic substitutes as conjectured. Th e fi gure also indicates that mix 
fl exibility has no value under perfect volume fl exibility, whereas volume fl exibility is valuable 
even under perfect mix fl exibility. In other words, volume fl exibility can deliver all benefi ts 
of mix fl exibility but not vice versa. Th e following two managerial implications ensue:

1. Th e higher the cost of fi xed assets (capacity), the more the fi rm should invest in its ability 
to switch between the production of diff erent products. Th us, mix fl exibility is particularly 
important in expensive, highly utilized capital equipment.

2. Th e higher the mix fl exibility of a resource, the less can be gained from postponing its 
acquisition. In other words, it is more valuable to postpone the acquisition of product-
specifi c resources than that of a product-fl exible resource.

B. THREE DIMENSIONS OF FLEXIBILITY AND DEMAND 
CORRELATION

Positive demand correlation reduces the effi  cacy of risk pooling and thus diminishes the 
value of mix fl exibility. Th is insight, which we stated in Lemma 4 for the boundary case of 
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cQ = cS = 0 and which can be verifi ed numerically for any value of cQ and cS, is intuitive and 
consistent with the literature (e.g., Fine and Freund 1990). However, it is less obvious how 
demand correlation aff ects the marginal value of diff erent types of fl exibility, which is 
important because it determines the optimal investment in fl exibility. Given that risk pooling 
is the main value driver of mix fl exibility we expect the marginal value of mix fl exibility to 
decrease in demand correlation. Similarly for the marginal value of time fl exibility (which 
stems partially from increasing the benefi ts of risk pooling). Since volume and mix fl exibilities 
are strategic substitutes, less risk pooling increases the marginal value of volume fl exibility so 
we expect an increase in demand correlation to increase the marginal value of volume 
fl exibility as well. We formalize our intuition in the following three conjectures:

Conjecture 4 Th e value premium for fl exibility is submodular in mix fl exibility and demand 

correlation: 
∂ ∆

∂ ∂
≤

2

0F

ϕ ρ
 for any cost and time fl exibility.

Conjecture 5 Th e value premium for fl exibility is supermodular in volume fl exibility and 

demand correlation: 
∂ ∆

∂ ∂
≥

2

0F

γ ρ
 for any mix and time fl exibility.

Conjecture 6 Th e value premium for fl exibility is submodular in time fl exibility and demand 

correlation: 
∂ ∆

∂ ∂
≤

2

0F

τ ρ
 for any mix and volume fl exibility.

Figure 3. Th e eff ects of mix, volume and time fl exibilities on the fl exibility premium ∆F under 
diff erent demand correlations
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Our numerical investigation confi rms the three conjectures, as illustrated in Figure 3. (Th is 
fi gure is based on the same parameter values as Figure 2 except that the demand correlation 
coeffi  cient ρ is varied between –1 and 1.) We note that the value premium for fl exibility ∆F is 
strictly decreasing in demand correlation except for the following three cases in which 
demand correlation has no eff ect on this premium: (i) the fi rm has no mix fl exibility; (ii) the 
fi rm has perfect volume fl exibility (no capacity commitment has to be made under demand 



Jiri Chod, Nils Rudi and Jan A. Van Mieghem

274 Intersentia

uncertainty); and (iii) fi rm's time fl exibility is zero (output decision has to be made at time 
zero).

Figure 3a plots the fl exibility premium ∆F as a function of mix fl exibility ϕ for given 
volume fl exibility γ = 0.5 and time fl exibility τ = 0.5. It confi rms our conjecture that the 
marginal value of mix fl exibility ∂∆F/∂ϕ decreases in demand correlation. Th e higher the 
demand correlation, the less capacity is likely to be converted and, therefore, the less value 
results from reducing the switching cost. As a result, the higher the demand correlation, the 
lower the optimal investment in mix fl exibility (switching cost reduction).

Figure 3b graphs the fl exibility premium ∆F as a function of volume fl exibility γ for given 
mix fl exibility ϕ = 20 (switching cost cs = 0.05)and time fl exibility τ = 0.5. As conjectured, the 
marginal value of volume fl exibility ∂∆F/∂γ increases in demand correlation. As demand 
correlation increases, mix fl exibility becomes less eff ective in reducing the mismatch between 
capacity and demand, which makes volume fl exibility relatively more important. Th erefore, 
the higher the demand correlation, the more a fi rm should invest in volume fl exibility.

Finally, Figure 3c shows how the fl exibility premium ∆F depends on time fl exibility τ for 
given mix fl exibility ϕ = 20 and volume fl exibility γ =0.5. As expected, the marginal value of 
time fl exibility ∂∆F/∂τ decreases in demand correlation. More time fl exibility means that 
more information is available before capacity conversion has to be made. As demand 
correlation increases, additional demand information is less likely to result in capacity 
conversion and, hence, is less valuable. Th erefore, when demand correlation is high, the fi rm 
should invest less in time fl exibility (forecasting, shorter lead times, etc.) than when demand 
correlation is low.

In the next section, we discuss the link between the three types of fl exibility and corporate 
diversifi cation.

V. FLEXIBILITY AND MARKET DIVERSIFICATION

Th e strategy and economic literatures have recognized that diversifi cation can create 
shareholder value in the presence of market imperfections such as transaction costs in the 
factor market (see e.g. Teece 1982, Levy and Haber 1986, and Matsusaka 2001). In particular, 
if capacity investment is irreversible, market diversifi cation coupled with technological or 
organizational fl exibility may create value by reducing the aggregate uncertainty in capacity 
planning through statistical aggregation or “pooling” of demands. We provide further 
insights into the relationship between diversifi cation and fl exibility by showing how the 
diversifi cation premium depends on the specifi c type of fl exibility.

We quantify the benefi ts of diversifi cation by comparing the value of a two-product fi rm 
to the sum of the values of two single-product fi rms under the assumption of suffi  ciently high 
transaction costs in the factor market that prevent capacity trading or subcontracting. Th e 
optimal value of a two-product or “diversifi ed” fi rm is v*(0). Th e sum of the values of two 
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single-product fi rms that cannot trade capacity is equal to v*(0) with prohibitive capacity 
switching cost, or zero mix fl exibility, i.e., ϕ = 0. We defi ne the relative diversifi cation 
premium as

(8) ∆ ≡
−> =

=

D

v v
v

* *

*

( ) | ( )
( )

.
0 0

0
0 0

0

ϕ ϕ

ϕ

In the special case of negligible production and switching costs, the diversifi cation premium 
equals the fl exibility premium characterized in Lemma 1. It then follows from Lemmas 2–4 
that in this case the diversifi cation premium ∆D increases in time fl exibility τ and demand 
volatility σ and decreases in demand correlation ρ.

In general, the key drivers of the diversifi cation premium are demand volatility, demand 
correlation, time and volume fl exibility (which are both assumed to be the same for the 
diversifi ed fi rm and the single-product fi rms) and mix fl exibility of the diversifi ed fi rm. Note 
that even though we are assuming the diversifi ed fi rm and the two single-product fi rms to 
have the same time and volume fl exibility, these fl exibilities aff ect the diversifi cation premium 
due to their complementarity/substitutability with mix fl exibility.

Th e eff ects of the three types of fl exibility and demand correlation are illustrated in 
Figure 4, which is based on the same parameter values as Figures 2 and 3. Th e benefi ts of 
diversifi cation stem from the diversifi ed fi rm’s ability to switch capacity between the products 
based on the additional information revealed up to the update time. As a consequence, the 
diversifi cation premium increases in time fl exibility and the diversifi ed fi rm’s mix fl exibility 
and it decreases in demand correlation. At the same time, the diversifi cation premium 
decreases in the fi rms’ volume fl exibility. Th is is because volume and mix fl exibilities are 
substitutes, i.e., as volume fl exibility increases, additional mix fl exibility of the diversifi ed 
fi rm is less valuable. In conclusion, diversifi cation creates more value if demand correlation 
is low, the diversifi ed fi rm can switch capacity relatively close to the selling season and at a 
relatively low cost, and the irreversible capacity investment represents a considerable part of 
the fi rm’s total cost.

Figure 4 further indicates the following complementarity and substitutability results. 
More time fl exibility magnifi es both the positive eff ect of mix fl exibility (∂2∆D/∂ϕ∂τ ≥ 0) and 
the negative eff ect of volume fl exibility (∂2∆D/∂γ∂τ ≤ 0). In addition, greater volume fl exibility 
reduces the positive eff ect of mix fl exibility (∂2∆D/∂ϕ∂γ ≤ 0). Higher demand correlation 
reduces the positive eff ects of mix fl exibility (∂2∆D/∂ϕ∂ρ ≤ 0) and time fl exibility 
(∂2∆D/∂τ∂ρ ≤ 0) and the negative eff ect of volume fl exibility (∂2∆D/∂γ∂ρ ≥ 0). Th us, the lower 
the correlation among the diff erent business segments of a diversifi ed fi rm, the more this 
fi rm should invest in technological and organizational fl exibility that allows it employing its 
resources across diff erent business segments.
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Figure 4. Th e eff ects of mix fl exibility ϕ, volume fl exibility γ, time fl exibility τ and demand 
correlation ρ on the diversifi cation premium ∆d
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One aspect of diversifi cation that has attracted signifi cant attention in the strategy literature 
is the relative benefi t of diversifi cation into related versus unrelated industries. Related 
diversifi cation is defi ned as one “involving businesses that share related production or 
marketing technologies” (Lubatkin and O’Neill 1987). While resource sharing arguments 
favor related diversifi cation, risk and internal capital market considerations support unrelated 
diversifi cation. Th e extensive empirical evidence on the eff ect of diversifi cation relatedness is 
also very fragmented (see e.g., Palich et al. 2000). Th is ambiguity stems partially from the fact 
that the notion of relatedness in the existing literature involves two aspects with very diff erent 
implications for the value of diversifi cation: relatedness of markets and relatedness of 
technology. Our model allows to clearly distinguish the two aspects of relatedness. Because 
more similar markets for the two products are likely to be more (positively) correlated, one 
can think of demand correlation as a proxy for market relatedness of diversifi cation.

Because the switching cost is likely to be lower for technologically similar products, a 
natural proxy for technological relatedness of diversifi cation is mix fl exibility. An alternative 
proxy for technological relatedness would be time fl exibility because it is presumably easier to 
postpone product diff erentiation until a later stage of the production process for technologically 
close products. No matter which of the two possible surrogates for technological relatedness 
we consider, Figure 4 shows that the diversifi cation premium increases in technological 
relatedness and market unrelatedness and, furthermore, technological relatedness and 
market unrelatedness are complementary in increasing this premium. Th ese fi ndings are 
supported by the empirical evidence of Amit and Livnat (1989), who demonstrate that effi  cient 
diversifi ers operate in related business segments that have diff erential responses to business 
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cycle changes and thereby enjoy the benefi ts from (technologically) related diversifi cation as 
well as from the portfolio eff ect (market unrelatedness).

VI. SUMMARY

Th is paper considers a two-product fi rm that makes capacity, production, and pricing 
decisions at three diff erent points in time while continuously updating its demand forecast. 
We identify three aspects of the fi rm’s ability to respond to the dynamically evolving demand 
conditions, which we refer to as mix, volume and time fl exibility. We show that while mix and 
volume fl exibilities are substitutes, they are both complementary with time fl exibility. Th is 
has important implications for the optimal level of each of these fl exibilities. For example, a 
fi rm that has inherently more mix fl exibility should invest more in time fl exibility and less in 
volume fl exibility. Furthermore, we show that as demand correlation increases, managers 
should invest more in volume fl exibility and less in mix and time fl exibilities. Finally, we link 
the value of fl exibility to the value of market diversifi cation and discuss the main drivers of 
the diversifi cation premium such as the three types of fl exibility and demand correlation.
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APPENDIX 2

Proof of Proposition 1: For simplicity, we use p* and Q* as shorthand for p* (Q* (K)) and 
Q* (K), respectively, where p* is given by (5) and Q* is characterized in Appendix 1. Given 
the optimal pricing and output decisions, the fi rm value at time τ is
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Th us, HKv (τ; K) is negative defi nite if ε (τ) ∈ Ω6 and negative semidefi nite otherwise. 
Th erefore, v (τ; K) is concave in K for any ε (τ) and the concavity is strict if ε (τ) ∈ Ω6. Th is 
means that v (0; K)= E0v (τ; K) is concave in K and the fi rst-order optimality condition 
∇Kv (0; K) = 0 is suffi  cient. Furthermore, if cS > 0, then Pr (Ω6 (K)) > 0 and the concavity is 
strict, implying that K* is unique. Th e uniqueness of K* together with the symmetry of all 
parameters implies that K K1 2

* *= . Taking the derivative of v (0; K) with respect to K1 yields
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where the fi rm terminal value, given the optimal pricing and output decisions, is

K
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v T Q p c Q c Q K c Ki i P i S i i K i
i

( ; ( max ( , ) ).* * * *K)= − − − −
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∑ 0
1

2

Note that v (T; K) is continuous in ε (τ) and, therefore, the terms from diff erentiating the 
boundaries of Ω1, …, Ω8 with respect to K1 in (10) cancel out. Th is leaves us with

∂
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Diff erentiating v (T; K) with respect to K1 and setting ∂v (0; K) /∂K1 = 0 results in (7).

Proof of Corollary 1: Th e result follows from Proposition 1 with τ = 0, cK = c∼K and cQ = c∼Q.

Proof of Lemma 1: It follows from Proposition 1 that if cS = cQ = 0, the optimal total capacity 
and fi rm value are, respectively,
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Th is together with Corollary 1 gives the desired result.

Proof of Lemma 2: To simplify the notation, we normalize T = 1 and ε (0) = 1. To prove the 

desired results, it is suffi  cient to show that 
∂

∂
≥

τ
ε τ|| ( ) || .1 0
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and ln ε (t) ∼ N (ln ε (0), t Σ). Using the 

fact that E
τ
εi (1) = εi (τ)exp 

1
2
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Th e normal vector ln ε (τ) can be rewritten in terms of two independent standard normal 

random variables as ln ε (τ) = τ∑Z , where Z ∼ N (0,I) and I is a 2 × 2 identity matrix. Since 

τ∑ is positive defi nite, τ∑  exists and can be obtained using eigenvector decomposition, 
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Using this transformation, we obtain
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Since Z1 and Z2 are independent, we can further simplify

(11) 
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Next, we take the derivative of (11) with respect to τ. Aft er some algebra, we obtain

(12) 
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To evaluate (12), we make use of the fact that for a diff erentiable function g and a standard 
normal random variable Z1, E(g(Z1)Z1)= Eg'(Z1) (Rubinstein 1976). Applying this result and 
some algebra to (12), we obtain
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 ≥ 0.

Proof of Lemma 3: Th e proof is similar to the proof of Lemma 2 and is omitted.

Proof of Lemma 4: Th e proof is similar to the proof of Lemma 2 and is omitted.
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