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This technical companion has three parts: First, it shows the proofs of the propositions in the

paper. Then, it presents the exact solutions for special cases if Ll = θl = θg = 0 and the Lagrange

series for dual sourcing where one or both sources incur capacity costs as Propositions 15 and 16.

The last part show the very detailed derivations of the single sourcing analysis and of the exact

dual sourcing solutions to the first order conditions: the Cardano solution (L = 1 and Ll = 0 on

Companion Page 17); the Ferrari solution (L = 3 and Ll = 0 for uncapacitated dual sourcing on

Companion Page 20); and the Lagrange series (for the other cases).

1 Proofs of Propositions in the Paper

Proposition 1 was shown in the main text. We proceed with:

Proof of Proposition 2: Given the order process, we can analytically track the net inventory

dynamics for t = 1, ..., T and α ∈ [0, 1) :

qt =

t∑
k=Li

(1− α)αk−LiDt−k

=

t−Li∑
k=0

(1− α)αkDt−Li−k
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It = It−1 + qt−1 −Dt = It−1 +

t−Li−1∑
k=0

(1− α)αkDt−Li−k−1 −Dt

= It−2 +

t−Li−2∑
k=0

(1− α)αkDt−Li−k−2 −Dt−1 +

t−Li−1∑
k=0

(1− α)αkDt−Li−k−1 −Dt

= I−1 +

t−Li∑
j=1

t−Li−j∑
k=0

(1− α)αkDt−Li−k−j −
t∑

k=0

Dt−k

= I−1 +

t−Li∑
j=1

t−Li−j∑
k=0

(1− α)αkDt−Li−k−j −
t−Li∑
k=0

Dt−L2−k −
Li−1∑
k=0

Dt−k

= I−1 −
t−Li∑
k=0

αkDt−Li−k −
Li−1∑
k=0

Dt−k

Hence, for t→∞,

V ar(qt) =
1− α
1 + α

σ2

V ar(It) =
1

1− α2
σ2 + Liσ

2.

Note that this policy encompasses global single sourcing with the standard base-stock policy. Check:

if α = 0, then we have V ar(It) = (Lg + 1)σ2. If α = 1, we have that qt = µ and

It = I−1 +
t−1∑
i=0

qi −
t∑
i=0

Di = Is + tµ−
t∑
i=0

Di.

Taking expectations and variances directly yield EIt and V ar(It).�

Proof of Proposition 3: This is not a standard newsvendor problem because the decision variable

Is is the mean of the distribution but it can be reduced to a newsvendor model. The limiting net

inventory process I∞ is normally distributed with mean EIt = Is and variance σ2
I = 1

1−α2σ
2 +Liσ

2.

Let f(x|Is, σI) denote its density. The associated expected inventory cost rate is

CI(Is) =

∫ ∞
0

hxf(x|Is, σI)dx−
∫ 0

−∞
bxf(x|Is, σI)dx.

Substitute to standardized units z = (x − Is)/σI and define zI = Is/σI . With x = Is + zσI =

(zI + z)σI and f(x|Is, σI) = φ(z)/σI , we get

CI(Is) =

∫ ∞
−zI

h(zI + z)σIφ(z)dz −
∫ −zI
−∞

b(zI + z)σIφ(z)dz

= σI [hzI (1− Φ(−zI)) + hφ(−zI)− bzIΦ(−zI) + bφ(−zI)] ,

= σI [hzI + (h+ b) (φ(−zI)− zIΦ(−zI))]
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where we used the identity φ′(x) = −xφ(x) ⇒ −
∫ x
−∞ zφ(z)dz =

∫∞
x zφ(z)dz = φ(x). Invoking

φ(−x) = φ(x) and Φ(−x) = 1− Φ(x), it directly follows that

CI(Is) = σI [hzI + (h+ b) (φ(zI)− zI(1− Φ(zI)))] = σI [hzI + (h+ b)IN (zI)]

= σI [−bzI + (h+ b) (φ(zI) + zIΦ(zI))]

The inventory cost is convex increasing in α and taking the first derivative

d

dIs
CI(Is) =

d

σIdzI
CI(Is) = −b+ (h+ b)

(
φ′(zI) + Φ(zI) + zIφ(zI)

)
= −b+ (h+ b)Φ(zI).

Clearly d2

dI2s
CI(Is) = σ−1

I (h+ b)φ(zI) > 0 so that CI is convex with unique minimum given by the

familiar critical fractile condition Φ(zI) = b/(h+ b).�

Proof of Proposition 4: The function Ĉss(α) is continuous in [0, 1) with Ĉ(0) = θi +
√

1 + Li

and Ĉ(1) = +∞. Its first derivative is:

d

dα
Ĉ(α) =

(
1− α2

)− 3
2

{
α
(
1 + Li − Liα2

)− 1
2 − θi(1− α)

}
The first term is positive (hence inventory cost is increasing), while the second is negative (hence

capacity cost is decreasing). For 0 ≤ α < 1, its sign equals the sign of (which also becomes the

optimality condition:)

F (α)− θi, where F (α) = α(1− α)−1
(
1 + Li − Liα2

)− 1
2 . (30)

F is strictly convex and increasing so that F−1 is uniquely defined and concave increasing:

F ′(α) = (1− α)−2
(
1 + Li − Liα2

)− 3
2 {1 + Li (2α+ 1) (1− α)} > 0

F ′′(α) = (1− α)−3
(
1 + Li − Liα2

)− 5
2 (2 + Li (1− α) (3Li (5α+ 3) (1− α) + 2α+ 11)) > 0

Thus:

1. For any Li ≥ 0 and any θi > 0, there is a single extremum α∗ where F (α∗) = θi, so that Ĉss

is first decreasing and then increasing. Thus, Ĉss(α∗) < Ĉss(0), which is the cost when using

a base-stock policy. If θi = 0, α∗ = 0 and Ĉ is increasing.

2. For θi > 0, the optimal α∗(θi) is concave increasing in θi with

α∗|θi=0 = 0 < α∗ < α∗|θi→∞ = 1.

3. For θi > 0, the optimal α∗(θi) is increasing in Li.We directly have a bound:

α∗|Li=0 =
θi

θi + 1
< α∗|Li>0 =

θi

θi + (1 + Li − Liα∗2)−
1
2
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4. Below we show that Ĉ is strictly convex in [0, 1
2) and near α = 1. For small values of θi, it is

convex everywhere. For large values of θi, it can be convex-concave-convex. Indeed, consider

the second derivative:

d2

dα2
Ĉ(α) =

(
1− α2

)− 5
2

{(
1 + Li

(
1− α2

))− 3
2
(
1 + α2 + Li

(
1− α2

) (
1 + 2α2

))
+ θi(1− α) (1− 2α)

}
where the first term inside the curly brackets is positive (and thus the inventory cost

√
Li + 1

1−α2

is convex increasing) and the last term is positive for α < 1
2 and negative for 1

2 < α < 1 (so

that the capacity cost is convex-concave with inflection point at α = 1
2). As θi increases, the

capacity term becomes more important, but is always dominated for α → 1 by the convex

inventory cost.

The value of smoothing for Li = 0: then Ĉ(α0) = Ĉ(α∗) =
√

2θi + 1 and Ĉ(0) = 1 + θi so that

Value =
1 + θi −

√
2θi + 1

1 + θi
= 1−

√
2θi + 1

θi + 1
,

which increases in θi towards a maximum of 100%.

Proof of Proposition 5: Extending L to a continuous variable and applying the chain rule on

the necessary optimality condition gives:

d

dL
Ĉ(α∗) =

∂Ĉ

∂α
(α∗)

dα∗

dL
+
∂Ĉ

∂L
(α∗) =

∂Ĉ

∂L
(α∗)

= ĥα∗L − θcα∗L lnα∗ ≥ 0.

To show that the optimal allocation also decreases when L increases from 1 to 2, express the

smoothing FOC (16) as a function of the optimal allocation:

θc = G(a, L) =
a∗

2−L
L

L
(
1− a∗2/L

)3/2√
1 + Ll

(
1− a∗2/L

) (31)

Extending L to a continuous variable and applying the implicit function theorem on the FOC of

the allocation yields:

da∗

dL
= −

ĥ+ ∂G
∂L (a∗, L)

∂G
∂a (a∗, L)

(32)

It can be shown that ∂G
∂L > 0 for all L, and ∂G

∂a > 0 for L ≤ 2, so that a∗ decreases as L increases

over L ∈ [1, 2].
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Finally, the comparative statics of θc follow from:

d

dθc
Ĉ(α∗) =

∂Ĉ

∂α
(α∗)

dα∗

dθc
+
∂Ĉ

∂θc
(α∗) =

∂Ĉ

∂θc
(α∗) = −α∗L < 0.

dα∗

dθc
= −

∂2C
∂θc∂α

(α∗)

∂2C
∂α2 (α∗)

=
L (α∗)L−1

∂2C
∂α2 (α∗)

> 0,

given that ∂2C
∂α2 (α∗) > 0 because α∗ is a minimizer.�

Proof of Proposition 6: If L = 1 and Ll = 0, Ĉ(·) is strictly convex with Ĉ ′(0) = −θc. If,

and only if, θc > 0, there is a unique interior minimum α∗ ∈ (0, 1) that solves the sufficient first

order equation (16), which simplifies to θ2
cx

3 + x − 1 = 0 where x = 1 − α2. The third order

polynomial is strictly increasing and thus has one real root (34), which is found using Cardano’s

rule–see Appendix.

For L = 2 and Ll = 0, Ĉ(·) is concave-convex with Ĉ ′(α) = −2θcα+ α(1− α2)−3/2 = −2θcα+

α(1 + 3
2α

2 + o(α2)) = (1 − 2θc)α + o(α). If, and only if, θc > 1/2, there is a unique interior

minimum that solves the sufficient first order equation (16), which simplifies to (2θc)
2x3 − 1 = 0

where x = 1 − α2. Notice that, if θc = 1/2, Ĉ(α∗) = 1 and that cost decreases as θc increases,

hence dominating single local sourcing.

For L = 3 and Ll = 0, Ĉ(·) is convex-concave-convex with Ĉ ′(α) = −3θcα
2 + α(1− α2)−3/2 =

−3θcα
2 + α(1 + 3

2α
2 + o(α2)) = α − 3θcα

2 + 3
2α

3 + o(α3). So cost is initially increasing convexly.

If θc is sufficiently large, cost will go through an inflection point, turn concave and achieve a local

maximum, go through another inflection point and turn convex with local minimum. The two

extrema in (0, 1) solve the first order equation (16), which simplifies to x4−x3 + (3θc)
−2 = 0 where

x = 1− α2. The roots of the quartic can be found using Ferrari’s method–see Appendix.

For L ≥ 4 and Ll = 0, the solution to the first order equation are the roots of a polynomial of

order L+ 1 > 4 for which Galois showed there is no general formula, using only a finite number of

the usual algebraic operations and radicals. However, Lagrange’s series for the inverse of a function

Markushevich (1985, II, pp. 88) applies here. Let x3 (1 + Llx) (1− x)L−2, then f−1 expanded

around x = 0 yields:

f−1(z) =

∞∑
n=1

1

n!

[
dn−1

dzn−1

(
z

[f(z))]1/3s

)n]∣∣∣∣∣
z=z0

zn/3

where the subscript s denotes any fixed single-valued branch of the 3-valued function [f(z)]1/3.

Evaluating the derivatives, similar to the Appendix in the paper, yields (19) and it can be shown

that the radius of convergence is exactly θc ≥ θL.�

Proof of Proposition 7: For L = 1, the approximation is found by intersecting the marginal

benefit with a higher marginal cost: α∗ solves α∗

(1−α∗2)3/2
= θc while α0 solves θc = 1

(1−α2
0)

3/2 . Given
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that 1

(1−α2
0)

3/2 = α∗

(1−α∗2)3/2
≤ 1

(1−α∗2)3/2
we have that α0 ≤ α∗. Clearly, both α0 → 1 and α∗ → 1

as θc →∞.

For L ≥ 3, the approximation α0 corresponds to the first order expansion of the Langrange

series (19), but it also can be found directly as follows: α∗ solves 1

(1−α∗2)3/2
= Lθc (α∗)L−2 < Lθc =

1

(1−α2
0)

3/2 , so that α0 ≥ α∗. Again, both α0 → 1 and α∗ → 1 as θc →∞.

The lower bound on the value of dual sourcing follows from Ĉ(α∗) ≤ Ĉ(α0). The expansion

follows from the binomial theorem:

Ĉ(α0) = −θc
(

1− (Lθc)
−2/3

)L/2
+
(
Ll + (Lθc)

2/3
) 1

2

= −θc
(

1− L

2
(Lθc)

−2/3 +
L(L− 2)

22 · 2!
(Lθc)

−4/3 − L(L− 2)(L− 4)

23 · 3!
(Lθc)

−6/3 + · · ·
)

+ (Lθc)
1/3

(
1 +

1

2
Ll (Lθc)

−2/3 − 1

8
L2
l (Lθc)

−4/3 +O(L3
l (Lθc)

−6/3)

)
= −θc +

3

2
(Lθc)

1
3 − (L− 2)− 2!Ll

8
(Lθc)

− 1
3 +

(
(L− 2)(L− 4)− 3!L2

l

)
O (Lθc)

−1

�

Proof of Proposition 8: Extending L to a continuous variable and applying the chain rule on

the necessary optimality condition gives:

d

dL
Ĉ(α∗) =

∂Ĉ

∂α
(α∗)

dα∗

dL
+
∂Ĉ

∂L
(α∗) =

∂Ĉ

∂L
(α∗)

=
∂

∂L

(
−θcαL + θgα

L

√
1− α
1 + α

+ θl

√
1− α
1 + α

(1− α2L)

)

= ĥα∗L +

(
−θcα∗L + θgα

∗L
√

1− α∗
1 + α∗

+ θl

√
1− α∗
1 + α∗

(
1− α∗2L

)−1/2
α∗2L

)
lnα∗

= ĥα∗L − θcα∗L lnα∗ +

(
θgα

∗L
√

1− α∗
1 + α∗

+ θl

√
1− α∗
1 + α∗

(
1− α∗2L

)−1/2
α∗2L

)
lnα∗,

where the first two terms are positive but the term in parentheses, called B, is positive. We bound

B as follows: recall that

1− αL

1− α
=

L−1∑
k=0

αk = g(α)
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√
1− α
1 + α

≤ 1√
1− α

(1 + α) (1− α2L)
=

√
1− α

(1 + α) (1 + αL) (1− αL)

=

√
1

(1 + α) (1 + αL) g(α)
≤ 1

B ≤ θgα
∗L
√

1− α∗
1 + α∗

+ θl

√
1− α∗
1 + α∗

(
1− α∗2L

)−1/2
α∗2L

≤ θg + θl

hence:

d

dL
Ĉ(α∗) ≥

(
ĥ−

(
θc − θg − θlα∗L

)
lnα∗

)
α∗L

So, a sufficient (but not necessary) condition is θc ≥ θg + θl. Finally, the comparative statics of θ

follow from:

d

dθi
Ĉ(α∗) =

∂Ĉ

∂α
(α∗)

dα∗

dθi
+
∂Ĉ

∂θi
(α∗) =

∂Ĉ

∂θi
(α∗)

∂Ĉ

∂θc
(α∗) = −α∗L < 0.

∂Ĉ

∂θg
(α∗) = α∗L

√
1− α∗
1 + α∗

< α∗L

∂Ĉ

∂θl
(α∗) =

√
1− α
1 + α

(1− α2L) < 1.

and, given that ∂2C
∂α2 (α∗) > 0 because α∗ is a minimizer, we have:

dα∗

dθc
= −

∂2C
∂θc∂α

(α∗)

∂2C
∂α2 (α∗)

=
L (α∗)L−1

∂2C
∂α2 (α∗)

> 0,

sign
dα∗

dθg
= −sign ∂2C

∂θg∂α
(α∗) = −signLα

L−1 (1− α) (1 + α)− αL

(1− α)1/2 (1 + α)3/2

= −sign (L (1− α∗) (1 + α∗)− α∗)

≤ 0 if α∗ ≤
√

1 + 4L− 1

2L
, > 0 otherwise.

sign
dα∗

dθl
= −sign ∂2C

∂θl∂α
(α∗) = sign

Lα2L−1 (1− α) (1 + α) +
(
1− α2L

)
(1− α2L)1/2 (1− α)1/2 (1 + α)3/2

> 0. �

Proof of Proposition 9: As L→∞, the function M̂B converges uniformly to M̂B∞ over [0, 1),

where

M̂B∞(α) = θl (1− α)−
1
2 (1 + α)−

3
2 .
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Consequently, the optimal smoothing level α∗ → α∗∞ as L→∞ where

M̂B∞(α∗∞) =
θl

(1− α∗∞)
1
2 (1 + α∗∞)

3
2

= M̂C(α∗∞) =
α∗∞

(1− α∗2∞)
3
2 (1 + Ll(1− α∗2∞))

1
2

⇔ α∗∞ =
θl

θl + (1 + Ll(1− α∗2∞))
1
2

. �

Proof of Proposition 10 For L = 1, the FOC are identical to the uncapacitated case provided

we replace θc by θc + θl. Hence, Cardano (Proposition 14 on Companion Page 11) gives the exact

solution.

For L ≥ 2, the solution uses Lagrange’s inversion theorem. In contrast to the uncapacitated

case, however, there is no simple general expression for the n−th order term in the Lagrange series.

Each term requires substantial work. The derivations are shown in painstaking detail for L = 2

starting from Companion Page 46 and for L > 2 from Companion Page 53.�

Proof of Proposition 11 For L = 1, the FOC are identical to the uncapacitated case provided

we replace replace θc by θc + θl. The square root remains a lower bound as follows directly from

the Proof of Prop. 7. For L = 2, the proof starts on Companion Page 50. For L > 2, the proof

starts on Companion Page 59.

Proof of Proposition 12 Let β ∈ [0, 1] and denote β = 1 − β. Focus on the parameter line

θc − θg + θl =
√
L+ 1− 1 by setting

θc = β
(√

L+ 1− 1
)

and θl = β
(√

L+ 1− 1
)

.

For L ≥ 2, the maximal value of dual sourcing V over LS using Prop. 15 then is:

V =
Ĉ l − Ĉ∗

Ĉ l
'

1 + θl −
(

3
2

(
Lθc +

√
Lθl

) 1
3 − θc − L−2

8

(
Lθc +

√
Lθl

)− 1
3

)
1 + θl

=

√
L+ 1− 3

2

(
Lθc +

√
Lθl

) 1
3

+ L−2
8

(
Lθc +

√
Lθl

)− 1
3

1 + β
(√
L+ 1− 1

) (33)

where Lθc +
√
Lθl =

(
Lβ +

√
Lβ
) (√

L+ 1− 1
)
. Expression (33) is decreasing in β so that the

maximal value is attained at θc = 0 and θl =
√
L+ 1 − 1 (as is evident in Fig. 20 on Companion

Page 31). Hence:

V = 1− 3

2

(√
L
(√
L+ 1− 1

)) 1
3

√
L+ 1

+

L−2
8

(√
L
(√
L+ 1− 1

))− 1
3

√
L+ 1

+O
(
L−2.5

)
.

Prop. 15 also shows that the parameter regime where DSS outperforms GS increases as the leadtime
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increases: Assuming Lθc +
√
Lθl > 1, this domain has parameters θc and θl such that

Ĉ(α∗; θc, 0, θl) = −θc +
3

2

(
Lθc +

√
Lθl

)1/3
− L− 2

8

(
Lθc +

√
Lθl

)− 1
3 ≤ Ĉg = −θc +

√
L+ 1

⇔ 3

2

(
Lθc +

√
Lθl

)1/3
≤
√
L+ 1 +

L− 2

8

(
Lθc +

√
Lθl

)− 1
3

.

⇔ Lθc +
√
Lθl ≤

(
2

3

√
L+ 1 +

L− 2

12

(
Lθc +

√
Lθl

)− 1
3

)3

=

(
2

3

√
L+ 1

)3

+ 3

(
2

3

√
L+ 1

)2 L− 2

12

(
Lθc +

√
Lθl

)− 1
3

+ ...

=

(
2

3

√
L+ 1

)3

+
(L+ 1) (L− 2)

9

(
Lθc +

√
Lθl

)− 1
3

+ ...

As L increases, the admissible set of values of θc and θl that satisfy this condition increases.�

Proof of Proposition 13: To prove (26), first recognize that M̂B(α) has a lower bound by

considering its three terms:

1. 0 ≤ θcLαL−1 ≤ θcL.

2. −θg e
−1/2

2
L√
L−1
≤ −θg Lα

L−1(1−α)(1+α)−αL

(1−α)1/2(1+α)3/2
≤ θg αL

(1−α)1/2(1+α)3/2

3. 4
3
√

3
θl ≤ θl

Lα2L−1(1−α)(1+α)+(1−α2L)
(1−α2L)1/2(1−α)1/2(1+α)3/2

≤ θl
√
L

Hence:

4

3
√

3
θl − θg

e−1/2

2

L√
L− 1

=
1(

1− α2
2

)3/2 ≤ M̂B(α∗) = M̂C(α∗) ≤ 1

(1− α∗2)3/2

so that α∗ ≥ α1.

To prove the bound α1, follow a similar argument with L = 1 which allows a tighter lower

bound M̂B(α) because two terms are constants (θc and θl):

M̂B(0) = θc + θl − θg =
(
1− α2

1

)−3/2 ≤ M̂B(α∗) = M̂C(α∗) ≤
(

1− α∗2
)−3/2

.

The bound α1 requires the intercept of M̂B(0) > 1. Otherwise, the strategic allocation is ap-

proximated by considering the first order Taylor approximation, evaluated at α = 0, of M̂B(α) =

θcl − θg + 2θgα+ o(α) = M̂C(α) = (1 + Ll)
−1
2 α+ o(α).�

There actually is a tighter bound than α1 : Notice that the marginal benefit term in θg is

concave-convex increasing and bounded below by the cord:

θg

(
−1 +

3

2
α

)
≤ θg

α2 + α− 1

(1− α)1/2 (1 + α)3/2
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Figure 14: The marginal cost of inventory (solid red) intersects the marginal benefit of sourcing and capacity

(solid green) at point B, defining the optimal smoothing level α∗. Bounds on MB and MC intersect at point

D, defining the lower bound α on α∗.

[Notice that the first order Taylor expansion at α = 0, −1 + 2α, is not a lower bound because lack

of convexity; however, one can verify that −1 + 3
2α IS. As is −1 +

(
3
2 + ε

)
α where ε can be close

to 0.1.] Hence, we could do for L = 1 :

θc + θl + θg

(
−1 +

3

2
α

)
=

1

(1− α2)3/2
≤ M̂B(α∗) = M̂C(α∗) ≤ 1

(1− α∗2)3/2
.

However, the left equation does not allow a simple expression of α.]

An explicit bound α can be established by considering the maximal value θc+θl+θg
(
−1 + 3

2α
)

=

θc+θl+
1
2θg of the lower bound on M̂B as follows. Notice that θc+θl+

1
2θg = 1

(1−α2)3/2
. (Represented

by point D in Fig. 14.) To establish that α is a lower bound, first note that, keeping θc+θl+
1
2θg = x0

constant, the minimal value of θg is 0 for which M̂B(α)→ x0 as θg → 0 and the associated optimal

α∗ is defined by point A in Fig. 14. As θg increases to its maximal value where θc + θl = θg = 2
3x0

(recall that θc + θl − θg ≥ 0), the associated optimal α∗ “travels down” the M̂C(α) curve to point

B, near point C and may increase again. But it never goes below point C and it is easily verified

that C and D are on the same vertical, so that α∗ ≥ α. Clearly, as θc + θl + 1
2θg →∞, then α→ 1

and thus also α∗ → 1.
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2 Further Propositions of Special Cases with Exact Results

Proposition 14 (Exact solutions for special cases) With normal demand, if Ll = θl = θg = 0, the

optimal smoothing level α∗ and allocation a∗ = α∗L depend on L and θc as follows:

1. If L = 1, then α∗ = 0 at θc = 0 and elsewhere Cardano’s rule yields

α∗ =

√√√√√1− θ−
2
3

c

 3

√√√√1

2
+

1

2

√
1 +

4

27θ2
c

+ 3

√√√√1

2
− 1

2

√
1 +

4

27θ2
c

. (34)

2. If L = 2, then α∗ = 0 if θc ≤ θ∗2 = 1
2 and elsewhere

α∗ =

√
1− (2θc)

− 2
3 and Ĉ(α∗) =

3

2
(2θc)

1
3 − θc. (35)

3. If L = 3, then α∗ = 0 if θc ≤ θ∗3 = 1.15 and elsewhere Ferrari’s rule yields

α∗ =

√√√√3

4
− 1

4

(
√

1 + 4u−

√
2− 4u+

2√
1 + 4u

)
> 0.64, where (36)

u = 2R
1
3 +

2 (3θc)
−2

3R
1
3

and R =
(3θc)

−2

24

(
1−

√
1− 28

33
(3θc)

−2

)
.

4. If L ≥ 4, then α∗ = 0 if θc ≤ θ∗L and elsewhere

α∗ =

√√√√1−
∞∑
n=1

Γ
(
nL+1

3 − 1
)

Γ
(
nL−2

3

) (θcL)−
2n
3

n!
. (37)

Proposition 15 (Lagrange’s Series for Local Capacity Costs)With normal demand, and if Ll =

θg = 0, the optimal smoothing level α∗ and offshoring allocation α∗L depend on L, θc and θl:

1. If L = 1, then α∗ = 0 at θc = θl = 0 and elsewhere:

α∗ =

√√√√√1− (θc + θl)
− 2

3

 3

√√√√1

2
+

1

2

√
1 +

4

27 (θc + θl)
2 + 3

√√√√1

2
− 1

2

√
1 +

4

27 (θc + θl)
2

.
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2. If L = 2, then α∗ = θl
1−2θc+θl

+O

((
θl

1−2θc+θl

)3
)

if 2θc +
√

2θl ≤ 1 and elsewhere

α∗4 =

√
1−

(
2θc +

√
2θl

)− 2
3

+ θl
√

2

(
1

16

(
2θc +

√
2θl

)− 9
3

+O

((
2θc +

√
2θl

)− 11
3

))
Ĉ(α∗) =

3

2

(
2θc +

√
2θl

) 1
3 − θc +O

(
θl

(
2θc +

√
2θl

)−2
)
.

3. If L > 2, then α∗ = θl
1+θl

+O

((
θl

1+θl

)2
)

if Lθc +
√
Lθl ≤ 1 and elsewhere

α∗ =

√
1−

(
Lθc +

√
Lθl

)−2/3
+
L

3

(
Lθc +

√
Lθl

)−7/3 (
(L− 2) θc + θl

√
L
)

+ · · ·

Ĉ(α∗) =
3

2

(
Lθc +

√
Lθl

) 1
3 − θc −

L− 2

8

(
Lθc +

√
Lθl

)− 1
3

+O

((
Lθc +

√
Lθl

)−2
)
.

Notice that the expressions for L = 2 are more accurate (reflecting the fact that they are

exact for θl = 0) and that, for L > 2, θc is no longer a first-order effect in light offshoring when

α∗ = θl/ (1 + θl) (because the marginal sourcing benefit θcLα
L−1 is of order L− 1 > 1). Prop. 15

helps us understand the interaction between the leadtime, standardized cost advantage, and local

capacity costs. It demonstrates that local capacity costs have a similar impact as the standardized

cost advantage. (Indeed, the key parameters that drives the optimal smoothing level and allocation

decision is Lθc +
√
Lθl, so that θc and θl are substitutes, up to a factor

√
L.)

Proposition 16 (Lagrange’s Series for Local and Global Capacity Costs) With normal demand,

if Ll = 0 and θg > 0, the optimal smoothing level α∗ and offshoring allocation a∗ = α∗L depend on

L, θc, θg and θl as follows:

1. If L = 1, then the Lagrange series around α0 = 1 is:8

α∗ =

√
1− 1

θg + 1
− θg (θg + 7)

4 (θg + 1)3 +
8θ2
cl + θg (5θg + 1)

5! (θg + 1)4 − (θg (θg + 7))2

5! (θg + 1)5 + · · · (38)

8We abbreviate θi + θj by θij .
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Lagrange around α0 = 0 yields: for
∣∣θ2
cl − θ2

g

∣∣ < 1 and θg <
1
2 :

α∗ =
∞∑
n=1

an
n!

(θ2
g − θ2

cl)
n

a1 =
1

2θg (1− 2θg)

a2 = 2

(
3θ2
cl + (1− 2θg)

2
)

(2θg (1− 2θg))
3

a3 = 3 · 4

(
3θ2
cl + (1− 2θg)

2
)2

(2θg (1− 2θg))
5 + 2

4θ2
g

(2θg (1− 2θg))
4

a4 = 4 · 5 · 6

(
3θ2
cl + (1− 2θg)

2
)3

(2θg (1− 2θg))
7 + 3 · 4 · 5

(
3θ2
cl + (1− 2θg)

2
)

4θ2
g

(2θg (1− 2θg))
6 − 4

6
(
3θ2
cl − 2θg (1− 2θg)

)
(2θg (1− 2θg))

5

2. If L ≥ 2: then the Lagrange series around α0 = 1 is:

α∗ '

√
1− 2

θg

α∗ =

√√√√√1− 1

θg
− 1

2!

(θg + 6L− 3)

2θ2
g

−
θ2
g + (6L− 3) θg + 28L2 − 3L− 20

5!θ3
g

+

(
θcL+

√
Lθl

)2

15θ4
g

+ · · ·

=

√√√√√1−
1 + 1

4 + 1
5! + · · ·

θg
−

(6L− 3)
(

1
4 + 1

5! + · · ·
)

θ2
g

−
(28L2 − 3L− 20)

(
1
5! + · · ·

)
θ3
g

+

(
θcL+

√
Lθl

)2

15θ4
g

+ · · ·

Proof: In contrast to the uncapacitated case, there is no simple general expression for the n− th
order term in the Lagrange series. Each term requires substantial work. The derivations are shown

in painstaking detail for L = 1 starting from Companion Page 33 and for L ≥ 2 from Companion

Page 60. �

3 Exact Solutions for Uncapacitated Dual Sourcing and Ll = 0

The FOC become:

θcLα
L−1 =

α

(1− α2)3/2

⇔ (θcL)2 α2(L−1)
(
1− α2

)3
= α2
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Figure 15: The optimal x∗ = 1− α∗2 is easily found graphically as a function of λ = (θcL)
−2

.

Substituting x = 1− α2 yields:

(θcL)2 (1− x)L−1x3 = 1− x

If θc = 0, then x = 1; otherwise:

(1− x)L−2x3 = λ where λ = (θcL)−2 .

For L ≥ 3, the cost function is convex-concave-convex and the FOC has two solutions in [0, 1],

represting two local extrema x∗. The local minimum corresponds to the smallest root x∗. While

there exist only a simple analytical solution up to L = 3, the solution is easily found graphically:

draw a horizontal line at λ = (θcL)−2 and its intersection with the upward curve in Fig gives the

optimal x∗ = 1− α∗2.

We also directly find a necessary condition on λ to have an interior solution:

λ ≤ λ = max
0<x<1

(1− x)L−2x3. (39)

For L = 2, λ = 1; For L > 2, the maximizer x solves:

−(L− 2)(1− x)L−3x3 + 3(1− x)L−2x2 = 0

⇔ −(L− 2)x+ 3(1− x) = 0

⇔ 3− (L+ 1)x = 0

⇔ x =
3

L+ 1
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so that

λ =

(
1− 3

L+ 1

)L−2( 3

L+ 1

)3

In terms of θc:

(θcL)−2 ≤
(

1− 3

L+ 1

)L−2( 3

L+ 1

)3

θc ≥
1

L

√(
1− 3

L+1

)L−2 (
3

L+1

)3

Simplify

1

L

√(
1− 3

L+1

)L−2 (
3

L+1

)3
=

(
1− 3

L+1

)
L
(

3
L+1

)√(
1− 3

L+1

)L (
3

L+1

) =
L− 2

3L

√(
L−2
L+1

)L (
3

L+1

)
The corresponding cost at x = 3

L+1 = 1− α2 is α2 = 1− x = L−2
L+1 so

Ĉ = −θcαL +
1√

1− α2
= −θc

(
L− 2

L+ 1

)L/2
+

(
L+ 1

3

)1/2

=
−
(
L−2
L+1

)L/2
L

√(
L−2
L+1

)L−2 (
3

L+1

)3
+

(
L+ 1

3

)1/2

=
− (L− 2)

3L

√
3
(

1
L+1

) +

(
L+ 1

3

)1/2

=

(
L+ 1

3

)1/2(
1− L− 2

3L

)
Note that for L = 2 the corresponding interior minimal cost Ĉ = 1. For L = 3, we have that

θc = 1

3
√

(1− 3
3+1)( 3

3+1)
3

= 1. 026 4 and

Ĉ =

(
3 + 1

3

)1/2(
1− 1

3 · 3

)
= 1.0264

We can summarize as:

Proposition 17 With normal demand, for L ≥ 2, the optimality of dual sourcing smoothing re-

quires a minimal standardized sourcing cost advantage θL and the optimal smoothing level α∗ has
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a lower bound αL ≤ α∗ :9

θc ≥ θL =
(L+ 1)

L+1
2

27
1
2L (L− 2)

L−2
2

=

√
e3

27
L+ o

(√
L
)
, (40)

α∗ ≥ αL =

√
1− 3

L+ 1
. (41)

Proof of Proposition 17: With normal demand, the maxima of the functions (1 − x)L−2x3

also define a necessary condition on λ for the FOC to have an interior solution:

λ ≤ λ = max
0<x<1

(1− x)L−2x3. (42)

For L = 2, λ = 1; For L > 2, the maximizer of (42) is x∗ = 3
L+1 , which provides an upper bound

to any optimal 1− α∗2, and λ =
(

1− 3
L+1

)L−2 (
3

L+1

)3
= e−3 27

L+1 + o(L).�

The proposition quantifies the strategic trade-off between the minimal standardized sourcing

cost advantage and the leadtime for dual sourcing smoothing. All our results demonstrate the

essential difference between L = 1 (which always has an interior solution α∗ for which dual sourcing

provides lower cost than single local sourcing) and L > 1, for which dual sourcing optimality requires

that

cl − cg > hL+ θLκICV = hL+
(L+ 1)

L+1
2

27
1
2L (L− 2)

L−2
2

κICV = hL+ κICV

√
e3

27
L+ o

(√
L
)
.

This expression quantifies the “cost of uncertainty and leadtime:” the global sourcing unit cost

advantage must not only outweigh the unit pipeline cost hL but also a “variability penalty” that

increases with an increase in the leadtime L, the uncertainty CV , or the financial inventory pa-

rameter κI . Interestingly, while there is no obvious notion to “leadtime demand” in a smoothing

context, the required standardized sourcing cost advantage does (asymptotically) increase with the

square root of the leadtime.

Notice that θc ≥ θL guarantees that the FOC have an interior solution α∗ > 0. Yet, for dual

sourcing smoothing to be optimal, this local cost minimum must have a cost below the single sourc-

ing cost Ĉ(0) = 1, which requires a more stringent condition θc ≥ θ∗L = inf
{
θc : Ĉ(α∗; θc, L) < 1

}
≥

θL. We can now proceed to specify the optimal smoothing level and offshoring allocation in exact

analytic terms.

9The Landau notations specify functions o (f) that are of smaller order than f , and O (g) which is of similar order
as g. Formally: limx→∞ o(f)(x)/f(x) = 0 while limx→∞O(g)(x)/g(x) is a finite constant.
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Figure 16: For L = 1 we seek the zeros of the functions f(x) = θ2cx
3 + x− 1 = 0.

3.1 L = 1 and Ll = 0 Uncapacitated: Cardano-Tartaglia

For L = 1, this is a cubic in α2 which can be solved exactly using Cardano’s solution: Subsitute

x = 1− α2 in the FOC:

θc
(
1− α2

)3/2
= α

θ2
c

(
1− α2

)3
= α2

f(y) = cx3 + x− 1 = 0

This cubic has always a unique root in (0, 1) because f(0) = −1 and f(1) = c = θ2
c > 0 and

f ′ = 3cx2 + 1 > 0 so that f is strictly increasing. Also, f ′′ = 6cx so strictly convex for x > 0 as

shown in Figure 16.

Cardano’s solution for the real root of:

t3 + pt+ q = 0⇒ t =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
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Figure 17: For L = 1 : The absolute error between α∗ and the square root allocation α0.

so, with p = −q = c−1 = θ−2
c we get:

1− α∗2 = 3

√√√√ 1

2θ2
c

+

√
1

4θ4
c

+
1

27θ6
c

+ 3

√√√√ 1

2θ2
c

−

√
1

4θ4
c

+
1

27θ6
c

= 3

√√√√ 1

2θ2
c

+
1

2θ2
c

√
1 +

4

27θ2
c

+ 3

√√√√ 1

2θ2
c

− 1

2θ2
c

√
1 +

4

27θ2
c

= θ−2/3
c

 3

√√√√1

2
+

1

2

√
1 +

4

27θ2
c

+ 3

√√√√1

2
− 1

2

√
1 +

4

27θ2
c


Hence:

α∗ =

√√√√√1− θ−2/3
c

 3

√√√√1

2
+

1

2

√
1 +

4

27θ2
c

+ 3

√√√√1

2
− 1

2

√
1 +

4

27θ2
c


Clearly, for large θc, we recover the square-root bound. The error of the square-root lower bound

is function of:

Absolute error =

√√√√√1− θ−2/3
c

 3

√√√√1

2
+

1

2

√
1 +

4

27θ2
c

+ 3

√√√√1

2
− 1

2

√
1 +

4

27θ2
c

−√1− θ−2/3
c

A = 3

√√√√1

2
+

1

2

√
1 +

4

27θ2
c

+ 3

√√√√1

2
− 1

2

√
1 +

4

27θ2
c

− 1,

which is strictly decreasing in θc. (Fig. 17)
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And we know that, for the square root formula θc > 1, so that for large θc:

A ' 3

√
1

2
+

1

2

(
1 +

2

27θ2
c

)
+ 3

√
1

2
− 1

2

(
1 +

2

27θ2
c

)
− 1

= 3

√
1 +

1

27θ2
c

− 3

√
1

27θ2
c

− 1

' 1

3 · 27θ2
c

− 1

3θ
2/3
c

=
1

3θ
2/3
c

((
1

3θc

)3

− 1

)
< 0

Indeed, the square root approximation is a lower bound with maximal error at θc = 1 equal to:

α∗ − α0 =

√
1− 3

√
1

18

√
93 +

1

2
− 3

√
1

2
− 1

18

√
93− 0 = 0.5636

An approximation of Cardano for small θc follows directly from a first order expansion around

α = 0 of the squared FOC:

α2 = θ2
c

(
1− α2

)3
= θ2

c

(
1− 3α2 +O(α4)

)
⇒ α =

θc√
1 + 3θ2

c

+O(θ3
c)

Ĉ(
θc√

1 + 3θ2
c

; θc) =
−θ2

c√
1 + 3θ2

c

+

(
1− θ2

c

1 + 3θ2
c

)− 1
2

=
−θ2

c√
1 + 3θ2

c

+

(
1 + 3θ2

c

1 + 2θ2
c

) 1
2

=
1 + 3θ2

c − θ2
c

√
1 + 2θ2

c√(
1 + 2θ2

c

) (
1 + 3θ2

c

)
'

1 + 3θ2
c − θ2

c

(
1 + θ2

c

)√
1 + 5θ2

c + 6θ4
c

'
(
1 + 2θ2

c

)(
1− 5

2
θ2
c

)
' 1− 1

2
θ2
c

Evaluate value of dual sourcing at θc =
√

2− 1 :

1−

 −θ2
c√

1 + 3θ2
c

+

(
1 + 3θ2

c

1 + 2θ2
c

) 1
2

 = 7.75%

Figure 18 compares the exact Cardano (black) with the two approximations: the square root (red)

for large θc and the almost linear (in green) for small θc.
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Figure 18: For L = 1 : The optimal α∗ compared to the square root allocation α0 and the approximation

for small θc.

3.2 L = 2 and Ll = 0 Uncapacitated: Simple Square Root

For L = 2, it is even simpler and the exact solution is [and equals our “general” approximation!]:

θc2α =
α

(1− α2)3/2
(43)

α∗2 = 1− (2θc)
−2/3 (44)

This requires 2θc > 1 and the optimal cost is

Ĉ(α∗; θc) =
3

22/3
θ1/3
c − θc.

Notice that Ĉ(α∗; θc = 1/2) = 1 and that cost decreases as θc > 1/2, hence dominating single

sourcing. For θc ≤ 1/2, α∗ = 0.

3.3 L = 3 and Ll = 0 Uncapacitated: Ferrari

For L = 3, we get a quartic, which still can be solved exactly: Subsitute x = 1− α2

(θcL)2 α2L−2
(
1− α2

)3
= α2

⇔ (3θc)
2 α2

(
1− α2

)3
= 1

⇔ (3θc)
2 (1− x)x3 = 1

⇔ f = x4 − x3 + (3θc)
−2 = 0
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For θc > 0, f(0) = f(1) = (3θc)
−2 . Investigate this quartic in (0, 1) :

f ′ = 4x3 − 3x2 = (4x− 3)x2,

f ′′ = 12x2 − 6x = 6x(2x− 1).

Hence, f is decreasing for x < 3/4, and increasing elsewhere. It has inflection points at 0 and 1
2 ;

convex for x < 0 and x > 1/2 and concave in between.

Thus, one global minimum at x = 3
4 where f =

(
3
4

)4 − (3
4

)3
+ (3θc)

−2 = − 27
256 + (3θc)

−2. Thus,

necessary condition for there to be two roots (and hence local maximum and then minimum) is:

− 27

256
+ (3θc)

−2 < 0⇔ (3θc)
−2 <

27

256
= 0.10547

⇔ θc >
1

3

√
256

27
=

16

27

√
3 = 1.026

Note that we have two real roots in (0, 1). (Indeed, the larger root corresponds to a local maximum

in the cost curve. We need the smaller root: recall that higher θc, means higher ∆, hence more

offshoring, or smaller x. This suggest we should take the smaller root in x.) Solve using Ferrari’s

method (using his parameters, so do not confuse here with our α):

f = Ax4 +Bx3 + Cx2 +Dx+ E = 0

= x4 − x3 + a = 0 where a = (3θc)
−2 <

27

256
= 0.10547

Thus:

A = 1, B = −1, C = D = 0, E = a

α = −3

8
, β =

−1

8
, γ = − 3

256
+ a.

P = −α
2

12
− γ

= − 1

12

(
3

8

)2

+
3

256
− a = −a

Q = − α3

108
+
αγ

3
− β2

8

=
1

108

(
3

8

)3

+

(
−1

8

)(
− 3

256
+ a

)
− 1

83

= −1

8
a
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R = −Q
2
±
√
Q2

4
+
P 3

27

=
1

16
a±

√
1

4

1

82
a2 − 1

27
a3

=
1

24
a±

√
1

28
a2 − 1

33
a3

=
a

24

(
1±

√
1− 28

33
a

)

and

1 > 1− 28

33
a > 1− 28

33

27

256
= 0

so that both values of R are real and positive:

a = (3θc)
−2 =

27

256
→ R =

a

24

a = 0→ R =
a

24
(1± 1) = 0,

if from here on we take the minus sign. (Apparently, either sign of the square root will do.)

Continuing on:

y =
−5

6
α+R1/3 − P

3R1/3

=
5

6

3

8
+
a1/3

24/3

(
1±

√
1− 28

33
a

)1/3

+
a

3a
1/3

24/3

(
1±

√
1− 28

33
a

)1/3

=
5

16
+
a1/3

24/3

(
1±

√
1− 28

33
a

)1/3

+
24/3a2/3

3

(
1±

√
1− 28

33
a

)1/3

=
5

16
+R1/3 +

a

3
R−1/3

W =
√
α+ 2y =

=

√√√√√√−3

8
+

5

8
+
a1/3

21/3

(
1±

√
1− 28

33
a

)1/3

+
27/3a2/3

3

(
1±

√
1− 28

33
a

)1/3

=

√√√√√√1

4
+
a1/3

21/3

(
1±

√
1− 28

33
a

)1/3

+
27/3a2/3

3

(
1±

√
1− 28

33
a

)1/3

=

√
1

4
+ 2R1/3 +

2a

3
R−1/3
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Finally:

x∗ = − B

4A
+

1

2

(
±sW ∓

√
−
(

3α+ 2y ±s
2β

W

))

=
1

4
+

1

2

±sW ∓
√

9

8
− 2y ±s

1
4

W


and

9

8
− 2y ±s

1
4

W

=
9

8
− 5

8
− 2R1/3 − 2a

3
R−1/3 ±s

1

2

(
1 + 8R1/3 +

8a

3
R−1/3

)−1/2

=
1

2
− 2R1/3 − 2a

3
R−1/3 ±s

1

2

(
1 + 8R1/3 +

8a

3
R−1/3

)−1/2

So, taking the negative sign in R and denoting

u = 2R1/3 +
2a

3
R−1/3

=
a1/3

21/3

(
1−

√
1− 28

33
a

)1/3

+
27/3a2/3

3

(
1−

√
1− 28

33
a

)1/3

we get

x∗ =
1

4
+

1

2

(
±s

√
1

4
+ u∓

√
1

2
− u±s

1

2
√

1 + 4u

)

=
1

4
+

1

4

(
±s
√

1 + 4u∓

√
2− 4u±s

2√
1 + 4u

)

There should only be two roots in (0, 1) and we should take the smaller one. When a reaches

its minimal value 0, we know R = 0, we must have x∗ = 0 and another root at 1. Hence:

a = R = 0→ u = 0

x∗ =
1

4
+

1

4

(
±s1∓

√
2±s 2

)
If we take ±s = +, then

x∗ =
1

4
+

1

4
(1∓ 2) = 0 and 1. (OK)

If we take ±s = −, then

x∗ =
1

4
+

1

4
(−1) = 0 (double root). (not OK)
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Hence, we go with ±s = + and we need the smaller root, so ∓ = −. Summary:

x∗ =
1

4
+

1

4

(
√

1 + 4u−

√
2− 4u+

2√
1 + 4u

)
(45)

α∗ =
√

1− x∗ =

√√√√3

4
− 1

4

(
√

1 + 4u−

√
2− 4u+

2√
1 + 4u

)
(46)

Verifications: When a reaches its maximal value a = 27
256 , we know R = a

24
= 27

24·28 and we should

have a double root at x∗ = 3/4 (or α∗ = 1
2). Indeed: f(3

4) = x4 − x3 + a = (3
4)4 − (3

4)3 + 27
256 = 0.

Also, the term in the parenthesis is equal to 2:

a =
27

256
=

33

28
→ R =

a

24
=

33

212
→ R1/3 =

3

24

u = 2R1/3 +
2a

3
R−1/3 =

3

23
+

2

3

33

28

24

3
=

3

4

√
1 + 4u = 2 and

√
2− 4u+

2√
1 + 4u

=

√
2− 3 +

2

2
= 0

Tranforming back to smoothing levels using α∗ =
√

1− x∗, we have:

α∗ =

√√√√3

4
− 1

4

(
√

1 + 4u−

√
2− 4u+

2√
1 + 4u

)
, where (47)

u = 2R1/3 +
2 (3θc)

−2

3R1/3
and R =

(3θc)
−2

24

(
1−

√
1− 28

33
(3θc)

−2

)
or

u =
(3θc)

−2/3

24/3

(
1−

√
1− 28

33
(3θc)

−2

)1/3

+
2 (3θc)

−2

3

(3θc)
2/3

2−4/3

(
1−

√
1− 28

33
(3θc)

−2

)−1/3

=
(3θc)

−2/3

24/3

(
1−

√
1− 28

33
(3θc)

−2

)1/3

+
2

3

(3θc)
−4/3

2−4/3

(
1−

√
1− 28

33
(3θc)

−2

)−1/3

A first order approximation of (47) around u = 0 (which means a and R near 0 too) yields

√
1 + 4u = 1 + 2u+ o(u)√

2− 4u+
2√

1 + 4u
=

√
2− 4u+ 2 (1− 2u+ o(u))

=
√

4− 8u+ o(u)

= 2
√

1− 2u+ o(u)

= 2 (1− u) + o(u)
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Hence:

α∗ =

√
3

4
− 1

4
(−1 + 4u) + o(u) =

√
1− u+ o(u)

Around R = 0 (and thus a = 0), we get

R =
a

24

(
1−

√
1− 28

33
a

)
=

a

24

(
1−

(
1− 27

33
a+ o(a)

))
=

23

33
a2 + o(a2)

u = 2R1/3 +
2 (3θc)

−2

3R1/3
= 2

2a2/3

3
+ o(a2/3) +

2a

3

(
3a−2/3

2
+ o(a−2/3)

)
= a1/3 + o(a1/3)

= (3θc)
−2/3 + o((3θc)

−2/3)

Finally, using a = (3θc)
−2:

α∗ =
√

1− (3θc)−2/3 + o((3θc)−2/3),

which coincides with our square root rule, which thus is a first order approximation for large θc!

In addition, there needs to be a stronger condition on θc: not only do we need a local minimum,

but it needs to be global. (i.e., less than cost at α = 0 which is 1). This will set a slightly higher

bar on θc than θc >
1
3

√
256
27 . Numerical evaluation of the optimal cost shows that Ĉ(α∗(θc)) =

−θcα∗3 + 1√
1−α∗2 = 1 for θc = 1.14993.

3.4 L > 3 and Ll = 0 (Lagrange Series)

The derivation of Lagrange’s series is in the Appendix of the paper. Here we show the radius

of convergence for the function f (z) = zα (1− z)β which is analytic in z provided α and β are

integers. Its Lagrange series around z = 0 is

f−1(z) =

∞∑
n=1

Γ
(
n
(
β
α + 1

)
− 1
)

Γ
(
nβ
α

) zn/α

n!
(48)

where α ∈ N and β ∈ C. The radius R of convergence of the power series f(z) =
∑∞

k=0 fk z
k is

given by

1

R
= lim

k→∞

∣∣∣∣fk+1

fk

∣∣∣∣
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Let R = ρ1/α where ρ is the radius of convergence of the Lagrange series of f−1(z) above, yields

1

R
= lim

n→∞

∣∣∣∣∣∣
Γ
(

(n+ 1)
(
β
α + 1

)
− 1
)

Γ
(
nβ
α

)
n!

Γ
(
n
(
β
α + 1

)
− 1
)

Γ
(

(n+1)β
α

)
(n+ 1)!

∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣∣
Γ
(
n
(
β
α + 1

)
+ β

α

)
Γ
(
nβ
α

)
Γ
(
n
(
β
α + 1

)
− 1
)

Γ
(
nβ
α + β

α

)
(n+ 1)

∣∣∣∣∣∣
Using Γ(n+p)

Γ(n+q) ∼ n
p−q for large n,

1

R
= lim

n→∞

∣∣∣∣∣
(
n

(
β

α
+ 1

)) β
α

+1(nβ
α

)− β
α 1

n+ 1

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣n β
α

+1

(
β

α
+ 1

) β
α

+1

n−
β
α

(
β

α

)− β
α 1

n+ 1

∣∣∣∣∣
=

(
β
α + 1

) β
α

+1

(
β
α

) β
α

Hence, the radius of convergence for the series (29) is ρ1/α =
( βα)

β
α

( βα+1)
β
α+1

, or, equivalently, |z| <

( βα)
β

( βα+1)
β+α . Applied to α = 3 and β = L− 2, we get:

x∗ = f−1((θcL)−2) =

∞∑
n=1

Γ
(
nL+1

3 − 1
)

Γ
(
n(L−2)

3

) (θcL)−
2n
3

n!
for (θcL)−2 <

33 (L− 2)L−2

(L+ 1)L+1
,

where the radius of convergence is equivalent to λ = (θcL)−2 ≤ λ.

4 Lagrange Solutions for uncapacitated and Ll > 0

For any 0 ≤ L1 and L > 0, f is analytic around z0 = 0 with f(0) = 0 and with f (m) (z0) = 0 but

f (3) (z0) 6= 0 for all m < 3, then (27) generalizes to (Markushevich 1985, II, pp. 92)

f−1(z) =
∞∑
n=1

1

n!

[
dn−1

dzn−1

(
z

[f(z)]1/3s

)n]∣∣∣∣∣
z=z0

zn/3 =
∞∑
n=1

1

n!
anz

n/3, (49)

where(
z

[f(z)]1/3s

)n
=

(
z

z (1 + L1z)
1
3 (1− z)

L−2
3

)n
= (1 + L1z)

−n
3 (1− z)

−n(L−2)
3
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Now the derivatives become more complex than before. First we calculate a few specific

instances:

First order term is simple: a1 = 1 so we get, as before:

f−1(z) ' z
1
3 so that α∗ '

√
1− (Lθc)

− 2
3 (50)

Second order term:

d

dz
(1 + L1z)

−2
3 (1− z)

−2(L−2)
3

=
−2

3
L1 (1 + L1z)

−5
3 (1− z)

−2(L−2)
3 +

2(L− 2)

3
(1 + L1z)

−2
3 (1− z)

−2(L−2)
3

−1

a2 =
−2

3
L1 +

2(L− 2)

3
=

2(L− L1 − 2)

3

so that

f−1(z) = z
1
3 +

1

2!

2(L− L1 − 2)

3
z

2
3 so that α∗ '

√
1− (Lθc)

− 2
3 +

(L− L1 − 2)

3
(Lθc)

− 4
3

The n-th order terms is best calculated via series expansion: Use the general binomial theorem,

valid for all real α and |z| < 1 :

(1− z)α =

∞∑
i=0

(
α

i

)
(−z)i

to get

(1 + L1z)
−n
3 (1− z)

−n(L−2)
3 =

∞∑
i=0

(
−n
3

i

)
(L1z)

i
∞∑
j=0

(
−n(L−2)

3

j

)
(−z)j .

If L = 2 only one series applies and an is the coefficient of zn−1 multiplied by (n− 1)!

an = (n−1)!

(
−n
3

n− 1

)
Ln−1

1 = (n−1)!
(−1)n−1

(n− 1)!

Γ
(
n
3 + n− 1

)
Γ
(
n
3

) Ln−1
1 = (−1)n−1 Γ

(
4n
3 − 1

)
Γ
(
n
3

) Ln−1
1

If L 6= 2, regroup powers by setting i+j = k and invoking the Cauchy product: we have i = k−j ≥ 0

∞∑
k=0

k∑
j=0

(
−n
3

k − j

)(
−n(L−2)

3

j

)
(−1)jLk−j1 zk.
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Now, an is the coefficient of zn−1 multiplied by (n− 1)!

an = (n− 1)!
n−1∑
j=0

(
−n
3

n− 1− j

)(
−n(L−2)

3

j

)
(−1)jLn−1−j

1

= (n− 1)!
n−1∑
i=0

(
−n
3

i

)(
−n(L−2)

3

n− 1− i

)
(−1)n−1−iLi1

= Γ (n)
k∑
i=0

Γ
(−n

3 + 1
)

Γ (i+ 1) Γ
(−n

3 − i+ 1
) Γ

(
−n(L−2)

3 + 1
)

Γ (n− i) Γ
(
−n(L−2)

3 − n+ i+ 2
)(−1)n−1−iLi1

Getting rid of the negative signs:(
−n(L−2)

3

n− 1− i

)
=

(
−n(L−2)

3

)(
−n(L−2)

3 − 1
)(
−n(L−2)

3 − 2
)
...
(
−n(L−2)

3 − n− i+ 2
)

(n− 1− i)!

=
(−1)n−i−1

(n− 1)!

(
n(L− 2)

3

)(
n(L− 2)

3
+ 1

)(
n(L− 2)

3
+ 2

)
...

(
n(L− 2)

3
+ n+ i− 2

)

=
(−1)n−i−1

(n− 1)!

Γ
(
n(L−2)

3 + n+ i− 1
)

Γ
(
n(L−2)

3

)
and (

−n
3

i

)
=

(−n
3

) (−n
3 − 1

) (−n
3 − 2

)
...
(−n

3 − i+ 1
)

i!

=
(−1)i

i!

(n
3

)(n
3

+ 1
)(n

3
+ 2
)
...
(n

3
+ i− 1

)
=

(−1)i

i!

Γ
(
n
3 + i

)
Γ
(
n
3

)
Hence, if L 6= 2:

α∗ =

√
1− f−1((Lθc)

−2) =

√√√√√1−
∞∑
n=1

1

n!

n−1∑
i=0

(−1)i

i!

Γ
(
n
3 + i

)
Γ
(
n(L−2)

3 + n+ i− 1
)

Γ
(
n
3

)
Γ
(
n(L−2)

3

) Li1 (Lθc)
− 2n

3

The radius R of convergence of the power series f(z) =
∑∞

k=0 fk z
k is given by

1

R
= lim

k→∞

∣∣∣∣fk+1

fk

∣∣∣∣
Applied to our Lagrange series, where R = ρ1/(−2/3) and ρ is the radius of convergence of (29),
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yields

1

R
= lim

n→∞

∣∣∣∣∣∣∣∣∣
n!
∑n

i=0
(−1)i

i!

Γ(n+1
3

+i)Γ
(

(n+1)(L−2)
3

+n+i
)

Γ(n+1
3 )Γ

(
(n+1)(L−2)

3

) Li1

(n+ 1)!
∑n−1

i=0
(−1)i

i!

Γ(n3 +i)Γ
(
n(L−2)

3
+n+i−1

)
Γ(n3 )Γ

(
n(L−2)

3

) Li1

∣∣∣∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣∣
n!Γ

(
n
3

)
Γ
(
n(L−2)

3

)∑n
i=0

(−1)i

i! Γ
(
n+1

3 + i
)

Γ
(

(n+1)(L−2)
3 + n+ i

)
Li1

(n+ 1)!Γ
(
n+1

3

)
Γ
(

(n+1)(L−2)
3

)∑n−1
i=0

(−1)i

i! Γ
(
n
3 + i

)
Γ
(
n(L−2)

3 + n+ i− 1
)
Li1

∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣∣
Γ
(
n
3

)
Γ
(
n(L−2)

3

)∑n
i=0

(−1)i

i! Γ
(
n+1

3 + i
)

Γ
(

(n+1)(L−2)
3 + n+ i

)
Li1

(n+ 1) Γ
(
n
3 + 1

3

)
Γ
(
n(L−2)

3 + (L−2)
3

)∑n−1
i=0

(−1)i

i! Γ
(
n
3 + i

)
Γ
(
n(L−2)

3 + n+ i− 1
)
Li1

∣∣∣∣∣∣
Using Γ(n+p)

Γ(n+q) ∼ n
p−q for large n,

1

R
= lim

n→∞

∣∣∣∣∣∣
∑n

i=0
(−1)i

i! Γ
(
n+1

3 + i
)

Γ
(

(n+1)(L−2)
3 + n+ i

)
Li1

(n+ 1)n
1
3

+L−2
3
∑n−1

i=0
(−1)i

i! Γ
(
n
3 + i

)
Γ
(
n(L−2)

3 + n+ i− 1
)
Li1

∣∣∣∣∣∣ .
5 Value of Uncapacitated Dual Sourcing and Order Smoothing

In this section we compare the value of incapacitated dual sourcing when Ll = 0. The DSS

policy encompasses local single sourcing LS (α = 0) under the optimal base-stock policy for which

Ĉ l = Ĉ(0) = 1 and dual sourcing smoothing (α ∈ (0, 1)). The square root formula directly provides

a bound on the value of dual sourcing over single local sourcing:

C(0)− C(α∗) ≥
[
1− Ĉ(α0)

]
κIσ =

[
1 + θc

(
1− (θcL)−

2
3

)L
2 − (θcL)

1
3

]
κIσ

The DSS policy space, however, does not contain global single sourcing GSS. Global single sourcing

with the optimal base-stock policy is a demand-replacement policy where qgt = Dt−L and qlt = 0.

Then, Eqgt = µ and V ar(qgt ) = σ2, and the inventory process is

It = It−1 + qgt−1 −Dt = I−1 +
L+1∑
i=1

qg−i −
t∑

i=t−L
Di = Is + (L+ 1)µ−

t∑
i=t−L

Di,

so that EIt = Is and V ar(It) = (L + 1)σ2. The corresponding average cost is Cg = (cg + hL)µ +
√
L+ 1κIσ and normalizing:

Ĉg =
Cg − clµ
κIσ

= −θc +
√
L+ 1.

It directly follows that, between the two single sourcing strategies, GS dominates LS if and only if

θc > θg =
√
L+ 1− 1.
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Value of Dual Sourcing Smoothing (Uncapacitated)
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Figure 19: Comparing the cost of dual sourcing smoothing with global and local single sourcing (left axis)

and the corresponding relative value of DSS (right axis) for L = 1 (left panel) and L = 2 (right panel).

Figure 19 compares DSS with GS and LS by considering the optimal cost as a function of θc.

First consider the left panel where L = 1: As θc rises, α∗ rises and dual sourcing smoothing yields

cost Ĉ(α∗) ≤ 1 that falls at rate slower than −1 (Prop. 5). While global single sourcing initially

has a higher cost (
√

2 at θc = 0), if falls at a faster rate of −1 and thus eventually intersects and

then dominates the DSS cost. If θc < 0.54, DSS dominates LS and GS and the maximal cost

improvement of DSS over single sourcing occurs at θc = θg. For L = 1, the maximal relative

value 1 − Ĉ
min(Cl,Cg)

is 7.75%. Second, consider the right panel where L = 2. A similar situation

applies, except that α∗ = 0 and thus LS is optimal for θc < 0.5. Furthermore, the region where

DSS dominates single sourcing is smaller (0.5 < θc <
4√
27

= 0.77) and the maximal relative value

of DSS reduces to 2.88%.

The cost patterns are similar for L ≥ 3 with one important exception: DSS is always dominated

by single sourcing. Indeed, recall that Ĉ∗ = 1 at θc = θ∗L ≥ θL and that Ĉ∗ falls at rate slower

than −1 as θc rises beyond θ∗L. It is easily verified that, for L ≥ 3, θL > θg =
√
L+ 1 − 1 so that

GS has lower cost than DSS at, and beyond, θL.

The implication so far is that DSS is attractive for short leadtimes and relatively light offshoring:

For L = 1, α = 0 at θc = 0 and maximal α∗ = a∗ = .41 at θc = 0.54. For L = 2, a∗ = α∗2 = 0 at

θc = 0.5 and a∗ = α∗2 = 1 − (2 4√
27

)−2/3 = 1
4 . Yet, dual sourcing with order smoothing becomes

significantly more attractive when supply sources incur capacity costs.
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Figure 20: With local capacitated supply, the relative value of DSS over LS and GS increases as the leadtime

L increases. The parameter domain (θc, θ3) where DSS outperforms also increases.

6 Value of Local-Capacitated Dual Sourcing and Smoothing

Figure 20 shows the numerical evaluation of the value of dual sourcing with local capacity costs

compared to the traditional single sourcing policies LS and GS. Notice that, like in the uncapaci-

tated case, the relative value V of dual sourcing over single sourcing is maximal where the costs of

LS and GS, which are linear in θ, intersect:

Ĉ l = 1 + θl = Ĉg = −θc +
√
L+ 1 + θg ⇔ θc − θg + θl =

√
L+ 1− 1.

(Notice that such parameter value can always be attained: when the local capacity cost kl increases,

both θc and θl increase while θg remains unchanged.) With θg = 0, the maximal value V of dual

sourcing thus is attained over the parameter line θc + θl =
√
L+ 1 − 1, as is clearly evident in

Figure 20. Comparing these maximal values with the uncapacitated case (Fig. 19) demonstrates

our second key message: dual sourcing with the DSS policy is significantly more attractive when

local supply is capacitated and leadtimes increase. In contrast to uncapacitated sourcing, DSS then

always dominates LS (and increasingly so as local capacity costs increase) and also GS over a pa-
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rameter domain that enlarges for large leadtimes. This finding can be corroborated and generalized

analytically as show in Proposition 12 in the paper.

7 Exact Solutions for Capacitated Dual Sourcing and Ll = 0

We need the zero of the FOC and will abbreviate notation: a = θc, b = θg, and c = θl :

Ĉ ′ = θcLα
L−1 − θg

LαL−1 (1− α) (1 + α)− αL

(1− α)1/2 (1 + α)3/2
+ θl

Lα2L−1 (1− α) (1 + α) +
(
1− α2L

)
(1− α2L)1/2 (1− α)1/2 (1 + α)3/2

− α

(1− α2)3/2

= aLαL−1 − bLα
L−1 (1− α)1/2

(1 + α)1/2
+ b

αL

(1− α)1/2 (1 + α)3/2

+c
Lα2L−1 (1− α)1/2

(1− α2L)1/2 (1 + α)1/2
+ c

(
1− α2L

)1/2
(1− α)1/2 (1 + α)3/2

− α

(1− α2)3/2

7.1 Capacitated Solutions For L = 1

Proposition 18 With normal demand, the total scaled cost rate has two independent parameters

θcl = θc + θl and θg:

Ĉ(α; θc, θg) =
C(α)− C0

κIσ
= −θclα+ θgα

√
1− α
1 + α

+
1√

1− α2
(51)

and is concave-convex in α ∈ [0, 1] with a unique interior minimum α∗ satisfying:

M̂B(α∗) = θcl − θg
1− α∗ − α∗2

(1− α∗)1/2(1 + α∗)3/2
= M̂C(α∗) =

α∗

(1− α∗2)3/2
. (52)

Proof: Both marginal cost and marginal benefits are convex increasing, with MB initially dom-

inating MC and then reversing. Thus, they always have a unique interior intersection, represented

by point B in Fig. 14. �

Proposition 19 With normal demand and if θg > 0, there is no general formula, using only a

finite number of the usual algebraic operations and radicals, to express the optimality of capacitated

dual sourcing.

Proof: Rewrite the FOC as polynomial and consider α ∈ (0, 1) :

θcl − θg
1− α− α2

(1− α)1/2(1 + α)3/2
− α

(1− α2)3/2
= 0

⇐⇒ θcl
(1− α)3/2 (1 + α)3/2

(1− α)3/2 (1 + α)3/2
− θg

(
1− α− α2

)
(1− α)

(1− α)3/2(1 + α)3/2
− α

(1− α)3/2 (1 + α)3/2
= 0

⇐⇒ θcl (1− α)3/2 (1 + α)3/2 = θg
(
1− α− α2

)
(1− α) + α
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Given that α ∈ (0, 1), both sides are positive and squaring yields:

θ2
cl

(
1− α2

)3 − (θg (1− α− α2
)

(1− α) + α
)2

= 0

⇐⇒
(
θ2
cl + θ2

g

)
α6 −

(
3θ2
cl − 2θg (1− 2θ2)

)
α4 + 2θ2

gα
3

+
(

3θ2
cl + (1− 2θg)

2
)
α2 + 2θg (1− 2θg)α− θ2

13 + θ2
g = 0

If θg = 0, we have a cubiq in α2 whose roots can be solved for with Cardano; if θg > 0, however,

α∗ corresponds to the roots of a general 6-th order polynomial, for which there exists no general

formula, using only a finite number of the usual algebraic operations and radicals.�

7.1.1 For L = 1 and θg = 0: exact solutions and square root is a lower bound

The FOC are identical to the uncapacitated case provided we replace θ by θcl. Hence, Cardano

gives the exact solution and the square root remains a lower bound as follows directly from the

Proof of Prop. 7.

7.1.2 Lagrange series for L = 1 (θg > 0): expanded around x = 0 or α = 1

Start from the FOC but make them analytic around α = 1 by squaring:

θcl (1− α)3/2 (1 + α)3/2 = θg
(
1− α− α2

)
(1− α) + α

⇐⇒ θ2
cl

(
1− α2

)3
=

(
θg
(
1− α− α2

)
(1− α) + α

)2
Denote a = θcl and b = θg and use the transformation x = 1− α2 (similar to uncapacitated):

⇔ a2
(
1− z2

)3
=

(
b
(
1− z − z2

)
(1− z) + z

)2
=
(
b+ (1− 2b)z + bz3

)2
⇔ a2x3 =

(
b+ (1− 2b) (1− x)1/2 + b (1− x)3/2

)2

=
(
b+ (1− x)1/2 (1− b− bx)

)2

= b2 + (1− b− bx)2 (1− x) + 2b (1− b− bx) (1− x)1/2

We seek the root of

f(x) = a2x3 − b2 − (1− b− bx)2 (1− x)− 2b (1− b− bx) (1− x)1/2
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The function is analytic around x0 = 0 with f ′(0) = 1 + b > 0 always:

f(x0) = −b2 − (1− b)2 − 2b (1− b) = −1

f ′(0) =
d

dx

[
a2x3 − b2 − (1− b− bx)2 (1− x)− 2b (1− b− bx) (1− x)1/2

]
x=0

=

[
3a2x2 + (1− bx− b)2 + 2b (1− x) (1− bx− b) + 2b2

√
1− x+

b√
1− x

(1− bx− b)
]
x=0

= (1− b)2 + 2b (1− b) + 2b2 + b (1− b)

= b+ 1 > 0

Hence, the Lagrange inversion series applies at x0 = 0 and f(x0) = −1:

f−1(z) = z0 +

∞∑
n=1

1

n!

[
dn−1

dzn−1

(
z − z0

f(z)− f(z0)

)n]∣∣∣∣
z=z0

(z − f(z0))n

x∗ = f−1(0) =
∞∑
n=1

1

n!

[
lim
z→0

dn−1

dzn−1

(
z

f(z) + 1

)n]
=
∞∑
n=1

an
n!

We will need:

f ′′(0) =
d

dx

[
3a2x2 + (1− bx− b)2 + 2b (1− x) (1− bx− b) + 2b2

√
1− x+

b√
1− x

(1− bx− b)
]
x=0

=

[
6a2x+ 2b (b+ 3bx− 2)− 2

b2√
1− x

+
1

2

b

(1− x)
3
2

(1− bx− b)

]
x=0

= 2b (b− 2)− 2b2 +
1

2
b (1− b)

= −b (b+ 7)

2

f (3)(0) =
d

dx

[
6a2x+ 2b (b+ 3bx− 2)− 2

b2√
1− x

+
1

2

b

(1− x)
3
2

(1− bx− b)

]
x=0

=

[
6a2 + 6b2 − 3

2

b2

(1− x)
3
2

+
3

4

b

(1− x)
5
2

(1− bx− b)

]
x=0

= 6a2 + 6b2 − 3

2

b2

1
+

3

4

b

1
(1− b)

= 6a2 +
3

4
b (5b+ 1)

Term 1:

a1 = lim
z→0

(
z

f(z) + 1

)1

= [
0

0
]

l’Hospital
=

1

f ′(0)
=

1

b+ 1

Companion Page 34



Term 2:

lim
x→0

d

dx

(
x

f(x) + 1

)2

= lim
z→0

d

dx

(
z

a2x3 − b2 − (1− b− bx)2 (1− x)− 2b (1− b− bx) (1− x)1/2 + 1

)2

= lim
z→0

2

(
z

f(z) + 1

)
· d
dx

(
x

f(x) + 1

)
= lim

x→0
2

(
x

f(x) + 1

)
· f(x) + 1− x (f ′(x))

(f(x) + 1)2

= lim
x→0

2
xf(x) + x− x2 (f ′(x))

(f(x) + 1)3 = [
0

0
]

l’Hospital
= lim

x→0
2
f(x) + 1− xf ′(x)− x2f ′′(x)

3 (f(x) + 1)2 (f ′(x))
= [

0

0
]

H
= lim

x→0
2
f ′(x)− f ′(x)− xf ′′(x)− 2xf ′′(x)− x2f

′′′
(x)

6 (f(x) + 1) (f ′(x))2 + 3 (f(x) + 1)2 (f ′′(x))

= lim
x→0

2
−3xf ′′(x)− x2f

′′′
(x)

6 (f(x) + 1) (f ′(x))2 + 3 (f(x) + 1)2 (f ′′(x))
= [

0

0
]

H
= lim

x→0
2

−3f ′′(x)− 3xf (3)(x)− 2xf (3)(x)− x2f (4)(x)

6(f ′(x))3 + 12 (f(x) + 1) 2f ′(x)f ′′(x) + 6 (f(x) + 1) f ′′(f ′′(x)) + 3 (f(x) + 1)2 (f (3)(x))

a2 = − f (2)(0)

(f (1)(0))3

=
b (b+ 7)

2 (b+ 1)3

so far we have the two-term solution:

x∗ =
1

b+ 1
+

b (b+ 7)

4 (b+ 1)3 =
15b+ 5b2 + 4

4 (b+ 1)3

Term 3 (so we get a in it):

d2

dx2

(
x

f(x) + 1

)3

=
d

dx

[
3

(
x

f(x) + 1

)2 d

dx

(
x

f(x) + 1

)]

=
d

dx

[
3

(
x

f(x) + 1

)2 d

dx

(
x

f(x) + 1

)]

= 3

[
d

dx

(
x

f(x) + 1

)2
]
d

dx

(
x

f(x) + 1

)
+ 3

(
x

f(x) + 1

)2 d2

dx2

(
x

f(x) + 1

)
= 6

xf(x) + x− x2 (f ′(x))

(f(x) + 1)3

f(x) + 1− x (f ′(x))

(f(x) + 1)2 + 3

(
x

f(x) + 1

)2

A
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where

A =
d

dx

[
f(x) + 1− x (f ′(x))

(f(x) + 1)2

]

=
(f(x) + 1)2

(
f ′(x)− (f ′(x))− xf ′′(x)

)
− 2 (f(x) + 1) f ′(x) (f(x) + 1− x (f ′(x)))

(f(x) + 1)4

=
− (f(x) + 1)xf

′′
(x)− 2f ′(x) (f(x) + 1− x (f ′(x)))

(f(x) + 1)3

so

d2

dx2

(
x

f(x) + 1

)3

= 6
x

(f(x) + 1)3

(f(x) + 1− xf ′(x))2

(f(x) + 1)2 + 3

(
x

f(x) + 1

)2 − (f(x) + 1)xf
′′
(x)− 2f ′(x) (f(x) + 1− x (f ′(x)))

(f(x) + 1)3

=
3x

(f(x) + 1)5

[
2
(
f(x) + 1− xf ′(x)

)2 − (f(x) + 1)x2f
′′
(x)− 2xf ′(x)

(
f(x) + 1− xf ′(x)

)]
and

2
(
f(x) + 1− xf ′(x)

)2 − (f(x) + 1)x2f
′′
(x)− 2xf ′(x)

(
f(x) + 1− xf ′(x)

)
= 2 (f(x) + 1)2 − 4 (f(x) + 1)xf ′(x) + 2x2f ′(x)2 − 2xf ′(x) (f(x) + 1) + 2x2f ′(x)2 − (f(x) + 1)x2f

′′
(x)

= 2 (f(x) + 1)2 − 6 (f(x) + 1)xf ′(x) + 4x2f ′(x)2 − (f(x) + 1)x2f
′′
(x)

We will have to take l’Hospital 5 times! In the denominator, the surviving term is

5(f + 1)4f ′ + (f + 1)5f ′′ = [0]

5 · 4(f + 1)3f ′
2

+O(f + 1)5 = [0]

5 · 4 · 3(f + 1)2f ′3 = [0]

5!(f ′(0))5 = 5! (b+ 1)5
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In the numerator:

4 (f + 1) f ′ − 6xf ′2 − 6(f + 1)f ′ − 6(f + 1)xf ′′ + 8xf ′2 + 8x2f ′f ′′ − f ′x2f
′′ − (f + 1)2xf ′′ − (f + 1)x2f (3)

= −2(f + 1)f ′ − 8(f + 1)xf ′′ + 2xf ′2 + 7x2f ′f ′′ − (f + 1)x2f (3) = [0]

−2(f + 1)f
′′ − 2f ′2 − 8f ′xf ′′ − 8(f + 1)f ′′ − 8(f + 1)xf (3) + 2f ′2 + 4xf ′f ′′

+14xf ′f ′′ + 7x2f ′′2 + 7x2f ′f (3) − f ′x2f (3) − 2(f + 1)xf (3) − (f + 1)x2f (4)

= −10(f + 1)f
′′ − 10(f + 1)xf (3) + 10xf ′f ′′ + 7x2f ′′2 + 6x2f ′f (3) − (f + 1)x2f (4) = [0]

−10(f + 1)f
(3) − 10f ′f

′′ − 10f ′xf (3) − 10(f + 1)f (3) − 10(f + 1)xf (4) + 10f ′f ′′

+10xf ′′2 + 10xf ′f (3) + 14xf ′′2 + 14x2f ′′f (3) + 12xf ′f (3) + 6x2f
′′f (3) + 6x2f ′f (4)

−f ′x2f (4) − 2(f + 1)xf (4) − (f + 1)x2f (5)

= −(f + 1)
[
20f

(3)
+ 12xf (4) + x2f (5)

]
+ x

[
24f ′′2 + 20xf ′′f (3) + 12f ′f (3) + 5xf ′f (4)

]
= [0]

−f ′
[
20f

(3)
+ 12xf (4) + x2f (5)

]
− (f + 1)

[
20f

(3)
+ 12xf (4) + x2f (5)

]′
+
[
24f ′′2 + 20xf ′′f (3) + 12f ′f (3) + 5xf ′f (4)

]
+ x

[
24f ′′2 + 20xf ′′f (3) + 12f ′f (3) + 5xf ′f (4)

]′
= −20f ′(0)f

(3)
(0) + 24f ′′2(0) + 12f ′(0)f (3)(0) = 24f ′′2(0)− 8f ′(0)f

(3)
(0)

= 24

(
−b (b+ 7)

2

)2

− 8 (b+ 1)

(
6a2 +

3

4
b (5b+ 1)

)
hence

a3 =
24f ′′2(0)− 8f ′(0)f

(3)
(0)

5!(f ′(0))5

=
24
(
− b(b+7)

2

)2
− 8 (b+ 1)

(
6a2 + 3

4b (5b+ 1)
)

5! (b+ 1)5

The three terms in the series yield where a = θcl and b = θg :

x∗ =
1

b+ 1
+

b (b+ 7)

4 (b+ 1)3 +
1

3!

6 (b (b+ 7))2 − (b+ 1)
(
48a2 + 6b (5b+ 1)

)
5! (b+ 1)5

=
1

b+ 1
+

b (b+ 7)

4 (b+ 1)3 −
8a2 + b (5b+ 1)

5! (b+ 1)4 +
(b (b+ 7))2

5! (b+ 1)5

Written differently:

x∗ =
1

b+ 1
+

b (b+ 7)

4 (b+ 1)3 +
b
(
b (b+ 7)2 − (5b+ 1) (b+ 1)

)
5! (b+ 1)5 − a2

15 (b+ 1)4

=
1

b+ 1
+

b (b+ 7)

4 (b+ 1)3 +
b
(
b3 + 9b2 + 43b− 1

)
5! (b+ 1)5 − a2

15 (b+ 1)4

=
5! + 689b+ 793b2 + 489b3 + 121b4

5! (b+ 1)5 − a2

15 (b+ 1)4
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Figure 21: The first, second, and third order Lagrange’s series for the general capacitated dual sourcing

with L = 1.

Summary:

For L = 1 : α∗ =

√
1− 1

b+ 1
− b (b+ 7)

4 (b+ 1)3 +
8a2 + b (5b+ 1)

5! (b+ 1)4 − (b (b+ 7))2

5! (b+ 1)5 + · · ·

=

√
1−

(
1

b+ 1
+

b (b+ 7)

4 (b+ 1)3 +
b (b3 + 9b2 + 43b− 1)

5! (b+ 1)5 − a2

15 (b+ 1)4

)
+ · · ·

=

√
1− 15 (θg + 1)3 − θ2

cl

15 (θg + 1)4 + · · ·

As function of b : 1
b+1 + b(b+7)

4(b+1)3
+

b(b3+9b2+43b−1)
5!(b+1)5

. Figure 21 shows that the addition of the third

term makes little difference–we may be close to convergence? Also, for x∗ < 1, this requires b > 0.4

roughly.

7.1.3 Lagrange series for L = 1 (θg > 0): expanded around x = 1 or α = 0

Start from the FOC but make them analytic by squaring:

θcl (1− α)3/2 (1 + α)3/2 = θg
(
1− α− α2

)
(1− α) + α

⇐⇒ θ2
cl

(
1− α2

)3
=

(
θg
(
1− α− α2

)
(1− α) + α

)2
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Denote a = θcl and b = θg (and it is natural to have b < a) and we seek the root of

f(α) = a2
(
1− α2

)3 − (b (1− α− α2
)

(1− α) + α
)2

= a2 − b2 + 2b (2b− 1)α−
(

3a2 + (1− 2b)2
)
α2 − 2b2α3 +

(
3a2 − 2b (1− 2b)

)
α4 −

(
a2 + b2

)
α6

Notice that f , as a polynomial, is analytic around any α. Use Lagrange around α0 = 0:

f(0) = a2 − b2

f ′(α) =
d

dα

[
a2
(
1− α2

)3 − (b (1− α− α2
)

(1− α) + α
)2]

= −6a2α
(
1− α2

)2 − 2
(
α+ b (1− α)

(
1− α2 − α

)) (
b (1− α) (−2α− 1)− b

(
1− α2 − α

)
+ 1
)

= −6a2α
(
1− α2

)2 − 2
(
α+ b (1− α)

(
1− α2 − α

)) (
b (1− α) (−2α− 1)− b

(
1− α2 − α

)
+ 1
)

= −2
[
b− 2b2 + α

(
3a2 − 4b+ 4b2 + 1

)
+ 3b2α2 + α3

(
4b− 6a2 − 8b2

)
+ α5

(
3a2 + 3b2

)]
f ′(0) = −2b (1− 2b) > 0

If b > 0 and b 6= 1
2 , the Lagrange inversion series applies at x0 = 0 and f(x0) = a2 − b2:

f−1(z) = z0 +
∞∑
n=1

1

n!

[
dn−1

dzn−1

(
z − z0

f(z)− f(z0)

)n]∣∣∣∣
z=z0

(z − f(z0))n

α∗ = f−1(0) =

∞∑
n=1

[
lim
z→0

dn−1

dzn−1

(
z

f(z) + b2 − a2

)n] (b2 − a2)n

n!
=

∞∑
n=1

an
n!

(b2 − a2)n

Convergence will probably require
∣∣a2 − b2

∣∣ < 1

Consider:

F (z) =
z

f(z) + b2 − a2

=
(

2b (2b− 1)−
(

3a2 + (1− 2b)2
)
z − 2b2z2 +

(
3a2 − 2b (1− 2b)

)
z3 −

(
a2 + b2

)
z5
)−1

= g(z)−1

We will need:

g = 2b (2b− 1)−
(

3a2 + (1− 2b)2
)
z − 2b2z2 +

(
3a2 − 2b (1− 2b)

)
z3 −

(
a2 + b2

)
z5

g(1) = −
(

3a2 + (1− 2b)2
)
− 4b2z + 3

(
3a2 − 2b (1− 2b)

)
z2 − 5

(
a2 + b2

)
z4

g(2) = −4b2 + 6
(
3a2 − 2b (1− 2b)

)
z − 20

(
a2 + b2

)
z3

g(3) = 6
(
3a2 − 2b (1− 2b)

)
− 60

(
a2 + b2

)
z2

g(4) = −120
(
a2 + b2

)
z

g(5) = −120
(
a2 + b2

)
g(k) = 0 for k > 5
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Term n = 1:

a1 = F (0) =
1

g(0)
=

1

2b (1− 2b)

α1 =
a1

1!
(b2 − a2) =

a2 − b2

2b (1− 2b)

The natural condition b ≤ a then requires b < 1
2 :

0 ≤ a1 ⇔
(
b ≥ a and b >

1

2
(no)

)
or

(
b ≤ a and b <

1

2
(yes)

)
a1 ≤ 1⇔

(
b ≤ a and b <

1

2
(yes)

)
and a2 − b2 ≤ 2b (1− 2b)

⇔ b ≤ a and b <
1

2
and a2 ≤ b (2− 3b)

(The feasible region is below an arc but above a straight line.)

Term n = 2:

d

dz
g(z)−2 = −2g−3g′

a2 = lim
z→0

d

dz
g(z)−2 = 2

(
3a2 + (1− 2b)2

)
(2b (2b− 1))3

Term n = 3:

d2

dz2
g(z)−3 =

d

dz

[
−3g−4g′

]
= (−3) (−4) g−5g′2 − 2g−4g(2)

a3 = 3 · 4

(
3a2 + (1− 2b)2

)2

(2b (2b− 1))5 + 2
4b2

(2b (2b− 1))4

Term n = 4:

d3

dz3
g(z)−4 =

d2

dz2

[
−4g−5g′

]
=

d

dz

[
4 · 5g−6g′2 − 4g−5g(2)

]
= −4 · 5 · 6g−7g′3 + 2 · 4 · 5g−6g′g(2) + 4 · 5g−6g′g(2) − 4g−5g(3)

= −4 · 5 · 6g−7g′3 + 3 · 4 · 5g−6g′g(2) − 4g−5g(3)

a4 = 4 · 5 · 6

(
3a2 + (1− 2b)2

)3

(2b (2b− 1))7 + 3 · 4 · 5

(
3a2 + (1− 2b)2

)
4b2

(2b (2b− 1))6 − 4
6
(
3a2 − 2b (1− 2b)

)
(2b (2b− 1))5
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So for we have for
∣∣θ2
cg − θ2

g

∣∣ < 1 and θg <
1
2

α∗ =
∞∑
n=1

an
n!

(θ2
g − θ2

cg)
n

a1 =
1

2θg (1− 2θg)

a2 = 2

(
3θ2
cg + (1− 2θg)

2
)

(2θg (1− 2θg))
3

a3 = 3 · 4

(
3θ2
cg + (1− 2θg)

2
)2

(2θg (1− 2θg))
5 + 2

4θ2
g

(2θg (1− 2θg))
4

a4 = 4 · 5 · 6

(
3θ2
cg + (1− 2θg)

2
)3

(2θg (1− 2θg))
7 + 3 · 4 · 5

(
3θ2
cg + (1− 2θg)

2
)

4θ2
g

(2θg (1− 2θg))
6 − 4

6
(
3θ2
cg − 2θg (1− 2θg)

)
(2θg (1− 2θg))

5

7.2 Capacitated Solutions for L = 2

7.2.1 Lagrange Series for L = 2 : General Case: θg = b > 0

Lagrange series for L = 2 with b > 0 around α = 1 :

a2α− b2α (1− α)1/2

(1 + α)1/2
+ b

α2

(1− α2)1/2 (1 + α)

+c
2α3 (1− α)1/2

(1− α2)1/2 (1 + α2)1/2 (1 + α)1/2
+ c

(
1 + α2

)1/2
(1 + α)

=
α

(1− α2)3/2

⇔ a2α
(
1− α2

)3/2 − b2α (1− α)1/2

(1 + α)1/2

(
1− α2

)3/2
+ b

α2
(
1− α2

)
(1 + α)

+c
2α3 (1− α)1/2 (1− α2

)
(1 + α2)1/2 (1 + α)1/2

+ c

(
1 + α2

)1/2 (
1− α2

)3/2
(1 + α)

= α

Set x = 1− α2, then α2 = (1− x) and α = (1− x)1/2

a2 (1− x)1/2 x3/2 − b
2 (1− x)1/2

(
1− (1− x)1/2

)1/2

(
1 + (1− x)1/2

)1/2
x3/2 + b

(1− x)x(
1 + (1− x)1/2

)

+c
2 (1− x)3/2

(
1− (1− x)1/2

)1/2
x

(1 + (1− x))1/2
(

1 + (1− x)1/2
)1/2

+ c
(1 + (1− x))1/2 x3/2(

1 + (1− x)1/2
) = (1− x)1/2
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and dividing by (1− x)1/2 yields:

f(x) = a2x3/2 − b
2
(

1− (1− x)1/2
)1/2

(
1 + (1− x)1/2

)1/2
x3/2 + b

(1− x)1/2 x(
1 + (1− x)1/2

)

+c
2 (1− x)

(
1− (1− x)1/2

)1/2
x

(1 + (1− x))1/2
(

1 + (1− x)1/2
)1/2

+ c
(1 + (1− x))1/2 x3/2

(1− x)1/2
(

1 + (1− x)1/2
) = 1

To go further with z0 = 0 and f(z0) = 0, the function must be analytic around z0 and the above is

not due to x3/2. To make it analytic, we need to square terms, but smartly by collecting all terms

in x3/2: Note that

(1 + x)1/2 =

∞∑
k=0

(
1/2

k

)
xk where

(
r

k

)
=
r (r − 1) · · · (r − k + 1)

k!

= 1 +
1

2
x+

1
2

(
−1

2

)
2!

x2 +
1
2

(
−1

2

) (
−3

2

)
3!

x3 + · · ·

(
1− (1− x)1/2

)1/2
=

(
1−

(
1− 1

2
x− 1

2!22
x2 − 3

3!23
x3 − · · ·

))1/2

=

(
1

2
x+

1

2!22
x2 +

3

3!23
x3 + · · ·

)1/2

=

(
1

2
+

1

2!22
x+

3

3!23
x2 + · · ·

)1/2

x1/2

= h(x)x1/2

where h(x) is analytic around x = 0 with h(0) = 1
21/22a+ c

(1 + (1− x))1/2

(1− x)1/2
(

1 + (1− x)1/2
) + c

2 (1− x)h(x)

(1 + (1− x))1/2
(

1 + (1− x)1/2
)1/2

x3/2

= 1− b (1− x)1/2(
1 + (1− x)1/2

)x+ b
2h(x)(

1 + (1− x)1/2
)1/2

x2
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Squaring both sides yields

f(x) =

2a+ c
(2− x)1/2

(1− x)1/2
(

1 + (1− x)1/2
) + c

2 (1− x)h(x)

(2− x)1/2
(

1 + (1− x)1/2
)1/2


2

x3 (53)

−

1− b (1− x)1/2(
1 + (1− x)1/2

)x+ b
2h(x)(

1 + (1− x)1/2
)1/2

x2


2

f(x) = Ax3 −
[
1− bB1x+ bB2x

2
]2

(54)

which is analytic at x = 0 and we seek f−1(0) by expanding around z0 = 0 where f(0) = −1 and

f ′(x) = 3x2A+ x3A′ − 2
[
1− bB1x+ bB2x

2
] [
−bB1 − bB′1x+ 2bB2x+ bB′2x

2
]

f ′(0) = −2 [1]

[
−b1

2

]
= b > 0

f (2)(x) = 6xA+ 6x2A′ + x3A
′′ − 2

[
−bB1 − bB

′
1x+ 2bB2x+ bB

′
2x

2
] [
−bB1 − bB′1x+ 2bB2x+ bB′2x

2
]

−2
[
1− bB1x+ bB2x

2
] [
−bB′1 − bB′1 − bB

′′
1x+ 2bB2 + 2bB

′
2x+ 2bB′2x+ bB

′′
2x

2
]

= 6xA+ 6x2A′ + x3A
′′ − 2b2

[
−B1 −B

′
1x+ 2B2x+B

′
2x

2
] [
−B1 −B′1x+ 2B2x+B′2x

2
]

−2b
[
1− bB1x+ bB2x

2
] [
−2B

′
1 −B

′′
1x+ 2B2 + 4B

′
2x+B

′′
2x

2
]

f (2)(0) = −2b2 [−B1(0)] [−B1(0)]− 2b [1]
[
−2B

′
1 + 2B2

]
= −1

2
b2 − 4b

[
−(−1

8
) +

2

2

]
= −1

2
b2 − b9

2
= −b (b+ 9)

2

f (3)(x) = 6A+ 6xA′ + 12xA′ + 6x2A′′ + 3x2A
′′

+ x3A(3)

−2b2
[
−B′1 −B

′
1 −B

′′
1x+ 2B2 + 2B

′
2x+ 2B

′
2x+B

′′
2x

2
] [
−B1 −B′1x+ 2B2x+B′2x

2
]

−2b2
[
−B1 −B

′
1x+ 2B2x+B

′
2x

2
] [
−B′1 −B′1 −B

′′
1x+ 2B2 + 2B′2x+ 2B′2x+B

′′
2x

2
]

−2b
[
−bB1 − bB′1x+ 2bB2x+ bB′2x

2
] [
−2B

′
1 −B

′′
1x+ 2B2 + 4B

′
2x+B

′′
2x

2
]

−2b
[
1− bB1x+ bB2x

2
] [
−2B

′′
1 −B

′′
1 −B

(3)
1 x+ 2B′2 + 4B

′
2 + 4B

′′

2 x+ 2B
′′
2x+B

(3)

2 x2
]

= 6A+ 20xA′ + 9x2A′′ + x3A(3)

−2b2
[
−2B′1 −B

′′
1x+ 2B2 + 4B

′
2x+B

′′
2x

2
] [
−B1 −B′1x+ 2B2x+B′2x

2
]

−2b2
[
−B1 −B

′
1x+ 2B2x+B

′
2x

2
] [
−2B′1 −B

′′
1x+ 2B2 + 4B′2x+B

′′
2x

2
]

−2b
[
−bB1 − bB′1x+ 2bB2x+ bB′2x

2
] [
−2B

′
1 −B

′′
1x+ 2B2 + 4B

′
2x+B

′′
2x

2
]

−2b
[
1− bB1x+ bB2x

2
] [
−3B

′′
1 −B

(3)
1 x+ 6B′2 + 6B

′′
2x+B

(3)

2 x2
]
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f (3)(0) = 6A(0)− 2b2
[
−2B′1 + 2B2

]
[−B1]− 2b2 [−B1]

[
−2B′1 + 2B2

]
−2b [−bB1]

[
−2B

′
1 + 2B2

]
− 2b [1]

[
−3B

′′
1 + 6B′2

]
= 6A(0) + 12b2

[
−B′1 +B2

]
[B1]− 2b

[
−3B

′′
1 + 6B′2

]
= 6

[
2a+ c

(2)1/2

(2)
+ c

2 1
21/2

2

]2

+ 12

(
1

8
+ 1

)
1

2
b2 − 2

[
3

8
+

6

4

]
b

= 6
(

2a+ c
√

2
)2

+
27

4
b2 − 15

4
b

And

B1(x) =
(1− x)1/2

1 + (1− x)1/2
= 1− 1

1 + (1− x)1/2
→ B1(0) =

1

2

B′1(x) = − d

dx

1

1 + (1− x)1/2
= − 1

2
√

1− x
(√

1− x+ 1
)2 → B′1(0) = − 1

2 · 22
= −1

8

B
′′
1 (x) = − d

dx

1

2
√

1− x
(√

1− x+ 1
)2

=
1

2 (x− 1)
(√

1− x+ 1
)3 − 1

4
(√

1− x+ 1
)2 (√

1− x− x
√

1− x
)

→ B
′′
1 (0) =

1

2 (−1) (2)3 −
1

4 (2)2 = −1

8

B2(x) =
2h(x)(

1 + (1− x)1/2
)1/2

→ B2(0) =
2 1

21/2

21/2
= 1

=
2
(

1− (1− x)1/2
)1/2

x1/2
(

1 + (1− x)1/2
)1/2

=
2
(

1− (1− x)1/2
)

x1/2
(

1 + (1− x)1/2
)1/2 (

1− (1− x)1/2
)1/2

=
2
(

1− (1− x)1/2
)

x1/2 (1− (1− x))1/2
=

2
(

1− (1− x)1/2
)

x
=

2
(

1
2x+ 1

2!22
x2 + 3

3!23
x3 + · · ·

)
x

= 1 +
1

2!2
x+

3

3!22
x2 + · · ·

B
′
2(x) =

1

2!2
+

3

3!2
x+ · · · → B′2(0) =

1

4

Given that f is analytic at x = 0 with f ′(0) > 0 Lagrange applies as:

f−1(z) = z0 +
∞∑
n=1

1

n!

[
dn−1

dzn−1

(
z − z0

f(z)− f(z0)

)n]∣∣∣∣
z=z0

(z − f(z0))n

x∗ = f−1(0) =

∞∑
n=1

1

n!

[
lim
z→0

dn−1

dzn−1

(
z

f(z) + 1

)n]
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Term n = 1:

lim
z→0

z

f(z) + 1
= [

0

0
]

H
=

1

f ′(0)
=

1

b

Term n = 2:

d

dz

(
z

f + 1

)2

= 2
z

(f + 1)

d

dz

z

(f + 1)
= 2

z

(f + 1)

(
1

(f + 1)
− zf ′

(f + 1)2

)
=

2z (f + 1− zf ′)
(f + 1)3

lim
z→0

2z (f + 1− zf ′)
(f + 1)3 = [

0

0
]

H
=

2 (f + 1− zf ′) + 2z
(
f ′ − f ′ − zf ′′

)
3 (f + 1)2 f ′

=
2 (f + 1)− 2z

(
f ′ + zf

′′
)

3 (f + 1)2 f ′
= [

0

0
]

H
=

2f ′ − 2
(
f ′ + zf

′′
)
− 2z

(
f
′′

+ f
′′

+ zf
(3)
)

6 (f + 1) f ′2 + 3 (f + 1)2 f ′′
=

−2z
(

3f
′′

+ zf
(3)
)

3 (f + 1) [2f ′2 + (f + 1) f ′′ ]

= −2

3

z
[
3f
′′

+ zf
(3)
]

(f + 1)
[
2f ′2 + (f + 1) f ′′

] = [
0

0
]

H
= −2

3

[
3f
′′

+ zf
(3)
]

+ z
[
3f
′′

+ zf
(3)
]′

f ′
[
2f ′2 + (f + 1) f ′′

]
+ (f + 1)

[
2f ′2 + (f + 1) f ′′

]′
= − f (2)(0)

(f (1)(0))3
= −
− b(b+9)

2

b3
=

(b+ 9)

2b2

Term n = 3: following the above:

a3(0) =
24f ′′2(0)− 8f ′(0)f

(3)
(0)

5!(f ′(0))5

=
24
(
− b(b+9)

2

)2
− 8b

(
6
(
aL+ c

√
2
)2

+ 27
4 b

2 − 15
4 b
)

5!b5

=
b (b+ 9)2 −

(
8
(
2a+ c

√
2
)2

+ 9b2 − 5b
)

5 · 4b4

=
−2
(
2a+ c

√
2
)2

5b4
+
b2 + 9b+ 86

5 · 4b3
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Thus, up to three terms for L = 2 where a = θc (cost delta), b = θg (global capacity), and c = θl

(local capacity):

x∗1 =
1
1
2b
⇒ α∗ =

√
1−

(
1

2
θg

)−1

[cannot be further expanded b/c not analytic]

x∗1 =
1

b
⇒ α∗ =

√
1− θ−1

g

x∗2 =
1

b
+

1

2

(b+ 9)

2b2
=

1

b

(
1 +

b+ 9

4b

)
x∗3 =

1

b
+

1

2!

(b+ 9)

2b2
+

1

3!

b2 + 9b+ 86

5!b3
−
(
a2 + c

√
2
)2

3!15b4

Note that global capacity b = θg = 0 is fundamentally different from b > 0 (meaning that it requires

a different Lagrange series and the results do not apply for b→ 0, and hence we cannot recover our

previous uncapacitated result from this). It seems that b is a dominant factor and substitutes for(
2a+ c

√
2
)1/2

. The formulae above require large b and small a and c.

7.2.2 Lagrange Series for L = 2: Local Capacity Only: θg = b = 0

Start from the optimality equation (53) with θg = b = 0 and L = 2 :

f(x) =

2a+ c
(2− x)1/2

(1− x)1/2
(

1 + (1− x)1/2
) + c

2 (1− x)h(x)

(2− x)1/2
(

1 + (1− x)1/2
)1/2


2

x3 − 1

= A(x)x3 − 1

This can be simplified as:

A(x) =

2a+ c
(2− x)1/2

1− x+ (1− x)1/2
+ c

2 (1− x)h(x)
(

1 + (1− x)1/2
)1/2

(2− x)1/2
(

1 + (1− x)1/2
)


2

and

h(x) =

(
1− (1− x)1/2

)1/2

x1/2
=

(
1

2
+

1

2!22
x+

3

3!23
x2 + · · ·

)1/2

so

A(x) =

2a+ c
(2− x)1/2

1− x+ (1− x)1/2
+ c

2 (1− x)

(2− x)1/2
(

1 + (1− x)1/2
)
2
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which is analytic at x = 0 and we seek f−1(0) by expanding around z0 = 0 where f(0) = −1 and

f ′(x) = 3x2A+ x3A′ ⇒ f ′(0) = b = 0

f (2)(x) = 6xA+ 6x2A′ + x3A
′′ ⇒ f (2)(0) = 0

f (3)(x) = 6A+ x[]⇒ f (3)(0) = 6A(0) = 6
(

2a+ c
√

2
)2

> 0

Given that f is analytic at x = 0 with f (0) = −1 and f ′(0) = f (2)(0) = 0 and f (3)(0) > 0 Lagrange

applies in modified form as:

f−1(z) = z0 +
∞∑
n=1

1

n!

[
dn−1

dzn−1

(
z − z0

[f(z)− f(z0)]1/3s

)n]∣∣∣∣∣
z=z0

(z − f(z0))n

x∗ = f−1(0) =

∞∑
n=1

1

n!

[
lim
z→0

dn−1

dzn−1

(
z

(f(z) + 1)1/3

)n]

Consider

F (x) =
x

(f(x) + 1)1/3
=

x

A1/3x

= A−1/3 =

2a+ c
(2− x)1/2

1− x+ (1− x)1/2
+ c

2 (1− x)

(2− x)1/2
(

1 + (1− x)1/2
)
−2/3

= B−2/3

Term n = 1:

a1 = lim
z→0

F (x) = A(0)−1/3 = B(0)−2/3 =
(

2a+ c
√

2
)−2/3

α∗1 =

√
1−

(
2θc +

√
2θl

)−2/3
,

which requires 2θc +
√

2θl > 1.

Term n = 2:

d

dx
B−4/3 = −4

3
B−7/3B′

B′ = c


√

2−x
(
√

1−x−x+1)
2

(
1

2
√

1−x + 1
)
− 1

2
√

2−x(
√

1−x−x+1)

+
√

1−x√
2−x(

√
1−x+1)

2 − 2√
2−x(

√
1−x+1)

+ 1−x
(
√

1−x+1)(2
√

2−x−x
√

2−x)


= c


√

2−x
(
√

1−x−x+1)
2

(
1

2
√

1−x + 1
)
− 1

2
√

2−x(
√

1−x−x+1)

−
√

1−x+2√
2−x(

√
1−x+1)

2 + 1−x
(
√

1−x+1)(2−x)3/2


= c

( √
2− x(

x−
√

1− x− 1
)2 ( 1

2
√

1− x
+ 1

)
+

1

2
√

2− x
(
x−
√

1− x− 1
) +

x−
√

1− x− 3(√
1− x+ 1

)2
(2− x)3/2

)
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B′(0) = c

(√
2

22

(
1

2
+ 1

)
− 1

2
√

2 (1 + 1)
+

1√
222
− 2√

2 (2)
+

1

(1 + 1)
(
2
√

2
)) = 0

a2 =
1

2

(
−4

3
B−7/3(0)B′(0)

)
= −2

3

(
2a+ c

√
2
)−7/3

c · 0 = 0

Thus:

α∗1 = α∗2 =

√
1−

(
2θc +

√
2θl

)−2/3
,

in other words, the square root formula is also a second order approximation for L = 2.

Term n = 3:

d2

dx2
B−6/3 = −2

d

dx
B−9/3B′ = −2

(
−3B−4B′2 +B−3B′′

)

B′′ = c
d

dx

( √
2− x(

x−
√

1− x− 1
)2 ( 1

2
√

1− x
+ 1

)
+

1

2
√

2− x
(
x−
√

1− x− 1
) +

x−
√

1− x− 3(√
1− x+ 1

)2
(2− x)3/2

)

= c


1

4(x−
√

1−x−1)(2
√

2−x−x
√

2−x)
+ 1√

2−x(
√

1−x−x+1)
2

(
− 1

2
√

1−x − 1
)

−2
√

2−x
(x−
√

1−x−1)
3

(
1

2
√

1−x + 1
)2

+ 1
4

√
2−x

(
√

1−x−x+1)
2
(
√

1−x−x
√

1−x)

+ 1

(
√

1−x+1)
2

1
2
√
1−x+1

2
√

2−x−x
√

2−x + 1√
1−x(

√
1−x+1)

3
x−
√

1−x−3
2
√

2−x−x
√

2−x + 3

2(
√

1−x+1)
2

x−
√

1−x−3
4
√

2−x−4x
√

2−x+x2
√

2−x



B′′(0) = c
√

2
3

16

a3 =
1

3!

(
−2
(
−3B−4B′2 +B−3B′′

)
|0
)

=
−2

3!

(
2a+ c

√
2
)−3

c
√

2
3

16
= −

(
2a+ c

√
2
)−3

c
√

2
1

16

Thus:

α∗3 =

√
1−

(
2θc +

√
2θl

)−2/3
(

1−
(

2θc +
√

2θl

)−7/3
θl
√

2
1

16

)
=

√
1−

(
2θc +

√
2θl

)−2/3
+ θl
√

2
1

16

(
2θc +

√
2θl

)−9/3

Term n = 4:

d3

dx3
B−8/3 = −8

3

d2

dx2
B−11/3B′ = −8

3

d

dx

(
−11

3
B−14/3B′ +B−11/3B

′′
)

=
−8

3

(
11

3

14

3
B−17/3B′ +

−11

3
2B−14/3B

′′
+B−11/3B(3)

)
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B(3) = c
d

dx


1

4(x−
√

1−x−1)(2
√

2−x−x
√

2−x)
+ 1√

2−x(
√

1−x−x+1)
2

(
− 1

2
√

1−x − 1
)

−2
√

2−x
(x−
√

1−x−1)
3

(
1

2
√

1−x + 1
)2

+ 1
4

√
2−x

(
√

1−x−x+1)
2
(
√

1−x−x
√

1−x)
+ 1

(
√

1−x+1)
2

1
2
√
1−x+1

2
√

2−x−x
√

2−x

+ 1√
1−x(

√
1−x+1)

3
x−
√

1−x−3
2
√

2−x−x
√

2−x + 3

2(
√

1−x+1)
2

x−
√

1−x−3
4
√

2−x−4x
√

2−x+x2
√

2−x


B(3)(0) = c

√
2

24

32
= c
√

2
3

4

a4 =
1

4!

−8

3

(
11

3

14

3
B−17/3B′ +

−11

3
2B−14/3B

′′
+B−11/3B(3)

)
x=0

=
1

3

−1

3

(
−11

3
2B−1 3

16
+

3

4

)
B−11/3c

√
2

=
−1

3

(
−11

3
B−1 1

8
+

1

4

)
B−11/3c

√
2

Finally:

α∗4 =

√√√√1−
(

2θc +
√

2θl

)−2/3
+ θl
√

2

(
1
16

(
2θc +

√
2θl
)−9/3 − 1

12

(
2θc +

√
2θl
)−11/3

+11
72

(
2θc +

√
2θl
)−14/3

+O
(
2θc +

√
2θl
)−17/3

)

Notice that, as it should be, the formula is exact for θl = 0. The associated scaled cost is, setting

α∗
2

= 1− x∗

α∗
2

= 1− x∗ ' 1−
(

2θc +
√

2θl

)−2/3
+O(θl

(
2θc +

√
2θl

)−2/3
)

Ĉ(α; θc, 0, θl) = −θcα2 + θl

√
1− α
1 + α

(1− α4) +
1√

1− α2√
1− α
1 + α

(1− α4) =

√
1− α2

(1 + α)2 (1− α2) (1 + α2) =
1− α2

1 + α

√
1 + α2 = (1− α)

√
1 + α2

Ĉ(α; θc, 0, θl) = −θcα2 + θl (1− α)
√

1 + α2 +
1√

1− α2

Ĉ(α∗; θc, 0, θl) = −θc (1− x∗) + θl
(
1−
√

1− x∗
)√

2− x∗ +
1√
x∗
.

Recall that, for any real β and −1 < x < 1 :

(1 + x)β =

∞∑
k=0

(
β

k

)
xk = 1 + βx+

β(β − 1)

2!
x2 + · · ·

(1− x)
1
2 = 1− 1

2
x− 1

8
x2 +O(x3)
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so that

Ĉ(α∗; θc, 0, θl)

= −θc + θcx
∗ + θl

(
1−

(
1− 1

2
x∗ − 1

8
x∗2 +O(x∗3)

))√
2

(
1− 1

4
x∗ − 1

32
x∗2 +O(x∗3)

)
+

1√
x∗

= −θc + θcx
∗ + θl

(
1

2
x∗ +

1

8
x∗2 +O(x∗3)

)√
2

(
1− 1

4
x∗ − 1

32
x∗2 +O(x∗3)

)
+

1√
x∗

= −θc +
1

2

(
2θc +

√
2θl

)
x∗ +

1√
x∗
− θlO(x∗3)

Substituting

x∗ =
(

2θc +
√

2θl

)−2/3
+O

(
θl

(
2θc +

√
2θl

)−3
)

we get

Ĉ(α∗; θc, 0, θl) = −θc +
1

2

(
2θc +

√
2θl

)1/3
+
(

2θ1 +
√

2θl

)1/3
+O

(
θl

(
2θ1 +

√
2θl

)−2
)

= −θc +
3

2

(
2θc +

√
2θl

)1/3
+O

(
θl

(
2θc +

√
2θl

)−2
)

Notice that, for L = 2, the formula is exact for θl = 0. It also has higher accuracy because the

term in x∗2 falls out and thus this expression has smaller error!

7.2.3 For L = 2 and θg = 0: square root is a lower bound

Simplify the FOC:

M̂B = θcLα
L−1 − θg

αL−1
(
L
(
1− α2

)
− α

)
(1− α)1/2 (1 + α)3/2

+ θl
Lα2L−1 (1− α) (1 + α) +

(
1− α2L

)
(1− α2L)1/2 (1− α)1/2 (1 + α)3/2

and define

g(α;L) =
1− αL

1− α
=

L−1∑
k=0

αk (55)

then

M̂B3 = θl
Lα2L−1 (1− α) (1 + α) +

(
1− αL

) (
1 + αL

)
(1− αL)1/2 (1 + αL)1/2 (1− α)1/2 (1 + α)3/2

= θl
Lα2L−1 (1− α) (1 + α) + (1− α) g(α)

(
1 + αL

)
((1− α) g(α))1/2 (1 + αL)1/2 (1− α)1/2 (1 + α)3/2

= θl
Lα2L−1 (1 + α) + g(α)

(
1 + αL

)
g(α)1/2 (1 + αL)1/2 (1 + α)3/2
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For L = 1 : g(α) = 1

M̂B3 = θl

For L = 2 : g(α) = 1 + α

M̂B3 = θl
2α3 (1 + α) + (1 + α)

(
1 + α2

)
(1 + α)1/2 (1 + α2)1/2 (1 + α)3/2

= θl
2α3 +

(
1 + α2

)
(1 + α2)1/2 (1 + α)

= θl
(α+ 1)

(
2α2 − α+ 1

)
(1 + α2)1/2 (1 + α)

= θl

(
2α2 − α+ 1

)
(1 + α2)1/2

f3 =

(
2α2 − α+ 1

)
(1 + α2)1/2

f ′3 =

(
1 + α2

)1/2
(4α− 1)−

(
2α2 − α+ 1

)
1
22α

(
1 + α2

)−1/2

(1 + α2)

=

(
1 + α2

)
(4α− 1)−

(
2α2 − α+ 1

)
α

(1 + α2)3/2
=

(
2α3 + 3α− 1

)
(1 + α2)3/2

f ′′3 =

(
1 + α2

)3/2 (
6α2 + 3

)
−
(
2α3 + 3α− 1

)
3
22α

(
1 + α2

)1/2
(1 + α2)3

=

(
1 + α2

) (
6α2 + 3

)
−
(
2α3 + 3α− 1

)
3α

(1 + α2)5/2
=

3 (α+ 1)

(1 + α2)5/2
> 0

Two Taylor approximations for M̂B3 = f3, one around α = 0, the other around α = 1 :

f3 = 1− α+
3

2
α2 + o(α2)

f3 =
√

2 +
√

2(α− 1) +
3
√

2

2 · 4
(α− 1)2 + o((α− 1)2)

=
√

2α+ o(α− 1)

=

√
2

8

(
3 + 2α+ 3α2

)
+ o((α− 1)2)

Given that f3 is convex, the first order approximation is a lower bound (and so is the second order

over the interval [0, 1]):

√
2α <

√
2

8

(
3 + 2α+ 3α2

)
< f3,

as shown in green in Figure 22. In addition, we have the following bounds (in red in Figure 22):

1√
2

(
2α2 − α+ 1

)
< f3 =

(
2α2 − α+ 1

)
(1 + α2)1/2

<
(
2α2 − α+ 1

)
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Figure 22: Bounds on the marginal local capacity benefit for L = 2.

Hence, for L = 2 with θg = 0 we have

2θcα+
√

2θlα < M̂B =
(

2θ1 +
√

2θl

)
α+O((α− 1)2) =

α

(1− α2)3/2

So that

2θc +
√

2θl =
1

(1− α2)3/2
< 2θc +

√
2θl +O

(
(α∗ − 1)2

α∗

)
=

1

(1− α∗2)3/2

or

α =

√
1−

(
2θc +

√
2θl

)−2/3
≤ α∗

We also have (accurate for small α) and correct for α < 0.75 (and even a little higher):

f3 > 1− α

so

2θcα+ θl

(
1− α+

3

2
α2

)
< M̂B + o(θlα

3) < M̂B =
α

(1− α2)3/2
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Expand M̂C :

M̂C = f =
α

(1− α2)3/2

f ′ =

(
1− α2

)3/2 − α3
2(−2α)

(
1− α2

)1/2
(1− α2)3 =

(
2α2 + 1

)
(1− α2)5/2

f ′′ =

(
1− α2

)5/2
(4α)−

(
2α2 + 1

)
5
2(−2α)

(
1− α2

)3/2
(1− α2)5 =

3α
(
2α2 + 3

)
(1− α2)7/2

f (3) =

(
1− α2

)7/2
3
(
6α2 + 3

)
− 3α

(
2α2 + 3

)
7
2(−2α)

(
1− α2

)5/2
(1− α2)7 =

3
(
24α2 + 8α4 + 3

)
(1− α2)9/2

Hence linear Taylor is accurate up to second degree:

M̂C = α+O(α3)

Solve first order, and we must thus have: 1 > 2θc − θl and θl < 1− 2θc + θl or: 0 < 1− 2θc for any

θl > 0.

M̂B = 2θcα+ θl (1− α) +O(α3) = M̂C = α+O(α3)

⇔ α∗ =
θl

1− 2θc + θl
+O

((
θl

1− 2θc + θl

)3
)

Second order solution would give:

2θcα+ θl

(
1− α+

3

2
α2

)
= α

⇔ 3θ3α
2 − 2 (1− 2θc + θl)α+ 2θ3 = 0

⇔ α =
(1− 2θc + θl)±

√
(1− 2θc + θl)

2 − 3 · 2θl
3θl

7.3 Capacitated Solutions for L > 2

7.3.1 Lagrange Series for L > 2 for θg = 0

aLαL−1 + c
Lα2L−1 (1− α)1/2

(1− α2L)1/2 (1 + α)1/2
+ c

(
1− α2L

)1/2
(1− α)1/2 (1 + α)3/2

=
α

(1− α2)3/2

aLαL−1 + c
Lα2L−1

(
1− α2

)1/2
(1− α2L)1/2 (1 + α)

+ c
(1− α)

(
1− α2L

)1/2
(1− α2)3/2

=
α

(1− α2)3/2
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Set x = 1− α2, then α2 = (1− x) and α = (1− x)1/2 and multiplying by x3/2

aL (1− x)(L−1)/2 + c
L (1− x)(2L−1)/2

(
1− (1− x)1/2

)1/2

(
1− (1− x)L

)1/2 (
1 + (1− x)1/2

)1/2

+c

(
1− (1− x)1/2

)(
1− (1− x)L

)1/2

x3/2
=

(1− x)1/2

x3/2

aLx3/2 (1− x)(L−1)/2 + cx3/2
L (1− x)(2L−1)/2

(
1− (1− x)1/2

)1/2

(
1− (1− x)L

)1/2 (
1 + (1− x)1/2

)1/2

+c
(

1− (1− x)1/2
)(

1− (1− x)L
)1/2

= (1− x)1/2

Dividing by (1− x)1/2

aLx3/2 (1− x)(L−2)/2 + cx3/2
L (1− x)(2L−1)/2

(
1− (1− x)1/2

)1/2

(1− x)1/2
(

1− (1− x)L
)1/2 (

1 + (1− x)1/2
)1/2

+
c
(

1− (1− x)1/2
)(

1− (1− x)L
)1/2

(1− x)1/2
= 1

and multiply second term’s numerator and denominator by
(

1 + (1− x)1/2
)1/2

L (1− x)(2L−1)/2
(

1− (1− x)1/2
)1/2

(1− x)1/2
(

1− (1− x)L
)1/2 (

1 + (1− x)1/2
)1/2

=
L (1− x)(2L−1)/2 x1/2

(1− x)1/2
(

1− (1− x)L
)1/2 (

1 + (1− x)1/2
)

where

(
1− (1− x)L

)1/2
=

(
L∑
k=1

(
L

k

)
(−1)k+1xk

)1/2

= x1/2

(
L∑
k=1

(
L

k

)
(−x)k−1

)1/2

and

(
1− (1− x)1/2

)(
1− (1− x)L

)1/2
=

(
1

2
x+

1

2!22
x2 +

3

3!23
x3 + · · ·

)( L∑
k=1

(
L

k

)
(−1)k+1xk

)1/2

= x

(
1

2
+

1

2!22
x+

3

3!23
x2 + · · ·

)(
Lx+ ...+ xL

)1/2
= x3/2

(
1

2
+

1

2!22
x+

3

3!23
x2 + · · ·

)(
L+ ...+ xL−1

)1/2
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are both analytic at x = 0. Denote:

h1(x) =

(
1

2
+

1

2!22
x+

3

3!23
x2 + · · ·

)
Thus, squaring both sides we arrive at

f(x) =

 aL (1− x)(L−2)/2 + c L(1−x)(2L−1)/2x1/2

(1−x)1/2(1−(1−x)L)
1/2

(1+(1−x)1/2)

+
ch1(x)(L+...+xL−1)

1/2

(1−x)1/2


2

x3 − 1

= A(x)x3 − 1

which is analytic at x = 0 and we seek f−1(0) by expanding around z0 = 0 where f(0) = −1 and

f ′(x) = 3x2A+ x3A′

f ′(0) = 0

f (2)(x) = 6xA+ 6x2A′ + x3A
′′

f (2)(0) = 0

f (3)(x) = 6A+ x[]

f (3)(0) = 6A(0) = 6

(
aL+ c

[
L

L1/22
+

1
2L

1/2

1

])2

= 6
(
aL+ cL1/2

)2
= 6

(
aL+ cL1/2

)2
> 0

Given that f is analytic at x = 0 with f (0) = −1 and f ′(0) = f (2)(0) = 0 and f (3)(0) > 0

Lagrange applies in modified form as:

f−1(z) = z0 +

∞∑
n=1

1

n!

[
dn−1

dzn−1

(
z − z0

[f(z)− f(z0)]1/3s

)n]∣∣∣∣∣
z=z0

(z − f(z0))n

x∗ = f−1(0) =
∞∑
n=1

1

n!

[
lim
z→0

dn−1

dzn−1

(
z

(f(z) + 1)1/3

)n]

Consider

F (x) =
x

(f(x) + 1)1/3
=

x

A1/3x
= A−1/3

=

 aL (1− x)(L−2)/2 + c L(1−x)(2L−1)/2

(1−x)1/2(L+...+xL−1)1/2(1+(1−x)1/2)

+c

(
1
2

+ 1
2!22

x+ 3
3!23

x2+···
)
(L+...+xL−1)

1/2

(1−x)1/2


−2/3
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Term n = 1:

a1 = lim
z→0

F (x) = A(0)−1/3 =
(
aL+ cL1/2

)−2/3

α∗1 =

√
1−

(
Lθc +

√
Lθl

)−2/3

Term n = 2:

a2 =
1

2!

d

dz
A−2/3 =

1

2

d

dz
[]−4/3 =

−2

3
[]−7/3[]′

where []′ is the sum of the following four terms, each evaluated at x = 0:

First: aL
L− 2

2
(1− x)(L

2
−2) → aL

L− 2

2

Second: c
L2L−1

2 (1− x)(L− 3
2

)

(1− x)1/2 (L+ ...+ xL−1)1/2
(

1 + (1− x)1/2
) → c

L2L−1
2

L1/22
= c
√
L

2L− 1

4

Third:

c

L (1− x)(2L−1)/2


−1

2 (1− x)−
1
2
(
L+ ...+ xL−1

)1/2 (
1 + (1− x)1/2

)
+ (1− x)1/2 1

2

(
L+ ...+ xL−1

)−1
2

(∑L
k=2−

(
L

k

)
(−x)k−2

)(
1 + (1− x)1/2

)
+ (1− x)1/2 (L+ ...+ xL−1

)1/2 (−1
2 (1− x)−

1
2

)


(1− x) (L+ ...+ xL−1)

(
1 + (1− x)1/2

)2

→ c

L

[
−1

2L
1/2 (2) + 1

2 (L)
−1
2

(
−

(
L

2

))
(2) + (L)1/2 (−1

2

)]
(1) (L) (2)2

= c
1

4

[
−L1/2 − L

1
2

(L− 1)

2
− L1/2 1

2

]
= −cL

1/2

4

[
1 +

L

2

]
= −c

√
L
L+ 2

8
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And Fourth: d
dxc

(
1
2

+ 1
2!22

x+ 3
3!23

x2+···
)
(L+...+xL−1)

1/2

(1−x)1/2
=

c

(
1

2!22
+ 1

23
x+ · · ·

) (
L+ ...+ xL−1

)1/2
+
(

1
2 + 1

2!22
x+ 3

3!23
x2 + · · ·

)
1
2

(
L+ ...+ xL−1

)−1/2

(∑L
k=2−

(
L

k

)
(−x)k−2

)
(1− x)1/2

→ c

[
1

2!22
L1/2 +

1

2

1

2
L−1/2

(
−L(L− 1)

2

)]
= cL1/2 1

8
[2− L]

+c

(
1

2
+

1

2!22
x+

3

3!23
x2 + · · ·

)(
L+ ...+ xL−1

)1/2 1

2
(1− x)−3/2

→ cL1/2 1

4

So:

a2 =
−2

3

(
Lθc +

√
Lθl

)−7/3
(
aL

L− 2

2
+ c
√
L

(
2L− 1

4
− L+ 2

8
+

2− L
8

+
1

4

))
=
−2

3

(
Lθc +

√
Lθl

)−7/3
(
aL

L− 2

2
+ c
√
L
L

2

)
=
−1

3

(
Lθc +

√
Lθl

)−7/3 (
aL (L− 2) + c

√
LL
)

Hence:

α∗ =

√
1−

(
Lθc +

√
Lθl

)−2/3
+
L

3

(
Lθc +

√
Lθl

)−7/3 (
(L− 2) θc + θl

√
L
)

+ · · ·

α∗ =

√
1−

(
Lθc +

√
Lθl

)−2/3
+
L

3

(
Lθc +

√
Lθl

)−5/3
+
L

3

(
Lθc +

√
Lθl

)−7/3
(−2θc) + · · ·

which is exact when L = 2 and θl = 0. (For it to coincide with the formula for L = 2 and θl > 0,

we would need to calculate one more term (which probably would then offset the term in the power

−7/3).

The associated scaled cost is, setting α∗
2

= 1− x∗ = 1−
(
Lθc +

√
Lθl

)−2/3

Ĉ(α∗; θc, 0, θl) = −θcα∗L + θl

√
1− α
1 + α

(1− α2L) +
1√

1− α2

= −θcα∗L + θl

√
(1− α2) (1− α2L)

1 + α
+

1√
1− α2

= −θc (1− x∗)L/2 + θl

√
x∗
(

1− (1− x∗)L
)

1 +
√

1− x∗
+

1√
x∗
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Recall that for −1 < x < 1 :

(1− x)
L
2 = 1− L

2
x+

L (L− 2)

8
x2 +O(x3)

(1− x)L = 1− Lx+
L (L− 1)

2
x2 +O(x3)

(1− x)
1
2 = 1− 1

2
x− 1

8
x2 +O(x3)

we have

Ĉ(α∗; θc, 0, θl)

= −θc
(

1− L

2
x∗ +

L (L− 2)

8
x∗2 +O(x∗3)

)
+ θl

√
x∗
(
Lx∗ − L(L−1)

2 x∗2 +O(x∗3)
)

1 + 1− 1
2x
∗ − 1

8x
2 +O(x∗3)

+
1√
x∗

= −θc +
Lθc
2
x∗ +

1√
x∗
− θcL (L− 2)

8
x∗2 +O(θcx

∗3) + θl

x∗
√
L
(

1− (L−1)
2 x∗ +O(x∗2)

)
2
(
1− 1

4x
∗ − 1

16x
2 +O(x∗3)

)
= −θc +

Lθc
2
x∗ +

1√
x∗
− θcL (L− 2)

8
x∗2 +O(θcx

∗3) + θl

√
Lx∗

(
1− (L−1)

4 x∗ +O(x∗2)
)

2

(
1 +

1

4
x∗ +O(x∗2)

)
and

θl

x∗
√
L
(

1− (L−1)
2 x∗ +O(x∗2)

)
2
(
1− 1

4x
∗ − 1

16x
2 +O(x∗3)

) = θl

√
Lx∗

(
1− (L−1)

4 x∗ +O(x∗2)
)

2

(
1 +

1

4
x∗ +O(x∗2)

)
=

√
Lθl
2

x∗
(

1− (L− 2)

4
x∗ +O(x∗2)

)

Hence, setting x∗ =
(
Lθc +

√
Lθl

)− 2
3
+1

3

(
Lθc +

√
Lθl

)−7/3 (
2L (L− 2) θc + θl

√
L
(
1− 1

4 (2L+ 1) (L− 2)
))

Ĉ(α∗; θc, 0, θl) = −θc +
Lθc +

√
Lθl

2
x∗ +

1√
x∗
−

(
θcL+

√
Lθl

)
(L− 2)

8
x∗2 +O(x∗3)

= −θc +
3

2

(
Lθc +

√
Lθl

) 1
3 − L− 2

8

(
Lθc +

√
Lθl

)− 1
3

+O

((
Lθc +

√
Lθl

)−2
)

which is exact when L = 2 and θl = 0.

First-order expression for α∗ when α∗ → 0: Below we show that M̂B
′
3(0) = −1 for all L > 1,

hence a first order approximation around α = 0 of the optimality equations yields: , and we must

thus have: 1 > 2θc − θl and θl < 1− 2θc + θl or: 0 < 1− 2θc for any θl > 0.

M̂B = Lθcα
L−1 + θl (1− α) +O(α2) = M̂C = α+O(α3)
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For L > 2, the term in θc is lower order and we get:

α∗ =
θl

1 + θl
+O

((
θl

1 + θl

)2
)

7.3.2 General L > 2 and θg = 0: square root is an asymptotic upper bound

Does the lower bounding argument for L = 1, 2 extend to L > 2? No. For that to work we would

need that f3 >
√
Lα, which is not the case. To see why: We do know that f3 is convex (so any

cord is a lower bound) with f3(1) =
√
L. But f ′3(1) 6=

√
L (we will also compute f ′3(0) because we

need that for a first-order expansion of small α∗)

f
′
3 =

d

dα

Lα2L−1 (1 + α) + g(α)
(
1 + αL

)
g(α)1/2 (1 + αL)1/2 (1 + α)3/2

=
d

dα

N

D

N ′ = L (2L− 1)α2L−2 (1 + α) + Lα2L−1 + g(α)LαL−1 + g′(α)
(
1 + αL

)
= Lα2L−2 (2L− 1 + 2Lα) + g(α)LαL−1 + g′(α)

(
1 + αL

)
D′ =

d

dα

(
g(α)

(
1 + αL

)
(1 + α)3

)1/2

=
1

2

(
g(α)

(
1 + αL

)
(1 + α)3

)−1/2

×
(
g′(α)

(
1 + αL

)
(1 + α)3 + g(α)

(
LαL−1

)
(1 + α)3 + g(α)

(
1 + αL

)
3 (1 + α)2

)
and

g(α) =

L−1∑
k=0

αk → g(0) = 1 and g(1) = L

g′(α) =
L−1∑
k=1

kαk−1 → g′(0) = 1 and g′(1) =
(L− 1)L

2

so that

N(0) = 1 and N(1) = L2 + L (2) = 4L

N ′(0) = 1 and N ′(1) = L (2L− 1 + 2L) + LL+ (L− 1)L = 6L2 − 2L

D(0) = 1 and D(1) =
(
L24

)1/2
D′(0) =

1

2
(1 + 3) = 2

D′(1) =
1

2

(
L24

)−1/2
(

(L− 1)L

2
24 + L (L) 23 + L (2) 3 (2)2

)
=

(L− 1)L8 + L (L) 8 + 8L3

8L1/2
=

2L+ 2L2

L1/2
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and

f ′3 (0) =
D(0)N ′(0)−D′(0)N(0)

D2(0)
=

1− 2

1
= −1

f
′
3(1) =

D(1)N ′(1)−D′(1)N(1)

D2(1)
=

(
L24

)1/2 (
6L2 − 2L

)
− 2L+2L2

L1/2 4L

L24

=

(
L24

)1/2 (
3L2 − L

)
−
(
2L+ 2L2

)
2L1/2

L23

= L1/2 22 (3L− 1)− (2 + 2L) 2

23

= L1/2 (3L− 1)− (1 + L)

2

= L1/2 (L− 1)

Thus, we have that

f3 =
√
L+
√
L (L− 1) (α− 1) + o(α− 1)

>
√
L+
√
L (L− 1) (α− 1)

which is affine, but not proportional in α. Hence the lower bounding argument above does not

extend to L > 2 (we knew it doesn’t for θl = 0).

But it is easily numerically verified that for L > 2 and α ≥ 1
2 , we have that

f3(α)

α
<
f3(1)

1
=
√
L

Hence, if θg = 0 and L > 2 and if we knew that α∗ > 1
2 , then α∗ solves 1

(1−α∗2)3/2
= Lθc (α∗)L−2 +

θl
f3(α∗)
α∗ < Lθc +

√
Lθl = 1

(1−α2
0)

3/2 , so that α0 ≥ α∗. Given that α0 is asymptotically correct, we

know that the square root is a tight lower bound asymptotically; we cannot establish a clear zone

on α0 above which it is a lower bound (for that we would need to know α∗).

7.3.3 Lagrange Series for L > 2: General case with θg > 0

Lagrange for L > 2 with b > 0 around α = 1. The optimality equations are:

aLαL−1 − bLα
L−1 (1− α) (1 + α)− αL

(1− α)1/2 (1 + α)3/2

+c
Lα2L−1 (1− α)1/2

(1− α2L)1/2 (1 + α)1/2
+ c

(
1− α2L

)1/2
(1− α)1/2 (1 + α)3/2

=
α

(1− α2)3/2
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Rework:

aLαL−1 − b
αL−1

(
L
(
1− α2

)
− α

)
(1− α)

(1− α2)3/2

+c
Lα2L−1

(
1− α2

)1/2
(1− α2L)1/2 (1 + α)

+ c
(1− α)

(
1− α2L

)1/2
(1− α2)3/2

=
α

(1− α2)3/2

Multiply both sides by α−1
(
1− α2

)3/2
:

aLαL−2
(
1− α2

) 3
2 − bαL−2

(
L
(
1− α2

)
− α

)
(1− α)

+c
Lα2L−2

(
1− α2

)2
(1− α2L)1/2 (1 + α)

+ c
(1− α)

(
1− α2L

)1/2
α

= 1

Set x = 1− α2, then α2 = (1− x) and α = (1− x)
1
2

aL (1− x)
L−2
2 x

3
2 − b (1− x)

L−2
2

(
Lx− (1− x)

1
2

)(
1− (1− x)

1
2

)

+c
L (1− x)L−1 x2(

1− (1− x)L
) 1

2
(

1 + (1− x)
1
2

) + c

(
1− (1− x)

1
2

)(
1− (1− x)L

) 1
2

(1− x)
1
2

= 1

We showed in the case of L > 2 and θg = 0, that the terms in c have a factor into x3/2. To go

further with z0 = 0 and f(z0) = 0, the function must be analytic around z0 and the above is not

due to x3/2. To make it analytic, we need to square terms, but smartly by collecting all terms in

x3/2 as before:

(
1− (1− x)L

)1/2
=

(
L∑
k=1

(
L

k

)
(−1)k+1xk

)1/2

= x1/2

(
L∑
k=1

(
L

k

)
(−x)k−1

)1/2

= x
1
2
(
L+ ...+ xL−1

)1/2
(

1− (1− x)1/2
)

=

(
1

2
x+

1

2!22
x2 +

3

3!23
x3 + · · ·

)
= x

(
1

2
+

1

2!22
x+

3

3!23
x2 + · · ·

)
= xh1(x)

aL (1− x)
L−2
2 + c

L (1− x)(L−1)

(L+ ...+ xL−1)1/2
(

1 + (1− x)
1
2

) +
ch1(x)

(
L+ ...+ xL−1

)1/2
(1− x)1/2

x3/2

= 1 + b (1− x)
L−2
2 (Lx+ xh1(x)− 1)xh1(x)

= 1− b (1− x)
L−2
2 h1(x)x+ b (1− x)

L−2
2 (L+ h1(x))h1(x)x2
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Squaring both sides yields

f(x) =

aL (1− x)
L−2
2 + c

L (1− x)(L−1)

(L+ ...+ xL−1)1/2
(

1 + (1− x)
1
2

) +
ch1(x)

(
L+ ...+ xL−1

)1/2
(1− x)1/2

2

x3

−
[
1− b (1− x)

L−2
2 h1(x)x+ b (1− x)

L−2
2 (L+ h1(x))h1(x)x2

]2

f(x) = Ax3 −
[
1− bB1x+ bB2x

2
]2

which is analytic at x = 0 and we seek f−1(0) by expanding around z0 = 0 where f(0) = −1.

Notice that:

B1(x) = (1− x)
L−2
2 h1(x)→ B1(0) =

1

2

B′1(x) = −L− 2

2
(1− x)

L−4
2 h1(x) + (1− x)

L−2
2

(
1

2!22
+

3

3!22
x+ · · ·

)
B′1(0) =

1

8
− L− 2

4
=

5− 2L

8

B”
1(x) =

L− 2

2

L− 4

2
(1− x)

L−6
2 h1(x)− 2

L− 2

2
(1− x)

L−4
2

(
1

2!22
+

3

3!22
x+ · · ·

)
+ (1− x)

L−2
2

(
3

3!22
+ · · ·

)
B”

1(0) =
1

8
− L− 2

8
+

(L− 2) (L− 4)

2
=

4L2 − 25L+ 35

8

B2(x) = (1− x)
L−2
2 (L+ h1(x))h1(x)→ B2(0) =

(
L+

1

2

)
1

2
=

2L+ 1

4

B
′
2(x) = −L− 2

2
(1− x)

L−4
2 (L+ h1(x))h1(x) + (1− x)

L−2
2

(
1

2!22
+

3

3!22
x+ · · ·

)
h1(x)

+ (1− x)
L−2
2 (L+ h1(x))

(
1

2!22
+

3

3!22
x+ · · ·

)

B′2(0) = −L− 2

2

(
L+

1

2

)
1

2
+

1

2!22

1

2
+

(
L+

1

2

)(
1

2!22

)
= −L− 2

2

(
L+

1

2

)
1

2
+

1

2!22
+ L

(
1

2!22

)
=

1

2
L− 1

4
L2 +

3

8
=

3 + 4L− 2L2

8

We can re-use some results from the case of L > 2 and θg = 0 above

f ′(0) = −2 [1] [−bB1(0)] = −2 [1]

[
−b1

2

]
= b > 0
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as before for L = 2.

f (2)(0) = −2b2 [−B1(0)] [−B1(0)]− 2b [1]
[
−2B

′
1(0) + 2B2(0)

]
= −2b2

[
−1

2

] [
−1

2

]
− 2b [1]

[
−2

5− 2L

8
+ 2

2L+ 1

4

]
= −b2 1

2
− 2b

[
3

2
L− 3

4

]
= −1

2
b2 − b6L− 3

2
= −b (b+ 6L− 3)

2
,

as before for L = 2.

f (3)(0) = 6A(0) + 12b2
[
−B′1(0) +B2(0)

]
[B1(0)]− 2b

[
−3B

′′
1 (0) + 6B′2(0)

]
= 6

[
aL+ c

L

L1/22
+
cL1/2

2

]2

+ 12b2
[
−5− 2L

8
+

2L+ 1

4

]
1

2

−2b

[
−3

4L2 − 25L+ 35

8
+ 6

3 + 4L− 2L2

8

]
= 6

(
aL+ c

√
L
)2

+ b2
3

4
(6L− 3) + b

3
(
8L2 − 33L+ 29

)
4

as before for L = 2.

Given that f is analytic at x = 0 with f ′(0) > 0 Lagrange applies as:

f−1(z) = z0 +

∞∑
n=1

1

n!

[
dn−1

dzn−1

(
z − z0

f(z)− f(z0)

)n]∣∣∣∣
z=z0

(z − f(z0))n

x∗ = f−1(0) =
∞∑
n=1

1

n!

[
lim
z→0

dn−1

dzn−1

(
z

f(z) + 1

)n]
Term n = 1:

a1(0) =
1

f ′(0)
=

1

b

Term n = 2:

a2(0) = − f (2)(0)

(f (1)(0))3
= −
− b(b+6L−3)

2

b3
=

(b+ 6L− 3)

2b2
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Term n = 3:

a3(0) =
24f ′′2(0)− 8f ′(0)f

(3)
(0)

5!(f ′(0))5

=

24
(
− b(b+6L−3)

2

)2
− 8b

(
6
(
aL+ 3

2c
√
L
)2

+ b2 3
4 (6L− 3) + b

3(8L2−33L+29)
4

)
5!b5

=

6b (b+ 6L− 3)2 − 8

(
6
(
aL+ 3

2c
√
L
)2

+ b2 3
4 (6L− 3) + b

3(8L2−33L+29)
4

)
5!b4

=
−2
(
aL+ 3

2c
√
L
)2

5b4
+

6 (b+ 6L− 3)2 − 2
(
3b (6L− 3) + 3

(
8L2 − 33L+ 29

))
5!b3

=
−2
(
aL+ c

√
L
)2

5b4
+
b2 + (6L− 3) b+ 28L2 − 3L− 20

5 · 4b3

Thus, up to three terms where a = θc (cost delta), b = θg (global capacity), and c = θl (local

capacity):

x∗1 =
1
1
2b
⇒ α∗ =

√
1−

(
1

2
θg

)−1

[cannot be further expanded b/c not analytic]

x∗1 =
1

b
⇒ α∗ =

√
1− θ−1

g

x∗2 =
1

b
+

1

2!

(b+ 6L− 3)

2b2

x∗3 =
1

b
+

1

2!

(b+ 6L− 3)

2b2
+
b2 + (6L− 3) b+ 28L2 − 3L− 20

5!b3
−

(
aL+ c

√
L
)2

15b4
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