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We investigate how dynamic resource substitution in service systems impacts capacity requirements and
responsiveness. Inspired by the contrasting network strategies of FedEx and United Parcel Service (UPS),
we study when two service classes (e.g., express or regular) should be served by dedicated resources (e.g., air or
ground) or by an integrated network (e.g., air also serves regular). Using call center terminology, the question
is whether to operate two independent queues or one N-network. We present analytic expressions for the delay
distributions and the value of network integration through partial resource pooling. These show how the value
of network integration depends on service quality (speed and reliability of service) and demand characteristics
(volume averages and covariance matrix). Our results suggest that network integration is of little value and
operating dedicated networks is a fine strategy if the firm primarily serves express requests with high reliability
and if the correlation with regular requests is not strongly negative. In contrast, network integration offers
significant gains for firms serving primarily regular requests, almost independent of correlation. Our analysis
provides the intuition behind these findings in terms of three main drivers of integration value: arrival pooling,
the substitution effect, and the correlation effect.
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To provide the reader with a concrete example
of our research question, we consider two world-
class service firms—FedEx and United Parcel Service
(UPS)—which operate in the same industry yet use
contrasting operating systems, as indicated by the fol-
lowing quotations:

1. Introduction and Summary

In this paper, we study the value of dynamic resource
substitution in service systems. Using a stylized ana-
lytic model of a firm that serves two separate markets,
we investigate whether these two markets should be
served by dedicated resources or by one integrated
network. Despite Frederick Taylor’s quest, there is no
one best way to design every operation; rather, the
appropriate network design depends on the strategy
and market characteristics. Consequently, our main
focus is to generate qualitative managerial insight by
explaining how the value of integration depends on
demand characteristics (including mean and covari-
ances) and service guarantees. Although our model
is too stylized to serve as a precise decision support
tool, it still represents a notoriously hard problem in
queueing networks that is intractable via exact anal-
ysis. We present an approximate analysis that yields

... We strongly believe that the optimal way to serve
very distinct market segments, such as express and
ground, is to operate highly efficient, independent net-
works with different facilities, different cut-off times
and different delivery commitments. (FedEx Corpora-
tion 2000)
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Our integrated air and ground network enhances
pickup and delivery density and provides us with the
flexibility to transport packages using the most effi-
cient mode or combination of modes. (UPS 1999, p. 4)

The essential question here is whether different ser-

closed-form expressions and an intuitive explanation
of the impact of key parameters, including covari-
ances. The approximation is appropriate for highly
congested systems, which is exactly when resource
substitution is useful.

vice classes should be served by separate networks or
by an integrated network. Serving different markets
by separate (or dedicated) networks allows resource
specialization and complexity reduction. In contrast,
serving multiple markets with a single network enjoys
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Figure 1 We Study Whether Two Separate Markets Should Be Served
by Separate Resources or by an Integrated Network Where

Two Markets Dynamically Share the Flexible Resource

)

Express ——» o Fast >
P T flexible >
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Regular ——» - > Slow

®

Service classes Storage buffers Service resource types

economies of scale and economies of scope derived
from resource sharing.

To answer our research question, we study the
impact of integration using the stylized processing
network of Figure 1 that captures resource special-
ization, resource sharing, and (statistical) economies
of scale. In a product-focused network (no dashed
arrow in Figure 1) two separate markets, or service
classes, are processed on demand by their specialized
resource type. Because of finite resource capacity, ser-
vice requests may have to wait in storage buffers
before being served. Quality of service, as measured
by responsiveness or delay, is a natural key perfor-
mance indicator for a service operation, and we thus
adopt a dynamic model to evaluate its dependence
on network design. The express class is time sensi-
tive and is served by a fast resource, whereas the
regular class is served by a slow resource. (The fast
resource will also be referred to as server 1, and the
slow resource will be called server 2. Similarly, the
express class is labeled class 1, and class 2 refers to
the regular class.) In the integrated network, the slow
resource can be dynamically substituted by the fast
one, as indicated by the dashed arrow in Figure 1.

The option value of network integration is the incre-
mental performance of the integrated network over
the dedicated network. Given that the integrated net-
work can emulate its dedicated counterpart by choos-
ing not to process regular requests with the fast server,
the option value is nonnegative. Our analysis seeks to
identify the conditions that yield a sufficiently high
option value (so that it exceeds the costs of net-
work restructuring, integration, and other complexi-
ties, which we do not model). The option value here
stems from using occasional excess capacity at the
fast server to process regular requests whenever the
express queue is empty, thereby reducing the load of
the slow resource. (Given that it can serve two ser-
vice classes, the fast server is also a flexible resource.)
We will refer to this occasional and inherently asym-
metric resource substitution as partial resource pool-
ing. This associated efficiency gain can be translated
either into better quality of service for the regular class
if capacities of the resources are kept unchanged, or

into investment savings from reduction in slow-server
capacity if service quality is kept unchanged. We ana-
lyze both. In addition, our third analysis combines
both effects by optimizing capacity.

The fundamental tension in the model is driven by
two market segments with different service require-
ments where the resources of serving the more de-
manding segment are more than adequate for serving
the other segment. This applies to many service set-
tings, including call centers, entertainment parks, and
professional services such as technical support, health
care, and legal advice. Indeed, the central question of
this paper can be stated using call center terminol-
ogy as whether one should operate two independent
queues or one N-network. Clearly, the N-network
enjoys the benefits of skill-based routing. We investi-
gate whether these benefits are high enough to com-
pensate potential costs of restructuring. To illustrate
our findings throughout the paper, we will use the
motivating FedEx-UPS example because our model
covers two important sources of integration value in
their naturally heavily loaded systems. The first one
is the dynamic substitution of fast transportation for
a slow transportation mode for long-haul traffic origi-
nating from one node or hub in the physical network.
The fast resources would be airplanes that can serve
both markets while the slow trucks would serve only
the regular market. The second source of integration
value stems from dynamic transportation mode sub-
stitution for local traffic around a hub when express
requests with nearby destinations could go by truck.
That model with dynamic downward substitution is
the mirror image of Figure 1, and our analysis can
be modified to handle that case. A third source of
integration savings in the FedEx-UPS example that is
not covered by our model is the reduction in local
transportation costs due to increased spatial density
of pickups and deliveries. Valuing this source requires
a more detailed spatial model of the distribution sys-
tems and is studied by Smilowitz and Daganzo (2007).
In many ways, our model and that of Smilowitz and
Daganzo (2007) are complementary, each focusing on
different dimensions of a rich problem. Nevertheless,
we will see that both models find similar qualitative
conclusions.

To properly value the integrated service network,
we must capture the crucial impact of demand corre-
lation on capacity requirements and response times.
This is a notoriously hard problem in queueing
networks that is intractable via exact analysis. The
methodological novelty in our paper is in the sequen-
tial application of two powerful analytic approxima-
tions: first we adopt a heavy-traffic approximation to
derive a correlated Brownian model of the queue-
ing network. Second, we apply a large deviations
approximation to the (still intractable) correlated
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Brownian model. The final results are closed-form
analytical expressions for the tail delay probabilities
under heavy, correlated loading, exactly the conditions
where integration would derive value. We also illus-
trate the impact of nonbasic activities in Brownian
models, cf. §4.

From a broader perspective, we address the strate-
gic, high-level question of network integration with
fairly sophisticated Brownian and large deviations
approximations for queueing systems. Although these
approximations are too crude to drive precise deci-
sions, they are appropriate for preliminary analysis
to generate insight and directionally correct results.
Indeed, they yield novel analytic expressions that
identify the key drivers and allow comparative static
analysis. In addition, this methodology provides a
graphical representation to explain nonobvious results
in an intuitive manner, as the remainder of this section
will summarize.

Integration through partial resource pooling obvi-
ously benefits the regular class, so one expects the
value of integration to depend on the service mix,
defined as the fraction of the regular demand to total
demand. To analyze the mix dependence of inte-
gration value we consider so-called “express firms,”
which are firms similar to FedEx that primarily serve
express requests, and “regular firms,” which are simi-
lar to UPS and primarily serve regular requests. There
are two conflicting forces that determine which type
of firm would benefit most from integration: A regu-
lar firm serves many regular requests, so it has much
to gain from integration. At the same time, it has rela-
tively little fast-server capacity, so it has little to gain.
Our results show that the first force dominates: net-
work integration offers significant gains for regular
firms, almost independent of the correlation between
express and regular requests. In contrast, operating
dedicated networks is a fine strategy for express firms
with high service reliability unless express and reg-
ular requests are strongly negatively correlated. Our

Figure 2
Substitution Is in Effect
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analysis thus supports the different network strategies
of FedEx and UPS.

To provide intuition behind these findings, we iden-
tify three main drivers of value of integration: arrival
pooling, the substitution effect, and the correlation
effect. Arrival pooling means that the standard devi-
ation o of the arrival process grows sublinearly with
the mean arrival rate A because more opportunities
exist for independent, individual fluctuations to par-
tially offset each other. (For example, a square-root
relationship holds for Poisson arrivals.) The fact that
high-volume arrivals feature relatively less uncer-
tainty reduces the relative amount of capacity u
needed for a given service level. To capture these sta-
tistical economies of scale, we introduce, inspired by
inventory theory, the concept of standardized excess
capacity z; = (u; — A;)/0; for service class i as the
comparable measure of excess capacity. We show that
the standardized excess capacity to support a given
service level decreases in the arrival rate A;. This
means that an express firm has z; < z, whereas the
reverse relationship applies to a firm serving primar-
ily regular requests. Thus, although a regular firm
indeed has little fast-server capacity compared to
slow-server capacity, the relevant comparison is in
terms of standardized excess capacity, which has the
opposite order: z; > z,.

The substitution effect refers to the frequency of
resource substitution, which is greatly impacted by
the ratio of the standardized excess capacities z;/z,.
Consider the two opposite cases of large and small
ratio z,/z,, as illustrated in Figure 2. Our analysis
will show that z,/z, determines the slope of the drift
vector of the Brownian motion that approximates the
queue length vector Q and impacts the stationary
distribution of the queue length process. Intuitively,
the queus will be more likely to change in the direc-
tion of the drift vector. This means that the queue
vector is more likely to hit the vertical axis when the
standardized excess capacity of the flexible resource

Standardized Excess Capacity Ratio z, /z, Determines the Queue Drift Vector and the Likelihood of Hitting Boundary Q, = 0 When Resource
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Figure 3

With Highly Positive Correlation, Both Queues Tend to Move in Lockstep Along the Line with Positive Slope (Left) and Frequently Hit the

Vertical Axis for Regular Firms. Express Firms Require Strongly Negative Correlation for the Queues to Hit the Vertical Axis and Enjoy

Dynamic Substitution
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is high relative to that of the slow resource (i.e., z;/z,
is large). Then the express queue will be empty quite
often, resulting in frequent substitution of the fast
resource for its slow counterpart.! In contrast, when
Z,/z, is small, the horizontal axis will be visited more
often, the regular queue will be empty more often,
and resource substitution will be seldom. Combining
this substitution effect with arrival pooling explains
why the option value of resource substitution is high
for a regular firm like UPS (which has large z,/z,) but
low for an express firm like FedEx (small z,/z,).

It is intuitive that the value of dynamic resource
substitution increases as the correlations between
arrivals for the two classes becomes more negative.
We show, however, that the impact of correlation on
the value of integration is strongly mix-dependent,
and our analysis provides an intuitive explanation.
Consider a given queue length vector, as represented
by the point in Figure 3. With highly positive corre-
lation, the short-term deviations of both queues tend
to move in lockstep along the dashed line with posi-
tive slope (left) and will still frequently hit the verti-
cal axis for a regular firm. An express firm, however,
requires strongly negative correlation for the queue
length to hit the vertical axis frequently and enjoy
dynamic substitution. Combining the intuition from
the three effects explains the nonobvious result that
correlation has a strong (first-order) impact on the
value of integration for an express firm but is of sec-
ondary importance to a regular firm. In other words,
dynamic resource substitution is always valuable for
a regular firm but only with strong negative correla-
tion for an express firm.

The outline of this paper is as follows. After review-
ing related literature in the next section, we present

1 The arrow displayed on the vertical axis corresponds to “idling”
of the fast server when there are no express requests to process,
that is, Q; = 0. The fast server can then process regular requests,
which is represented by the direction of the downward arrow.

Express firm

the integrated service network model in §3. Section 4
derives the Brownian approximation and the large
deviations approximation. Our key analytic results for
the option value of network integration, the intuition,
and managerial implications are provided in §§5-8.
Finally, §9 concludes. All proofs as well as a mini-
mal discussion on large deviations analysis are in the
online appendix (provided in the e-companion).” The
online appendix also presents a detailed discussion of
the comparative statics of our results and a simulation
study.

2. Literature Review
In operations management, economies of scope stem-
ming from substitution have typically been studied in
an inventory (goods) setting using newsvendor mod-
els focusing on transshipment, product substitution,
commonality, and flexibility. Van Mieghem and Rudi
(2002) provide a unifying model of a newsvendor net-
work and apply it to our network of Figure 1, which
features “discretionary substitution” as referred to by
the authors. Similar to our results in §8, they con-
firm the intuition that integration allows the slow-
server capacity to be decreased while the fast-server
capacity is increased. The difference with our paper
is that any newsvendor model takes stockout proba-
bilities as the service criterion and focuses on pooling
as the benefit. In contrast, in a service network it is
natural to consider the dynamics of processing ser-
vice requests (rather than of stocking goods) and their
associated delay probabilities, which is naturally done
using queueing theory.

In queueing theory, our paper contributes to the
growing literature on resource pooling. The simplest

2 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.

org/.
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implementation of resource pooling serves homo-
geneous markets with one pool of interchangeable
resources. Basic textbooks show that this is better than
serving each market with a dedicated resource; see,
for example, p. 222 in Anupindi et al. (2005). In prac-
tice, markets and resources may be heterogeneous,
which reduces the value of resource pooling. Whether
to use specialized or flexible resources in real ser-
vice systems such as call centers, retail banking, and
health care has been studied by various authors; see,
for example, van Dijk (2002) and Gans et al. (2003)
and the references therein. The analytic study of
heterogeneous resource pooling in queueing systems
easily becomes analytically intractable so that approx-
imate analysis becomes a natural resort. A class of
approximate models, called Brownian models, was
proposed by Harrison (1988), was generalized in
Harrison (2000), and is applied here. Brownian mod-
els are powerful for studying various aspects of
dynamic control in queueing networks, including
dynamic resource substitution. Their validity is estab-
lished through heavy-traffic limit theorems; Whitt
(2002) provides an overview. One can study the
value of resource pooling using Harrison’s frame-
work. In that setting, the best possible performance is
achieved under the so-called complete resource pool-
ing assumption, which amounts to assuming that the
servers have sufficiently overlapping capabilities and
work collectively to the extent that they act as a single
super-server in the heavy-traffic limit. That is, pro-
cessing capacities of all resources are exchangeable in
the heavy-traffic limit, which naturally leads to excel-
lent system performance; see, for example, Harrison
(1988), Harrison and Lopez (1999), Bell and Williams
(2001), Ata and Kumar (2005), and Tezcan and Dai
(2008). Nevertheless, this assumption is unrealistic in
our asymmetric setting and would assume away the
problem studied in this paper; see §4.1 for further
discussion.

To study the value of integration we need the delay
tail probabilities in the integrated network whose
exact computation is intractable. We thus resort to
a large deviations analysis. Foley and McDonald
(2005a, b) study a network similar to ours under
Markovian assumptions and derive both rough and
sharp asymptotics. Although their approach is more
direct than ours, the Markovian assumptions do not
allow a study of the covariance effects of demand
(because Poisson processes are characterized by a
single parameter and cannot be negatively corre-
lated). In contrast, our Brownian model resulting from
the heavy-traffic approximation captures the entire
demand covariance matrix and offers the intuition
summarized in §1. Moreover, the large deviations
analysis of the resulting Brownian model leads to
explicit, simple-to-analyze formulas for the various

quantities of interest. Indeed, Avram et al. (2001)
study a variational problem that arises in the large
deviations analysis of such a Brownian model and
characterize its solution explicitly. We specialize their
results to our setting and characterize the tail behav-
ior of steady-state delays in our model and closed-
form expressions for various quantities of interest.

This paper also relates to network design, con-
tributing to understanding when a process should fol-
low a product layout with dedicated resources or a
process layout where products share resources. (Refer
to Anupindi et al. 2005 for a general overview and
Kulkarni et al. 2004 and Lu and Van Mieghem 2008
for recent analysis.)

Finally, this paper can be applied to transporta-
tion systems, as illustrated by our FedEx-UPS exam-
ple. Our focus is on substitution of transportation
modes; see chapter 14 of Chopra and Meindl (2004)
for a general overview. Another source of integration
gains in transportation systems would derive from
enhanced pickup and delivery density, which is stud-
ied by Smilowitz and Daganzo (2007). The authors
study value of integration and provide a modeling
framework for large-scale integrated networks that
starts with a mathematical programming approach
and then develops a continuous density approxima-
tion to minimize facility location and transportation
costs. The authors conclude from a case study that the
benefits of integration seems to be larger when the
regular demand exceeds the express demand. In con-
trast, our model is much simpler (and hence more
tractable), ignoring some aspects of the problem while
focusing on response time and correlation between
the two types of demand. Our model and that of
Smilowitz and Daganzo (2007) are complementary,
each focusing on different dimensions of a rich prob-
lem. In §§6-8, we will show that the qualitative con-
clusion of Smilowitz and Daganzo (2007) is supported
by our model as well.

3. An Integrated Service
Network Model

Consider the network illustrated in Figure 1 of two
resources serving requests from two different cus-
tomer classes that arrive randomly over time. Let A;
denote the average arrival rate of request of class i.
Requests of the express class, suitably labeled first
class or class 1, are time-sensitive, meaning that
such requests should be served within a short time
window. Class 2 is the regular class. This service
differentiation is manifested by the network’s quality-
of-service (QoS) guarantees, which promise that a
class i request will be processed within a given time
window d;. The guarantee means that if the promise
is broken, the customer is entitled to a compensation
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payment p;. Such service guarantees and compensa-
tion schemes for service failures are well documented
in practice.?

Service failures thus induce a service cost onto the
network, whose long-run average rate is

C=MpP(D; > dy) + Ap,P(D, > dy), )

where D; is the steady-state delay of class i requests
and P(D; > d;) denotes the steady-state probability of
a class i service failure or violation of the delay com-
mitment. We have d, < d,.

The network’s processing resources are of two
types: type 1 are “fast servers” (e.g., airplanes) that
are flexible in that they can serve both classes, and
type 2 are “slow servers” (e.g., trucks) that can
serve only regular requests satisfactorily. The service
capacity of resource type j comprises two factors:
(1) the time m; that resource j needs to process a
single request and (2) the number of requests K; that
resource j can process in parallel. In our motivating
example, m; < m, represent the travel times of an air-
plane and truck, respectively, and K; represents their
total cargo space. The aggregate service capacity of
resource j is then p; = K;/m;, meaning that it can pro-
cess up to u; requests per unit of time. This capac-
ity model is easiest explained as a batch process with
constant, deterministic capacity, but for the remain-
ing that interpretation is indistinguishable from a con-
ventional server* in queueing theory with processing
rate w;.

The operational decisions involve dynamic routing
and sequencing: route regular requests to either the
slow or the fast server, and sequence express and
regular requests at the fast server. Equivalently, the
control is one of dynamic resource allocation: allocate
servers to requests. We assume that the system man-
ager implements a simple greedy policy that (i) pri-
oritizes first-class requests at the fast server; (ii) fills
up any remaining capacity with regular requests; and
(iif) processes remaining regular requests at the slow
server, up to its capacity.” To describe this policy, it is

® For example, FedEx offers money-back guarantees for service fail-
ures: “...At our option, we will, upon request, either refund or
credit your transportation charges in the event of a service failure
(which means delivery of your package 60 seconds or more after the
published delivery commitment time for the selected service and
destination, except as otherwise described in these terms and condi-
tions)” (p. 189 of FedEx Terms and Conditions/FedEx Express U.S.
available at http://www.fedex.com/us/services/terms/index.html
as of January 6, 2005).

*We assume that the travel times (measured as the time until
the vehicle completes the delivery and is available for service
again) are deterministic and therefore the resulting queueing sys-
tem has deterministic service times. Our approach can be extended
to stochastic service times at the expense of additional notational
complexity.

® This reflects practice at UPS according to Wright (2006).

easiest to assume that the system manager observes
the state of the system at discrete points in time,
yet the distinction between continuous and discrete
review will be immaterial to our results.

At time t=1,2, ..., the system manager observes
the number N;(¢) of class i requests in queue and
uses a greedy resource allocation policy that can be
described in terms of an activity vector x as follows.
Let x,(t) be the number of express requests served
by the flexible resource in period ¢; x5(t) be the num-
ber of regular requests served by the flexible resource;
and x,(t) be the number of regular requests served
by resource 2. Upon observing the backlog vector
(N;(t), N,(t)) at time ¢, the system manager allocates
resources for the upcoming period as follows:

x;(t) =min(Ny (), ), (2)
x3(t) = min([u; — Ny (H]*, No(1)), (©)
% (t) = min([Ny(t) — x25(H)]", wo).- (4)

To facilitate future analysis, define the cumulative
allocation processes T, for k=1,2,3 as

t-1
Ti(t) =2_xi(s),
s=0
which are nonnegative and nondecreasing. The capac-
ity constraints can then be expressed as follows: For
0<s<t,

[T() + LOI - [Ti(s) + ()] = (t=s),  (5)
T(t) = Tr(s) < pa(t —5). (6)

Let «;(t) be the number of class i requests that ar-
rive in period t. We assume that the arrival pro-
cess {(a;(t), ay(t))}2, is a sequence of independent
and identically distributed random vectors with mean
vector A and covariance matrix

2
|: o P0'10'2:|
2 4
po10y; 0y

where o; is the standard deviation of «;(0) and
p € [—1, 1] the correlation coefficient of («;(0), a,(0)).
Arrivals can be correlated within a time period but
not across time. (The reader familiar with queueing
theory should bear in mind that p here denotes cor-
relation; we shall need no symbol for utilization.) Let
A;(t) denote the cumulative number of class i requests
arrived up to time f:

-1

Ai(H)=>"ay(s) fort=1,2,...

s=0
Assuming the system is empty initially, dynamics of
the backlog process can be described as

Nl(t) = Al(t) - Tl(t)r
Nz(t) = Az(t) - Tz(t) - T3(t)-
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Ultimately, we seek to evaluate the performance of
this service network in terms of the service cost C.
This requires the specification of the violation or tail
delay probabilities in this queueing network with cor-
related arrivals and dynamic resource substitution.
Unfortunately, such a delay process is not amenable to
exact analysis. Therefore, we adopt the more modest
goal of deriving an analytic approximation for the ser-
vice cost. The next section will adopt a heavy-traffic
approximation to derive a Brownian system model
that is amenable to large deviations analysis and will
yield the delay probabilities in closed form.

Basic queueing theory tells us that quality of ser-
vice is a function of excess capacity and variability.
Indeed, the concept of standardized excess capacity
introduced in §1 plays a prominent role in our anal-
ysis. Recall that for class i the standardized excess
capacity is defined as

= 2 i=1,2. )

It measures the excess capacity in units of the stan-
dard deviation of demand and is similar to the
z-value associated with the safety stock in a single-
period inventory model with normal demand.

4. The Approximating Brownian
Model

The discrete nature of requests makes many queueing
models intractable. Often, tractability is enhanced by
adopting a heavy-traffic approximation. The essence
of that approximation is in rescaling time and state
to obtain a simpler model driven by an underly-
ing Brownian motion. This section develops such a
Brownian approximation to our service network. We
focus on the basic intuition and refer to Harrison
(1988, 2000) for an elaborate treatment.

4.1. Deriving the Brownian Model

We start by extending the discrete time arrival, queue
count, and allocation processes A, N, and T to con-
tinuous time by defining A(t) = A([t]), N(t) = N([t]),
and T(t) =T(|¢t]) for t > 0 and where |f] denotes the
largest integer not exceeding t. Then, we define the
cumulative unused capacity U(t) up to time >0 as
follows:

Uy (t) = it = Ty (1) = T5(H), (8)
(1) = pot = T (). ©)

The Brownian approximation procedure then ex-
presses all processes in terms of mean-centered
arrival and server-time allocation processes A and T,
defined as

Aty = A(t) — At
Ti(t) = wit — Ti()

for i=1,2 and t > 0. Rearranging terms yields the
following representation of the backlog process:

Ni() = Ay (8) + (A — )t + T (1), (10)
Ny(t) = Ay(t) + (A, — o)t + To(t) — T(H). (11)

Similarly, the cumulative unused capacity processes
can be expressed as

Ut =T,(H-T(H and U(t)=T(t).

The Brownian approximation procedure then con-
siders a sequence of closely related systems indexed
by a parameter n. (A superscript n will be attached to
quantities associated with the nth system.®) The pro-
cesses in the nth system are then scaled to give rise
to the approximating Brownian model in the limit as
n — oo. Now fix an arbitrary, large n and define the
scaled standardized excess capacity 6, = —/nz! for
i=1,2 and define the following scaled’ arrival and
queue-count processes for i=1,2 and ¢ > 0:

1 An _L n
T M) and QD=2 NI D). (12)

Similarly, define the scaled cumulative unused capac-
ity and server allocation processes:

X,(t) =

1
L) =——U"(nt), i=1,2,
)=o)
1 -
Y.(t)= —T"(nt), i=1,2, and
=T
1
Y5(t) = T (nt).
()= Tt

The Brownian approximation is essentially obtained
by letting the parameter n — co. The scaled pro-
cesses  and I then represent the limiting scaled pro-
cesses and will still be referred to as the queue length
and cumulative idleness or unused capacity process,
respectively.

Using (10)-(12) we can express the dynamics of the
queue length process Q as

Qi (f) = X, () + 60, + Y (1), (13)
Q) =X+ bt + ()~ 2% (1)

for t > 0. Similarly, the cumulative unused capacity or
idleness process (8)—(9) gives rise to

L(H)=Y,(t)—Y3(t), t=0,

B (15)

L(t)=Y,(t), t=0.
To justify the Brownian approximation we need
some technical assumptions. First, the scaled stan-

dardized excess capacity 6; must be of moderate value

¢To be precise, the service rates u! vary with n while we keep A;
and o; constant across systems.
7 The particular scaling relative to o; is chosen to yield a standard-

ized Brownian model in accordance with the setup of Avram et al.
(2001).
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for i =1, 2, which means that A’ is close to the capac-
ity uf. In other words, the arrival rate is near capacity
for each resource, which is the heavy-traffic regime. This
assumption seems to hold in practice, cf. Leonhardt
(2005). Second, we also assume that X(t) + 6t ~ B(t)
for t > 0, where B is a two-dimensional Brownian
motion with drift vector 6 and covariance matrix®

L)

Finally, we require the queue length process Q to
be nonnegative and the allocation process Y and the
cumulative unused capacity process I to be nonnega-
tive and nondecreasing.

Let us now discuss our control in the Brownian
model, which leads to further simplification. Recall
that our greedy allocation policy (2)—(4) will prioritize
class 1 and serve it at capacity w; unless queue 1 is
empty. Therefore, in the limit under our greedy pol-
icy, Y; increases only when Q; =0 and is proportional
to the cumulative time that queue 1 is empty. Only
at those times will the fast server process the other
queue, also at full capacity unless queue 2 is empty,
so as to minimize the unused capacity of the flexible
resource in each period. In the heavy-traffic regime,
the probability that both queues are empty is negligi-
ble, so it is very likely that the regular class backlog
is sufficiently large to fill up any remaining flexible
capacity (after serving the express backlog). In other
words, the unused flexible capacity—and thus also
the cumulative unused flexible capacity process I;—
would always be negligible. Under our greedy con-
trol rule, the limiting (or idealized) Brownian model
simply sets I;(t) =0 for all t > 0. Such ideal sys-
tem behavior is quite common in Brownian models
as observed by Kelly and Laws (1993, p. 48), “...the
important features of good control policies are dis-
played in sharpest relief.”

Our greedy allocation policy thus yields an ideal-
ized Brownian model with [;(t) =0, and thus Y;(f) =
Y;(t) given Equation (15) for ¢t > 0. We also know that
Y,(t) = L,(t) so that Y, is the cumulative idleness pro-
cess of the slow server and can increase only when the
regular backlog is zero. Eliminating Y; in (14) finally
yields the approximating Brownian model’ for our

8 This can be justified by a straightforward application of a func-
tional central limit theorem, cf. Whitt (2002).

®The Brownian model of a network closely related to ours was
studied in Harrison (1998) under the so-called complete resource
pooling assumption. That condition basically ensures that the two
servers act as one “super-server” giving rise to one-dimensional
dynamics. Using Harrison’s terminology, the complete resource
pooling assumption requires that all possible resource allocations
in our model are basic activities. Intuitively, this means that a

service network under the greedy policy: For ¢t >0,

Qt)=B(t)+RY(t) =0

1 0
where R = . (16)
—oy/o, 1

Recall that Y represents our greedy control policy,
and Y; is proportional to the cumulative time that

1
server i is not serving class i (for i =1, 2). Formally,

Y;(:) is nondecreasing and continuous with
Y;(0) =0 and increases only when Q; =0. (17)

The Brownian model (16)—(17) can be interpreted
graphically as follows. The backlog vector Q is the
linear combination of the Brownian motion B and
the control Y. By definition, Q is nonnegative and
lives in the nonnegative quadrant R?. Recall that Y;
increases only when Q; = 0. Thus, in the positive
quadrant the queues Q are nonempty and behave like
the Brownian motion B. Only when queue i is empty
does control Y; increase: when Q “hits” a boundary
Q; =0, the control Y; “pushes” Q; in the direction
specified by the ith column of R, denoted R in Fig-
ure 2, to prevent Q from leaving the positive quad-
rant. The result is that Q behaves as Brownian motion
in the interior of the positive quadrant but is reflected
on the boundaries in the direction of the correspond-
ing column of matrix R, which is aptly called the
reflection matrix.

4.2. Heavy-Traffic Estimate of the Express
Service Failure Probability

Estimating the service cost C requires calculating the
service failure probabilities P(D; > d,), which can be
expressed in terms of the tail probabilities of Q in the
approximating Brownian model. First, the snapshot
principle of Reiman (1984) states that the stationary
delay distribution is approximately equal to the sta-
tionary distribution of the scaled queue count:

N.
P(D; > x) %[II’(/\—' >x>.

i

significant fraction of fast-server capacity is always used by and
reserved for regular traffic. In other words, the slow-server capacity
is not sufficient to handle the incoming regular demand on its own
in the long-run, which is an unrealistic assumption in our setting.
In our model, the regular class can be served by the fast server
only occasionally, i.e., when there is some excess fast capacity. This
means that the activity of serving the regular class by the fast server
is a nonbasic activity in Harrison’s terminology. Moreover, under
the complete resource pooling assumption, one can keep all the
backlog in one buffer at all times, which in essence assumes away
the issues we study in this paper. Therefore, we do not assume
complete resource pooling, and hence we have a two-dimensional
Brownian model. In particular, both queue lengths vary stochasti-
cally over time allowing us to model delays associated with each
class.
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One can think of this approximation as a distri-
butional heavy-traffic extension of Little’s law. The
second step is to approximate the steady-state distri-
bution of the scaled queue-count process by that of
the reflected Brownian motion process:

N.
P(—— >x ) ~P(Q, > x).
(\/ﬁa-i - ) Q=
Similar approximations have been justified rigorously
under heavy traffic by various authors; for example,
see Gamarnik and Zeevi (2006) and the references

therein. Combining both steps yields:"

4
%) (18)

The only remaining task is to evaluate the marginal
stationary distributions P(Q; > x) of the reflected
Brownian motion Q. Given that class 1 receives prior-
ity service at server 1, we can easily find the marginal
distribution of Q,, cf. Harrison (1985), which yields:

P(D,; > d;) = P(Qi >

ProrosITION 1. The express service failure probabil-
ity is
A
P(D, > d,) = exp{—Z—lzldl}. (19)
0

Unfortunately, the stationary distribution of the
two-dimensional reflected Brownian motion Q does
not admit a closed-form expression in general, nor
does P(Q, > x). Therefore, the next subsection ad-
vances an estimate of P(Q, > x) using large deviations
theory.

4.3. Large Deviations Estimate of the Regular
Service Failure Probability

Large deviations theory typically approximates the
tail distribution of a random variable by an expo-
nential distribution (Dembo and Zeitouni 1998). For
our service network, the sought-after estimate of the
steady-state probability P(Q, > x) using a large devi-
ation approximation is:"!

P(Q,>x)=e¢e"""* for large x, (20)

where 7, is the (model-specific) large deviations rate.

10 The equality in (18) holds asymptotically as one approaches the
heavy-traffic limit. For a precise statement of such an approxima-
tion see Gamarnik and Zeevi (2006). An alternative approach is to
model service failure probability by (18) directly, which gives rise
to appealing closed-form expressions and is supported by heavy-
traffic limit theorems.

T The equality in (20) holds asymptotically as x gets large. For a
precise statement see Avram et al. (2001). Hereafter, whenever we
use an equality sign in such statements it is implicit that the state-
ment holds approximately and becomes accurate in the limit.

Deriving a large deviation estimate is done in two
steps. First, one must prove that a large deviation
principle for Q, (i.e., an exponential approximation
to the tail probability) holds. Majewski (1998b) did
this for Brownian models with a large class of reflec-
tion matrices. These reflection matrices are referred to
as Jl-matrices in Avram et al. (2001), and our reflec-
tion matrix R belongs to this class so that the first
step is done. Second, one must solve a variational
problem to specify the large deviations rate. Avram
et al. (2001) explicitly solve the variational problem
for a large class of two-dimensional Brownian models
that include ours. The structure of the solution to that
problem, however, is strongly parameter dependent,
as discussed in Online Appendix A.

Applying the large deviations approximation (20)
to (18) gives the sought-after expression

Ad A
[FD(DZ > dz) = P(QZ > \/%02_ ) = eXp(_rq\/_ng'dZ)
2 2
AZ
= exp (—r;zdz), (21)

where r =r,//n."?

Online Appendix A tailors the general results of
Avram et al. (2001) to our Brownian model and shows
that the large deviation rate r of (21) can take on
four expressions for negative correlation and positive
excess capacity.”® Defining

1
"= 1_—1)2[,/2%—2pzlz2+z§+zz—pzl],

272
Zy —2Z4p
20421 + 0y2,)

o+ 2p0, 0, + 0}

1, =2z, —4z,p, 13 = +2z,,

Ty

gives rise to the following proposition, which is
proved in Online Appendix A.3.

PROPOSITION 2. Assume positive excess capacities and
negative correlation (ie., p < 0 and z > 0). Then
the reqular service failure probability P(D, > d,) =
exp(—7(A,/0,)d,), where r depends on the correlation p,

12 Majewski (1998a) recently demonstrated that, roughly speaking,
one may switch the heavy-traffic and large deviations limits in feed-
forward networks with deterministic service times, indicating that
the rare event behavior of a semimartingale reflecting Brownian
motion gives insight into the rare event behavior of the associated
heavily loaded queueing network. This justifies the use of large
deviations estimates of delay probabilities in the Brownian model
to approximate those in the original queueing network.

B The appendix shows that similar expressions exist for positive
correlation or for negative excess capacity (z, can conceivably be
negative when z, is strongly positive).
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the variability ratio o,/0,, and the standardized excess
capacity ratio z,/z, as follows:
) z
5! 1f(1—(0'1/0'2)2)z_1 <2(ov/03) +2p
2

and 2L (4p? —1) > 2p,

Zy
. . z

min(ry, ;) if (1— (0'1/0'2)2)2_1 <2(ay/0,) +2p
2

and Z—1(4p2 —1)<2p,

Zy
. . z

min(ry, ry) if (1— (0'1/0'2)2)2_1 >2(0y/0y) +2p
2

and 2 (4p* —1) > 2p,
Zp

if (1 - (ol/«rz)z)z—; > 2(0y /) +2p

and i(4:p2 —-1) <2p.
2

min(r;, )

5. Value of Integration Part A:

Keeping Capacities Constant
Having expressed the service failure probabilities—
and thus the service cost rate—in terms of model
parameters we now proceed with analyzing the value
of network integration V, which we define as the
incremental value of the integrated network over that
of the dedicated network.

5.1. Three Valuation Assessments

Assessing the value of integration requires a mean-
ingful comparison between two networks. We will
present three different comparisons that all confirm
our main result. The first comparison keeps capaci-
ties in both networks constant, whereas the second
keeps quality of service constant. Clearly, the inte-
gration value under constant capacities derives from
providing better service to the regular class. In con-
trast, under constant service quality, the value of
integration stems from reduced slow-server capac-
ity requirements, as will be shown in §7. The
first valuation is relevant when capacity exhibits
high irreversibility, and the second is a proxy for
a competitive industry with equilibrium service
requirements. Relaxing either constraint and solving
for a general competitive equilibrium is nonobvi-
ous and beyond the scope of this paper. How-
ever, our third valuation in §8 gives some insight
by comparing two optimally designed networks in
a rather restricted setting where a monopolist can
optimize both capacity and service without impact-
ing demand." As expected, integration then reduces

" Incorporating elastic demand requires a more comprehensive eco-
nomic model of customer classes’” willingness to pay to determine
equilibrium customer arrival patterns and resulting quality of ser-
vice; e.g., see Van Mieghem (2000) for a single-server setting.

slow-server capacity but increases fast-server capac-
ity. However, it also improves express service, a result
that is less likely in a competitive industry.’® Thus,
although each of the three valuations has different
strengths and weaknesses, they reinforce each other
and collectively provide evidence of the robustness of
our main result.

We start the first value assessment by discussing
the resource substitution and arrival pooling effects,
which give an intuitive explanation of the subsequent
analytic results.

5.2. The Resource Substitution Effect

The graphical interpretation of the Brownian model
(16)-(17) yields insight into resource substitution.
Recall that the fast server can substitute for the slow
server only when the express queue is empty. The
effect of substitution on queue lengths is captured
by R., in Figure 2: When the queue length pro-
cess  hits the vertical boundary Q; =0, the control
Y, pushes the queue length process Q in the direc-
tion R, = (1, —0y/0,). This corresponds to an empty
express queue and the flexible server processing regu-
lar requests thereby reducing the regular class queue
length Q,. The slope —o,/0, represents the fact that
one unit of (unused) standardized excess capacity can
be substituted for o, /0, units of standardized regular
capacity.

In assessing the impact of resource substitution, the
ratio of the standardized excess capacities z,/z, plays
an important role. Consider the two opposite cases
of large and small ratio z,/z,, as illustrated in Fig-
ure 2. Recall that z,/z, determines the slope of the
drift vector of the Brownian motion B and impacts the
stationary distribution of the queue length process Q.
Intuitively, the queues will be more likely to change
in the direction of the drift vector. This means that
the queue length process is more likely to hit the face
Q; =0 when the standardized excess capacity of the
flexible resource is high relative to that of the slow
resource (i.e., z,/z, is large). Thus, the express queue
will be empty quite often, resulting in frequent sub-
stitution of the fast resource for its slow counterpart.
In contrast, when z,/z, is small, the face Q; =0 will
be visited less often while the other face Q, =0 will
be visited more often. Then the regular class queue
will be empty more often, and resource substitution
will be seldom. In conclusion, we expect the option
value of resource substitution to be high when z,/z,
is large.

5.3. The Arrival Pooling Effect
Understanding when the value of integration is sig-
nificant requires comparative statics on the model

151t is unlikely that UPS would increase its express service level
above that of FedEx.
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parameters: demand data in terms of means A and
(co)variances, network data in terms of capacities u,
and service guarantees d and ¢. To understand the
role of variability, which is always important in option
values, we must model its dependence on the scale of
demand. We introduce the “arrival pooling parame-
ter” v; to express how arrival variability scales with
mean arrival rate. To be more specific, we assume

o;=A]", where i<y <1 (22)
This relationship captures most typical effects, and
v; is a measure of statistical economies of scale or
pooling in arrivals. At one extreme, statistical aver-
aging in arrivals leads to variance growing linearly
in scale, like with Poisson arrivals. This is captured
by y;=1/2 in our model and implies that the rela-
tive impact of variability (or coefficient of variation in
arrivals) decreases in volume. Without strong arrival
pooling benefits, variance would grow super-linearly
as captured by vy, > 1/2.

To study the value of integration in a meaningful
way while keeping capacities constant, we suggest the
following mechanism to set capacities. Consider the
dedicated network and set capacities to the minimal
level necessary to achieve a given quality of service.
Specifically, let this given quality of service level be
denoted by the “QoS-pair” (d;, €;) where d; specifies
the promised delay guarantee or speed and &; mea-
sures the reliability in terms of the service failure.
That is, we require that

P(D;>d;)<eg fori=1,2. (23)
It is natural to assume that the express market is
served not only faster, but also with higher reliability:
d, <d, and & <e,.

In the dedicated network each class-resource pair
can be viewed in isolation so that the tail probability
for each class is given by the same simple expres-
sion (19). The minimal standardized excess capacity z;
to achieve the QoS pair (d;, ¢;) thus is

o; 1
z;= _Zdi)\,- log(s—i). (24)

Incorporating the arrival pooling relationship (22)
directly yields the following proposition.

ProPOsSITION 3. The minimal standardized excess cap-
acity z; to achieve the QoS pair (d;, ;) in a dedicated
network with arrival pooling parameter vy; is given by

1 1 .
zZ;, = Wlog(g—) fOT l:1, 2. (25)

1

In principle, Proposition 2 provides all of the
machinery to investigate the value of integration.
However, this requires a case-dependent analysis.
Instead, we will focus on two canonical cases of inter-
est to gain insight: an “express firm” that primarily
serves express requests (i.e., A; 3> A, and A, ~ 1) and
a “regular firm” that focuses on the regular market
(i.e.,, Ay € A, and A & 1). Arrival pooling suggests that
z,/z, is strongly impacted by the mix: Proposition 3
shows that z,/z, is indeed proportional to Ay /A"
and thus small for an express firm but large for a reg-
ular firm. We can now combine the arrival pooling
effect with the resource substitution effect:

1. The standardized excess regular capacity for an
express firm is much larger than that of its flexible
resource. In other words, the ratio z;/z, is small and
the right panel of Figure 2 applies. Roughly speak-
ing, the regular class queue will be empty more often
than the express class queue so that the substitution
frequency will be small.

2. The opposite applies to a regular firm. Its stan-
dardized excess regular capacity is much smaller than
that of its flexible resource. In other words, the ratio
z,/z, is large and the left panel of Figure 2 applies.
Thus, the express queue will be empty quite often,
so the resource substitution frequency will be high.

5.4. A Simple Upper Bound on Integration Value
When both the dedicated and the integrated net-
works have the same capacity, and hence identical
standardized excess capacity, the integration value V
derives from providing better service to the regular
class, thereby reducing the service cost. Let Cp and C;
denote the service cost in the dedicated network and
integrated network, respectively, given capacities w.
Clearly,

Cp=Mp1&1 + Aypa€s, (26)
Cr=Mpig1 + ,p,P(D, > d,), (27)
where the random variable D, denotes the station-

ary delay for class 2 in the integrated network given
capacities u. Thus, the value of integration is

where F=1— M, (28)
&

V = )\2p282F,

and it “only” remains to investigate the regular service
violation probability. Setting P(D, > d,) = 0 yields a
simple upper bound V to the value of integration:
V <V = \,p,&,. The factor F € [0, 1] shows how tight
the bound is and will be computed analytically. We
also have the following bound on the relative value of
integration:

14 Aopr€,

Yo Aapr€s (29)
Co  Mpr&r+p8 — Apigg+ Appe,
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To reduce complexity, our analysis will focus on the
more important case of negative correlation hereafter.
(All calculations can be done for p > 0, but we will
show those results only in the figures.)

PROPOSITION 4. The regular service violation probabil-
ity for an integrated firm (keeping capacities constant) that
serves primarily express requests (i.e., Ay 3> A,) with neg-
ative correlation (p <0) is

P(D, > d,) = eXP{"’z%dz} — 828;2p(A2/A1)(01/02)(‘12/'11).
2

These formulas allow the study of various com-
parative statics on the value of integration. Although
most of that analysis follows immediately from those
formulas, the following corollary facilitates our anal-
ysis further by providing a Taylor’s expansion of the
expressions in Proposition 4:

CoRroOLLARY 1. The value of integration (keeping capac-
ities constant) for an express firm (A; > A, with p <0) is

V = /\2p282(1 _ SIZP()‘Z/)‘l)(‘7'1/0'2)(‘12/‘11))

d2 )é‘)’z /\2—27’2
= 2pp,8, 108(81)d—1 A + O<W) (30)
The corollary highlights the effect of correlation,
which will be discussed after first presenting the anal-
ogous results for a firm that serves primarily regular
requests:

ProOPOSITION 5. The regular service violation probabil-
ity for an integrated firm (keeping capacities constant) that
serves primarily regular requests (i.e., A, 3> A;) with neg-
ative correlation (p <0) is

A
P(D,>d,) = exp{—r4—2d2}
03

2(uq — A —A
=exp{— (s 1"2‘,“«2 2))‘2’12}
T
- 8;%/0% 850%/0%)<A2/A1><d2/d1>, (31)

where the total demand variance o% = o} + 2poyo, +

2 _ ;2
035 < 03.

In stark contrast to an express firm, a regular firm
enjoys “pooling benefits”: Equation (31) shows that its
regular service violation probability is determined by
W1 — A+, — Ay, which is the sum of the excess capac-
ities of the two resources, and by the variance of the
total demand o7, which is less than o7 for the regu-
lar firm (given the assumption of negative correlation
and A, > A;). Given that capacities are kept constant,
this benefit does not accrue to the express requests.
Proposition 5 thus is a mathematically precise state-
ment of what we referred to as partial resource pool-
ing in the introduction. The fact that only a “regular”

firm enjoys partial resource pooling agrees with our
intuitive explanation of the arrival pooling and the
substitution effects. To highlight the impact of corre-
lation on the integration value, consider the following
corollary:

CoROLLARY 2. The value of integration (keeping capac-
ities constant) for a reqular firm (A, > A, with p <0) is

2/02 (02/02)(Aa/ M) (da/d
V= /\zpz(gz — 8‘272/‘7T85"1/"'T)( 2/ M) (d2/ 1))

a
= o log(e) AT AT + 2pyplog(en) A A,
1
A?Yl_l
+O<£”2)

5.5. The Correlation Effect

It is intuitive that the value of resource substitution
increases as the correlation between arrivals becomes
more negative: as regular requests are more neg-
atively correlated with express requests, bursts of
regular requests are more likely to find excess fast-
server capacity. Our results also show that the option
value of integration decreases in correlation, in agree-
ment with many option values in other settings. The
strength of this correlation effect, however, is strongly
mix-dependent. The three examples in Figure 4 differ
in the demand mix and show that the impact of cor-
relation is unimportant for regular firms. That same
insight derives from analyzing the quality of the sim-
ple upper bound V/Cp, on the relative value of inte-
gration. Figure 5 shows the actual values for both
types of firms relative to the simple upper bound (29)
as a function of the service mix and parameterized
by the correlation. It shows that the relative value is

Figure 4 Correlation Between Express and Regular Demand Is a
Key Value Driver Unless the Regular Demand Dominates
(>90% of Total Mix)
100 T T T
%0 Regular firm (90% regular service)

<

s 80+ i

=

g L ]

?0 70

2 60r 4

.8 Hybrid firm (50% regular service)

5 50 b

£

= 40r i

>

2o -

= 201 1

~ 10 Express firm (10% regular service)

O 1 1 L
-1.0 0.5 0 0.5 1.0

Correlation coefficient p
Notes. The vertical axis displays the relative value of integration defined as
V/Cy. Data: p; =10, p, =5, &, =0.01,¢,=0.02,d, =2,d, =4, A\, + A, =
100, y=0.5.
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Figure 5 Our Analysis Gives Analytic Expressions for the Relative
Value of Integration, Which Strongly Depends on

Correlation for an Express Firm

007 —
Simple upper bound ___oe===mTT
| ifpg <pye, >¢—”' Regular firm
-

(%)

: . . @

Fraction regular 100
Service mix (%)

Notes. In contrast, the quality of the simple bound is good for a regular
firm for which the relative value of integration is insensitive to the value of
correlation. The figure displays the relative value of integration on the vertical
axis defined as V/C, as a function of the service mix (ratio of the regular
demand volume to the total demand volume). Data: p; =10, p, =5, ¢; =
0.01,6,=0.02,d,=2,d, =4, \; + 1, =100, y=0.5.

high for a regular firm, almost independent of corre-
lation, so that correlation is a secondary effect. In con-
trast, the relative value for an express firm is strongly
dependent on correlation. In other words, the simple
upper bound is tight for a regular firm but can be
far off for an express firm, depending on the value of
correlation, in line with the intuitive explanation pro-
vided in the introduction. Corollary 1 confirms that
correlation has a first-order impact on value for an
express firm whereas it has only a second-order effect
for a regular firm (Corollary 2).

6. The Main Result and

Comparative Statics

In this section, we present the first main result on
the value of integration and various comparative stat-
ics. One could conjecture that, given that a regu-
lar firm has relatively little fast-server capacity, the
impact of integration is much less than that for an
express firm. However, that conjecture is false as The-
orem 1 will show. Let the superscript e(r) denote a
firm that primarily serves express (regular) requests.
For a meaningful comparison, we assume that total
demand rates for the two firms are comparable,
that is, A{ + A5~ A 4+ AJ.

THEOREM 1. The value of integration (keeping capaci-
ties constant) is higher, in both absolute and relative terms,
for a regular firm than for an express firm (assuming
p=0).

To see the intuition behind Theorem 1, consider
the three main drivers of value introduced earlier:
arrival pooling, the substitution effect, and the corre-
lation effect. Our discussion of arrival pooling sug-
gests that the standardized excess regular capacity for

127
Table 1 Impact of Key Drivers on the Option Value of Integration Given
Equal Capacities in Both Networks
Change in Change in
express class regular class
Guaranteed speed increase 0 5
Reliability increase A 1 (for express firm)
4 (for regular firm)
Correlation increase N !
Variance increase 0 {
Volume increase J 1
Combined volume-variance | (for express firm) 0
increase 4 (for regular firm)

Notes. Each row of the table corresponds to a parameter, and each column
corresponds to a particular demand class so that each entry of the table is
associated with a parameter of a particular class. In particular, each entry of
the table displays whether the value of integration increases (denoted by the
arrow 1) or decreases (denoted by the arrow ) as the parameter (for the
associated demand class) corresponding to that entry increases.

an express firm is much larger than that of its flexi-
ble resource. In other words, the ratio z,/z, is small
and the right panel of Figure 2 applies. Consequently,
the regular queue will be empty more often than the
express class queue, so the substitution frequency will
be small. Combining this with our discussion of the
correlation effect we conclude that the value of inte-
gration will be small for an express firm unless the
demand for the two classes is strongly negatively cor-
related. In contrast, the arrival pooling effect suggests
that a regular firm’s excess regular capacity is much
smaller than that of its flexible resource. That is, the
ratio of z,/z, is large and the left panel of Figure 2
applies. Thus, the express queue will be empty quite
often, so the resource substitution frequency will be
high, resulting in a high value of integration. More-
over, because there is a strong resource substitution
effect, the impact of correlation is of second order.

The theorem offers a possible explanation behind
the differences in network strategy of FedEx and UPS,
as discussed in the introduction. (The next sections
will provide two additional explanations.) Theorem 1
results from the closed-form expressions provided
in 85, which also allow us to study the compara-
tive statics as summarized in Table 1. The discussion
and intuition behind these comparative statics can be
found in Online Appendix B.

7. Value of Integration Part B:

Constant Service Quality
In this section, we assess the value of integration
when the service quality is kept the same in both
the integrated network and the dedicated network.
Equal service failure probabilities imply equal flexible
capacities but a regular capacity reduction in the inte-
grated network. The value of integration is thus mea-
sured by the degree of reduction in the slow-server
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capacity. As in the previous section, we consider
our two canonical firms and compute their capacity
reduction in closed form:

PROPOSITION 6. The reduction in slow-server capacity
for an integrated firm (keeping service quality constant)
that serves primarily express requests (i.e., Ay > A,) with
negative correlation (p <0) is

Apy = pg™ — 3" =

= —po 2 tog( ) = tog )

P My & & p)\i_hdl & &)
The proposition shows the key drivers of the value
of integration when service quality is kept constant:
capacity savings decrease in correlation p but increase
in the flexible excess standardized capacity z; and in
the variability of regular arrivals. The effect of class 1
parameters is similar to that in the previous section
because the value is primarily driven by the stan-
dardized excess capacity of the flexible server, which
depends on the express’s class QoS pair (d;, €;) and
its arrival mean and variability (cf. Proposition 3).
In contrast, the impact of class 2 is different, and only
its variability o, and correlation with class 1 matter
because there is no strong substitution effect for the
express firm and the value is driven primarily by the

correlation effect. Next, consider a regular firm.

—2p0,zq

ProrosITION 7. The reduction in slow-server capacity
for an integrated firm (keeping service quality constant)
that serves primarily regular requests (i.e., A, > A) with
negative correlation (p <0) is

ded int 03 —of d
Apo = py" — py Z(Ml_A1)+T(M2_)‘2)r
2

where the total demand variance o% = o} + 2poyo, +

o} < ol

The following corollary provides a more explicit
representation of the capacity reduction for a regu-
lar firm, helping us identify the first-order drivers of
value.

CorOLLARY 3. The reduction Aw, in the slow-server
capacity for a regular firm is given by

o? 1 2p0,0, + 07 1
Auw, = —L 1 — ) _ZEmr2 TP —
= 2d, M Og<31) 2M,d, °8 &

)\%yl_l 1 p)‘}’l )1271 1
- log( — ) — | P4 L 1og( = ).
2d, Og<81> I:)\;_dez - 2)\2d2] Og<82)

Proposition 7 and Corollary 3 show that the value
of integration for a regular firm again depends on the
express class primarily; the impact of the regular class
is only of second order. As in §5, correlation has a
second-order impact whereas the substitution effect

Table 2 Changes in Value of Integration in Terms of the Regular
Capacity Savings When Service Quality in the Integrated and

Dedicated Networks Is Equal

Express firm Regular firm

Express Regular Express Regular
class class class class

Guaranteed speed increase

Reliability increase 1 —

Correlation increase 3 N

Variance (o2) increase 0 4
¢ —
\

T J—

Volume (A) increase
Combined volume-variance increase

S
D

T

Notes. Each row of the table corresponds to a parameter, and each column
corresponds to a particular demand class, so each entry of the table is asso-
ciated with a parameter of a particular class. In particular, each entry of
the table displays whether the value of integration increases (denoted by the
arrow 1) or decreases (denoted by the arrow ) as the parameter (for the
associated demand class) corresponding to that entry increases.

has a first-order impact on the value of integration for
the regular firm. In contrast, correlation has a first-
order impact for an express firm whereas substitution
has negligible impact.

Interestingly, whether one keeps capacity or quality
constant to measure the value of integration, the main
result is unchanged: regular firms derive more value
from integration than express firms, as Theorem 2 will
show below. Of course, to assess the value of inte-
gration we need to evaluate the financial gain from a
reduction in slow-server capacity. For simplicity, we
assume that marginal cost ¢; of resource i capacity
is constant'® so that the value of integration (keep-
ing service quality constant) is V = c,Au,. Then Theo-
rem 2 follows from Propositions 6 and 7 immediately.

THEOREM 2. The capacity reduction and the value of
integration (keeping service quality constant) is higher, in
both absolute and relative terms, for a reqular firm than for
an express firm (assuming p <0).

The comparative statics are summarized in Table 2.
Comparing with Table 1 shows that the effects of
changes in express class parameters are the same in
both cases; so is the intuition. In contrast, it is strik-
ing at first to see that the effects of changes in regular
class parameters (in Table 2) either do not exist or
are the exact opposite of those in Table 1. To explain
this consider the setting of the previous section where
capacities were kept constant. Then, a change in reg-
ular class parameters that improves the quality of
service implies a lower value of integration simply
because there is less room for improvement. In con-
trast, in the setting of this section the better qual-
ity of service in the integrated network of the same
change in a regular class parameter (before reducing
resource 2 capacity) implies a higher reduction in

16 Undoubtedly, Theorem 2 holds for more general cost structures.
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resource 2 capacity. Therefore, the value of integration
is higher.

8. Value of Integration Part C:

Monopoly Capacity Optimization
Our third assessment considers the value of integra-
tion to a monopolist whose market demand is unaf-
fected by changes in quality of service. The monopolist
then optimizes resource capacities u, and w, to mini-
mize the sum of service and capacity cost rates:

2
Minimioze > [ApP(D; > d) + cimil, (32)
M1, M= i=1

where ¢; is the capacity cost rate for resource i per unit
of time. The value of integration in this case equals
the difference between the optimal total cost for the
dedicated and integrated systems. The solution to the
capacity optimization problem (32) is straightforward
for the dedicated network and is given by the fol-
lowing proposition, where the superscript ded or int
denotes optimal quantities in the dedicated or inte-
grated network, respectively.

ProPOSITION 8. The optimal standardized excess capac-
ities and service failure probabilities for the dedicated net-
work are

1 o, 2p,d; (A
ded _ _~ Yi i%if
K _2di A log( Ci (‘E‘)) and

2
PeD, > d)) = C—<5> ori=1,2.
O d)=50(T) S

For an integrated network, however, the optimiza-
tion problem (32) is not analytically tractable in gen-
eral. Luckily, the analysis simplifies for the canonical
cases of the express and regular firms, which allow
explicit solutions:

ProrosITION 9. Consider a firm serving primarily ex-
press requests (i.e., Ay 3> A,) with negative correlation
(p <0). Its optimal standardized excess capacities and ser-
vice failure probabilities for the integrated network are

T 2p,d A
Zt=_— "o (—1 ! <—1> ) >0,
bo2d & ¢ +2pey(0y/0y) \ oy
; 1 o 2p,d, [ A\ po
int 2 242 2 1
- 72 A2 PP
“ 2d, A, 0g< G (0'2> ) - dy Ay

2p,d, ()‘1 )2>
1 _— [ — 0,
Og<cl +2pcy(0y/0y) \ oy g

Ipint(D = d )= Cl +2p62(0'2/0'1) ﬁ 2
! ! 2p,d, N
2
int _ Co 2
PED > ) = 2p,d, (/\2) '

Comparing Propositions 8 and 9 shows that inte-
gration induces a monopolist express firm to decrease

the optimal slow-server capacity while increasing the
optimal flexible server capacity. Van Mieghem and
Rudi (2002) also observed this effect, but our explicit
solutions show how the capacity substitution depends
on the coefficient of variation and correlation. It is as
if the effective cost of a fast server in the integrated
network has decreased by 2pc,(0,/07). Moreover, the
optimal service quality for the express class is higher
under integration, whereas the optimal service qual-
ity for the regular class is unchanged. This changes
for a regular firm:

ProrosiTiON 10. Consider a firm serving primarily
reqular requests (i.e., A, 3> Ay) with negative correlation
(p <0). Its optimal standardized excess capacities and ser-
vice failure probabilities for the integrated network are

th — i ﬁ log zp—ldl ﬂ ’ >0
Y2d ¢ —c \ oy ’
Zint_i o7 lo 2pdy (A ? 1 of
2 = &
2d, oy, ¢ \or 2d, oy,
-log 2y (A 2 >0
G =6 \0y ’

2

. cqy—C (o}
I]:Dmt D, >d)= 1 2 <_1) ,
( 1 1) Zpldl Al

2
. C a
P"(D, > dy) = = (—T).
( 2 2) 2p2d2 )\2

Although integration also induces a monopolist
regular firm to decrease slow-server capacity while
increasing fast-server capacity, there are three distinct
differences. First, the effective cost of a fast server
in the integrated network has decreased by c,, inde-
pendent of correlation or variances. Second, the reg-
ular class enjoys partial resource pooling: its service
quality and the slow-server capacity are driven by
the total demand variance ¢Z, which is less than
o; for a regular firm with p < 0. This yields the
third difference with the express firm: a regular firm
improves the quality of service for both classes under
integration.

Not only do we observe the same partial resource
pooling and dependence on correlation as in the pre-
ceding two valuation assessments, the main result
under monopoly capacity optimization agrees with
the earlier results:

THEOREM 3. The value of integration under capacity
optimization is higher for a regular firm than for an express
firm, in both absolute and relative terms (assuming p <0).

9. Discussion and Limitations
In summary, our results suggest that operating ded-
icated networks is a fine strategy (or that network
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integration is of little value) if the firm primarily
serves express requests with high reliability and if
the correlation with regular requests is not strongly
negative. In contrast, network integration offers sig-
nificant gains if the firm primarily serves regular
requests (almost regardless of correlation). Our anal-
ysis also reveals three main drivers of value of inte-
gration: arrival pooling, the substitution effect, and
the correlation effect. Arrival pooling shows that
resource substitution will be frequent for a regular
firm yet infrequent for an express firm. In particular,
a strong substitution effect exists when the standard-
ized excess capacity of the fast server is (much) larger
than that of the slow server; that is, z,/z, is large.
In that case, its magnitude is driven by z,0y/0, =
(q — Ay)/0,. Moreover, the correlation effect is unim-
portant for a regular firm but plays a key role for an
express firm, which requires strong negative correla-
tion for integration to be valuable.

The main focus of this paper is to provide structural
insights on value drivers. Although one can estimate
the value of integration numerically for any given
set of parameters by simulation, gaining structural
insights through numerical studies becomes exceed-
ingly more difficult as the number of model param-
eters increases. Our analytic approximations offer
structural insights that would be hard to get by other
means because our model has 13 parameters. While
emphasizing different viewpoints, our three valuation
methods yield the same main result, showing robust-
ness of the insights. Nonetheless, we have performed
a simulation study (see Online Appendix D) as a san-
ity check corroborating our analytical results.

To decide whether or not to integrate two networks,
the present value of value of integration must be com-
pared with the cost of integration. While our analy-
sis supports the different network strategies pursued
by FedEx and UPS, history provides further expla-
nation. Initially, FedEx served only express requests.
In 1998, it expanded into the regular class market by
acquiring the ground transportation company RPS.
In addition to the low value of integration as a (still
primarily) express firm, the complexity and high cost
of merging infrastructures and processes of two sepa-
rate firms only reduce the net value of network inte-
gration for FedEx. Furthermore, the fact that FedEx
Ground employees are contractors makes the integra-
tion harder (and perhaps less desirable from FedEx’s
benefits perspective). In contrast, UPS initially served
regular requests only but started in 1982 building its
air network organically, which has been integrated
with its ground network since the beginning. There-
fore, the integration cost seems to be low for UPS.
Consequently, it would follow from our analysis and
the historical development that the integration costs
outweigh the value of integration for FedEx, whereas

for UPS the value of integration is significant and
probably well exceeds the (low) cost.

Like any stylized model, ours suffers from limita-
tions. We have assumed a stationary regime where
demand characteristics and capacity remain constant
over time. In reality, UPS and FedEx modulate capac-
ity over time according to predictable variability.
A timescale argument suggests that our results may
carry over, at least approximately, to the nonstation-
ary case: The relevant transaction timescale of seconds
suggests that a stationary analysis is appropriate over
time spans of hours while holding capacity constant.
It then seems a reasonable approximation to divide
the week into “almost stationary” periods and apply
our results in each of those periods. The use of over-
time would be one such period with higher capac-
ity (which UPS can predict fairly well according to
Wright 2006)—note that overtime is an action relevant
on the hours timescale, not on the seconds timescale.
(This is similar to basic call center analysis, where the
day is broken into half-hour segments, and a station-
ary analysis is performed for each.)

Our model also assumes constant transportation
times and focuses on queueing delays at various
hubs or sorting centers. Finally, our stylized model
does not capture the geographical network structure
of FedEx and UPS. Rather, it best represents a bot-
tleneck hub. However, we believe that insights of
our analysis carry over to the FedEx-UPS setting
because bottleneck hubs are key in determining sys-
tem performance.

10. Electronic Companion
An electronic companion to this paper is available
as part of the online version that can be found at
http://mansci.journal.informs.org/.
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