
Online Supplement to
Collaboration and Multitasking in Networks:

Architectures, Bottlenecks and Capacity

Itai Gurvich
Kellogg School of Management, i-gurvich@kellogg.northwestern.edu,

Jan A. Van Mieghem
Kellogg School of Management, vanmieghem@kellogg.northwestern.edu,

Proof of Theorem 1: We first argue that given I, we can construct a network with I activities

and K = 3 +
∑I−1

i=3 i resources that has a complete collaboration graph and such that each resource

has only two activities, i.e,
∑

jAkj = 2 for all k ∈K. We take the collaboration graph of the BC+

network as the starting point for this construction. This is a complete graph with three nodes:

1,2 and 3. With R({1}) = {1,2}, R({2}) = {2,3} and R({3}) = {3,1} and has K = 3 resources as

needed. Now assume we construct the required network for all network sizes less than or equal to

I−1. We next add an activity (numbered I) as follows. For each node i in the current graph (a total

of I − 1 nodes) create a (new) resource ki, assign it to activity i and add it to K (before this step

K = 3 +
∑I−2

i=3 i). Assign all these new resources to the new activity I. That is, R({I}) is the set of

these newly added resources. Each of the added resources ki has two activities (activities i and I)

and activity I is connected with an edge to each of the nodes of step I − 1. After this step, then,

we have a network with a complete collaboration graph, where each resource has two activities and

K = 3 +
∑I−2

i=3 i+ (I − 1) =K = 3 +
∑I−1

i=3 i. Finally, set the service time and arrival rate to each

activity i to mi = 1 and αi = 1/2. Set P = 0. Then, ρBN = maxk∈K
∑

jAkj = 1. However, the only

feasible configuration vectors are the identity vectors so that to satisfy (
∑

l π(el)el)j = λjmj = 1/2

we must π(ej) = 1/2 and, in turn, that ρnet =
∑

j π(ej) = I/2. �

Proof of Theorem 2: We prove this result for multiserver networks and the single-server case

follows as a special case. We start with the sufficiency. Consider the polyhedron

Ξ =
{
x≥ 0 :

∑
i

Akixi ≤ nk, k ∈K
}
.

By definition, if the SPP (17) has a solution ρBN ≤ 1, we have that
∑

iAkiλimi ≤ ρBNnk or, re-

writing, ∑
i

Aki
λimi

ρBN
≤ nk, k ∈K.

2

In particular, xBN = (λ1m1/ρ
BN, . . . , λImI/ρ

BN) is in the convex polyhedron Ξ and can be expressed

as a convex combination of its extreme points. From the assumption that the extreme points are

integer it follows that the extreme points of Ξ are integer valued for any integer right hand side.

In particular, the extreme points of Ξ are feasible configuration vectors; see (18)). Thus, xBN can

be written as a convex combination of configurations: there exists π≥ 0 where e′π= 1 and

∑
j

πjaj = xBN,

where aj are feasible configuration vectors. Setting π̂= ρBNπ we have, as required, that

∑
j

π̂jaj = λm, and ρnet =
∑
l

π̂l = ρBN.

For the necessity, assume that the polyhedron Ξ has a non-integral extreme point x∗. Choose

(α,P,µ) such that λm= x∗. Then, x∗ cannot be expressed as a (non-trivial) convex combination of

integer vectors in Ξ. In particular, there exists no π such that π≥ 0, e′π≤ 1 and with
∑

i πia
i = 1

for configuration vectors ai. In particular, it must be the case that ρnet > 1≥ ρBN .

Finally, note that if the adjacency matrix A is Totally Unimodular (TUM) it follows that the

extreme points of Ξ are integer valued (for any integer right hand side); see (Schrijver 1998,

Corollary 19.2a). �

Proof of Corollary 1: Notice first that we may ignore resources that have a single activity. Those

resources must be assigned in full to their single activity and it suffices to consider the residual

network. Here, each resource has exactly two activities with an edge connecting the two activities in

the graph. In particular, each edge is associated with a single resource. There can be two resources

collaborating on the two activities but in that case they can be treated as a single resource. Thus,

we may assume without loss of generality that there is a one to one mapping between edges and

resources. With each resource corresponding to an edge and each activity to a node, the matrix

AT (the transpose of A) is then (by the assumption of the corollary) the incidence matrix of a bi-

partite graph and is hence totally unimodular; see e.g. (Schrijver 1998, page 273). The transpose of

a totally unimodular matrix is itself totally unimodular and we conclude that A is a TUM matrix.

In turn, by Theorem 3 the network features no unavoidable idleness. �

The following will be used in subsequent proofs.

An auxiliary synchronization graph for networks with nested architectures: Recall that for a

network to have a nested collaboration architecture it is not necessary that there be no cycles in

the collaboration graph. It is only required that all cycles are nested-sharing cycles. For nested

architectures we can construct an auxiliary acyclic graph that has the useful property that activities

3

at the same “level” of the graph do not share resources – we will refer to this acyclic graph as the

synchronization graph. This graph is a tool rather than a conceptual entity.

Recall that a nested-sharing cycle is a set of l connected nodes (activities) i0, . . . , il such that

S(ik, ij)⊆S(im, ij) for all k,m, j ∈ {1, . . . , l} : j >m> k.

We refer to i0 as the highest rank activity in the cycle, i1 the second rank etc. Following standard

terminology we say that a simple path in a graph between nodes i and j is a set of distinct nodes

i, i1, . . . , il, j such that each two consecutive nodes are connected by an edge. Given a network, we

construct the synchronization graph as follows:

0. Initialization: Set `= 0 and C0 = ∅. Add a fictitious node r and set dr = 0. (think of the root

as an activity with λr = 0 that uses all K resources.)

1. If C` = I stop. Otherwise, consider the maximal sharing between an activity outside the graph

and one in the graph, i.e,

O= max{i /∈ C`−1, j ∈ C`−1 : |S(i, j)|}.

Set O= 0 if there are no such i and j.

2. O > 0: Pick an activity i` /∈ C`−1 with |S(i`, j)| =O for some j ∈ C`−1. If taking an activity

from a nested-sharing cycle take the highest-rank activity in that cycle not yet in the graph (if

there are multiple nested-sharing cycles with activities not yet in the graph, take an activity from

a cycle with the largest number of nodes).

Pick a node j` ∈ arg maxj∈C`−1:|S(i`,j)|=O dj, add the edge (i`, j`) and set di` = dj` + 1. (we are

connecting i` to the activity with the greatest distance from the root among those that share

resources with i`). Stop if there exist j, k ∈ C`−1 with |S(i`, j)|= |S(i`, k)|=O but S(i`, j) 6= S(i`, k).

3. O= 0 (there are no activities i, j one in the graph and the other out of it that share resources):

pick an arbitrary i` /∈ C`−1 and add to the graph connecting it via an edge to the root. If adding

an activity from a nested-sharing cycle take the one with the highest rank (if there are multiple

nested-sharing cycles with activities not yet in the graph, take an activity from a cycle with the

largest number of nodes). Set di` = 1.

Example A.1 Consider the network in Figure 9 together with its collaboration graph. The

collaboration graph contains only nested-sharing cycles. The outcome of the algorithm applied to

this network is as in Figure 10 (we removed here the fictitious root).

Since the choice of the edge to add in step 2 of the algorithm is arbitrary there can be multiple

synchronization graphs but, importantly, the following holds.

4

a1

r1,r2,r3

a3

r1,r2

a2

r1,r2,r4

a4

r4

a5

r1

a6 r2

a7

r5,r3

a8

r5

a9

r3

p

1‐p

a1
1,2,3

a2
1,2,4

a4
4

a3
2,1

a6
2

a5
1

a7
3,5

a8
5

a9
3

Figure 9 A network with nested hierarchical architecture

a1
1,2,3

a2
1,2,4

a4
4

a3
2,1

a6
2

a5
1

a7
3,5

a8
5

a9
3

Figure 10 A synchronization graph for the network in Figure 9

Lemma A.1 (1) If the network has a nested collaboration architecture the algorithm generates

a graph with I nodes and no cycles and, (2) in this case, activities in the same level of the graph

(i.e, with the same parameter d) do not share resources (S(i, j) = ∅ if di = dj).

Proof: If the algorithm stops after I steps then all nodes were added with a single edge and no

cycles were formed. Suppose, towards contradiction, that the algorithm stops after ` < I steps. In

this step a node i` is added and there are j` and k` with O= |S(i`, j`)|= |S(i`, k`)| and S(i`, j`) 6=

S(i`, k`). We claim that the cycle containing i`, k` and j` must be a non-nested cycle. Suppose

that these activities are, in fact, part of a nested-sharing cycle. Let us further assume that k` was

added to the graph after j` (the other case is argued identically). By assumption, O= |S(i`, j`)|=

|S(i`, k`)|. Since this is a nested-sharing cycle and k` has a lower rank than j` we have that S(j`, i`)⊆

S(k`, i`) and, in turn, S(i`, j`) = S(i`, k`) which is a contradiction to the stopping rule. We may

thus conclude that, if the network has a nested architecture, the algorithm ends with a tree that

includes I nodes.

We argue next that if the architecture is nested then i and j with di = dj must have S(i, j) = ∅.

The case that i and j are not part of a cycle is trivial as, if di = dj and S(i, j) 6= ∅, we would have in

fact found a cycle containing i and j in the collaboration graph. To argue the case that i and j are

part of a nested-sharing cycle, let ` be the first step in which a node i` is added with the property

5

that di` ≤ dj for some j ∈ C`−1 with S(i`, j) 6= ∅. Let k 6= j be such that (i`, k) is the edge that is

added to the graph with node i` (if k= j we would have di` = dj+1>dj). Then, dj ≥ di` = dk+1. In

particular dk <dj. Note that S(j, k) 6= ∅ as they are both part of a nested-sharing cycle containing

j. Since i` is the first node added with the required property, the fact that dk < dj implies that

k was added to the graph before j (and has higher rank in the nested-sharing cycle containing

both). By the definition of nested-sharing cycles we must then have that S(k, i`) ⊆ S(j, i`) and,

in particular, that |S(k, i`)| ≤ |S(j, i`)|. Recall that also dj > dk so that, when adding i` we would

have added the edge (i`, j) instead of (i`, k). �

Proof of Theorems 4 and 6: First, note that Theorem 4 is a special case of Theorem 6 with the

staffing vector set to be the vector of ones. We divide the proof into two parts. In the first we treat

nested architectures and in the second we treat weakly non-nested architectures.

Nested architectures: A known sufficient condition for the total unimodularity of the matrix

A is that it (or a permutation of its rows) has the consecutive ones property; see (Schrijver 1998,

Example 7, Chapter 19). We next prove that we can re-label the resources and permute the rows

so that the 1s in each column (corresponding to an activity) appear consecutively.

Our starting point is the synchronization tree constructed above. We first re-organize the tree.

We make sure that at every level of the tree the nodes with the least number of sons are far from

the root. Formally, i is a parent node of j (and j the son of i) if there is an edge between them

and dj = di + 1. Returning to the example we used before, the graph in Figure 11(LHS) would be

re-organized into the one on the RHS.

Proceeding with this example, we can now re-label resources following depth-first-search to tra-

verse the tree. We first visit activity a8. This activity has the single resource 5 – we re-label this

resource as 1 (i.e, 5→ 1). We then proceed to activity a9 and re-label 3 as 2. At this point labels

1 and 2 are already taken and the next available label is 3. In activity a7, 3,5 is replaced with 2,1

(or 1,2 for convenience of display) following the re-labeling already done in the son nodes of a7.

We then visit node a6 and replace 2→ 3 and in activity a5 1→ 4. In activity a3 we re-label based

on the son nodes a5 and a6. For activity a4, the next available resource number is 5 so we re-label

4→ 5 and follow accordingly in activities a2 and finally a1. By the end of this procedure we have

re-labeled the resources (5,3,2,1,4)→ (1,2,3,4,5). This re-labeling guarantees the consecutive 1’s

property: a1, for example, uses resources 2,3 and 4 (previously 1,2,3), a2 uses 3,4,5 (previously

1,2,4), etc.

The following is the formalization of the re-labeling algorithm:

Initialize num = 0 and z0 = 0. Each resource has a tuple containing its original number k, its

current label `(k) (which is initialized to k), and a binary variable v(k) which is 0 initially and set

to 1 once k is labeled. We take the following actions in step l of the depth first search:

6

a1
1,2,3

a2
1,2,4

a4
4

a3
2,1

a6
2

a5
1

a7
3,5

a8
5

a9
3

a1
1,2,3

a2
1,2,4

a4
4

a3
2,1

a6
2

a5
1

a7
3,5

a8
5

a9
3

a1
2,3,4

a2
3,4,5

a4
5

a3
3,4

a6
3

a5
4

a7
1,2

a8
1

a9
2

Figure 11 (LHS) A synchronization graph for the network in Figure 9 and (RHS) re-organized version and

(BOTTOM) re-labeled resources

1. If the node is a leaf (corresponding to activity i say), we label all unlabeled resources in this

node in an arbitrary order starting with the numbers num+ 1, . . . , num+ |R({i})|. We advance

num← num+ |R({i})|. For each labeled resource k, we write `(k) for its new label and set v(k) = 1.

2. If node i is not a leaf:

2a. If node i has a resource k that has not yet been marked (i.e. v(k) = 0): if i is on the left of

the root assign it the number zl− 1 (and change zl← zl− 1). If i is on the right of the root, label

`(k) = num+ 1, set v(k) = 1 and advance num← num+ 1.

2b. Order the resources in each activity in increasing order of their labels. If after completing

step 2a there is a gap in the labels of resources in activity i (there are resources k, l ∈R({i}) such

that `(k) > `(l) + 1 but no κ ∈ R{i}) with `(κ) = `(l) + 1)) we take the following actions: Let k

(with label `(k)) be the first resource after the gap. Let j be a son of i such that k ∈ S(i, j) (by

Lemma A.1 there can be at most one such son node). Re-label all resources in the sub-tree rooted

in j by shifting them by −`(k). Repeat as long as there are gaps.

To illustrate step 2b consider Figure 12. The top graph on the left is the original one and the

bottom graph on the left is the one obtained after applying all steps except for step 2b on the root

node a1. Note that in the root node there is now a gap (between 2 and 4). In this last step we take

the sub-tree rooted at a5 and shift all labeling by −4, thus creating the two new labels −1 and 0.

All labels in the graph are now consecutive.

7

a1
4,5,3

a5
2,3

a7
3

a6
2

a2
4,5

a3
4

a4
5

a1
4,5,3→1,2,4

a5
2,3→3,4

a7
3→4

a6
2→3

a2
4,5→1,2

A3
4→1

a4
4→2

a1
4,5,3→1,2,4

→0,1,2
a5

2,3→3,4→
‐1,0

a7
3→4
→0

a6
2→3
→‐1

a2
4,5→1,2

a3
4→1

a4
4→2

Figure 12 Relabeling example

To argue that the resulting labeling has consecutive labels we perform induction on the step

number. This is obviously true for the first visited leaf. Since no two leafs in the synchronization

tree have shared resources, when a leaf is visited no resource is already labeled. Assuming that for

all activities visited in step l≤ k−1 resources are consecutively numbered, the algorithm preserves

this property. Let i be the activity visited in the kth step: if step 2b is not applied to node i, it

means there is no gap and the consecutive labeling is inherited from the son nodes because new

resources are added to the left (if the node is to the left of the root) or right (if the node is on the

right of the root). If step 2b is applied in this node then the resource numbers are merely shifted

and hence, by the induction assumption, all son nodes preserve the consecutive-labels property.

Notice that the fact (recall Lemma A.1) that the synchronization tree does not have nodes with

shared resources in the same level, is used in step 2b.

Finally, permuting the rows of A according to the labeling we created, each column in the graph

(corresponding to each activity) will have consecutive ones. Recall that this guarantees that the

matrix A is totally unimodular which concludes the proof for nested architectures.

Weakly non-nested architectures: We will show that if an architecture is weakly non-nested,

we can alter the network in a way that preserves the value of ρBN and can only increase ρnet but has

a nested collaboration architecture. This will imply, by the first part of this theorem, that there is

no unavoidable idleness.

We start with an example. Consider a network of 3 activities and 4 resources as in the collabo-

ration graph in Figure 13(LHS)–each circle corresponds to an activity and the required resources

are listed below the activity’s label.

This network contains a non-nested cycle. It is weakly non-nested because resource 4 is shared

by all activities in the cycle. The bottleneck in this network is trivially resource 4 with ρ4 = ρBN =

8

a1
1,2,4

a2
2,3,4

a3
3,1,4

a1
1,2,4,3

a2
2,3,4,1

a3
3,1,4,2

Figure 13 Transforming a weakly non-nested network into a nested one without changing ρBN.

∑3

j=1 λjmj (and ρ2, ρ1, ρ3 ≤ ρ4). If we add each of the resources 1,2 and 3 (each, notice, is assigned

initially to 2 activities) to activities to which they are not assigned, we obtain the network with the

collaboration graph on Figure 13(RHS). The resulting network is trivially nested. Importantly, this

action does not affect the theoretical utilization which remains ρBN = ρi =
∑3

j=1 λjmj, i= 1, . . . ,4

and it can only increase ρnet as, by assigning more resources to activities we can only shrink the

family of feasible configuration vectors.

The new network we constructed is nested so that ρBN = ρnet. In particular, we can construct an

allocation π that achieves ρnet = ρBN. In this special example, positive weights are given only to

the identity vectors ei, i= 1,2,3.

To generalize this argument, fix a network with a weakly non-nested collaboration architecture.

As in the above example, we first transform all weakly non-nested cycles into nested ones.

Fix a weakly non-nested cycle of activities C ⊆ I. Let k∗ be the focal resource of this cycle: the

resource that is shared by all activities in the cycle. If there are multiple cycles in which k∗ is the

focal resources, C is taken to be the one with the most activities. We can also assume there is a

single such resource for C. If there are two we can treat them, without loss of generality as the

same resource. Let K(C) = {k ∈K :Akj = 1, for some j ∈ C} be the set of resources that participate

in at least one activity in the cycle.

By definition j ∈ C if and only if Ak∗j = 1. We distinguish between two types of resources asso-

ciated with this cycle:

(i) Resources that participate in two activities or more in the cycle. The set of these is given by

K≥2(C) := {k ∈K(C) :
∑

j∈CAkj ≥ 2}.

We claim that a resource k ∈ K≥2(C) cannot have activities j /∈ C. Indeed, suppose that there

exist k ∈K≥2(C) and j0 ∈ I such that Akj0 = 1 but Ak∗j0 = 0. Since k participates in two activities

in the cycle C, there must exist two activities j1, j2 ∈ C such that j0, j1 and j0, j2 are in the graph.

9

Note that because all activities in C share a resource we can assume without loss of generality that

the activities j1, j2 are consecutive activities in the cycle (otherwise we can re-label the activities).

Thus, we have identified a non-nested cycle C̄ (with more activities than C). Note that C̄ must be

a non-nested cycle. If it were nested than the smaller cycle C would also be nested. Moreover, it is

strongly non-nested because Ak∗j0 = 0. This would be a contradiction to the assumption that all

non-nested cycles are weakly non-nested.

(ii) Resources that participate in one activity in the cycle K1(C).

We do nothing for resources k ∈ K(C) \ K>2(C). Since we have argued that for k ∈ K>2(C),∑
j /∈CAkj = 0, we can alter the network by assigning k to each of the activities j ∈ C with (initially)

Akj = 0 and still have
∑

jAkjλjmj ≤
∑

jAkCjλjmj so that the value of ρBN = maxk ρk does not

change. Note that the resulting cycle is nested. Any resource that appears twice appears now in

all activities of C so that, in any order, the condition (15) holds. Repeating the same for each

such weakly non-nested cycle, the network is transformed into a nested network. For this network

ρnet = ρBN. Since, by assigning resources to more activities we only shrink the family of configuration

vectors this, in particular, implies for the original network that ρBN = ρnet which concludes the

proof. �

Proof of Lemma 2: Let C = i0, . . . il be the shortest amongst the strongly non-nested sharing

cycles. A segment of the cycle is a subset of consecutive activities in the cycle. Since C is strongly

non-nested it can be divided into non overlapping segments (the end point of one segment can

serve as a starting point for the next) such that for each segment there is a resource k that is

shared by all activities in this segment. There must be at least two such segments since the cycle

is, by assumption, strongly non-nested.

Note that there cannot be another strongly non-nested cycle in the graph that has nodes in

two distinct segments of the cycle C. Otherwise C would not be the shortest strongly non-nested

cycle. Also, there can not be a nested-sharing cycle (or a weakly non-nested cycle) with nodes in

two distinct segment because by definition both nested and weakly non-nested cycles require the

existence of a resource that is shared by all activities in the cycle.

We conclude that there are no edges in the collaboration graph with end points in distinct

segment of this cycle. We can then assume, without loss of generality, that each segment has one

edge (and two activities). Indeed, if there are three activities there will be an edge between each

two of them because they share a resource and we can drop one activity. Thus, we have found a

simple cycle. �

10

Proof of Theorem 5: By Lemma 2 the network contains at least one simple non-nested cycle. Let

M be the (odd) number of nodes in the cycle (it is also the number of edges).

Choose λ and m such that λjmj = 1/2 for each activity on the cycle. Set λjmj = 0 for all other

activities in the network. Recall that a cycle i1, . . . , il is simple non-nested if each two activities

connected by an edge share a resource that is not used in any other activity in the cycle. With the

above parameters we can assume that there is one such resource per edge (if there are multiple

we can treat them as the same resources) and a total of M resources assigned to activities in the

cycle.

Each resource that defines an edge on the cycle has two activities with a total load of 1 and

is thus a bottleneck. Since at most b(M − 1)/2c <M/2 of the M activities on this cycle can be

processed in parallel and each activity uses 2 of these resources there is no feasible configuration

set A with BN⊆R(A). The condition of Lemma 3 is trivially satisfied and we can conclude that

the network features unavoidable idleness. �

Proof of Lemma 3: Suppose that ρnet = ρBN = 1. Let (π,ρnet) be a solution to the SPPC (i.e,∑
A∈C a(A)π(A) = λm. and

∑
A∈C π(A) = ρnet).

Since
∑

iAkiai(A)∈ {1,0} for any feasible configuration set A, we have that

ρk =
∑
i

Aki(λimi) =
∑
i

Aki(
∑
A∈C

a(A)π(A))i

=
∑
A∈C

π(A)
∑
i

Akiai(A) =
∑

A∈C,k∈R(A)

π(A). (26)

Moreover, if A is such that π(A) > 0 then it must be the case that BN ⊆R(A). Indeed, for all

k ∈BN, the right hand side of (26) is ρnet = ρBN = 1. Thus, if there exist k, l ∈BN and A with

π(A)> 0 such that k ∈R(A) but l /∈R(A) then we would have
∑
A∈C:l∈R(A) π(A)< 1 = ρBN.

In turn, if ρnet = ρBN = 1 there exists a family C(BN) ⊆ C such that BN ⊆ R(A) for each

A∈C(BN) and
∑
A∈C(BN) π(A) = 1.

Finally, for each i, (
∑
A∈C a(A)π(A))i = λimi (recalling that a(A) is a binary vector) so that

π(A)≤mini∈A λimi. We conclude that, if ρBN = ρnet there must exist a family of subsets C(BN)

of C such that

1 =
∑

A∈C(BN)

π(A)≤
∑

A∈C(BN)

min
i∈A

λimi.

In particular, if ∑
A∈C:BN⊆R(A)

min
i∈A

λimi < 1,

it must be the case that ρnet >ρBN = 1.

11

For the second part of the lemma, arguing as before we obtain that

ρk =
∑

A:k∈R(A)

π(A)≤ ρnet
 ∑
A:k∈R(A)

min
i∈A

λimi

 .

(Recall that ρnet ≥ 1 in the assumptions of the lemma.) Then, for each k ∈BN

ρBN = ρk ≤ ρnet max
l∈BN

 ∑
A:l∈R(A)

min
i∈A

λimi

 ,

which completes the argument. �

Proof of Lemma 4: The proof is by construction. Let ρBN be the solution of the SPP. Let c0,θ be

the configuration vector that has as its ith entry

c0,θi =
1

ρBN

⌊
λθimi

⌋
.

(note that since we assume throughout the paper that λimi > 0 for at least one i, we have that

ρBN > 0.) Let π(c0,θi) = ρBN. Also, let ni,θ be the vector that has mink:k∈R({i}) n
θ
k in its ith entry and

0 otherwise. Set

π(ni,θ) =
1

mink:k∈R({i}) nθk

(
λθimi−

⌊
λθimi

⌋)
.

Note that all vectors c0 and (ni, i ∈ I) are feasible configuration vectors since they satisfy∑
iAkic

0,θ
i ≤ nθk for all k and

∑
lAkln

j,θ
l = minl:l∈R({j}) nl ≤ nθk for all k. Finally, note that

π(c0,θ)c0,θ +π(ni,θ)ni,θ = λθimi

and

π(c0,θ) +
∑
i

π(ni,θ) = ρBN +
∑
i

1

mink:k∈R({i}) nθk

(
λθimi−

⌊
λθimi

⌋)
=: ρθ.

Thus, the θ-s SPPC has a feasible solution (πθ, ρθ) with

|ρBN− ρθ| ≤
∑
i

1

mink:k∈R({i}) nθk

Finally, since λ is strictly positive by assumption and each resource is assigned to at least one

activity we must have that nk > 0 to have a feasible solution for the SPP. Since nθk = θnk→∞ as

θ→∞, we conclude that |ρBN− ρθ| → 0, as θ→∞. �

12

Proof of Theorem 7: The proof is straightforward given the definitions and Theorem 4 for the

no-flexibility case. Specifically, given (xBN, ρBN) as in the statement of theorem (i.e, that solve

(23)), consider the following problem

minimize ρ

s.t.
∑

iAk,(iG)x
BN
iG ≤ ρ, for all k ∈K,

This can be interpreted as the SPP corresponding to an artificial network with activities {(iG)}

and with arrival rate xBNiG to activity (iG). Trivially, this problem has ρBN as its optimal

solution. The collaboration architecture of this artificial network is nested by assumption. By

Theorem 4, there exists π ≥ 0 such that
∑
A∈C π(A) = ρBN and

∑
A∈C a(A)π(A) = xBN. Thus,∑

G

∑
A∈C(a(A)π(A))iG =

∑
G x

BN
iG = λimi where the last equality follows directly from the SPP.

�

The following provides a weaker sufficient condition than the one in Theorem 7. We let ρ(x) =

maxk
∑

kAk,(iG)xiG.

Lemma A.2 Fix λ and let (xBN, ρBN) be an optimal solution to the SPP with ρBN(λ)≤ 1. Suppose

that xBN can be written as a sum of non-negative vectors x1, . . . x` each of which induces a nested

extended collaboration architecture and such that
∑`

l=1 ρ(xl)≤ 1. Then, ρnet(λ)≤ 1.

Proof: For each m we can construct as in the proof of Theorem 7 a probability vector such that∑
a π(a) = ρm where ρm is the value of the static planning problem for xm. A probability vector π̌ is

then constructed by setting π̌(a) =
∑

m π
m(a). by assumption

∑
a π̌(a)≤ 1 and

∑
a aπ̌(a) = xBN. �

Proof of Lemma 6: Identically to Lemma 3 it is proved that if the SPP has an optimal solution

ρBN = 1 and ∑
A∈C:BN⊆R(A)

min
(i,G)∈A

λimi < 1,

then the network features unavoidable bottleneck idleness. Let CF be the family of feasible con-

figuration sets after the addition of the extended activity (i,G) as in the statement of the lemma.

Under the conditions of the lemma the extended activity (i,G) cannot participate in any covering

of BNF = BN
⋃
{k}. In particular, {A∈CF : BNF ⊆R(A)} ⊆ {A∈C : BN⊆R(A)} so that under

the condition of the lemma∑
A∈CF :BNF⊆R(A)

min
(i,G)∈A

λFi mi ≤
∑

A∈C:BN⊆R(A)

min
(i,G)∈A

λFi mi < 1

and by the first part of the lemma the network features unavoidable idleness. �

	Introduction
	Network Notation and Graphic Conventions
	Bottlenecks, Feasible Configurations and Unavoidable Idleness
	Collaboration Graphs and Architectures of Collaboration
	Non-nested networks

	Collaboration and Scale: Multi-server Networks
	Unavoidable Bottleneck Idleness and Flexibility
	Concluding Remarks

