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After decades of offshoring production across the world, companies are rethinking their global networks.
Local sourcing is receiving more attention, but it remains challenging to balance the offshore sourcing cost

advantage against the increased inventories, because of its longer lead time, and against the cost and (volume)
flexibility of each source’s capacity. To guide strategic allocation in this global network decision, this paper
establishes reasonably simple prescriptions that capture the key drivers. We adopt a conventional discrete-time
inventory model with a linear control rule that smoothes orders and allows an exact and analytically tractable
analysis of single- and dual-sourcing policies under normal demand. Distinguishing features of our model are that
it captures each source’s lead time, capacity cost, and flexibility to work overtime. We use Lagrange’s inversion
theorem to provide exact and simple square-root bound formulae for the strategic sourcing allocations and the
value of dual sourcing. The formulae provide structural insight on the impact of financial, operational, and
demand parameters, and a starting point for quantitative decision making. We investigate the robustness of our
results by comparing the smoothing policy with existing single- and dual-sourcing models in a simulation study
that relaxes model assumptions.
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1. Introduction and Summary
Over the past few decades it became conventional
wisdom that factory jobs could be done cheaply in some
far-flung corner of the world. The original impetus
behind offshoring for western firms was to reap savings
from performing work in overseas countries with lower
wages and materials costs. For several decades that
strategy worked, often brilliantly, but now companies
are rethinking their global networks. A special report
in The Economist (2013) on offshoring and outsourcing
describes the story of Lenovo, a Chinese technology
group, opening a U.S. computer manufacturing line
in North Carolina. The global labor “arbitrage” is
running out: wages in China have nearly doubled
since 2008, partly as a result of domestic minimum-
wage policies (the country’s 2011 five-year plan called
for a 13% average annual minimum-wage increase, a
rate some provinces already exceeded (George et al.
2014)). The cost of shipping goods around the world
has been rising sharply, and goods spend weeks in
transit. Offshoring also often requires substantial safety
inventory, the holding cost of which can outweigh
the labor and materials cost advantage. Today, greater
emphasis is placed on proximity to demand: responding

to customers’ new-product requests, shorter delivery
times, and swift corrections to improve designs and
quality has magnified the need for responsive and
flexible supply chains. Local sourcing therefore is
receiving increasing attention.

A complete reversal to local sourcing, however, may
be unlikely and ill-advised. Indeed, the concepts of
global and local sourcing are not mutually exclusive.
Rather, the combined use of multiple supply sources,
each of which is different and possesses unique advan-
tages, might be better than any single-sourcing strategy.
Admittedly, multisourcing involves higher coordina-
tion costs, but a strategically configured portfolio of
suppliers with complementary skills can often perform
better than any individual supplier.

In this paper we analyze global sourcing for compa-
nies that have access to two sources with complemen-
tary competencies: a local source that is responsive
but more expensive, and a global source that is (glob-
ally) more cost-efficient but with a longer lead time.1

1 Supply competencies can correspond to transportation modes so
that our analysis also applies to balancing mixed-mode transportation
or spot and forward market purchasing.
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Although our policy can be used for two local sources,
we adopt the setting where the low-cost source is
offshore and far away from the local responsive source.
Whereas the sourcing literature typically only considers
sourcing and inventory related costs, we explicitly add
each source’s capacity cost and flexibility (modeled
by its cost to work overtime). In the current economic
climate of rising labor costs in some countries, and
decreasing flexibility to go beyond regular working
hours (driven by strong labor unions or by capacity
rigidity due to high levels of automation), capacity
cost and flexibility are increasingly relevant factors
for sourcing decisions. The Economist (2013) mentions
that one of the reasons why reshoring may less likely
happen in Europe, compared to the United States, is
because Europe’s labor markets are still fairly inflexible
and costly. Labor flexibility still varies greatly from
country to country. In a global economy where firms
can go where they want, these differences have an
effect.

Our approach assumes a wholly owned global net-
work where capacity costs and flexibility are directly
relevant. We believe this approach provides a stepping
stone to a decentralized system, where independent
suppliers will in one way or another include a sourcing
charge for capacity costs and flexibility, but a formal
game-theoretic analysis is left for future research.

We adopt a conventional discrete-time inventory
model with stochastic demand and a linear control rule
that is capable of smoothing orders to both sources.
The reasons for analyzing this policy, which we will
refer to as dual-sourcing smoothing (DSS), are that
smoothing policies are effective to reduce capacity
requirements and are used in practice (see empirical
evidence in §2) when companies face high labor or
capital capacity costs. In addition, the linearity of
smoothing policies provides analytic tractability with
normally distributed demand and allows us to specify
analytically the strategic sourcing allocations to both
sources.

The optimality equations involve a polynomial of
degree higher than the lead time difference L between
the two sources. Given that a quartic is the polynomial
of highest degree for which general finite analytic
expressions for the roots can exist, we use Lagrange’s
inversion formula to solve the optimality equations for
general L. Another technical contribution, for which
we relied on Lagrange’s technique, is the inclusion
of general lead times for each source in a smoothing
policy. To the best of our knowledge, the application of
the Lagrange series to inventory theory appears novel.

The main contribution of this paper is to provide
managerial guidelines for strategic sourcing (global,
local, or dual sourcing) based on exact formulae and
simple square-root bounds that capture the impact of
each source’s cost, lead time, capacity, and flexibility for

normally distributed demand. Specifically, we present
a simple guideline that captures the trade-off between
these four parameters when deciding between local or
global single sourcing with the standard base-stock pol-
icy. We show that single sourcing with order smoothing
dominates using a base-stock policy in the presence
of capacity costs and performs close to the optimal
sourcing policy under capacity costs. We then extend
order smoothing to dual sourcing and present formulae
and bounds that specify the optimal volume fraction
ordered from the global source (the strategic offshoring
allocation), its corresponding total landed cost, and the
value of dual sourcing (over single sourcing).

We show that order smoothing policies shine when
dual sourcing faces capacity costs, inflexibility, or longer
lead time difference L between both sources. The maxi-
mal value of dual-sourcing smoothing then increases
significantly and grows at the order of L1/6. Moreover,
the parameter region for which dual-sourcing smooth-
ing dominates capacitated single sourcing widens as L
increases. The square-root formulae that we present
are sufficiently simple to provide a starting point for
quantitative decision making to optimally trade off cost
and responsiveness. Although simple, the formulae still
capture the key parameters and thus provide structural
insight on the impact of financial, operational, and
demand parameters on dual-sourcing decisions.

Finally, a simulation study demonstrates the robust-
ness of our results by relaxing the normality assumption
and by comparing the policy with other policies studied
in the literature.

2. Related Literature
Our work directly relates to two streams of research:
dual-sourcing inventory models and order smoothing
policies. The dual-sourcing literature refers to inventory
models where replenishment occurs through a regular
channel and/or a more expensive, but faster expedited
channel. The objective is to minimize the expected
sum of procurement, holding, and shortage costs over
multiple periods. The dual-sourcing literature is very
rich; we focus primarily on discrete review models.
Fukuda (1964) shows that when the lead time difference
is one period, dual-base-stock policies are optimal. In a
dual-base-stock policy, an expedited order is placed
to bring the inventory position up to a first (expedite)
base-stock level, after which a regular order is placed to
bring it up to a second and higher (regular) base-stock
level. Fukuda uses first-order conditions to derive
expressions for the base-stock levels. Whittemore and
Saunders (1977) extend Fukuda’s (1964) model and
show that when lead times differ by more than one
period, the optimal policy is no longer a dual base
stock, but it depends on the entire ordering history
and requires multidimensional dynamic programming.
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Optimal dual-sourcing policies are, in general, highly
complex. Therefore, various heuristic policies are pro-
posed in the literature. Veeraraghavan and Scheller-Wolf
(2008) introduce a dual-index dual-base-stock policy
that tracks inventory positions over both regular and
expedited lead times. Order-up-to levels for both inven-
tory positions are computed using a simulation-based
optimization procedure. The authors show that such a
dual-index policy is nearly optimal when compared
to state-dependent policies. Scheller-Wolf et al. (2006)
consider single-index dual-base-stock policies, whose
structure is identical to dual-index policies except that
only one inventory position is tracked instead of two.
The authors computationally show that its performance
is comparable to the more complex dual-index policy.
The single-index policy also allows closed-form cost
expressions under certain distributional assumptions.
As such, this is the only other policy from which
you can obtain insights by looking at the expressions.
Sheopuri et al. (2010) generalize the class of dual-index
policies. They show that the “lost sales inventory prob-
lem” is a special case of the dual-sourcing problem and
leverage this property to suggest new classes of policies
with an order-up-to structure that perform equal to, or
even slightly better than, the dual-index policy with
the same computational requirements. One of their best
performing policies is a base-stock policy for placing
expedite orders and a vector-base-stock policy for
regular orders (this policy was inspired by Zipkin 2008
whose experiments showed that the vector-base-stock
policy outperforms the best base-stock policy for the
lost sales inventory problem in a single-source setting).

Rosenshine and Obee (1976) consider a standing
order policy, which orders at a constant rate from
the regular source and uses a base-stock policy for
the emergency replenishment. Tagaras and Vlachos
(2001) extend this policy to allow emergency replen-
ishment within the regular review period. Allon and
Van Mieghem (2010) refer to a standing order policy as
a tailored base-surge (TBS) policy, where the regular
source supplies the “base” demand and the fast source
supplies the remaining “surge” demand using a base-
stock policy. It is noteworthy that, by definition, a TBS
policy is independent of the slow source’s lead time.
This allows some mathematical tractability: Allon and
Van Mieghem (2010) develop an analytical Brownian
model that is asymptotically optimal for high sourc-
ing volumes. Janakiraman et al. (2015) show that the
TBS policy is optimal when demand comes from a
two-point distribution and when the probability of the
smaller (base) demand is sufficiently large. They also
show that TBS performance, relative to the optimal
policy, improves as the lead time of the regular source
increases.

Recently, the dual-sourcing literature is adopted in
the context of global sourcing strategies, thus combining

the advantages of global low-cost sourcing and local
quick response manufacturing. Allon and Van Mieghem
(2010) provide guidelines for determining the “strategic
allocations,” i.e., how the average total sourcing volume
should be allocated to the global and local sources when
the standing order or TBS policy is used. Wu and Zhang
(2014) develop a game-theoretic model where multiple
firms in a competitive setting may choose between
efficient sourcing and responsive sourcing; a key feature
of the game is that depending on the sourcing strategy,
a firm may observe different signals about the uncertain
market demand. Liu and Nagurney (2013) address the
impact of demand and cost uncertainty in a supply
chain network with offshoring and quick-response
production. Using variational inequality theory, the
authors formulate the governing equilibrium conditions
of the competing manufacturers, and a simulation
study investigates the quantitative impact of demand
and cost uncertainty. Recent empirical work by Jain
et al. (2014) studies the impact of global sourcing and
supplier diversification on inventory investment.

Our dual-sourcing model also relates to the choice
of mixed-mode transportation systems where a shipper
can use two transport modes together for a single
commodity flow. Recently, Combes (2011) studied this
problem by minimizing the total landed cost using
approximations and simulations. Dual sourcing also
relates to the dual sourcing of commodities on the spot
market and using forward contracts. Goel and Gutierrez
(2011) provide an algorithm to study a dynamic dual-
base-stock policy that depends on the spot price state.
Our analysis and formulae may be applicable to similar
settings with a constant cost differential between the
two sources.

In this paper we study the order allocation to the
global and local sources by introducing a class of order
smoothing policies. Smoothing is a well-known method
to reduce variability. The benefit of order smoothing
stems from the fact that the order pattern is less variable
than the demand. Therefore, the total installed safety
capacity is reduced compared to demand-replacing
chase policies such as traditional base-stock policies.
The introduction of order smoothing in a global dual-
sourcing context is not new. The TBS policy can actually
be interpreted as an order smoothing policy: the pre-
sumption by Allon and Van Mieghem (2010) is that
the low-cost source cannot rapidly change volumes
because of frictions such as long lead times or an
inflexible level production process that is essential to
achieve this cost advantage. Indeed, under a TBS policy
the global source needs no safety capacity. Moreover,
an increase in the standing order reduces the vari-
ability of the responsive order stream (“peak-shaving
behavior”) and thus the required safety capacity of the
responsive sources also reduces. Veeraraghavan and
Scheller-Wolf (2008) specify a capacitated scenario in
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their dual-index policy with capacity limits at each
source.

Smoothing is justified when production and holding
costs are convex or when there is a cost of changing the
level of production (Sobel 1969, 1971). Simon (1952) and
Vassian (1955) did pioneering work on the development
of smoothing rules using servomechanism (or control)
theory and Laplace transform methods. Forrester (1961)
and Magee (1958) suggest that production smoothing
can be achieved by distributing the transient part of
the required production over a number of successive
periods. Bertrand (1986) extends this approach to a
multiproduct multiphase production system.

Graves has contributed to the smoothing literature
over the course of the last 25 years. Graves (1988)
reviewed the literature on safety stocks for manufactur-
ing systems and criticized its (lacking) consideration of
the role of safety stocks in the presence of inflexibility
in manufacturing systems. He characterized the need
for additional safety stocks as a result of the smoothing
or decoupling function within a manufacturing opera-
tion. Of particular interest to our work is the linear
production control rule described in his paper, which
smoothes the aggregate production and permits an
explicit examination of the trade-off between safety
stocks and production flexibility. A similar rule is used
by Balakrishnan et al. (2004) who set the order quan-
tity equal to a convex combination of the previously
observed consumer demands. They make use of these
order smoothing rules downstream in the chain to coor-
dinate the entire supply chain. They also characterize
the optimal smoothing parameter values and assess
the potential cost savings that these order smoothing
strategies can yield compared to the uncoordinated
case when individual firms separately minimize their
costs. In our paper we use the same linear control
rules to allocate orders to the global and local source,
thereby smoothing production over both sources.

Recent empirical work on production smoothing by
Cachon et al. (2007) found, based on industry-level
U.S. data, that order smoothing exists in the retail
industry and in some manufacturing industries, but
not in the wholesale industry. Chen and Lee (2012)
show how the prevalence of capacity constraints in
these industries (e.g., limited shelf/warehouse space
and manufacturing capacity) drives order smoothing.
Cantor and Katok (2012) use a series of laboratory
experiments to demonstrate the Cachon et al. (2007)
findings: when the cost of varying orders is higher than
the cost of holding inventory, production and order
smoothing is indeed a rational and cost-minimizing
behavior. Bray and Mendelson (2012) study firm-level
U.S. data and show that firms generally amplify last-
minute shocks, yet smooth seasonal variations. Cui
et al. (2014) present strong empirical evidence of order
smoothing. There is also a large economics literature

preceding the work in operations management, which
empirically investigates production smoothing—we
refer to Cachon et al. (2007) for an overview and
discussion.

3. Single Sourcing, Smoothing, and
Capacity

As a first stepping stone toward capacitated dual sourc-
ing, this section sets up the full model and notation
by reviewing single-sourcing policies and discussing
the impact of order smoothing when the source incurs
capacity costs and has a general lead time. Section 3.1.
presents the full model and notation and the remainder
of §3 focuses on single sourcing. Dual-sourcing policies
are developed from §4 on.

3.1. Sourcing Model
Consider a periodic-review inventory system that can
be replenished from two sources. (As a first stepping
stone, we can source from one of these two sources;
the next section will generalize to dual sourcing.) Time
is discrete and the sequence of events at each time
t = 0111 0 0 0 1 T is as follows: First the demand Dt is
observed and satisfied; unfilled demand is backlogged.
Then, the net inventory It , which is the inventory on
hand minus backorders, is observed and replenishment
orders are placed. The analysis is simplified by letting
qit denote the order quantity received in period t from
source i with i ∈ 8l1g9 for, respectively, the local and
global source. The orders face a delay of, respectively,
Ll and Lg periods, which means that the quantity qit
that is received at time t must be ordered in period
t−Li (and thus depend only on quantities observed up
to t −Li). When Li = 0, the order is received in time to
fill next period’s demand; this is equivalent to saying
that the replenishment is received by the end of the
period in which its order is placed. Following Zipkin
(2000, p. 404), we say that the risk period or total lead
time is Li + 1 periods (this risk period includes the one
period review). The essence is that the sources have a
lead time difference of Lg −Ll = L≥ 1.

Demand is stationary and i.i.d. with Ɛ4Dt5 = �,
Var4Dt5 = �2, and distribution ê. Let �N and êN

denote the standard normal density and distribution
and IN 4z5=�N 4z5− z41 −êN 4z55 the unit normal loss
function.

For the inventory evolution, all that is needed is
the demand process and the total quantity received
qt = qlt + q

g
t . Given this sequence of events, where

we first satisfy demand, then observe inventory and
finally place and receive orders, we have the following
dynamics of the net inventory for t = 11 0 0 0 1 T :

It = It−1 + qt−1 −Dt0 (1)

The dynamics for the first period are I0 = I−1 − D0.
The initial inventory I−1, which is a constant, can be
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decomposed into I−1 =
∑

i∈8l1g94Li + 15Ɛqit + Is, where
Is denotes the safety stock. In addition to the net
inventory, there is an outstanding pipeline inventory
I
p
t =

∑

i∈8l1g9

∑Li−1
k=0 qit+k.

The total landed cost per period incurred from origin
(one of either source) to destination (finished goods
warehouse) includes a cost per unit sourced, but also
the capacity cost at source i, and the inventory (holding
and shortage) costs. The total landed cost is most clear
in a centralized system, where the global network with
multiple supply points is wholly owned and part of
one organization. But also in a decentralized system,
the supply capacity cost typically remains an important
component of the total landed cost as the supplier
would include a charge for it.

The sourcing cost equals ci per unit sourced from
source i, with the faster source being more expensive
(cl > cg), which reflects the standard variable cost
component in the total cost for units coming from
location i. This component includes direct material as
well as any labor cost that can directly be attributed to
the order size. We assume sourcing costs are incurred
at receipt (although it does not make a difference in
our undiscounted model).

The capacity cost at location i reflects the standard
fixed cost component in the total cost for units coming
from location i per period. This includes capital, labor,
and other overhead cost rates that remain unchanged
over the time horizon 601T 7. The installed capacity Ki

at source i incurs a cost per period of C4Ki5 = kiKi,
with ki the constant, marginal cost rate to add one
unit of capacity at source i. In the natural regime,
local capacity is more expensive than global capacity
(although the model works without those conditions).
In practice, companies often have some volume flexibil-
ity to exceed the installed capacity, which we model as
follows: Orders qit can be produced up to the capacity
Ki that is installed at time 0; any excess order 4qi −Ki5+

requires overtime capacity at extra cost oi per unit.
Overtime reflects excess cost not covered in regular
capacity costs nor standard direct labor. (Obviously,
ki < oi, otherwise it would never be optimal to invest
in capacity.) The ratio oi/ki > 1 measures the rigidity of
the capacity constraint; equivalently, ki/oi < 1 can be
interpreted as the degree of flexibility in quantity devi-
ations beyond a source’s installed capacity. The limit
oi/ki → � represents the standard theoretical model of
capacity as a hard constraint.

Finally, each period, inventory incurs a holding cost h
per unit on hand or a backlog cost b per unit short.
Given that we consider a wholly owned global network,
we also charge holding cost to the pipeline inventory as
it represents capital tied up in the network (regardless

whether the supplier or the buyer has the inventory on
his accounts). The average cost over horizon T becomes

CT
I−1

=
1
T

∑

i∈8l1g9

T
∑

t=0

[

ciqit + kiKi
+ oi4qit −Ki5+ +h4It5

+

+ b4It5
−

+h
Li−1
∑

k=0

qit+k

]

0 (2)

We will focus on minimizing the average cost C =

limT→� CT
I−1

. Ideally, one would like to characterize
the initial inventory I−1 and an admissible sourcing
policy (which defines the replenishments qlt+Ll

and
q
g
t+Lg

as a function of It−k and Dt−k for t1 k= 0111 0 0 0)
that minimizes C. In the remainder of this section we
review some principal single-sourcing policies and
their average cost C that will serve as a stepping stone
toward dual-sourcing policies.

3.2. Standard Single-Sourcing Base-Stock Policy
The standard single-sourcing base-stock policy is opti-
mal in minimizing inventory related costs only (Zipkin
2000). Although this policy is not optimal to minimize
the total cost C (which additionally includes sourcing
and capacity costs), it is a well known and useful
benchmark against other sourcing policies. Single sourc-
ing from either the local or global source under a
standard base-stock policy is a demand-replacement
policy, where qit =Dt−Li

, and the associated inventory
process is It = Is + 4Li + 15�−

∑t
i=t−Li

Di. With normal
demand, both the order and net inventory process are
also normally distributed and the optimal capacity
and safety stock levels then follow from a standard
newsvendor solution:

Ki∗
=�+ ziK�1 where êN 4z

i
K5=

oi − ki

oi
3

I∗

s =
√

4Li + 15zI�1 where êN 4zI 5=
b

b+h
0

There is also pipeline inventory whose average cost
follows from Little’s law (hLi�). The total average
cost of this single-sourcing standard base-stock policy
(which we denote by s) is

C s
= ci�+ ki�+�i� +

√

4Li + 15�I� +hLi�1

with �i and �I , respectively, the financial capacity and
inventory cost parameters:

�i
= kiziK + oiIN 4z

i
K5= ki

[

ziK +
oi

ki
IN 4z

i
K5

]

1 (3)

�I = hzI + 4h+ b5IN 4zI 5= h

[

zI +
4h+ b5

h
IN 4zI 5

]

0 (4)

The capacity cost parameter �i increases linearly in
the source’s unit capacity cost ki and concavely in

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

10
5.

19
9.

87
] 

on
 0

6 
O

ct
ob

er
 2

01
5,

 a
t 1

1:
41

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Boute and Van Mieghem: Global Dual Sourcing and Order Smoothing
Management Science 61(9), pp. 2080–2099, © 2015 INFORMS 2085

the capacity rigidity ratio oi/ki. The inventory cost
parameter �I increases in the holding cost h and the
critical fractile zI (or, equivalently, the ratio b/h).

Compared to single local sourcing, global single-
sourcing benefits from lower sourcing (and often capac-
ity unit) costs, while the total order variability remains
the same (the installed capacity will depend on the unit
capacity cost and the rigidity of the source). In contrast,
inventory costs increase because of the longer lead
time. To compare the two standard single-sourcing
policies, we consider the scaled cost

Ĉ =
C − 4cl + kl +hLl5�

�I�
1 (5)

and introduce the following dimensionless notation
that will also be useful for dual sourcing:

�l =
�l

�I

1 �g =
�g

�I

and

�c =
cl − cg + kl − kg −hL

�I

�

�
0

(6)

These three dimensionless parameters capture the
“degrees of freedom” in the model and also the main
trade-offs in devising a sourcing policy: �l and �g
contain the ratio of, respectively, the local and global
source’s capacity cost and the rigidity of the source
versus the holding cost and the service level (see
Equations (3) and (4)); while �c captures the unit cost
advantage of the global source (in sourcing and unit
capacity vis-à-vis the increased pipeline inventory cost),
compared to the unit holding cost and the inventory
service level (both through �I ) and the volatility in
demand (as measured by its coefficient of variation,
CV = �/�). To disentangle the impact of a change in L
or in cost differences between the sources, from here
on we will have �c be the parameter capturing cost dif-
ferences (meaning, if the lead time difference increases,
the absolute cost advantage must also increase to keep
the cost difference �c the same). It directly follows that
the scaled cost for local single sourcing (ls) and global
single sourcing (gs) using the base-stock policy,

Ĉ ls
= �l +

√

Ll + 11 Ĉgs
= −�c + �g +

√

Lg + 10 (7)

This directly leads to the following simple guideline to
balance global and local sourcing when the standard
base-stock policy is in use:

Proposition 1. With normal demand, and when using
a standard base-stock replenishment policy, global single
sourcing dominates local single sourcing if and only if
�c + �l − �g >

√

Lg + 1 −
√

Ll + 1.

3.3. Order Smoothing Policies with
Single Sourcing

The high cost of installed capacity has led to the
development of ordering policies that dampen the
variability in orders. One effective order policy uses
exponential smoothing with smoothing level � ∈ 60117.
For an easy introduction to the order smoothing policy,
first consider the case when the lead time Li = 0.
The order policy qt = �qt−1 + 41 −�5Dt , with 0 ≤ �≤ 1
and q−1 = � as an initial condition covers a set of
policies that range between a chase and level strategy: If
�= 0, then qt =Dt is a standard base-stock or demand-
replacement (chase) policy, and if �= 1, then qt = qt−1 =

q−1 = � is a level strategy that orders the average
demand each period. Any in-between smoothing level
is a compromise between both and smoothes the orders.

Iterating the recursion shows that the total order
quantity received in period t is a linear combination of
the observed demand process:

qt =
t
∑

k=0

41 −�5�kDt−k +�t+1�0 (8)

This order policy finds its origin in linear control
theory (Forrester 1961, Magee 1958). It is in essence
a generalized base-stock policy, where the inventory
deficit is not recovered in one period, but instead
spread out over time, with 1/41 −�5 the adjustment
time to recover the deficit. The order smoothing policy
also relates to the linear inflation rule that Zipkin
(2000, p. 393) describes to deal with defects or yield
losses. Graves (1988) used this control rule to smooth
the aggregate production and it is also proposed by
Balakrishnan et al. (2004) to reduce the variability in
orders in a single-source setting to reduce total supply
chain costs (for Li = 0).

The smoothing policy (8) can be extended to general
lead times Li ≥ 0. For t ≥ Li,

qt =

t
∑

k=Li

41 −�5�k−LiDt−k +�t−Li+1�

=

t−Li
∑

k=0

41 −�5�kDt−Li−k +�t−Li+1�0 (9)

The linear control makes the policy analytically
tractable. Taking expectations and variances of the
orders yields

Ɛ qt =�1 Var4qt5= 61 −�24t+157
1 −�

1 +�
�2

≤ �20

The total order variance is convex decreasing in the
smoothing level � and vanishes under the level strategy
�= 1. As the order streams have smaller variability
than the demand (which is referred to as smoothing),
the optimal installed capacity reduces to

Ki∗
=�+ ziK�

√

1 −�

1 +�
1
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and its corresponding capacity cost reduces to CK4�5=

ki�+�i�
√

41 −�5/41 +�5. The reduction in capacity
costs compared to the traditional base-stock policies
represents the marginal benefit of order smoothing:

MB4�5= −C ′

K4�5=
1

41 +�5
√

1 −�2
�i�0

The linear order structure also yields analytic
tractability of the inventory process: the net inventory
process is a linear combination of the demand process,
so with normal demand, the net inventory process It is
also normally distributed. (All proofs are relegated to
the technical companion, available as supplemental
material at http://dx.doi.org/10.1287/mnsc.2014.1992.)

Proposition 2. With normal demand, the net inventory
process when single-sourcing smoothing with lead time Li is
a linear combination of the demand process:

It =



























I−1 −

t−Li
∑

k=0

�kDt−Li−k −

Li−1
∑

k=0

Dt−k if �< 11

I−1 + t�−

t
∑

i=0

Di if �= 11

Ɛ It = Is

lim
t→�

Var4It5=











1
1 −�2

�2
+Li�

2
≥ �2 if �< 1

� if �= 10

(10)

The variance of the inventory process increases in
the smoothing level � and grows without bound under
level ordering with smoothing 4�= 15. (The source then
supplies a constant quantity � and demand remains
random with same mean �. The resulting net inventory
process behaves as a random walk with null drift and
is unstable.) This increased inventory variance comes at
a cost of requiring more safety inventory. The optimal
safety stock level follows from a newsvendor solution:2

Proposition 3. With normal demand and �< 1, the
long-run optimal safety stock under order smoothing with
general lead time Li is

I∗

s = zI�

√

Li +
1

1 −�2
0

The associated inventory holding and backlogging
cost rate CI = �I�

√

Li + 1/41 −�25 is convex increasing
in �, representing the marginal cost of smoothing:

MC4�5=C ′

I 4�5= �I�
�

41 −�253/241 +Li −Li�
251/2

0

2 This is not a standard newsvendor problem because the decision
variable Is is the mean of the distribution, but it can be reduced to a
newsvendor model.

The total scaled cost of single-sourcing smoothing
(denoted by ss),

Ĉ ss4�5= �i

√

1 −�

1 +�
+

√

Li +
1

1 −�2
1

is continuous in the interval 60115 with Ĉ ss405= �i +
√

1 +Li and Ĉ ss415= +�, and can be convex-concave-
convex. There is, however, a unique minimum that
satisfies the optimality condition MB4�∗5=MC4�∗5.

Proposition 4. With normal demand, and for any
0 ≤ Li and 0 < �i, there is a unique optimal smoothing level
for order smoothing, satisfying the fixed point equation

�∗
=

�i

�i + 1/
√

1 +Li41 −�∗25
1 (11)

which is bounded by

�0 =
�i

�i + 1
≤ �∗

≤ �1 =
�i

�i + 41 +Li5
−1/2

0 (12)

Order smoothing sourcing outperforms the standard single-
sourcing base-stock policy for any Li if �i > 0. The value of
smoothing increases in �i if lead time Li = 0.

If Li = 0, Equation (11) reduces to �∗ = �i/41 + �i5
and its scaled cost Ĉ ss4�∗5=

√

1 + 2�i. The relative cost
benefit of smoothing compared to the standard base
stock can be quantified as

0 ≤
Ĉ s − Ĉ ss

Ĉ s
= 1 −

√

1 + 2�i
1 + �i

≤ 1 −
1

√

1 + �i
1

which increases in �i toward a maximum of 100%.
The left panel of Figure 1 shows that the relative cost
improvement of order smoothing compared to using
the standard base-stock policy holds for lead times
Li ≥ 0. When capacity is costly, the value of order
smoothing can be substantial.3

Based on (12), we can derive the following bounds
on the optimal cost (the right panel of Figure 1 shows
the accuracy of Ĉ ss4�15 compared to the true optimal
costs Ĉ ss4�∗5):

Ĉ ss4�05= �i

√

1
1 + 2�i

+

√

Li +
41 + �i5

2

1 + 2�i
1

Ĉ ss4�15= �i

√

1

1 + 2�i
√

1 +Li

+

√

√

√

Li +
41 + �i

√

1 +Li5
2

1 + 2�i
√

1 +Li

0

(13)

3 Whereas Figure 1 compares order smoothing with the standard
base stock using the same source, one can also similarly compare
order smoothing from one source with the standard base-stock policy
from another source using Equations (7) and (13). As such, it may
for instance turn out to be beneficial for a firm that faces capacity
supply costs to smooth orders from the local source, rather than
source globally at low cost.
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Figure 1 (Color online) (Left Panel) The Value of Order Smoothing Compared to the Standard Base-Stock Policy Increases as the Capacity Cost �i
Increases for Any Lead Time Li ; (Right Panel) The Relative Cost Increase When Bound �1 Is Used Instead of the Optimal �∗ Is Small
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The right panel of Figure 1 shows that the cost penalty
of using bound �1 is modest.

3.4. Optimal Capacitated Single Sourcing
Although the order smoothing policy does not guaran-
tee optimality in minimizing the total landed cost C , its
linear structure makes it attractive because of its ana-
lytic tractability. This allows us to derive closed-form
solutions and comes with the benefit of gaining insight
into the cost drivers of the sourcing policy. For Li = 0,
we can numerically show that order smoothing closely
tracks the optimal policy. The presence of capacity costs
as modeled above is actually equivalent to piecewise
linear convex order costs. The associated optimal policy
for Li = 0 is then characterized by a dual-base-stock
policy. (For Li > 0 the optimal policy uses the full
history of orders and is therefore more complex.) When
the inventory position exceeds the higher base-stock
level, no order is placed. When the inventory position
is below the higher base stock, we first use up the
regular capacity K. If this raises the inventory position
to above the lower base stock, we do not use overtime;
otherwise, we use overtime to raise the inventory posi-
tion to the lower base-stock level. In other words, there
is a region of “inaction” where we order maximal K
but less than the demand. (The marginal overtime cost
exceeds the marginal benefit of raising inventory in
terms of reducing backlogging relative to holding. In
other words, it is better to wait and replenish in the
future at regular cost versus now at overtime cost.)
This is not a demand replacing policy and there are no
simple solutions for the optimal base-stock levels and
capacity level K.

Given that the optimal capacitated single-sourcing
(SCC) policy cannot be optimized analytically, we
numerically optimized its simulated cost. Figure 2
shows the total scaled cost of local single sourcing
when Li = 0 using the standard base-stock policy,
order smoothing, and the optimal dual base stock

Figure 2 (Color online) Single Sourcing Using the Standard Base-Stock
Policy, Order Smoothing, and the Optimal Capacitated
Dual-Base-Stock Policy (with 95% Confidence Intervals)
When Li = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0
Total scaled cost

Standard
base-stock

Order smoothing

Optimal policy

�l

described previously. Although order smoothing does
not guarantee optimality, it proves its value in the
presence of capacity costs and closely tracks the optimal
policy.

4. Dual Sourcing and Order Smoothing
4.1. Dual-Sourcing Model
Consider the dual-sourcing setting where units can
be ordered from a local source and/or from a global
source. As before, let i ∈ 8l1g9 refer to the local or
global source; in particular, Li denotes the lead time
of source i, where 0 ≤ Ll <Lg . With two sources, we
decompose the total order quantity received in period
t as qt = qlt + q

g
t , where qit denotes the order quantity

received in period t from source i. With lead times
Ll <Lg , the received quantity qit is based on information
older than Li periods. Correspondingly, we define a
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DSS policy by splitting up the total smoothed order
stream qt as follows:

q
g
t =

t
∑

k=Lg

41 −�5�k−LlDt−k =

t−Ll
∑

k=L

41 −�5�kDt−Ll−k1 (14)

qlt =

Lg−1
∑

k=Ll

41 −�5�k−LlDt−k =

L−1
∑

k=0

41 −�5�kDt−Ll−k1 (15)

where L= Lg −Ll > 0 denotes the lead time difference
between both sources. Observe that for any lead time
difference L> 1 between the global and local source,
local orders placed within L− 1 units of time after a
global order will be received prior to the global order’s
receipt. Our model thus includes order crossing. Given
that our orders are a linear combination of the demands
only, they do not depend on any state variables or
interaction between local and global inventory position.
Therefore, order crossing does not pose any problems
or complications to our analysis.

For t → �, the variability in orders is independent
of Ll (and the same as when Ll = 0):

Ɛ qgt = �L�1 Var4qgt 5=
1 −�

1 +�
�2L�21

Ɛ qlt = 41 −�L5�1 Var4qlt5=
1 −�

1 +�
41 −�2L5�20

Notice that (i) the strategic allocation a (the fraction of
average total orders allocated to the global source) is �L,
which is different and smaller than the smoothing level
�; (ii) the variance of each order stream is less than the
demand variance (consistent with order smoothing).
The total order variance is convex and decreasing
in the smoothing level � and vanishes under the
level strategy �= 1 (i.e., single sourcing with constant
order qt = q

g
t =� from the global source). The pipeline

inventory holding cost is hLg�
L� + hLl41 − �L5� =

hLl� + hL�L�. The inventory dynamics under this
dual-sourcing smoothing policy equal those under
single-sourcing smoothing with lead time Ll (because
total receipts qt = qlt + q

g
t are equal). Thus, the inventory

is independent of the lead time difference L but it does
depend on the local lead time Ll:

Var4It5=
1

1 −�2
�2

+Ll�
20

The total absolute and scaled (as defined by Equa-
tion (5)) costs thus become

C = 4cg + kg5�L�+ 4cl + kl541 −�L5�+�g��L

√

1 −�

1 +�

+�l�

√

1 −�

1 +�
41 −�2L5+�I�

√

Ll +
1

1 −�2

+hLl�+hL�L�1

Ĉ = −�c�
L
+ �g�

L

√

1 −�

1 +�
+ �l

√

1 −�

1 +�
41 −�2L5

+

√

Ll +
1

1 −�2
0

The trade-offs are clearly shown in Figure 3: A higher
smoothing level � implies a larger reliance on the
global source and reduces sourcing and local capacity
costs but increases inventory costs. (Global capacity
costs initially increase reflecting a higher needed safety
capacity as the global allocation increases; yet they
decrease to zero as � → 1, which corresponds to a
standing constant order qgt =� and no safety capacity is
needed.) This directly raises the question whether there
is an optimal trade-off and, if so, how to characterize
it. To that end, let Ĉ∗ = Ĉ4�∗5 ≤ Ĉ405 = �l +

√

Ll + 1
denote the minimal cost (which exists because Ĉ4�5 is
continuous in the interval 60115 with Ĉ415= �) and
�∗ ∈ 60115 an optimal smoothing level. Similarly, let
a∗ = 4�∗5L denote the corresponding strategic allocation.

4.2. Impact of Sourcing Cost Difference �c and
Lead Times

To highlight the impact of the cost and lead time
differences between both sources, we first consider the
uncapacitated system, where �l = �g = 0. Recall that,
to disentangle the impact of both, �c only captures
the cost difference. As Figure 4 illustrates, the total
cost and thus optimal trade-off depend jointly on
the smoothing level � and lead time difference L in
nonobvious ways: First, the cost increases as the lead
time difference L increases and the boundary solution

Figure 3 (Color online) More Smoothing Implies a Larger Reliance on
the Global Source, Which Decreases Sourcing and Local
Capacity Costs But Increases Inventory Costs; There Is a Unique
Optimal Smoothing Level �∗ or Offshoring Allocation �∗L

Smoothing level �

–2

–1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1.0

Total cost C

Inventory cost

Local capacity cost

Global capacity cost

Sourcing cost

�*

Note. Parameters: �c = 2, �l = 2, �g = 1, Ll = 3, Lg = 7.
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Figure 4 (Color online) (Left Panel) Total Cost and Corresponding Optimal Smoothing Level �∗ as a Function of L; (Right Panel) The Optimal Strategic
Allocation �L Decreases as L Increases
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�∗ = 0 is optimal above a certain threshold value of
L (which is L= 4 in Figure 4). Second, while the cost
is convex for L = 1, it is concave-convex for L = 2,
and convex-concave-convex for L> 2, and can have a
local maximum and minimum (as illustrated for L= 3).
Third, the optimal smoothing level is not monotone
in L, but the optimal strategic allocation is. We will
generalize these observations in this section.

Optimal dual-sourcing smoothing requires that �∗ ∈

40115 where �∗ satisfies the first-order condition (FOC)

MB4�∗5=MC4�∗5

⇔ L�c4�
∗5L−1

=
�∗

41 −�∗253/241 +Ll41 −�∗2551/2
0 (16)

Manipulating the FOC shows the impact of three
essential parameters:

Proposition 5. Under our model assumptions, as the
local lead time Ll or the lead time difference L increases, the
optimal cost Ĉ∗ increases. The optimal offshoring allocation
a∗ increases as Ll increases, but decreases as L increases.
As the standardized sourcing cost advantage �c increases,
the optimal cost Ĉ∗ decreases at rate −1 < 4d/d�c5Ĉ4�

∗5=

−�∗L < 0 and the optimal smoothing level �∗, and thus
offshoring allocation a∗, increases.

By investigating how model parameters impact �c
and L, the proposition confirms the intuitive impact of
these parameters on the optimal offshoring allocation
�∗L and cost.

1. As expected, if the global sourcing unit cost advan-
tage cl − cg increases, then �c and thus �∗L increase
while cost decreases.

2. If the demand volatility, measured by its coefficient
of variation CV = �/�, increases, then �c and thus �∗L

decrease while the cost increases proportionally.
3. If h increases, then �I increases4 so that �c and

thus �∗L decrease and cost increases.
These comparative statistics give guidance on how

to tailor and adapt the sourcing strategy to the finan-
cial, customer service, and demand characteristics.
The tractability of our model allows additional insight
and quantification: substituting x = 1 −�2 in the first-
order condition (16) yields

f 4x5= x341 +Llx541 − x5L−2
= 4L�c5

−20 (17)

Before we specify the optimal smoothing level and
offshoring allocation in exact analytic terms, notice
that x∗ = 1 − �∗2 is easily found graphically as the
intersection of the horizontal line at 4�cL5−2 with the
upward part of f in Figure 5. As f has a maximum
for L≥ 3, the existence of this intersection (and thus
an interior solution to the FOC) requires that 4�cL5−2

does not exceed the maximum of f , which gives
a lower bound �L1Ll on �c. Also, the maximizer of
f provides an upper bound on x∗, and thus lower

4 d�I/dh= 4d/dh56hzI + 4h+ b5IN 4zI 57=�N 4zI 5+êN 4zI 5zI > 0 for all zI
as optimal functions of h.
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Figure 5 (Color online) The Optimal x∗ = 1− �∗2 Is Easily Found
Graphically as a f−144�cL5

−25, Shown Here for Ll = 1

x �

L 

L

L 

L 

L L 
f x

x

�L

bound �L1Ll
on �∗. (Proposition 17 in the technical

companion provides expressions for these bounds.)
Whereas �c ≥ �L1Ll guarantees that the FOC have an
interior solution �∗ > 0, for dual-sourcing smoothing
to be optimal, this local cost minimum must have
a cost below the single-sourcing cost Ĉ405=

√

Ll + 1.
This requires a more stringent condition �c ≥ �∗

L1Ll
=

inf8�c2 Ĉ4�∗3�c1L5 <
√

Ll + 19≥ �L.
For Ll = 0 and L = 2, Equation (17) has a simple,

unique solution if 42�c5−2 ≤ 1: x∗ = 4�cL5
−2/3 so that

�∗
=
√

1−42�c5−2/3 and Ĉ4�∗5= 3
2 42�c5

1/3
−�c0 (18)

Other special cases include the following: If Ll = 0
and L= 1, this is a cubic equation with a unique root
in 60115 for any �c ≥ 0 that can be solved exactly using
the Cardano-Tartaglia formula. For L ≥ 3, the cost
function is convex-concave-convex and the FOC has
two solutions in 60117, representing two local extrema
x∗. The local minimum corresponds to the smallest
root x∗ of a polynomial of degree L+ 2 if Ll > 0 and
of degree L+ 1 otherwise. If the degree is 4, the root
of the quartic can be solved using Ferrari’s formula.
(The Cardano and Ferrari formulas are relegated to
the technical companion.) If the FOC is a polynomial
of degree greater than 4, Galois (1846) showed that
there exists no general “simple” formula (i.e., using
only a finite number of the usual algebraic operations
and radicals) to specify its root x∗. Next we apply the
inversion theorem of Lagrange (1770), which provides
a Taylor series, expanded around x0, for the inverse
of an analytic function. We set x0 = 0 and use this
powerful technique to specify the root f −144�cL5

−25 as
an infinite series. (The appendix shows the derivation.)
We further show that its first-order term is a bound
that is asymptotically correct as L�c → �.

Proposition 6. Under normal demand and without
capacity costs (�g = �l = 0), the optimal smoothing level
�∗ = 0 if �c ≤ �∗

L1Ll
, otherwise5

�∗
=















√

1−
∑�

n=1
1
n

( −n
3

n−1

)

Ln−1
l 42�c5

−
2n
3 if L=21

√

1−
∑�

n=1
1
n

∑n−1
i=0 4−15n−1−i

( −n
3
i

)( −n4L−25
3

n−1−i

)

Li
l 4L�c5

−
2n
3 if L 6=20

(19)

The Lagrange series (19) shows that the lead time
difference L has a first-order impact, whereas Ll

only has a second-order impact: �∗ ' 61 − 4L�c5
−2/3 +

44L−Ll − 25/354L�c5−4/371/2. In addition, its first-order
term provides a simple approximation for �∗, which is
also a bound for Ll = 0 or 1 as illustrated in 5. (For
Ll ≥ 2, the first-order approximation of f −1 no longer
cleanly partitions the exact f −1 for different values
of L.)

Proposition 7. With normal demand and if L�c > 1,
then the optimal smoothing level �∗ has a square-root
approximation �0,

�0 =
√

1 − 4L�c5
−2/31

that is asymptotically correct: �0 → �∗ as L�c → �. If
Ll = 0 or 1, the approximation is a lower bound (�0 ≤ �∗) if
L≤ 2 and is an upper bound (�0 ≥ �∗) if L≥ 3. It is exact
if L= 2 and Ll = 0. Similarly, the optimal cost Ĉ4�∗5 has
an upper bound Ĉ4�05 that is exact for L= 2 and Ll = 0
and asymptotically correct as L�c → �, where6

Ĉ4�05 = −�c41 − 4L�c5
−2/35L/2

+ 4Ll + 4L�c5
2/351/2

=
3
2
4L�c5

1/3
− �c −O44L− 2 − 4Ll54L�c5

−1/350

Figure 6 compares the square-root allocation a0 = �L
0

with the optimal allocation a∗ = �∗L for L= 1 (left panel)
and L = 3 (right panel), both for Ll = 0. In addition
to providing a fine approximation of the allocation,
the square-root formula’s cost penalty Ĉ4�05− Ĉ4�∗5 is
very low: for L= 3, its maximal cost penalty is 00027 (at
�c = �∗

3 = 1015 when Ĉ4�∗5= 1) and diminishes quickly
as �c increases (it is 00011 at �c = 2, and 00003 at �c = 5).
For L = 1, the cost penalty starts higher at 0035 (at
�c = 1 when Ĉ4�05= 1) but again diminishes quickly to
0004 at �c = 2 and 0001 at �c = 5. For L= 1, an expansion
of the FOC for �c near 0 gives a better lower bound
�1 = �c/

√

1 + 3�2
c .

The square-root approximation and bound also high-
light the first-order impact of the standardized sourcing

5 The generalized binomial coefficient is defined for x ∈�2
(

x

0

)

= 1
and

(

x

k

)

= 4x4x− 15 · · · 4x− k+ 155/k! for k = 1121 0 0 0.
6 The Landau notations specify functions o4f 5 that are of smaller
order than f , and O4g5, which is of similar order as g. Formally,
limx→� o4f 54x5/f 4x5= 0, and limx→� O4g54x5/g4x5 is a finite constant.
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Figure 6 (Color online) The Optimal Allocation a∗ = �∗L Compared to the Square-Root Allocation a0 = �L
0 for L= 1 (Left Panel) and L= 3 (Right Panel);

Both for Ll = 0

�c

L

a

a

�c

�c

L

a

a

Figure 7 (Color online) The Impact of Lead Time Difference L and
Coefficient of Variation CV on the Global Allocation a0 = �L

0

L

Notes. Parameters: cl − cg = 1, h= 0009, �I = 1.

cost advantage �c and the lead time difference L on the
global allocation:

global (offshoring) allocation a0

= �L
0 =

√

41 − 4L�c5
−2/35L =

(

1−

(

cl − cg −hL

�ICV
L

)−2/3)L/2

0

Figure 7 depicts this first-order impact of the lead time
difference and variability (as measured by the CV ) on
offshoring.

4.3. Impact of Capacity Costs �l and �g
With capacitated sources, any optimal dual-sourcing
smoothing level �∗ ∈ 40115 satisfies ̂MB4�∗5= ̂MC4�∗5,
where the marginal inventory cost remains as before,
but the marginal benefit is augmented with the
marginal capacity benefits:

̂MB4�5 = �cL�
L−1

− �g�
L−1 L41 −�541 +�5−�

41 −�51/241 +�53/2

+ �l
L�2L−141 −�541 +�5+ 41 −�2L5

41 −�2L51/241 −�51/241 +�53/2
0

Notice that the marginal global capacity benefit (term
in �g) is the only term that can be negative (for small
smoothing levels �< 4

√
1 + 4L− 15/42L5). We have the

following comparative statics:

Proposition 8. Under our model assumptions, as the
lead time difference L increases, the optimal cost Ĉ∗ increases
if �c ≥ �l + �g . The optimal smoothing level and offshoring
allocation increase when �c or �l increase, and decrease
when �g increases if �∗ ≤ 4

√
1 + 4L− 15/42L5. However, if

�∗ > 4
√

1 + 4L− 15/42L5, the optimal smoothing level and
offshoring allocation increase when �g increases. The corre-
sponding rate of change in the optimal cost Ĉ∗ is bounded
by the optimal allocation �∗L < 1 or by 1:

d�∗

d�c
≥ 01 −1 ≤

¡Ĉ

¡�c
4�∗5= −�∗L

≤ 01

d�∗

d�l
≥ 01 0 ≤

¡Ĉ

¡�l
4�∗5=

√

1 −�∗

1 +�∗
41 −�∗2L5 < 11

d�∗

d�g
=

{

≤ 0 if �∗
≤ 4

√
1 + 4L− 15/42L51

> 0 otherwise,

0 ≤
¡Ĉ

¡�g
4�∗5= �∗L

√

1 −�∗

1 +�∗
<�∗L

≤ 10

The comparative statics are as expected, except for
d�∗/d�g , which reflects the counterbalancing forces that
are at play when the global capacity cost increases.
Increasing global capacity costs at first sight favors
local sourcing. Yet, increased capacity costs also induce
more smoothing. (Since the smoothing level is linked
to the global sourcing allocation, this explains the
counterbalancing forces. In contrast, increasing local
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capacity costs favors more global sourcing and more
smoothing, both leading to an increase in �∗.) When
�= 4

√
1 + 4L− 15/42L5 the global capacity cost reaches

its maximum. Hence, if � < 4
√

1 + 4L − 15/42L5 its
marginal cost is positive. Given that an increase in �g
increases marginal costs proportionally, the optimal
allocation must reduce. If �∗ > 4

√
1 + 4L − 15/42L5,

however, we get the opposite effect: here, an increase
in smoothing decreases global capacity costs because
less safety capacity is needed (recall that as �→ 1, the
order policy becomes constant).

By investigating how the model parameters impact
the standardized capacity costs �l and �g , we find how
those parameters impact the optimal smoothing level
�∗ and offshoring allocation �∗L:

1. If h increases, then �I increases7 and both �c and
�l decrease. If �∗ < 4

√
1 + 4L−15/42L5, then �g increases

and thus �∗ decreases (less offshoring).
2. If kl increases while zlK > 0 (which is typical), or

when zlK increases while kl > 0 (less flexibility in local
source), then �c and �l increase8 and thus �∗ increases
(more offshoring).

3. If kg increases while z
g
K > 0 (which is typical),

or when z
g
K increases while kg > 0 (less flexibility

in global source) then �g and �g increase while �c
decreases. The overall effect depends on their relative
magnitudes but typically the latter effect dominates
and �∗ decreases (less offshoring).

The limiting case L→ � gives an upper bound on
C∗ and insight into the benefits of smoothing:

Proposition 9. With normal demand, as L→ �, the
optimal smoothing level and cost converge to that of single
local sourcing smoothing:

�∗
→ �∗

�
=

�l
�l + 41 +Ll41 −�∗2

�
551/2

1

so that the optimal strategic allocation �∗L '�∗L
�

→ 0 as
L→ �.

This means that for large lead times it remains opti-
mal to smooth at about �∗

�
, reflecting the lower safety

capacity needs (compared to the modest safety stock
increase). This limiting smoothing level �∗

�
decreases

as inventory costs increase relative to capacity costs.
Yet, the reliance on the global source decreases expo-
nentially. Indeed, recall that the strategic allocation is
�L and the optimal allocation decreases as L increases
to a small but positive level 4�∗

�
5L. This convergence is

quicker when inventory costs increase relative to capac-
ity costs (then �∗

�
decreases). Theoretically, this means

7 d�I/dh= 4d/dh56hzI + 4h+ b5IN 4zI 57=�N 4zI 5+êN 4zI 5zI > 0 for all zI
as optimal functions of h.
8 d�i/dki = 4d/dki56kiziK + oiIN 4z

i
K57= ziK for all ziK as optimal functions

of ki .

that a dual sourcing strategy with very small reliance
on the global source remains optimal for high lead
times. In practice, this suggests single local sourcing
with order smoothing (see Equation (11)).

Given that the optimal cost increases as L increases,
the second insight from the proposition is that dual-
sourcing smoothing dominates single local sourcing
smoothing (and thus also single local sourcing using
a base-stock policy given Proposition 4). This insight
is strengthened when considering only local capacity
costs, as we show next.

4.4. Local Capacity Costs (�l > 0 But �g = 0)
To quantify the impact of capacity, we first consider
local capacitated supply and uncapacitated global
supply (i.e., �g = 0). That setting is not only more
tractable but also more relevant when local capacity is
less flexible than global. (Capacity in high-cost countries
typically is subject to significant labor regulations
and strong unions, or a high degree of automation to
substitute for high labor cost. Either way, such “local”
capacity tends to be more expensive and inflexible
than in low-cost countries that feature cheap and
abundant labor that yield significant capacity flexibility.)
The optimal smoothing level can be specified using
Lagrange’s inversion series:

Proposition 10. With normal demand, and if �g = 0,
the optimal smoothing level �∗ and allocation �∗L depend
on L1�c and �l2 �

∗ = �l/41 + �l5 + O44�l/41 + �l55
25 if

L�c +
√
L�l ≤ 1 and elsewhere

�∗
=

[

1−4L�c+
√
L�l5

−2/3
+
L−Ll−2

3
4L�c+

√
L�l5

−4/3

+O44L�c+
√
L�l5

−5/35

]1/2

0 (20)

This reveals four insights: First, the key metric that
drives the optimal smoothing level and offshoring
allocation decision is L�c +

√
L�l, so that �c and �l are

substitutes, up to a factor
√
L. Thus, local capacity

costs have a similar impact as the standardized cost
advantage. Second, the local lead time Ll continues to
play a second-order role. Third, the Lagrange formula
provides again a simple approximation and bound
for �∗:

Proposition 11.With normal demand, ifL�c +
√
L�l > 1,

then the optimal smoothing level �∗ has a square-root
approximation �0, where

�0 =

√

1 − 4L�c +
√
L�l5

−2/31 (21)

that is asymptotically correct as L�c +
√
L�l → �. If Ll = 0,

the approximation is a lower bound (�0 ≤ �∗) if L≤ 2, and
an asymptotic upper bound otherwise.
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The fourth insight from the Lagrange formulae is that
dual sourcing with the DSS policy is significantly more
attractive when local supply is capacitated and lead
times increase. In contrast to uncapacitated sourcing,
DSS then always dominates local single-sourcing LS
(and increasingly so as local capacity costs increase) and
also global single sourcing (GS) using the standard base-
stock policy over a parameter domain that enlarges
for large lead time differences. This finding can be
corroborated and generalized analytically:

Proposition 12. With normal demand, in the presence
of local capacity costs, DSS outperforms LS and GS if

1 < L�c +
√
L�l

<
(

2
3

√
L+ 1

)3
+O44L�c +

√
L�l5

−1/351 (22)

and the maximal relative value V̄ of dual sourcing over
LS (V = 1 − Ĉ∗/Ĉ l) is an increasing value of the lead time
difference:

V̄ = 1−
3
2
4
√
L4

√
L+1−1551/3

√
L+1

+
44L−25/854

√
L4

√
L+1−155−1/3

√
L+1

+O4L−20550 (23)

The parameter domain (22), where DSS outperforms
single sourcing, essentially is a simplex that increases as
the lead time difference increases. The maximal value
(23) increases as the lead time difference increases as
shown in Figure 8 and the numerical accuracy quickly
improves (e.g., when L= 10, Equation (23) yields 2707%
while V̄ = 2804%.) The reason behind the impact of
lead time difference is that, the higher the lead time
difference between the sources, the higher the benefit
of combining two sources using smoothing. The latter
reduces the overall variance, and thus the capacity
costs, and this reduction is larger as the lead time
difference increases.

Figure 8 (Color online) With Local Capacitated Supply, the Maximal
Relative Value of DSS Over LS and GS Increases as the
Lead Time Difference L Increases

L

The proposition compares DSS with single-sourcing
policies using a base-stock policy, but its message
extends to single-sourcing smoothing and the SCC
policy (discussed in §3.4). Given that SCC cannot be
optimized analytically, we numerically optimized the
simulated cost under this policy and compared it to
the analytically optimized cost under the DSS policy.
Figure 9 shows the magnitude of the cost reduction
under DSS relative to the cost under the SCC policy.
With no sourcing cost advantage (�c = 0) and L= 1, the
optimal SCC policy (by definition) outperforms the
DSS policy, but for moderate �c, DSS performs better
than SCC. As �l rises, local capacity becomes more
constrained and both the gain, and the domain where
DSS outperforms SCC, shrink.

4.5. Local and Global Capacity Costs
(�l > 0 and �g > 0)

When both sources are capacitated, local and global
capacity costs have counteracting effects on smoothing
and offshoring as shown earlier in Proposition 8. For
an interior, dual-sourcing solution �∗ ∈ 40115 to exist,
�c or �l must be sufficiently positive to offset a positive
�g . Indeed, notice that if �g > 0 while �c = �l = 0, the
cost is

Ĉ4�5= �g�
L

√

1 −�

1 +�
+

√

Ll +
1

1 −�2
≥ Ĉ4051

so that �∗ = 0 and LS is optimal. When �g > 0 and
�c + �l > 0, there exist no general simple formulae
to express the optimal smoothing level. (Even when
L= 1, the FOC is a sixth order polynomial.) Even the
Lagrange solutions become exceedingly complex (and
we relegate them to the technical companion) but they
do suggest that the optimal solution is a function of
L�c +

√
L�l and �g . However, given that �∗ decreases

as �g increases (Proposition 8), the exact solutions in
the previous section (only local capacity costs) provide
upper bounds for the general case.

Additional results are found by approximating or
bounding the marginal costs. For L= 1, a linear approx-
imation of the FOC around � = 0 (light offshoring)
yields

̂MB4�5 = �c + �g4−1 + 2�5+ �l + o4�5= ̂MC4�5

= 41 +Ll5
−1/2�+ o4�50

For L= 1, the marginal costs are also bounded:

̂MB405 = �c + �l − �g = 41 − �2
15

−3/2
≤ ̂MB4�∗5

= ̂MC4�∗5≤ 41 −�∗2
5−3/20

A similar bounding can be done for L> 1, which yields
the following.
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Figure 9 (Color online) The Relative Value of Dual-Sourcing Smoothing Over Local Single-Sourcing-Capacitated SCC (Which Is the Optimal Strategy
When �c = 0 and �l < 006, as Shown in the Left Panel); When the Global Source Has a Sourcing Cost Advantage (Right Panel), the DSS Policy
Outperforms SCC
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Proposition 13. Under normal demand, the following
bounds apply to the general case �i > 0:

1. For L = 1, if �c + �l − �g > 1, then the optimal
smoothing level and offshoring allocation has a lower
bound

�∗
≥ �1 =

√

1 − 4�c + �l − �g5
−2/3 (24)

that is asymptotically tight as �c + �l − �g → �. Other-
wise, if 0 ≤ �c + �l − �g < 1 and �g <

1
2 :

�∗
=

�c + �l − �g

41 +Ll5
−1/2 − 2�g

+ o

(

�c + �l − �g

41 +Ll5
−1/2 − 2�g

)

0 (25)

2. For any L > 1, if 44/43
√

355�l − �g4e
−1/2/25 ·

4L/
√
L− 15 > 1, then the optimal smoothing level has a

lower bound

�∗
≥ �2 =

√

1 −

(

4

3
√

3
�l − �g

e−1/2

2
L

√
L− 1

)−2/3

0 (26)

Proposition 13 presents a useful lower bound for
L= 1 that captures the three key parameters where
local and global capacity costs counteract each other (�l
and �g have opposite signs). The bound (26) shows that
this counteraction extends to general L. Unfortunately,
we have not been able to generate additional insightful
analytic results.

Despite the limited tractability of the general case,
Proposition 13 does shine a light on recent evolu-
tions in global labor markets. A growing number of
American companies are moving their manufacturing
back to the United States because of higher Chinese
labor costs. Although workers in developing Asian
countries are slowly acquiring more rights (increas-
ing �g), there are signs that labor in rich countries is

becoming more flexible (decreasing �l) (The Economist
2013). At the same time, The Economist reports that
Europe’s inflexible and costly labor markets, vis-à-vis
the United States, is one of the reasons why reshoring
is largely an American phenomenon (compared to
Europe). Only when national government is making
the business environment attractive enough, companies
will want to come back. Spurred by the Euro crisis,
some European countries have now introduced sub-
stantial labor-market reforms to remain competitive
(e.g., western car workers are willing to work in night
shifts again). Our results predict that this will indeed
work in favor of backshoring work to the developed
countries.

5. Robustness and Comparison with
Other Dual-Sourcing Policies

5.1. Robustness for Non-Normal Demand
Given that our analysis assumes normally distributed
demand, we want to understand how sensitive the
results are to this distributional assumption. Figure 10
shows the optimal smoothing level �∗ for the uncapaci-
tated and capacitated setting when demand follows a
gamma, lognormal, (discrete) geometric, and (contin-
uous) uniform distribution, in comparison with the
optimal smoothing level assuming normal demand, �∗

N ,
with identical average and CV. The functional depen-
dence of �∗ on the standardized cost advantage or local
capacity cost follows that of the normally distributed
demand with identical CV. More importantly, the cost
difference of a misestimate of �∗ in case of non-normal
demand is minimal (see Figure 11).
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Figure 10 (Color online) The Optimal Smoothing Level �∗ for Non-Normal Demand Follows the Optimal Smoothing Level �∗

N Assuming Normally
Distributed Demand with Identical Relative Uncertainty 4�g = 01 Ll = 05
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Of course, the distributional assumptions are less
important as the variability decreases. Therefore, the
reported cases not only give almost worst-case compar-
isons, but given that the probability of negative demand
exceeds 006% for CV exceeding 0.4, they also are push-
ing the limit of the normal distribution assumption.
Nevertheless, even with the assumed geometric dis-
tribution (CV = 104), the analytic formulae (assuming
normal distribution) are still remarkably good approxi-
mations. If average demand and standard deviation
are scaled up in the conventional sense (as, e.g., in
Allon and Van Mieghem 2010), we expect the appropri-
ately scaled version of our results to be asymptotically
optimal. The scaled system with lead times is however
nontrivial and would be a research project in its own.

These results provide some numerical evidence that
our analysis remains valid to give guidance in the
strategic sourcing allocations in function of the finan-
cial parameters, in practical settings regardless of the
distributional assumptions of the demand.

5.2. Performance of DSS Policy Compared to
Other Dual-Sourcing Policies

In this section we compare the performance of the
dual-sourcing smoothing policy with other existing

policies that have been shown to perform well in a
dual-sourcing setting.

The dual-base-stock policies are shown to be opti-
mal in minimizing sourcing and inventory costs for
a lead time difference L= 1 (Fukuda 1964) and near
optimal for longer lead time differences (Veeraragha-
van and Scheller-Wolf 2008, Scheller-Wolf et al. 2006).
An important distinction is the state dimension: the
single-index (SI) policy uses one state variable, being
the total inventory position, whereas the dual-index
(DI) policy tracks two state variables, i.e., the inventory
position of the local source and the total inventory
position to place, respectively, local and global orders.
The vector-base-stock (VBS) policy keeps track of the
local inventory position and the recently placed global
orders.

These policies have been shown to perform well if
only sourcing and inventory costs are considered, and
Veeraraghavan and Scheller-Wolf (2008), Scheller-Wolf
et al. (2006) and Sheopuri et al. (2010) respectively
present efficient solution procedures to find the optimal
base-stock levels for the DI, SI, and VBS policies.
However, they do not explicitly take into account
capacity costs nor capacity flexibility. To minimize the
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Figure 11 (Color online) The Total Scaled Cost with Non-Normal Demand Ĉ4�∗5 Compared to the Scaled Cost Assuming the �∗

N Under Normal Demand
with Identical Relative Uncertainty 4�g = 01 Ll = 05
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sum of average sourcing, inventory, and capacity costs
per unit, as defined in (2), we therefore numerically
optimized the target base-stock levels and the installed
capacities at each source. There is no general closed-
form distribution for the orders and net inventory in
these policies (the global order may push the inventory
position above its target level, causing an overshoot,
so that no local order is placed), hence we resort to
simulation for performance analysis and optimization.

We also benchmark with the standing order, or
tailored base-surge (TBS) policy, which is as well a
base-stock-type policy: the global source supplies every
period a constant rate qg <�, and an additional order to
the local source is placed only when the inventory falls
below the target level. In the TBS policy, the standing
order may exceed the observed demand, resulting in
excess inventory excursions above its target level. In
essence, the “excess inventory process” behaves like a
regulated random walk and the safety stock increases
as the standing order to the global source goes up
(since the exponential tail of the regulated random walk
will be longer as qg increases). The TBS policy requires
the evaluation of a G/D/1 queue, where the interarrival
time has the per-period demand distribution and the

processing time is the fixed order size from the global
source. For certain choices of the demand distribution,
this is a tractable problem (as shown by Janakiraman
et al. 2015), but for general demand distributions we
need to rely on a simulation analysis to optimize the
target base-stock and capacity levels.

We conducted an extensive simulation study to
analyze the impact of capacity and lead time differences
in the uncapacitated and local capacitated setting
(�g = 0 and Ll = 0). Figure 12 shows representative
findings, which can be summarized as follows:

(a) Without capacity costs (�l = �g = 0), DSS is outper-
formed by the other dual-sourcing policies. This is to be
expected given that dual-base-stock policies are optimal
in minimizing sourcing and inventory costs when L= 1,
and near optimal for longer lead time differences. Their
performance superiority derives from their ability to
react promptly to demand fluctuations. However, DSS
is smoothing out the demand fluctuations in its orders
(see Equation (9)); TBS is constrained by its standing
global order but has dynamic local orders. Because
of its smoothing behavior, DSS (and to a lesser extent
TBS) needs more safety stock to act as a buffer between
volatile demand and smooth replenishments, leading
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Figure 12 (Color online) Scaled Cost Under Five Dual-Sourcing Policies Under Normal Demand 4�g = 01 Ll = 05
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to increased inventory holding costs compared to the
dual-base-stock policies. The TBS policy improves as
the lead time difference increases (as also shown by
Janakiraman et al. 2015).

(b) With capacity costs, DSS can outperform the dual-
base-stock policies because smoothing reduces both
local and global order variability and thus safety capac-
ity requirements and costs. (Note that TBS completely
smoothens (levels) global orders and requires no global
but more local safety capacity; the dual-base-stock poli-
cies do not smooth at all and hence require higher local
and global safety capacity.) This reduction in capacity
costs may compensate the increased inventory holding
costs of smoothing. DSS outperforms the other policies
when capacity costs are dominating: the higher the
sourcing cost advantage �c, the more the capacity cost
�l should dominate for DSS to outperform the other
policies. At the same time, the dual-base-stock policies
converge naturally to global single sourcing when �l
increases, which may in turn outperform DSS (DSS
does not naturally converge to single global sourcing).

(c) DSS performs best for longer lead time differences
L: DSS rapidly outperforms the other policies, even
for low values of the capacity cost �l: in that case, the
reduced capacity requirements quickly compensate for
the (relatively modest) increase in safety stocks due to
order smoothing.

These findings are valid under both normal and non-
normal demand. Figure 13 illustrates the performance
of the DSS policy compared to these reference policies
under a lognormal, (continuous) uniform, (discrete)
geometric, and normal demand distribution. These
distributions are inspired by the abovementioned refer-
ence papers in the dual-sourcing literature that use
the same distributions in their numerical experiments
(Veeraraghavan and Scheller-Wolf 2008, Scheller-Wolf
et al. 2006, Sheopuri et al. 2010).

In summary, DSS is a reasonable policy that is typi-
cally competitive to the reference dual-sourcing policies

and can perform better in the presence of high capacity
costs and high lead time differences.

6. Summary and Discussion
The main contribution of this paper is the inclusion of
capacity cost and flexibility in a strategic global sourcing
decision, in addition to considering sourcing cost and
lead times (as in the existing literature). We propose
a linear control policy that performs well in both a
single- and dual-sourcing setting. An attractive feature
of our analysis is the identification and analysis of
three dimensionless parameters that, in addition to the
lead times, are the four key forces behind the sourcing
decision: �c (which captures the financial trade-off, the
inventory service level, the volatility in demand) and �l
and �g (which contain the ratio of capacity cost versus
holding cost of, respectively, the local and global source,
and their flexibility to work in overtime). These data
are typically available inside the firm (although one
may have to search for them in different departments),
and we are now able to quantify how they contribute
to strategic sourcing allocation decisions based on these
data. These parameters also allow the comparison of
different firms with different scales.

A numerical study shows that our analytic results
for normally distributed demand are robust for other
distributions and that the smoothing policy is competi-
tive to existing single- and dual-sourcing policies in
terms of total cost minimization. The study also con-
firms expectations that the smoothing policy performs
better in the presence of high capacity costs and high
lead time differences given that it explicitly takes the
capacity costs and lead time difference into account.

As with any analytic study, ours begs for extensions.
The assumption of normally distributed demand is
essential in deriving all the analytical results: Direct
extensions could study demand distributions with
higher coefficients of variation (e.g., between one and
two, or even up to three (Muckstadt 1997)), or with fat
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Figure 13 (Color online) Scaled Cost Under Five Dual-Sourcing Policies Under Normal and Non-Normal Demand 4�g = 01 Ll = 05
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tails, which we expect to favor more local sourcing,
or with serial demand correlation, where negative
correlation will favor smoothing and global sourcing.
Another extension could analyze nonstationary demand
patterns to model, for example, how the sourcing
allocation should adapt to the product life cycle.9

A third extension could insert unit cost or quantity
uncertainty to model, for example, currency exchange
rate risk or supply quality risk. Last, but not least,
would be a game-theoretic multidecision-maker model
where one firm (the buyer) sources from one or two
independent firms. These nonobvious model extensions
are full research projects themselves.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2014.1992.

Acknowledgments

9 One could apply our formula for each phase separately to predict
that the sourcing allocation will move from emphasizing local during
product introduction (low mean but high variability in demand) to
offshore during maturity and back to local during decline. However,
this remains an unverified extrapolation of a stationary result.

The authors are indebted to Piet Van Mieghem for intro-
ducing them to the Lagrange inversion theorem, and to the
anonymous reviewers for their improvement suggestions.

Appendix. Lagrange’s Inversion Theorem and
Proof of Equation (19)
Markushevich (1985, Vol. II, p. 88) gives Lagrange’s series for
the inverse of a complex function f 4z5 that is analytic around
z0 with f ′4z05 6= 0 as

f −14z5 = z0 +

�
∑

n=1

1
n!

[

dn−1

dzn−1

(

z− z0

f 4z5− f 4z05

)n]∣
∣

∣

∣

z=z0

· 4z− f 4z055
n0 (27)

If f 4m54z05= 0 but f 4k54z05 6= 0 for all m< k, then (27) general-
izes to Markushevich (1985, Vol. II, p. 92)

f −14z5 = z0 +

�
∑

n=1

1
n!

[

dn−1

dzn−1

(

z− z0

6f 4z5− f 4z057
1/k
s

)n]∣
∣

∣

∣

z=z0

· 4z− f 4z055
n/k1 (28)

where the subscript s denotes any fixed single-valued branch
of the k-valued function 6f 4z5− f 4z057

1/k.
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If Ll = 0, consider the function f 4z5= z341 − z5m, which
is analytic in z because m= L− 2 ≥ 0 is integer. Given that
f ′405= f ′′405= 0 but f 435405= 3!> 0, (28) yields around z0 = 0:

dj

dzj
41 − z5−n4m/35

∣

∣

∣

∣

z=0

=
â44nm5/3 + j5

â44nm5/35
41 − z5−4nm5/3−j

∣

∣

∣

∣

z=0

=
â44nm5/3 + j5

â44nm5/35
1

and we obtain the Lagrange series for the inverse function,

f −14z5=

�
∑

n=1

â4n4m/3 + 15− 15
â44nm5/35

zn/3

n!
1 (29)

where m= L− 2. (The technical companion shows that the
radius of convergence is exactly � ≥ �L.) Here we were able
to calculate each term in the series explicitly due to the
simple form of f . If Ll > 0, the derivation becomes more
complex but is still doable in closed form; with capacity costs,
however, the derivation is term by term and cumbersome, as
shown in the technical companion. �
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