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Abstract

We study how multi-product queueing systems should be controlled so that sojourn times (or end-to-end delays) do

not exceed specified leadtimes. The network dynamically decides when to admit new arrivals and how to sequence the

jobs in the system. To analyze this difficult problem, we propose an approach based on fluid-model analysis that

translates the leadtime specifications into deterministic constraints on the queue length vector. The main benefit of this

approach is that it is possible (and relatively easy) to construct scheduling and multi-product admission policies for

leadtime control. Additional results are: (a) While this approach is simpler than a heavy-traffic approach, the admission

policies that emerge from it are also more specific than, but consistent with, those from heavy-traffic analysis. (b) A

simulation study gives a first indication that the policies also perform well in stochastic systems. (c) Our approach

specifies a ‘‘tailored’’ admission region for any given sequencing policy. Such joint admission and sequencing control is

‘‘robust’’ in the following sense: system performance is relatively insensitive to the particular choice of sequencing rule

when used in conjunction with tailored admission control. As an example, we discuss the tailored admission regions for

two well-known sequencing policies: Generalized Processor Sharing and Generalized Longest Queue. (d) While we first

focus on the multi-product single server system, we do extend to networks and identify some subtleties.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We study how multi-product queueing systems should be controlled so that sojourn times––also called

end-to-end delays, flow times, or throughput times––do not exceed specified leadtimes. Such systems are of

obvious interest in manufacturing and service operations settings because they guarantee that due-dates,

quoted as job arrival time plus leadtime, are met. Systems that can guarantee that flow times do not exceed
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a specified upper bound also have become a much discussed topic in communication networks. The con-
vergence of voice and data networks has led to different applications––each with different delay require-

ments––sharing the same network resources. In both settings, an important question is whether, and if so

how, a multi-product network can guarantee differentiated ‘‘quality of service’’ specifications in the sense

that flow times of different product types do not exceed product-specific leadtimes. This article aims to offer

some answers to this question.

We consider a multi-class queueing network that is shared by many products or ‘‘job types’’ that differ in

their arrival rates, processing requirements and routes that they follow through the system. Each product i’s
flow time must not exceed its product-specific leadtime Di. Let di be the random variable that denotes the
actual product i delay. Ideally, the network would like to ensure that di 6Di for all products i. In reality,

due to the inherent variability in stochastic networks, these service guarantees should be interpreted and

expressed in a probabilistic form: the probability of violating the leadtime constraint should be small:

Pðdi > DiÞ6 �d;i. Clearly there is a trade-off between Di and �d;i: small leadtimes are harder to satisfy and

yield larger �d;i. In addition, one should also consider blocking or admission control, which brings a second

trade-off: small leadtimes are easier to satisfy with stricter admission control. Indeed, new arrivals when the

system is heavily congested are more likely to exceed their delay bounds and the network is better off

denying admission, if possible. Let bi denote the product i blocking probability. Thus, probabilistic lead-
time guarantees could be specified in terms of an exogenous parameter triplet ðD; �d ; �bÞ, where D, �d , and �b
are non-negative vectors, as follows:
Pðdi > DiÞ6 �d;i and bi 6 �b;i; 8 products i: ð1Þ

Finally, a third trade-off in multi-product systems derives from sequencing: small leadtimes for product i
are harder to satisfy if product j gets network priority.

Unfortunately, addressing all three trade-offs through joint admission and sequencing control in sto-

chastic networks is not amenable to analytic study. Therefore, we propose to analyze dynamic control in

the simpler deterministic and continuous fluid network. Our approach hinges on a simple articulation of the

leadtime specifications in terms of deterministic, linear constraints on the queue length vector. In that

setting, we can successfully analyze the admission and sequencing trade-off and construct multi-product

admission and sequencing control policies that guarantee a given leadtime vector D. The intent of this paper
is to lay out a basic fluid-model approach to deal with leadtime constraints through admission and
sequencing and to illustrate the potential insights and applications of that approach. We highlight five:

1. This approach is simple yet effective. Indeed, the admission policies that emerge from it are not only con-

sistent with, but also more specific than, those from more involved heavy-traffic analysis. (Heavy traffic

typically yields policies that control admissions on an aggregate workload basis. For moderate traffic we

propose true multi-product admission control, which is largely unexplored in the literature, and show

that this conforms with aggregate workload admission in the heavy-traffic limit.) Surprisingly, as Cor-

ollary 4 will show, this fluid approach also prescribes policy parameter selection that is asymptotically
optimal in heavy traffic.

2. This approach suggests specific control policies that could serve as a starting point for policy construc-

tion in the stochastic network. Indeed, a simulation study in this article will give a first indication that the

policies derived through this approach perform well in the stochastic network; that is, they yield small

violation probabilities �d . A follow-up probabilistic study would be needed to fully incorporate the third

probabilistic trade-off.

3. This approach provides a characterization of the largest admission region (over all sequencing rules) in

which the system can admit jobs and still guarantee that all jobs satisfy their delay constraints. The dy-
namic sequencing policy that achieves this maximum admission region is a hybrid between Generalized

Longest Queue (GLQ) and Shortest Delay First (Proposition 2).
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4. This approach shows how admission policies depend on the sequencing policy employed and specify a

tailored admission region for any given sequencing rule. This is the largest region in which the system

can admit jobs and still guarantee the desired delay bounds in the fluid model when using that sequenc-

ing rule. Simulations of our policies in the stochastic system confirm that tailored admission control

compensates for performance differences that stem from the effectiveness of the sequencing rules alone.

Thus, tailored admission and sequencing control provides ‘‘robust’’ system performance. As an example,

we discuss the tailored admission regions for two well-known sequencing policies: Generalized Processor

Sharing (GPS) and GLQ (Propositions 3 and 5).
5. The constraint formulation and some of our findings on sequencing and admission control extend to

multi-class queueing networks. The approach also identifies possible complications that require special

care (Proposition 9).

The rest of the paper is structured as follows. We conclude this section with a literature survey. Section 2

describes the multi-class single server system, its associated fluid model and develops the tractable delay

constraint formulation that is used thereafter. Section 3 studies the fluid analysis of joint admission and

sequencing control under delay constraints. Section 4 compares the performance of the policies that emerge
from the fluid analysis in a simulation experiment and suggests some analytical results. Section 5 extends

the delay constraint formulation to the multi-class network setting and provides some preliminary results

on sequencing and admission control. We conclude in Section 6.

The literature on network control with delay objectives stems from two largely disconnected groups.

Operations research has a long history on job shop scheduling, due-date setting, and tardiness objectives, as

reviewed by, for example, Graves [14], Wein [35], Wein and Chevalier [36], Duenyas [10] and Spearman and

Zhang [29]. Related to our sensitivity findings, Wein’s [34] simulations of semiconductor manufacturing

suggest that admission control impacts performance more than sequencing. We will also relate to Kanban
and CONWIP policies [17], which include admission control on total workload. Lawler et al. [23] review

advances in combinatorial optimization and sequencing for static, deterministic (mostly single server)

systems. One important distinction with our work is that we do not consider determining the leadtimes D,
but rather take the lead-times as given and focus on control to achieve those hard delay constraints. In

contrast, other work typically incorporates delay objectives as soft constraints or indirectly as part of an

objective function that guides the design of good control policies. (An exception are production-inventory

systems with probabilistic service guarantees on fill rates or stock-out probabilities; see, for example,

[2,12,13].) A second distinction is in the information structure of the models under investigation: the control
policies in most prior work require arrival time or ‘‘age’’ information, whereas our modelling and control

framework does not.

The second group of literature is from the engineering field of communications. A comprehensive

overview is published by IEEE [11] and our work relates to the following three areas. The first concerns

networks with deterministic service guarantees developed by Cruz [6,7]. The second area deals with the

concept of ‘‘effective bandwidth’’ that specifies how much more capacity (bandwidth) a system should

devote to an inflow with nominal traffic intensity q in order to guarantee that Pðd > DÞ6 �; e.g., see Kelly

[19]. This will be useful in our analysis in Section 4. The third area draws on large deviations theory, which
has been used successfully to study asymptotic queueing phenomena in communications. For example,

Bertsimas et al. [4], Stolyar and Ramanan [30] and Zhang [37] analyze multi-class G=G=1 queues; see [4] for

a summary of the related literature.

Our paper builds on a body of work developed over the past 10–15 years that addresses stochastic

network control problems through a hierarchy of approximating models that use fluid or Brownian

approximations. The original inspiration for our work is the following observation by Harrison [15, p. 86]:

‘‘rigid constraints on total delay can be incorporated in heavy-traffic formulations of network control

problems, although such constraints make no sense in conventional formulations. That is, an upper bound
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constraint on the total delay experienced by arriving jobs of a given type can be represented in the limiting
Brownian control problem as an upper bound constraint on a certain positive linear combination of queue

lengths’’. (This follows from Reiman’s ‘‘snapshot principle,’’ c.f. [28].) Formulating scheduling objectives in

terms of delay is appealing because it is often easier to articulate delay bounds than the traditional objective

in terms of holding costs. While delay formulations are typically much harder (because of the state-space

explosion), they do not cause serious difficulties in heavy-traffic analysis, as demonstrated in [32]. The idea

of rigid constraint formulation is not developed in [15, p. 86], but a proposal for the multi-class single server

was put forward in [16] and is analyzed by Plambeck et al. [27]. That paper and ours are complementary

studies of a similar constraint representation of delay objectives. Plambeck et al. address the delay-blocking
trade-off in a single server through a profitability criterion (maximize rewards subject to delay constraints)

and analyze an admission and sequencing policy under heavy-traffic conditions. In contrast, our approach

is based on a fluid analysis and can be used to specify a tailored admission policy for any sequencing policy.

The admission and sequencing policies that emerge from our analysis have more specific structure than

those derived from heavy-traffic analysis. Their differences, however, become negligible in the heavy-traffic

limit which reflects the relative merits of both approaches: the simpler fluid analysis may retain more de-

tailed policy structure, while Brownian analysis retains stochastic structure that allows performance

analysis.
Our analysis eventually reduces to a fluid-control problem with polytopic constraints on the state. Such

problems have been addressed quite extensively in the work by Lu [22]. Specifically, Lu studied fluid-

control problems with upper bound constraints on the queue length vector under a cost minimization

criterion. In this context, he explicitly characterized the (fluid) optimal sequencing rule. Our work does not

include a cost structure and in that does not derive sequencing rules that are optimal with respect to some

associated cost criterion. Instead, our focus is on admission control and, specifically, the following two

questions:

1. What is the largest admission region possible in the fluid model (Proposition 2), and what is the sequenc-

ing rule that achieves it (Proposition 2)?

2. What are the admission regions that correspond to commonly used sequencing rules (Section 3.2)?

While the objective of the fluid-control problems in our paper differs from those considered by Lu, his

work provides the necessary background and techniques for extending our results to also incorporate a cost

criterion in the problem formulation. That extension will be addressed in future work.

Finally, the GLQ policy discussed here is also analyzed by Bertsimas et al. [4], Plambeck et al. [27],
Stolyar and Ramanan [30] and Van Mieghem [33].
2. The multi-product single server system with leadtime constraints

Consider a single-server station processing I products (or job-types), indexed by i 2 I ¼ f1; . . . ; Ig; the
terms, products or types, will be used interchangeably. (Refer to Fig. 1 for an example with two products.)

Exogenous arrivals for product i enter the network according to a renewal process with rate ki. Infinite
storage size buffers are associated with each type, jobs within a class are served FIFO, 1 and preemptive-

resume type of service is assumed. Service time requirements for type i jobs are i.i.d., drawn from some

general distribution with mean mi. As usual, service rates are denoted by li ¼ 1=mi, so that the nominal
1 In our model, once jobs are admitted, they must be served, which is guaranteed by in-class FIFO service. This prevents policies

that would neglect or discard waiting jobs close or beyond their delay bound by serving more recent arrivals first.
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load at the server due to type i jobs is given by qi ¼ ki=li. Hereafter, we will assume that the total traffic

intensity
P

i qi is less than one so that the server has enough capacity to process the incoming traffic. 2 The

interarrival and service time sequences are mutually independent.

The system manager controls admissions to, and sequencing in, the system. An admission control policy

takes the form of an I-dimensional cumulative admitted arrivals process fUðtÞ; tP 0;Uð0ÞP 0g, where
UiðtÞ denotes the number of product i arrivals admitted up to time t. Thus, Ui increases in unit jumps

whenever an arriving job is admitted in the system. The I-vector of queue lengths at time t is denoted by
ZðtÞ, and the initial queue length configuration is denoted by Zð0Þ ¼ z. The corresponding workload vectors

are denoted by W ðtÞ. A sequencing policy takes the form of an I-dimensional cumulative allocation process

fT ðtÞ; tP 0; T ð0Þ ¼ 0g, where TiðtÞ denotes the cumulative time that the server has allocated to serving type

i jobs up to time t. We allow server splitting, which means that at any given time the server can divide its

effort into fractional allocations devoted to processing types i 2 I, denoted by _TiðtÞ. For each type, all

processing effort goes to the job at the top of the queue. The cumulative allocation process should be non-

decreasing with T ð0Þ ¼ 0, _T ðtÞP 0 and
P

i
_TiðtÞ6 1. Finally, both controls must be non-anticipating; that

is, current decisions should only depend on information available up to time t. In summary, a control policy
is a pair of controls fðT ðtÞ;UðtÞÞ; tP 0g that satisfy the conditions listed above.

The objective is to control this system while satisfying the probabilistic leadtime guarantees stated in (1).

Without loss of generality, assume that products are labelled so that D1 6D2 6 � � � 6DI . Recall that the

random variable di denotes the actual total time spent in the system by a product i admitted arrival (this is

the end-to-end delay that includes waiting and service time). A first step towards a tractable articulation of

the leadtime constraints in terms of state variables such as queue length, workload and control processes is

found as follows. Consider the extreme (and not achievable) case where all type i jobs leave the system

within their desired leadtime of Di time units (that is, �d ¼ 0). The following key observation holds:
2 Sin

impose

such re

capaci
di 6Di () all type i jobs in system at time t arrived no longer than Di time units ago;

() 8tPDi : ZiðtÞ6UiðtÞ � Uiðt � DiÞ a:s:; ð2Þ
() 8tPDi : Wiðt � DiÞ6 TiðtÞ � Tiðt � DiÞ a:s: ð3Þ
That is, a system that guarantees the leadtime constraints with probability one, would satisfy (2) and (3).

These conditions become more useful when analyzing their ‘‘fluid analog’’. Specifically, consider the fluid
ce the system has admission control capability, one could allow for the total load to exceed the nominal capacity ð
P

i qi P 1Þ,
some revenue structure for accepting jobs and solve a revenue maximization problem subject to the leadtime constraints. While

venue optimization may enhance performance (at least in a transient mode where the demand characteristics change and exceed

ty) it is beyond the scope of this paper.
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model associated with the single server system subject to the deterministic leadtime specifications: di 6Di

for all types i. This fluid model is a system with deterministic and continuous dynamics that is described by

the following equations. For all products i 2 I,
_ZiðtÞ ¼ _UiðtÞ � li
_TiðtÞ; Zð0Þ ¼ z; 06 _UðtÞ6 k; _T ðtÞP 0 and

X
i

_TiðtÞ6 1: ð4Þ
In the fluid model, the workload vector is given by W ð0Þ ¼ w and WiðtÞ ¼ miZiðtÞ. This simple and tractable

approximation describes the transient behavior of the stochastic system starting from large initial condi-

tions. While the leadtime constraints cannot always be guaranteed in the stochastic system, this is

achievable in the fluid model. In fact, we will restrict the fluid-model analysis to the case with no admission

control so that UðtÞ ¼ kt. This is a natural starting point in order to construct good sequencing and

admission control policies that will hopefully perform well in terms of the leadtime constraints in the

stochastic system with minimal blocking. The key observation in condition (2) takes the form
di 6Di () 8tPDi : ZiðtÞ6 kiDi: ð5Þ

An equivalent condition in terms of the workload process W is
di 6Di () 8tPDi : WiðtÞ6 qiDi: ð6Þ

Thus, to satisfy the leadtime specifications in the fluid model, one must choose the control T ð�Þ so as to keep

the queue length vector Z in the box RSðkÞ,fz : zi 6 kiDig, or equivalently, to keep W ðtÞ in RSðqÞ. Con-
ditions (5) or (6) ensure that at any time the fluid content in queue i comprises of fluid that arrived within

the past Di time units, thereby satisfying the leadtime constraints at any time. In terms of the sequencing

control, which is described by the allocation process T ðtÞ, (5) or (6) imply that the server must exert suf-

ficient processing capacity to steer and keep the state in the box RS . From (3) and the fluid constraint

ZiðtÞ ¼ zi þ kit � liTiðtÞ6 kiDi, for tPDi, we derive the constraints
TiðtÞPmizi þ qiðt � DiÞ; tPDi; i 2 I; ð7Þ

which are often referred to in the communications literature as the service curves. Superimposing the

capacity constraint T ðtÞ6 t onto the service curves characterizes the allowable region for the allocation

control to satisfy the delay specifications, as shown in Fig. 2. We summarize these results in the following

proposition.

Proposition 1. Consider the fluid model associated with a multi-product single server system with no admission
control (UðtÞ ¼ kt). The following conditions are equivalent, 8i 2 I:

i(i) di 6Di;
(ii) ZiðtÞ6 kiDi, for tPDi, (or ZðtÞ 2 RSðkÞ);
ρρ

Delay Constraint

tDi

Ti

lCapacity Constraint

Wi(0) i

Fig. 2. Service curves: translation of di 6Di into a constraint on the allocation process T .
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(iii) WiðtÞ6 qiDi, for tPDi, (or W ðtÞ 2 RSðqÞ);
(iv) TiðtÞPmizi þ qiðt � DiÞ, for tPDi (‘‘service curves’’).

Systems with leadtime specifications typically suffer from state space explosion because, in addition to Z
and W , a complete state descriptor includes information on the age of the jobs (or fluid) in the system.

Expressions (5) and (7) have the desirable property that they do not depend on age information and are

simple to analyze.

From condition (7) we see that it is necessary that q ¼
P

i qi 6 1. The only other control constraint that
can be extracted from (5) or (7) is
8tPDi such that ZiðtÞ ¼ kiDi; _TiðtÞP qi; ð8Þ
which specifies a minimal processing rate to keep ZiðtÞ 2 RSðkÞ. There exist many policies that satisfy (8) and

thus guarantee the leadtime specification di 6Di for all products i. This allows for significant control

flexibility that can be exploited in order to optimize other performance criteria or to satisfy auxiliary
constraints. There are, however, some notable exceptions. For example, it is easy to verify that both FIFO

and the cl rule fail to guarantee the fluid-model delay specifications because in both cases the policy does

not take corrective action when the system is about to violate one of these constraints. Specifically, FIFO

fails by not allocating sufficient processing capacity to the jobs with the tightest deadline, and cl fails by

being myopic and disregarding leadtime considerations. More surprisingly, another commonly used policy

referred to by Shortest Delay First also fails. This policy assigns static priorities to products in the reverse

order of their leadtimes Di. That is, smaller Di implies higher priority, and with our labeling convention this

means product 1 gets first priority, then product 2, and so forth. This is verified by considering the case
D1 < D2 < D1q1=ð1� q1Þ and zi ¼ kiDi, where the server will start processing type 2 jobs after time

t ¼ D1q1=ð1� q1Þ, which is too late.

Shortest Delay First is but another example to illustrate that myopic static priorities cannot satisfy

leadtime constraints. Hence, one must consider either dynamic priority rules that give priority to job types

that are closest to violating their leadtime constraints, or processor sharing rules that guarantee a minimum

level of service to each product. We conclude by reviewing two specific sequencing policies, one is a dy-

namic priority rule while the other is a processor sharing rule, that will prove useful later on.

Generalized Processor Sharing with parameter vector /P 0, where
P

i /i ¼ 1, is denoted by GPS(/) and
defined as
8i : if ZiðtÞ > 0; then _TiðtÞ ¼
/iP

j:ZjðtÞ>0 /j
; otherwise _TiðtÞ ¼ 0: ð9Þ
By choosing /i 2 ½qi; 1�, GPS is the obvious extension of (8). Note, however, that even if /i < qi for some

types, the single server system remains stable. Exploiting this remark, we can allow the vector / to vary

over the entire simplex
P

i /i ¼ 1 and /P 0. This added flexibility allows us to shift capacity to products
that have more stringent probabilistic guarantees or more stochastic variability. GPS is a natural gener-

alization of uniform processor sharing (see [20]) and its packet-based version is known under the name

Weighted Fair Queueing [9] and PGPS [26].

Generalized Longest Queue with parameter vector hP 0 is denoted by GLQ(h) and gives at any time t
preemptive priority to product
ihðtÞ ¼ argmaxihiZiðtÞ; ð10Þ
where if ihðtÞ is not a singleton, we set ihðtÞ ¼ minfj : j 2 argmaxjhjZjðtÞg. By choosing
h�i ¼ 1=kiDi; ð11Þ
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GLQ is a macroscopic implementation of a policy often referred to as Earliest-Due-Date-First, which gives

priority to the product that is closest to its due date. In our model we cannot observe the age of the jobs in

order to infer the due-dates, but we can focus on the constraints in (5) and give priority to the product that

is closest to violating its corresponding constraint. The rule proposed by Harrison [16] is exactly GLQ(h�),
which was shown asymptotically optimal in the heavy-traffic limit for systems with hard delay constraints

by Plambeck et al. [27] and Van Mieghem [33]. Using large deviation analysis, Bertsimas et al. [3] showed

that as h and / vary over the 2-D simplex, GLQ(h) dominates GPS(/) with respect to their delay violation

probabilities. Stolyar and Ramanan [30] show that a variant of GLQ that uses explicit age information 3 is
actually asymptotically optimal for an appropriate large deviations criterion.
3. Admission control in the single server system

Consider a single server system with only one product. In this system, an admission control policy

simplifies to a threshold rule: admit jobs if queue length ZðtÞ is less than a threshold, and reject otherwise.

What should that threshold be to guarantee that d 6D with very high probability? The intuitive answer is to
admit if ZðtÞ6 lD () ZðtÞ 2 RSðlÞ because such a queue can always be cleared within the leadtime D by

processing at full capacity. The analysis of Section 2, however, shows that for t > D the queue length should

lie in the region RSðkÞ or ZðtÞ6UðtÞ � Uðt � DÞ � kD. How do we reconcile these two regions? Their

difference stems from considering ‘‘transient’’ versus ‘‘steady-state’’ behavior. Indeed, the system cannot

operate continuously with Z outside RSðkÞ while satisfying the leadtime constraint d 6D, but it could start

there (or get there momentarily) and then quickly recover back into RSðkÞ. Which region should we use for

admission control: RSðlÞ or RSðkÞ? (In workload space this becomes RSðqÞ or RSðeÞ, where e is the vector of
ones.) In a simple single-class stochastic system, the best one can do is choose a threshold K such that the
delay violation P ðd > DÞ is less than the specification �d . (The threshold K can be found analytically for an

M=M=1=K system, where the blocking-delay trade-off is known.)

For a multi-product system, however, the problem becomes much more interesting because now the two

controls, admission and sequencing, interact. (In a single product system, admission control and sequencing

are de-coupled because sequencing is irrelevant and reduces to: process whenever Z > 0.) Assume homo-

geneous types with equal service times m ¼ 1=l and equal leadtime bounds D. Should we admit product i
arrivals whenever ZiðtÞ6 lD? What if the l’s and D’s differ among products? In this section we suggest

specific admission control regions that exploit heterogeneity. These regions are the generalization of the
transient single-product lD threshold rule and are larger than the steady-state box RSðkÞ, because

sequencing will be used to steer Z into the steady-state region RSðkÞ. We will show how admission region

depend on the sequencing rule that is used, and how to derive such ‘‘tailored’’ admission regions using fluid

analysis and the leadtime constraint formulation (5).

3.1. The largest transient admission region RT and GSD sequencing

Return to the fluid model associated with the multi-product single server system and ask the following
question: ‘‘assuming no admission control (that is, UðtÞ ¼ kt), what is the set of initial conditions z for

which the system can guarantee the leadtime constraints di 6Di?’’ We denote this set by RT . This is

essentially the largest admission region possible for the stochastic system under investigation: admissions

outside RT will result to leadtime constraint violation in the fluid model, which implies that similar leadtime
3 In heavy traffic, the age of the oldest type i job has the same distribution as its delay and as Zi=ki so that GLQ(h) is equivalent to
largest weighted delay, yet those policies differ in a large deviations sense (see [30,33]).
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violations are very likely for the stochastic system. (This statement is ‘‘very likely’’ as opposed to ‘‘certain’’
because stochastic realizations could be particularly favorable in some cases.)

An alternative approach would be to impose a performance criterion that rewards the system when a job

is admitted and penalizes the system when a job violates its delay constraint, and optimize overall per-

formance. This will not be pursued in this paper but it is an interesting direction for future work. In this

context, the work by Lu [22, Section 4] will provide a good starting point; the problem studied there is in

terms of minimizing a holding cost criterion subject to an upper bound constraint on the queue length

vector.

The precise derivation of this transient region goes as follows. Assume that the system is empty at time
t < 0 and an initial (bulk) arrival of size z arrives to the system at time t ¼ 0. (We will use both queue length

and workload, denoted by w, depending on which one is more convenient; both are equivalent through the

equation wi ¼ mizi.) Recall the ‘‘service curve’’ constraints described earlier that provide a lower-bound on

the cumulative allocation process T (as shown in Fig. 2) defined by
T iðt;wÞ ¼
0; t < Di;
wi þ qiðt � DiÞ; tPDi:

�
ð12Þ
Any control TiðtÞ that guarantees that di 6Di must satisfy the constraint TiðtÞP T iðt;wÞ. The jump at

t ¼ Di represents the requirement that by time Di all initial workload wi should have left the system, and

the term qiðt � DiÞ implies that all fluid that arrived in the system by the time (t � Di) will have left by
time t, thus satisfying its leadtime specification. The fluid-model dynamics impose the obvious restriction

that the allocation TiðtÞ can only increase at rate 1. This can be used to refine the lower bound T iðt;wÞ
to T iðt;wÞ ¼ ðt � ðDi � wiÞÞþ for t6Di. This refinement is implicit in the statement TiðtÞP T iðt;wÞ
that requires that TiðtÞ is a feasible allocation control for the fluid model. The transient region RT is

defined by
RT , w

(
P 0 : 9T ð�Þ such that 8i 2 I; TiðtÞP T iðt;wÞ and T ðtÞ ¼

X
i

TiðtÞ6 t

)
: ð13Þ
Specifying RT thus requires the specification of a sequencing policy that maximizes this admission region.

We will show that the dynamic rule that we call Generalized Shortest Delay First (GSD) and that gives

preemptive priority to product iyðtÞ defined by
iyðtÞ ¼ ih
� ðtÞ if ZðtÞ 2 RS ;

minfi : ZiðtÞ > kiDig if ZðtÞ 62 RS ;

�
ð14Þ
where ih
�
is the high priority product according to GLQ(h�) in (11), yields the maximal admission region RT .

The name GSD reflects the feature that outside RSðkÞ the product with the nearest deadline is served.

(Notice that the use of GLQ(h�) in the interior of RSðkÞ is arbitrary; in fact, any other policy––including

idling!––also yields RT in the fluid model, since when the queue length vector is about to exit RSðkÞ and start

violating the delay constraints, the system switches to the GSD priorities that prevents that from hap-

pening.)

Proposition 2. Suppose that q ¼
P

i qi 6 1. The transient region RT for the fluid model is
RT ¼ w

(
P 0 :

Xi

j¼1

wj 6Di �
Xi�1

j¼1

qjðDi � DjÞ; 8 types i

)
; ð15Þ
and starting from any w 2 RT , GSD sequencing guarantees that di 6Di.

All proofs in the paper are relegated to the Appendix A.
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Example. (I ¼ 2): Assume that there are only two products. The transient region RT is the two-dimensional

polyhedron defined by wP 0 and
Fig. 3

RSðeÞ,
w1 6D1;

w1 þ w2 6D2 � q1 D2ð � D1Þ ¼ q1D1 þ ð1� q1ÞD2 ¼ Wmax:
Wmax represents the maximal initial workload that the system can handle in D2 time units (recall that

D1 < D2). Our work suggests that admission control in terms of the total workload in the system (that is

typically used), is not sufficient in the presence of leadtime guarantees. Specifically, one needs to add the

more stringent constraint w1 6D1 that accounts for the difference between the two leadtimes for products 1

and 2; product 1 jobs admitted when w1 þ w2 6Wmax but w1 > D1 will violate their leadtime bound. As

expected, we have that RSðqÞ � RT ; see Fig. 3.

3.2. Admission control regions tailored to different sequencing rules

The proof of Proposition 2 shows that the admission region depends on the sequencing rule employed.

Next, we show how to derive the admission region for a given sequencing policy. The approach is simple:

we use the fluid-model equations under that sequencing policy and assuming that the system does not

exercise admission control, and find the set of all initial conditions from which the system can clear its

backlog and satisfy the leadtime specifications. The latter reduces to a simple check of whether starting

from some initial state the system will satisfy the conditions in (5) or (6). To illustrate, we discuss the

admission regions for a two type system under GPS(/) or GLQ(h).

3.2.1. Admission region under GLQ(h)
Consider a two-product single server system with GLQ(h) sequencing. Denote by TGLQðhÞð�;wÞ the

allocation process under that sequencing policy starting from initial workload vector w. The corresponding
admission region, denoted by RGLQðhÞ, is defined by
RGLQðhÞ, w
n

P 0 : 8i 2 I; TGLQðhÞ
i ð�;wÞP T iðt;wÞ for tPDi

o
:

. The three admission control regions that guarantee leadtime constraints static RSðqÞ, transient RT , smallest dynamic RD versus

which cannot guarantee leadtime constraints.
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Proposition 3. Consider a single server system with two products under GLQ(h) sequencing and define
a ¼ l1h1=l2h2. The GLQ admission region is
RGLQðhÞ ¼ fwP 0 : w1 6D1;w1 þ w2 6WGLQðhÞg;

where WGLQðhÞ ¼ minðð1þ q1a� q2ÞD1; ð1� q1 þ a�1q2ÞD2Þ.

Corollary 4. Let a� ¼ l1h
�
1=l2h

�
2 ¼ q2D2=q1D1. 8q < 1 : RGLQðhÞ � RT ; only if q ¼ 1 and a ¼ a� is

RGLQðhÞ ¼ RT . In addition, RGLQðhÞ is maximized for some ĥ such that â ¼ m2ĥ1=m1ĥ2 > a�, and â ! a� as
q ! 1.

(The corollary is proved as part of Proposition 3.) As shown in Fig. 4, RGLQðhÞ and RT differ only by the

maximal workload that they can handle. In moderate traffic (q < 1), the admission region RGLQðhÞ is strictly

smaller than RT for any choice of h, while in heavy traffic (q ¼ 1), the two regions agree when h ¼ h�. The
RGLQðhÞ-maximizing parameter ĥ provides a useful selection rule for the parameter h in the GLQ policy

specification. In addition, the parameter h� derived here using simple fluid analysis agrees with the
parameter that is asymptotically optimal in the heavy-traffic regime ([27,33])! Finally, the explanation of

why RGLQðhÞ is smaller than RT follows from analyzing the fluid trajectories. For example, under GLQ(h�)
and starting from an initial condition with both products outside RSðkÞ, the sequencing rule will first

equalize Zi=kiDi and then bring both queues simultaneously to the boundaries of the box. This disregards

the fact that their leadtimes can be different, and it is clear that by careful selection of the initial workload

this policy can fail to meet product 1’s leadtime constraint. GSD, on the other hand, recognizes that

D1 < D2 and gives priority to ‘‘lower’’ products outside RSðkÞ.

3.2.2. Admission region under GPS(/)
Denote by TGPSð/Þð�;wÞ the allocation process under GPS(/) sequencing starting from initial workload

vector w. The corresponding admission region, denoted by RGPSð/Þ, is defined by
RGPSð/Þ, w
n

P 0 : 8i 2 I; TGPSðhÞ
i ð�;wÞP T iðt;wÞ for tPDi

o
:

Fig. 4. Tailored admission control regions for GLQ(h) and GPS(/) for /i P qi, i 2 I.
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Proposition 5. Consider a single server system with two products under GPS(/) sequencing and choose / such
that /i P qi for i ¼ 1, 2. The admission region is given by
4 Th

of clos
RGPSð/Þ ¼ fwP 0g \ ff8i : wi 6/iDig [ fw1 > /1D1;w1 þ w2 6 ð1� q2ÞD1g
[ fw2 > /2D2;w1 þ w2 6 ð1� q1ÞD2gg:
(The proof is relegated to the Appendix A.) We have restricted attention to the most natural regime
where /i P qi for i 2 I. Notice that this region is non-convex, as shown in Fig. 4. A related observation of

non-convexity under the GPS policy has been made by Paschalidis in [25].

Corollary 6. RGPSð/Þ � RT for any two-product single-server system with /i P qi for i 2 I.

It is important to note that in both cases the complexity of the derivation of the ‘‘tailored’’ admission

regions increases as the number of product types grows, and can become impractical when I is large. In

contrast, the specification of the transient region RT that is associated with the GSD policy holds for an
arbitrary number of types and thus does not suffer from this ‘‘curse of dimensionality’’.

3.3. Mixed analysis: Fluid model with batch arrivals

Admission control based on the transient region RT may be optimistic, since it assumes that all workload

in the system has just arrived. In reality, jobs with less stringent leadtimes that are getting lower priority

may have been in the system for some time already. This should affect the acceptance of higher priority

jobs, since the server will have to process the former earlier than what the transient analysis had dictated.
Therefore, we need to correct the admission region in order to capture the effect of aging jobs in the system.

One approach would be to scale down the tailored transient admission region by a ‘‘safety factor’’ that is

selected by simulation. Another approach applies the following ‘‘mixed’’ fluid-model analysis.

Consider a time t� PDI when all initial transients have ended and the workload is W ðt�Þ. Assume that at

t� a batch arrival of workload size w arrives to the system. 4 We denote W ðt�Þ by W , and the total workload

immediately after the batch arrival by W þ w. Given W , the admission region will be the set of vectors w
that the system can admit such that it can still guarantee that di 6Di, for all types i. We refer to this region

as the dynamic admission region, denoted by RD. The basic premise is that RD should provide more realistic
admission and sequencing policies.

We will provide the derivation for the largest such region, and in passing also describe the corresponding

sequencing rule. The extensions to GPS or GLQ are omitted. We start by constructing the service curve

constraints T ðt;W ;wÞ as follows:
T iðt;W ;wÞ ¼
0; t � t� < ðDi � Wi=qiÞ

þ
;

qiðt � t� � Di þ Wi=qiÞ
þ
; ðDi � Wi=qiÞ

þ
6 t � t� < Di;

wi þ qiðt � t� � Di þ Wi=qiÞ
þ
; t � t� PDi:

8<
: ð16Þ
With all initial transients cleared prior to t� and di 6Di, we know that Wi 6 qiDi for all i. The intuition

behind these service curve constraints is that at time ðDi � Wi=qiÞ
þ
the type i ‘‘old’’ workload will become

equal to qiDi, so that the server must start devoting qi to processing this product in order to satisfy the

leadtime constraints of this ‘‘old’’ fluid. The dynamic admission region is defined by
is batch arrival may be motivated by large deviations theory, which predicts that large queue lengths build up by sudden bursts

ely spaced arrivals or long service times.
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RDðW Þ, W

(
þ wP 0 : 9T ð�Þ s:t: 8i 2 I; TiðtÞP T iðt;W ;wÞ and T ðtÞ ¼

X
i

TiðtÞ6 t

)
: ð17Þ
Proposition 7. For any time t� > DI , denote by W the workload W ¼ W ðt�Þ, and consider a batch arrival of
size w. Then, the fluid model can accept any such arrivals provided that the total workload W þ w remains in
the dynamic admission region
RDðW Þ ¼ W

(
þ wP 0 :

Xi

j¼1

ðWj þ wjÞ þ
XI
j¼iþ1

Wj

�
� qjðDj � DiÞ

�þ
6Di �

Xi�1

j¼1

qjðDi � DjÞ; 8i 2 I

)
:

ð18Þ
The presence of ‘‘older fluid’’ restricts the magnitude of the batch arrival w. So, in general, RDðW Þ � RT .

If the system is empty at time t�, then the region RDð0Þ recovers the transient region RT (as it should).

Actually, the same is true if there is only a small amount of ‘‘old’’ fluid present: Wj < qjðDj � DiÞ for all
j > i, in which case higher priority products (with less stringent leadtimes; recall that D1 6D2 6 � � � 6DI )

will not reach the level qjDj prior to time Di, where the delay constraints due to Wj will become binding.

Example. (I ¼ 2 contd.): The dynamic admission region becomes:
W1 þ w1 þ W2ð � q2ðD2 � D1ÞÞþ 6D1;

ðW1 þ w1Þ þ ðW2 þ w2Þ6D2 � q1ðD2 � D1Þ ¼ q1D1 þ ð1� q1ÞD2 ¼ Wmax:
The smallest dynamic region corresponds to the case Wi ¼ qiDi where the first condition becomes
W1 þ w1 6 ð1� q2ÞD1:
Fig. 3 compares this smallest dynamic region RD to the other two regions RSðqÞ and RT . If q < 1, then

1� q2 > q1 and RDðqDÞ strictly dominates the region RSðqÞ, whereas, if q ¼ 1, then the first condition

becomes W1 þ w1 6 q1D1, which is the same as in RSðqÞ.

In practice, from the observation of the queue length vector z, one cannot figure out what fraction of the

total workload Wi þ wi ¼ mizi has been in the system for some time already (we called that fraction Wi in the

mixed fluid analysis above). A conservative choice would be to set Wi ¼ min mizi; qiDið Þ and

wi ¼ ðmizi � qiDiÞþ, and to proceed using (16); this is the largest amount of ‘‘old’’ fluid that can be
embodied in zi and that can be attributed to work arriving at a constant rate qi while satisfying the leadtime

constraint di 6Di.
4. Simulation study of the control policies in the stochastic single-server system

In the previous sections we have provided a simple framework to design control policies for multi-

product systems with leadtime constraints using fluid analysis. These results can serve as a starting point for
policy construction for the stochastic system. This section provides some initial justification of this con-

jecture by conducting a series of simulation experiments. In particular, we illustrate that the naive

admission policy based on the single-product reasoning that admits new product i arrivals whenever

Zi 6 liDi adds little to the overall system performance. On the other hand, the tailored admission control

proposals of Section 3 not only seem to perform very well, but also are rather robust in that they make the

system performance insensitive to the chosen sequencing rule. We simulated a two-product M=M=1 single
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server system operating at moderate traffic intensity (q ¼ 0:83) with parameters k ¼ ð0:5; 0:5Þ and
l ¼ ð1:5; 1Þ.

4.1. Performance without admission control

As a benchmark, we simulated the system without admission control using GPS(/) and GLQ(h)
sequencing. To investigate the full performance range, the parameters / and h were varied over their entire

domain thereby tracing the frontier of their achievable regions for a fixed delay bound vector D. That is,
any specification vector �d above and to the right of the curves in Fig. 5 can be guaranteed. (Recall that with
no admission control the blocking levels �b are zero.) For each parameter value, three simulations of

200,000 service completions are reported. The figure shows the frontiers for two leadtime vectors D.
Clearly, as D becomes larger, the bound is less stringent and easier to satisfy so that the frontier for

D ¼ ð20; 20Þ lies below and to the left of the frontier for D ¼ ð10; 20Þ.
More interestingly, while GLQ dominates GPS as asymptotic heavy traffic and large deviations analysis

predict, the relative improvement is not dramatic; this difference clearly dependents on the probabilistic

assumptions on the arrival and service time processes. (In the tail as D ! 1, however, the improvement is

more pronounced, as shown by the analytic results of Bertsimas et al. [4].) The figure also shows two
analytic bounds. For extreme parameter values of / and h, both GPS and GLQ become static priority

policies, which yield analytic lower performance bounds. The analytic upper bound is the performance of a

‘‘de-coupled’’ M=M=1 queue: GPS(/) processes any non-empty buffer i at a rate of at least /i; the actual

processing rate will be higher when the buffers of some other classes are empty. The processing gain that a

class obtains when other classes are empty is called the multiplexing gain, which complicates performance

analysis. By ignoring the multiplexing gain, the queues can be de-coupled and their performance is a lower

bound on the multiplexed queues. Thus, under GPS(/) the product i flow receives equal or better service

than under an M=M=1 system with FIFO service and service rate ~li ¼ li/i in isolation. This directly yields
the following bound:

Lemma 8. Under GPS(/), product i delay di is stochastically smaller than the delay dMM1
i of an M=M=1 queue

with arrival rate ki and service rate ~li ¼ li/i. In particular,
Fig. 5. Frontiers of the achievable regions under GPS and GLQ sequencing in a single server system without admission control with

k ¼ ð0:5; 0:5Þ and l ¼ ð1:5; 1Þ.
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Pðdi > DiÞ6PðdMM1
i > DiÞ ¼ e�Diðli/i�kiÞ: ð19Þ
Thus, in order for the specification Pðdi > DiÞ6 �d;i to be achievable it suffices to set
/i P qeb
i ðDi; �d;iÞ,qi 1

 
þ
ln ��1

d;i

kiDi

!
: ð20Þ
The quantity qeb
i > qi represents the effective capacity that should be allocated to the type i flow as pre-

scribed by this single type approximation. Note that as either k or D increases, qeb
i # qi. The same results can

be extended to general distributions and single class G=G=1 approximations. In this case, one does not have

exact expressions as in (19) and (20), but has to rely on asymptotic analysis of the tail probabilities based on
large deviations theory. In communication networks, the quantity qeb

i is referred to as the effective band-
width 5 [19] of an M=M=1 queue under the leadtime specifications ðDi; �d;iÞ. Clearly, by neglecting the

multiplexing gain, our expression (20) is an upper estimate of the true ‘‘effective bandwidth’’ for the multi-

product system. An analysis that incorporates the multiplexing gain, such as the large deviations analysis of

Bertsimas et al. [3] and Zhang [37] of a two-class single server under very general probabilistic assumptions,

yields an effective bandwidth that is lower than the one given in (20). Nevertheless, the exceeding simplicity

of (20) is appealing: it yields a simple linear constraint (in log–log scale) that is not completely ridiculous as

shown in Fig. 5.

4.2. Performance with admission control

As a first exploration of the impact of admission control, we compared GPS and GLQ under four input

control policies: (1) no admission control versus admission control using (2) the box RSðlÞ that admits

product i arrivals if Zi 6 liDi), which also is used by Paschalidis [25, Section 7], (3) the largest region RT and

(4) the tailored regions RGPSð/�Þ or RGLQðh�Þ, respectively. We have simulated the same M/M/1 system as

before, but now with GLQ(h�) and GPS(/�), where /�
i ¼ qi=q. The results, with 95% confidence intervals,

are reported in Table 1 for D ¼ ð10; 20Þ. We highlight a few observations:

1. Holding the sequencing policy constant, smaller admission regions result in smaller leadtime violation

probabilities at the expense of increased blocking rates. Given that Rtailored � RT � RSðlÞ, this lead-

time-blocking trade-off is evident along horizontal rows in the Table.

2. The box admission region RSðlÞ provides little improvement over the case of no admission control. This

is illustrated by comparing the results between the first and second columns.

3. The tailored admission region results in substantial performance improvements over both the largest re-
gion RT , and the naive box admission region RSðlÞ. For GLQ, blocking 0.49% (0.90%) more type 1 (2)

jobs decreases the leadtime violation probabilities by 2.3% (2.4%) for admitted type 1 (2) jobs over the

box admission region RSðlÞ. Similarly for GPS, blocking 3.3% (0.6%) more type 1 (2) jobs decreases the

leadtime violation probabilities by 7.2% (2.2%) for admitted type 1 (2) jobs over the box admission re-

gion RSðlÞ.
4. GLQ(h�) tries to equalize the leadtime violation probabilities among product types by striving to equal-

ize Zi=kiDi over all i; this was also theoretically predicted by the asymptotic results in Van Mieghem [33].

In GPS, on the other hand, the choice / ¼ /� does not correct for the difference between the leadtimes of
e definition of effective bandwidth in the communications literature is somewhat different. It pertains to the asymptotic rate of

of the tail queue-length probability, and thus relates to loss probabilities.



Table 1

Comparative simulated performance, including 95% confidence intervals, of GPS(/I) and GLQ(hI) under four admission control

policies; k ¼ ð0:5; 0:5Þ, l ¼ ð1:5; 1Þ and D ¼ ð10; 20Þ
Sequencing Admission

None RSðlÞ RT Rtailored

GPS(/�)

�d;1 0.1269± 0.0139 0.1188± 0.0118 0.1041± 0.0079 0.0463± 0.0020

�d;2 0.0397± 0.0055 0.0351± 0.0042 0.0183± 0.0034 0.0127± 0.0023

�b;1 0 0.0027± 0.0008 0.0052± 0.0007 0.0359± 0.0015

�b;2 0 0.0010± 0.0004 0.0061± 0.0012 0.0073± 0.0009

GLQ(h�)
�d;1 0.0542± 0.0068 0.0481± 0.0044 0.0316± 0.0029 0.0250± 0.0017

�d;2 0.0517± 0.0076 0.0443± 0.0046 0.0260± 0.0025 0.0202± 0.0026

�b;1 0 0.0000± 0.0000 0.0041± 0.0007 0.0049± 0.0005

�b;2 0 0.0010± 0.0006 0.0068± 0.0009 0.0103± 0.0016
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products 1 and 2 (D1 ¼ 10 while D2 ¼ 20), and leads to higher violation probabilities for product 1 that

has the shorter leadtime. (Clearly, choosing an appropriate /, for example /i P qeb
i ðDi; �d;iÞ, would im-

prove this balance.)

The simulation prompts an interesting remark regarding blocking probabilities of an admission region R.
Theoretically, these can be obtained from the steady-state queue-count Z distributionP as follows. Product

i’s blocking probability bi equals the sum of probabilities PðziÞ of the boundary points zi 2
fZ 2 R and Z þ ei 62 Rg. For our two-product example using a ‘‘cut-off triangular’’ admission region like
RT and RGLQðh�Þ this means: b1 is the probability of the sloped boundary fZP 0 : m1Z1 þ m2Z2 ¼
WGLQ;m1Z1 6D1g and the vertical segment fZP 0 : m1Z1 þ m2Z2 < WGLQ;m1Z1 ¼ D1g. Similarly, b2 is the

probability of the sloped boundary only. Therefore, one expects b1 P b2, regardless of the sequencing policy
that is used. (With a pure triangular admission region, one expects b1 ¼ b2 for any sequencing policy.)

While this holds for a continuous-state process, the simulation results indicate the reverse and the culprit

lies in the discreteness of Z. 6

Finally, to get an indication of the comparative performance of the joint sequencing-admission control

policies presented in Section 3, we compared GPS(/�), GLQ(h�) and GSD, each with their tailored
admission region. The results for our simulated system are reported in Table 2. Both GLQ and GSD seem

to outperform GPS, each using their tailored admission region, however, the differences seem to be smaller

than those reported in Fig. 5 and Table 1. The explanation is that all three pairs of control policies were

designed in such a way so that (a) jobs admitted should never exceed their delay bounds, and (b) the system

will never have to block. In this way, tailored admission control compensates for some of the performance

differences that can be attributed to sequencing alone, and makes system performance robust to the specific

choice of sequencing rule. GLQ and GSD provide roughly similar performance (we know that both policies
6 For example, consider our simulated system with admission region 2
3
Z1 6 10 and sloped line 2

3
Z1 þ Z2 ¼ f, where f ¼ Wþ;max ¼ 16 2

3

for RT and f ¼ WGLQ ¼ 15 for RGLQ. Because of integer constraints, b1 includes only roughly two-thirds of the points along the sloped

line (to be precise: 10 for RT and 11 for RGLQ out of 16), while b2 includes them all (16). Therefore, if the vertical segment Z1 ¼ 15 would

have negligible probability, we would expect that b1 to be roughly two-thirds of b2. (This would be exact if the steady-state measure P
is uniform along the sloped line; in general, it will be different.) This agrees with the simulation results for GLQ, which indeed puts

minimal mass on the vertical segment. GPS yields b1 ’ 5
6
b2 under RT , reflecting more probability mass on the vertical segment.



Table 2

Comparative simulated performance, including 95% confidence intervals, of three sequencing policies, each using their fluid-optimal

tailored admission regions

D Policy

1. GPS(/�) with RGPSð/�Þ 2. GLQ(h�) with RGLQðh�Þ 3. GSD with RT

(10, 20)

�d;1 0.0463± 0.0020 0.0250± 0.0017 0.0275± 0.0024

�d;2 0.0127± 0.0023 0.0202± 0.0026 0.0275± 0.0037

�b;1 0.0359± 0.0015 0.0049± 0.0005 0.0048± 0.0009

�b;2 0.0073± 0.0009 0.0103± 0.0016 0.0059± 0.0011

(20, 20)

�d;1 0.0104± 0.0012 0.0129± 0.0018 0.0116± 0.0021

�d;2 0.0157± 0.0017 0.0161± 0.0028 0.0169± 0.0028

�b;1 0.0054± 0.0006 0.0017± 0.0004 0.0023± 0.0004

�b;2 0.0079± 0.0009 0.0035± 0.0008 0.0029± 0.0006
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are identical if q ! 1), while GSD appears to provide slightly better performance in the tails for large D.
Again, a definite comparison should use more precise, analytical techniques.
5. Multi-class networks with leadtime constraints

This section extends the leadtime constraint formulation of Section 2 to open multi-class queueing

networks, and analyzes the simpler fluid-control problem to gain some insights on admission and

sequencing control in networks. (Again, we do not consider routing control.)

5.1. Network model

The network consists of S single server stations (or servers), indexed by s ¼ 1; . . . ; S. As before, we have

exogenous external arrivals of I products, indexed by i 2 I ¼ f1; . . . ; Ig, which enter the network according

to a renewal process with rate ki for type i. Each product type follows a deterministic route or processing

sequence through the network denoted by
ri ¼ sði; 1Þ; . . . ; sði; kÞ; . . . ; sði; niÞ½ �; ð21Þ

where ni is the total number of processing steps for jobs of product i, ði; kÞ is the class designation at the kth
processing step along this route, and sði; kÞ denotes the server responsible for class ði; kÞ. Upon completion

of this processing sequence, jobs exit the network. There are
P

i ni classes in total. The network description

is completed by extending all other assumptions of Section 2 to this setting. Mean processing times will be

denoted by mði;kÞ and the corresponding rates by lði;kÞ ¼ 1=mði;kÞ. The nominal load at server sði; kÞ due to

class ði; kÞ traffic is qði;kÞ ¼ ki=lði;kÞ. The aggregate load due to all product i flows through server s will be
denoted by qs

i , where
qs
i ¼ ki

X
j:ði;jÞ2s

mði; jÞ ¼
X

j:ði;jÞ2s
qði;jÞ;
and the total traffic intensity at each station is given by qs ¼
P

i q
s
i . A two station example with two

products is shown in Fig. 6. Both products follow identical routes, first visiting server 1 and then server 2

before exiting the system. Thus, there are four job classes fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð2; 2Þg and two routes

r1 ¼ r2 ¼ ½1; 2�.



Fig. 6. A two-station two-type multi-class network.
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Queue lengths will be denoted by Zði;kÞ. The (expected) workload or total processing requirement

embodied in all class ði; kÞ jobs present in the system at time t is denoted by Wði;kÞðtÞ; same as in the fluid

model. Similarly, W s
i ðtÞ denotes the type i workload for server s:
Wði;kÞðtÞ ¼ mði;kÞ
X
j6 k

Zði;jÞðtÞ and W s
i ðtÞ ¼

X
k:ði;kÞ2s

Wði;kÞðtÞ: ð22Þ
This network is a slight extension of the so called re-entrant line [21], that allows for many exogenous arrival

streams, each following a re-entrant path through the network. Markovian switching between classes can
be modelled in the usual way, where one correctly labels all possible routes through the system (accounting

for probabilistic routing), and then proceeds in the framework described above; this enumeration of routes

can be found, for example, in Kelly [18]. The caveat, of course, is that probabilistic switching in a feedback

configuration leads to infinitely many routes.

5.2. Modeling and control for multi-class networks with leadtime constraints

Observation (2) extends directly to the network setting by summing all type i queue lengths:
di 6Di () all type i jobs have arrived no longer than Di time units ago

() 8tPDi :
X
k

Zði;kÞðtÞ6UiðtÞ � Uiðt � DiÞ: ð23Þ
Starting form initial condition Zð0Þ ¼ z, the fluid model associated with this stochastic network is defined

by: 8i 2 I:
Zði;1ÞðtÞ ¼ zði;1Þ þ UiðtÞ � lði; 1ÞTði;1ÞðtÞ; ð24Þ

Zði;kÞðtÞ ¼ lði;k�1ÞTði;k�1ÞðtÞ � lði;kÞTði;kÞðtÞ; 8k ¼ 2; . . . ; ni; ð25Þ
X
ði;kÞ2s

_Tði;kÞðtÞ6 1; _T ðtÞP 0; 06 _UiðtÞ6 ki: ð26Þ
Without admission control, UðtÞ ¼ kt and (23) simplifies to the obvious generalization of (5):
di 6Di () 8tPDi :
X
k

Zði;kÞðtÞ6 kiDi; ð27Þ
Extending previous notation, we define RSðkÞ as follows:
RSðkÞ, Z :
X
k

Zði;kÞ

(
6 kiDi; 8i 2 I

)
:

Let ZiðtÞ ¼
P

k Zði;kÞðtÞ be the total number of product i jobs in the network, WiðtÞ ¼P
s W

s
i ðtÞ ¼

P
k Wði;kÞðtÞ the corresponding total type i workload, and qi ¼

P
s q

s
i the rate at which product i
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workload is arriving to the system. The leadtime constraint for product i jobs can be expressed as
ZiðtÞ6 kiDi for tPDi, or in terms of workload in the form
di 6Di () 8tPDi : WiðtÞ6 qiDi:
That is, the total product i workload in the system at any point in time is less than or equal to the total

amount of product i work that entered the system in the past Di time units. We summarize these results in

the following proposition.

Proposition 9. Consider the fluid model associated with an open multi-class queueing network with no
admission control (UðtÞ ¼ kt). The following conditions are equivalent: 8i 2 I:

ii(i) di 6Di;
i(ii) ZiðtÞ ¼

P
k Zði;kÞðtÞ6 kiDi (i.e., ZiðtÞ 2 RSðkÞ), for tPDi;

(iii) WiðtÞ ¼
P

s W
s
i ðtÞ ¼

P
k Wði;kÞðtÞ6 qiDi, for tPDi.

5.3. Admission control in networks with leadtime constraints

This section will show that there is no simple generalization of the single-server expressions for the

largest admission region RT to multi-class networks. We shows that a complete characterization of RT for a

network is more complicated via a counter example and discuss some of its consequences. As before, we

start with the service curve constraints. Let w denote the initial class level workload vector. For each class

ði; kÞ we define
T ði;kÞðt;wÞ ¼
0; t < Di;
wði;kÞ þ qði;kÞðt � DiÞ; tPDi:

�
ð28Þ
The leadtime specification di 6Di is satisfied if and only if Tði;kÞðtÞP T ði;kÞðt;wÞ for k ¼ 1; . . . ; ni. Recall that
products are ordered such that D1 6D2 6 � � � 6DI . Summing over all classes ði; kÞ served at a station s and
checking its capacity constraints yields
RT � w

(
P 0 :

Xi

j¼1

ws
i 6Di �

Xi�1

j¼1

qs
i ðDi � DjÞ; 8i; 8s

)
: ð29Þ
While this characterization was shown necessary and sufficient for a single server system, these conditions

are no longer sufficient in the network setting as the following example will show.
Consider the network of Fig. 6 with initial condition z ¼ ½1; 0; 1; 0� and the following set of parameters:

k1 ¼ 1=2, D1 ¼ 1, mð1;1Þ ¼ 1, mð1;2Þ ¼ 1=2; and k2 ¼ 1=4, D2 ¼ 2, mð2;1Þ ¼ 1=2, mð2;2Þ ¼ 5=4. The initial

workload vector is given by
w1
1 ¼ mð1;1Þ; w2

1 ¼ mð1;2Þ; w1
2 ¼ mð2;1Þ; w2

2 ¼ mð2;2Þ;
and the corresponding capacity constraints are
w1
1 6D1; w2

1 6D1; w1
1 þ w1

2 6D1 � q1
1ðD2 � D1Þ; w2

1 þ w2
2 6D2 � q2

1ðD2 � D1Þ:

It is easy to check that the capacity constraints are all satisfied. Also, given that w1

1 ¼ 1 and mð1;1Þ > mð1;2Þ,

server 1 must process exclusively type 1 jobs until t ¼ D1 to satisfy the delay constraint for type 1 jobs. This

implies that server 2 will be idling half of its capacity in the time interval ½0;D1� instead of allocating it to

class (2, 2) jobs whose queue is empty. Thus, server 2 will no longer be able to process all type 2 jobs present

in the system at time t ¼ 0 in the interval ½D1;D2� so that some type 2 jobs will violate their delay constraint.
The problem is that the capacity conditions for the network do not incorporate the constraint that

ZðtÞP 0. This non-negativity constraint was implicitly satisfied in the single server, where positive workload
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translates to positive queue length. In the network case, however, positive workload for class ði; kÞ or server
s could be the result of jobs buffered upstream, and it does not necessarily imply positive buffer content. The

non-negativity condition ZðtÞP 0 can be added using the fluid-model equations:
Zði;kÞðtÞP 0 ) Tði;kÞðtÞ6
zði;kÞmði;kÞ þ ki

lði;kÞ
t; k ¼ 1;

zði;kÞmði;kÞ þ
lði;k�1Þ
lði;kÞ

Tði;k�1ÞðtÞ; 1 < k6 ni:

8<
: ð30Þ
This gives the complete characterization of the transient region RT for the network:
RT , w : 8ði; kÞTði;kÞðtÞ satisfies ð30Þ; Tði;kÞðtÞ
(

P T ði;kÞðt;wÞ; and
X
ði;kÞ2s

Tði;kÞðtÞ6 t; 8tP 0

)
: ð31Þ
Thus, starting from an initial workload position w, the network can guarantee the leadtime constraints
di 6Di if and only if there exists an allocation policy T ðtÞ that satisfies this set of conditions. Unfortunately,

(31) is not a finite dimensional characterization of the transient region. Instead, RT is expressed in terms of a

set of constraints that must be verified for all times tP 0. So far, we have been unable to reduce it to a

simpler (polytopic) characterization like for the single server system. This is not surprising in light of the

inherent complexity of networks and of their associated fluid models. See Dai and Weiss [8] for some results

on fluid-model stability and Avram et al. [1], Chen and Yao [5], and Maglaras [24] for network control

based on fluid-model analysis.

5.4. Sequencing in networks with leadtime constraints

We conclude by applying the GPS and GLQ sequencing rules to the network setting, and comparing

their performance for the two station example of Fig. 6 through a simulation experiment. Recall that

policies that satisfy (27) will guarantee the (fluid model) leadtime specifications di 6Di. Let

liðZðtÞÞ ¼ maxfk : Zði;kÞðtÞ > 0g be the furthest downstream non-empty class i buffer. Then, Proposition 9

and (27) imply the control constraint
8i 2 I : ZiðtÞ ¼ kiDi for tPDi ) _ZiðtÞ6 0 ) _Tði;kÞðtÞP qði;kÞ; 8kP liðZðtÞÞ: ð32Þ
Generalized Processor Sharing (GPS) in a network: The simplest and most conservative control that

satisfies (32) is to disregard the distinction of upstream and downstream classes through liðZðtÞÞ, and in-

stead allocate capacity to every class ði; kÞ along the route ri such that the flow along the route is equal to

the input rate ki. This allocation keeps ZiðtÞ constant and the re-entrant path for product i flow now behaves

like a ‘‘tandem line.’’ In general given a vector /P 0 such that
P

ði;kÞ2s /ði;kÞ ¼ 1, the GPS(/) policy is

defined as follows: denote by IB;sðZðtÞÞ ¼ fði; kÞ : Zði;kÞðtÞ > 0g the set of non-empty queues at server s at
time t, and set
8ði; kÞ 2 IB;sðZðtÞÞ : _Tði;kÞðtÞ ¼
/ði;kÞP

ðj;lÞ2IB;sðZðtÞÞ /ðj;lÞ
and 8ði; kÞ 62 IB;sðZðtÞÞ : _Tði;kÞðtÞ ¼ 0:
The simplest choice for the parameters /ði;kÞ would be to set /ði;kÞ ¼ qði;kÞ þ Dqði;kÞ for some Dqði;kÞ > 0.

Following the simple effective bandwidth calculation of Section 4, one could also study this network using a

product-by-product analysis, where each re-entrant path is modelled as a tandem line operating in isola-

tion. One should proceed with a large deviations analysis for a tandem line of G=G=1 queues, as in

Bertsimas et al. [4]. The product-by-product analysis is a doable extension of [4], but the optimization step
over the /’s seems hard. Finally, the analysis of GPS for the multi-class network (that would capture the

‘‘multiplexing gains’’ that occur when some classes are empty and their nominal capacity is redistributed to
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other classes at the same server) as in [3], is quite hard and presents an interesting and challenging open
problem for further research.

Generalized Longest Queue (GLQ) in a network: We propose the following new extension of GLQ to the

network setting: given an I-vector hP 0,

1. Rank products according to hiZiðtÞ and give highest priority to product ihðtÞ according to (10),

2. Within each route, give priority to classes closer to exit from the system; that is, ði; kÞ 2 s gets higher pri-
ority from all other classes ði; lÞ 2 s, where l < k.

Once again, our fluid-model analysis suggests that one should focus on satisfying the deterministic

leadtime constraints ZiðtÞ6 kiDi, and set h�i ¼ 1=kiDi. Then, GLQ(h�) will try to minimize the ‘‘distance’’

from the boundary of the region RSðkÞ at any given time. Indeed, the product that is closest to kiDi is also

most likely to be closest to violating its leadtime constraint. The priority rule within each re-entrant path

that corresponds to each type is known as Last Buffer First Serve (LBFS) policy. The information

requirements of this network GLQ policy are attractive: each server s must know only the total number of

jobs along each route that passes through that server. It is also interesting and reassuring that this network

GLQ is stable for multi-class networks. (The proof shows that V ðzÞ ¼ maxi zi=kiDi serves as a Lyapunov
function for the associated fluid model and then appeals to Dai’s stability theorem to conclude that the

underlying stochastic network is also stable; see [8]. Intuitively, the GLQ rule selects the route the gets high

priority which corresponds to the index i that maximizes zi=kiDi. This route operates as a re-entrant line

under the LBFS policy, which is known to be stable and for which ViðziÞ ¼ zi serves as a Lyapunov function

[8, Theorem 4.4]. The details are omitted as this would require a substantial amount of new notation that is

beyond the scope of this paper.)

We complete this section with a simulation experiment that compares these achievable frontiers under

the network generalizations of GPS(/) and GLQ(h) for the two station example of Fig. 6 without
admission control. The results are shown in Fig. 7. As expected, the leadtime violations and thus the

network frontiers are higher than those of the isolated first-station, which were shown before in Fig. 5. As
Fig. 7. Achievable regions under GPS versus GLQ sequencing for the network of Fig. 6 with k ¼ ½0:5; 0:5�; l1 ¼ ½1:5; 1� and

l2 ¼ ½1; 1:5�.
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with the single server, it is striking how well GPS performs relative to GLQ. Indeed, careful selection of the
GPS parameters yields almost similar performance; the caveat, of course, is that the selection of the /’s for
GPS requires more work than the selection h for GLQ. 7 Finally, in a recent paper Stolyar [31] extended the

single server results of [30] and showed that a simpler version of the policy proposed above is in fact

asymptotically optimal in a large deviations sense in the network setting. His results imply that our pro-

posal is also asymptotically optimal according to his large deviations criterion.
6. Concluding remarks

The main objective of this paper was to provide a tractable approach to deal with leadtime constraints

through admission and sequencing control. Our main tool was to invoke a deterministic fluid-model

analysis which allowed as to translate the leadtime specification into simple linear constraints on the

variables that are directly controllable in multi-product networks. This general constraint formulation was

derived from the key observation (2) and its fluid analog (5). We also illustrated the power of this proposal

by designing and analyzing various admission and sequencing policies and deriving parameter selection

results that agree with heavy-traffic results. The main benefit of this approach is that it is possible to
construct true multi-product admission policies for leadtime control. We showed how admission regions

must be tailored to the sequencing rule employed, how such admission regions are derived, and how one

chooses sequencing policies in conjunction with their associated admission controls by selecting appropriate

parameters. Our simulation study gave first indication that these policies provide good performance when

used in a stochastic setting. Finally, we made a first step in extending our approach to the network setting.

We proposed network control policies that are simple, scalable and efficient. They do not require age

information tracking and may provide a promising proposition in the context of large decentralized systems

such as distributed supply chains.
Several interesting directions for future work exist for both theory development and applications. Our

modeling framework can be extended to more general network structures and, specifically, to systems with

dynamic routing control capability. It would be interesting to analyze, perhaps using large deviations, the

effect of tailoring the admission control to a given sequencing policy. The starting point would be to

analytically verify our preliminary simulation comparison of GPS and GLQ. This paper also may be useful

in several applications. For example, to be able to guarantee tight service levels across a supply chain, our

work suggests a minimal level of coordination in the sense that each entity (server, division, or company. . .)
in the supply chain should have knowledge of the total inventory position of each product that it serves or
produces. Several questions naturally arise: How does this proposal compare to traditional multi-echelon

results? How does it impact supply chain performance? Which coordination and incentive mechanisms will

achieve this performance?
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Appendix A. Proofs

A.1. Proof of Proposition 2

We need to prove that (15) is necessary and sufficient.

Necessity: The capacity constraint T ðtÞ6 t implies that
P

i T iðt;wÞ6 t, which in turn implies that at time

t ¼ Di,
X
j

T jðDi;wÞ6Di )
Xi

j¼1

wj þ
Xi�1

j¼1

qjðDi � DjÞ6Di;
which is (15). Note that by superimposing the service curves for each type i (shown in Fig. 2) we get a
piecewise linear aggregate constraint on T ðtÞ, and (15) simply requires that this aggregate constraint lies

below the server’s capacity. This can be verified by checking at the ‘‘corner’’ points at times Di. Finally, we

also need that
P

i qi 6 1 to satisfy the long term leadtime constraints.

Sufficiency: We must show that our candidate GSD sequencing policy guarantees the leadtime bounds

starting from any w 2 RT . The proof of sufficiency is by induction on the highest type i that satisfies its

leadtime bound.

We start with some preliminary facts about the fluid-model behavior under our candidate policy. For the

GLQ(h�) policy, let Ih� ðtÞ be the set of maximizers in (10). Let c ¼ mini 1=kiDi and define
f ðT Þ ¼ maxi ZiðtÞ=kiDi. Then, it is easy to show that
_F ðtÞ6 c
I

X
j2Ih� ðtÞ

qj

0
@ � 1

1
A; ðA:1Þ
that is, _f ðtÞ < 0, unless Ih� ðtÞ ¼ I and q ¼ 1. Let tRS ¼ infftP 0 : W ðtÞ 2 RSðqÞg when using the GSD
policy. Then, from (A.1) it follows that W ðtÞ 2 RSðqÞ for all tP tRS ; that is, once the workload process

enters the box RSðqÞ it will stay there forever.

Whenever there are types outside the region RSðqÞ the GSD policy follows a static priority rule that is

described by the following conditions: for all j 2 I,
Z 1

0

ðWjðtÞ � qjDjÞþ d
X
l>j

Tl

 !
¼ 0 and

Z t

0

1fWjðtÞ<qjDjg dTj ¼ 0 for all t < tRS ; ðA:2Þ
that is, if W ðtÞ 62 RSðqÞ, the system never serves types that are in the strict interior of the region RSðqÞ, and if

type j is outside RSðqÞ, then all types l > j that have lower priority according to GSD cannot receive any

service. This implies that for all t < tRS ,
_TjðtÞ ¼ 0 unless WjðtÞP qjDj. Moreover, for all j < iyðtÞ, for

t 2 ½Dj; tRS �, WjðtÞ ¼ qjDj and _TjðtÞ ¼ qj; that is, high priority types receive just enough service to remain on

the corresponding boundaries of RSðqÞ; see, for example, [8, Section 4] for a discussion of fluid models

under buffer priority rules. Finally, we note that GSD is a non-idling policy.
Type 1: Condition T1ðtÞP T 1ðt;wÞ reduces to W1ðD1Þ6 q1D1. We argue by contradiction: Because type 1

gets preemptive priority whenever W1ðtÞ > q1D1, condition W1ðD1Þ > q1D1, implies that w1 > D1 or else that

w 62 RT , which is false. Hence, W1ðD1Þ6 q1D1. From (A.1) and (A.2), it follows that W1ðtÞ6q1D1 for tPD1,

which implies that d1 6D1 and proves the induction hypothesis for type 1.

Type i: Assume that dj 6Dj for all types j < i, and consider type i. We will analyze all possible scenarios

for the workload of type i at time Di�1 and show that in all cases, WiðDiÞ will have entered the region RS and

will stay there for all tPDi, which implies that di 6Di.
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(a) Di�1 P tRS : From (A.1), we have that W ðtÞ 2 RS for all tP tRS , and the induction hypothesis follows.
(b) Di�1 < tRS : The induction hypothesis and (A.2) imply that WjðtÞ ¼ qjDj for t 2 ½Dj; tRS � and all types

j < i. We divide case (b) in two scenarios depending on WiðDi�1Þ.
(b1) WiðDi�1Þ6 qiDi: In this case Wi 2 RSðqÞ and according to GSD iyðDi�1Þ > i. From (A.2), the system

will never work on types that are strictly inside RSðqÞ prior to time tRS , and thus type i must have started

in the strict interior of RSðqÞ and TiðDi�1Þ ¼ 0. Let ti ¼ Di�1 þ ðWiðDi�1Þ=qi � DiÞ be the time that type i
will reach the boundary of RSðqÞ if it does not receive any service. Clearly, ti 6Di because Di is the upper

bound that is achieved if Wið0Þ ¼ 0. If ti P tRS , then we are back to case (a), and we are done. If ti < tRS ,

then WiðtiÞ ¼ qiDi and ti 6Di. From (A.2) it follows that _TiðtÞ ¼ qi and WiðtÞ ¼ qiDi for all t 2 ½ti; tRS �, and
from (A.1) we have that WiðtÞ6 qiDi for all tP tRS . Hence, di 6Di and the induction hypothesis again

follows.

(b2) WiðDi�1Þ > qiDi: In this case, iyðDi�1Þ ¼ i. If Di P tRS , then we are back in case (a) and again we

are done. So, assume that Di < tRS . As in (b), WjðtÞ ¼ qjDj for t 2 ½Dj; tRS � and all types j < i. This implies

that TjðDiÞ ¼ Wj þ qjðDi � DjÞ for all j < i. We also claim that TjðDi�1Þ ¼ 0 for all lower priority types

j > i. We show this by contradiction. If TjðDi�1Þ > 0 for some j > i, then it must be that at some time

t0 < Di�1, we had that Wjðt0Þ > qjDj and Wlðt0Þ6 qlDl for all types l < j. Then according to (A.2),

WlðtÞ6 qlDl for all t 2 ½t0; tRS � and all l < j. But this is contradiction since WiðDi�1Þ > qiDi, and we are
done.

Suppose now that WiðDiÞ > qiDi. That implies that TiðDiÞ < Wi . From the non-idling property of GSD

and for Di 6 tRS we have that
X
j

TjðDiÞ ¼
X
j<i

ðWj þ qjðDi � DjÞÞ þ TiðDiÞ ¼ Di;
that is, the server has not idled until time Di. Under the assumption that TiðDiÞ < Wi , this would imply thatP
j6 i Wj þ

P
j<i qjðDi � DjÞ > Di, which violates the conditions of RT , and leads to a contradiction. Hence,

WiðDiÞ6qiDi. As in (b1) we establish the induction hypothesis for type i. The proof of the proposition

follows by induction on i.
Note that (A.2) together with the non-idling property of our policy whenever W ðtÞ 62 RSðqÞ, also imply

that W ðtÞ 2 RSðqÞ for all tP tRS . Hence, even if we were to idle in the strict interior of RSðqÞ, GSD would

still satisfy all leadtime constraints starting from any initial condition in RT . h
A.2. Proof of Proposition 3: GLQ(h) fluid admission region

The equations of motion for GLQðh) are most easily expressed in workload space using the parameter

a ¼ m2

m1
h:

If N2 < hN1 () W2 < aW1, then _W1 ¼ �ð1� q1Þ and _W2 ¼ q2. Denote slope b1 ¼
_W2
_W1
¼ � q2

1�q1
:

If N2 > hN1 () W2 > aW1, then _W1 ¼ q1 and _W2 ¼ �ð1� q2Þ. Call slope b2 ¼
_W2
_W1
¼ � 1�q2

q1
:

If N2 > hN1 () W2 ¼ aW1, then W moves down on a line at rate:
_W1 þ _W2 ¼ �ð1� qÞ
_W2 ¼ a _W1

� ���� _W1 ¼ � 1
1þa 1� qð Þ;

_W2 ¼ � a
1þa 1� qð Þ:
The admission region is the set of initial workload vector w that can be cleared within their leadtime.

Invoking (6), we must verify that 8tPDi the trajectory remains in the box RS (so that WiðtÞ6 qiDi). This

verification involves simple linear algebra that is case dependent (refer to Fig. 8). In the sequel

wþ ¼ w1 þ w2.



Fig. 8. Workload trajectories depend on the initial workload and the sequencing policy.
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Case A: w above a line but below the b2 line. Then W will move down with slope b2 and hit upper box

border first after time t: the trajectory keeps W1 < q1D1, but must get W2 to q2D2 within D2, which requires
w2 � ð1� q2Þt ¼ q2D2 () t ¼ w2 � q2D2

1� q2

< D2 () w2 < D2:
Case B1: a < a� ¼ q2D2

q1D1
and w above a and b2 lines. Now both types must reach the box. W will move

down with slope b2 until the a line, and then decrease along a line to box boundary. The condition that type

2 hit q2D2 within D2, is guaranteed by w2 < D2 and by type 1 getting to q1D1 within D1 6D2. Thus: time t to
get to a line is
a w1ð þ q1tÞ ¼ w2 � ð1� q2Þt ) t ¼ w2 � aw1

1þ aq1 � q2

:

Then W1ðtÞ ¼ w1ð1�q2Þþq1w2

1þaq1�q2
on the a line. Additional time s1 to get to box boundary is
W1ðtÞ �
1

1þ a
1ð � qÞs1 ¼ q1D1 ) s1 ¼

w1ð1� q2Þ þ q1w2 � 1þ q1a� q2ð Þq1D1

1þ aq1 � q2ð Þ 1� qð Þ 1ð þ aÞ:
The total trajectory must be completed by time D1
t þ s1 6D1 () wþ 6WGLQ;1 ¼ 1ð þ q1a� q2ÞD1:
Case B2: a > a� ¼ q2D2

q1D1
and w above a line and above the b2 line. W will move down with slope b2 until

the a line, and then decrease along a line to upper box boundary. Now type 1 may remain below q1D1, or go

temporarily beyond it, in which case that must happen within D1. The entire trajectory must also be

completed within time D2. Time t to get to a line is as in case B1. Then we are at the point

W2ðtÞ ¼ a w1ð1�q2Þþq1w2

1þaq1�q2
on the a line. Additional time s2 to get to upper box boundary is
W2ðtÞ �
a

1þ a
1ð � qÞs2 ¼ q2D2 ) s2 ¼

aw1ð1� q2Þ þ q1w2a� 1þ aq1 � q2ð Þq2D2

1þ aq1 � q2ð Þa 1� qð Þ 1ð þ aÞ:
The total trajectory must be done in D2 for type 2
t þ s2 6D2 () wþ 6WGLQ;2 ¼ 1
�

� q1 þ a�1q2

�
D2:
If w2 > aq1D1, then the trajectory will go beyond q1D1 and it must return within time D1. This condition for

type 1 is the same as in B1: wþ 6WGLQ;1.

Case C: w below a and b1 lines. W will move up with slope b1, while keeping W2 < q2D2, and will hit the
right boundary border first after time t. This must happen in time D1
w1 � ð1� q1Þt ¼ q1D1 () t ¼ w1 � q1D1

1� q1

< D1 () w1 < D1:
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Case D1: a < a� ¼ q2D2

q1D1
and w below a line but above the b1 line. Now both types must reach the box. W

will move up with slope b1 until the a line, and then decrease along the a line to the box boundary. The

entire trajectory must be completed within time D1. This condition is the same as in B2: wþ 6WGLQ;1. Given

that type 2 will also move beyond q2D2, that part of the trajectory must be done by D2, which is implied by

the total trajectory being completed in D1 6D2.

Case D2: a > a� ¼ q2D2

q1D1
and w below a line but above the b1 line. Now both types must reach the box. W

will move up with slope b1 until the a line, and then decrease along the a line to the box boundary. The

entire trajectory must be completed within time D1, which again requires that wþ 6WGLQ;1. Similarly, for

type 2 to reach q2D2 within D2 that requires wþ 6WGLQ;2.
Comparison of WGLQ;1 and WGLQ;2: Let a� ¼ q2D2

q1D1
and
Dða; qÞ ¼ WGLQ;2 � WGLQ;1 ¼ 1
�

� q1 þ a�1q2

�
D2 � 1ð þ q1a� q2ÞD1;
which has a pole at a ¼ 0 and one positive zero
â ¼ 1

2q1D1

D2ð1
�

� q1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

2 1� q1ð Þ2 þ 4q1D1D2q2

q �
P

ð1� q1ÞD2

q1D1

P a�:
Hence, D is clearly positive for a6 a�.
Comparison of WGLQ;1 and Wþ;max ¼ q1D1 þ ð1� q1ÞD2:
At a ¼ a� : Wþ;max � WGLQ;1 ¼ 1ð � qÞ D2ð � D1ÞP 0;

At a 6¼ a� : Wþ;max � WGLQ;1 ¼ q1D1 þ ð1� q1ÞD2 � 1ð þ q1a� q2ÞD1;
which is clearly positive for a6 a�.
Comparison of WGLQ;2 and Wþ;max ¼ q1D1 þ ð1� q1ÞD2:
At a ¼ a� : Wþ;max � WGLQ;2 ¼ 0;

At a 6¼ a� : Wþ;max � WGLQ;2 ¼ q1D1 þ ð1� q1ÞD2 � 1
�

� q1 þ a�1q2

�
D2;
which is clearly positive for a > a�. Conclusion: 8aP 0 : WGLQ ¼ minðWGLQ;1;WGLQ;2Þ6Wþ;max. h

A.3. Proof of Proposition 5: GPS(/Þ fluid admission region

The equations of motion for GPSð/) in workload space are:
_Wi ¼
qi � /i if W1;W2 > 0;

qi � ð1�minð/j; qjÞÞ if Wi > 0; Wj ¼ 0;

qi � /ið Þþ if Wi ¼ 0; Wj > 0:

8<
:

(If Wj ¼ 0, additional type j workload arriving at rate qj receives processing at rate minð/j; qjÞ.) Denote

the slope c ¼ _W2
_W1
¼ /2�q2

/1�q1
and consider the natural case /i P qi. Again consider the cases depicted in Fig. 8:

Case A: initial w between the line through upper right and lower right box corner with slope c. When

draining, W will hit the W1 ¼ q1D1 boundary of box, which must happen in time t6D1 (this also implies

that W will hit W2 ¼ q2D2 in less than t6D1 6D2)
w1 � ð/1 � q1Þt ¼ q1D1 ) t ¼ w1 � q1D1

/1 � q1

6D1 () w1 < /1D1:
Case B: initial w below the line through lower right box corner with slope c. When draining, W will hit

the W2 ¼ 0 axis first, and then along that axis reach the W1 ¼ q1D1 corner of box. First part will take a time t
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w2 � ð/2 � q2Þt ¼ 0 ) t ¼ w2

/2 � q2

;

at which time W1ðtÞ ¼ w1 � c�1w2 > q1D1. Getting to q1D1 takes an additional time s1
W1ðtÞ � ð1� qÞs1 ¼ q1D1 ) s1 ¼
w1ð/2 � q2Þ � w2ð/1 � q1Þ � q1D1ð/2 � q2Þ

/2 � q2ð Þ 1� qð Þ :
Total time to corner of box must be less than D1 (which also implies that if w2 > q2D2, W2 ¼ q2D2 is

reached in less than D1 6D2)
t þ s1 6D1 () wþ 6D1 1ð � q2Þ:

Case C: initial w between the line through upper right and upper left box corner with slope c. When

draining, W will hit the W2 ¼ q2D2 boundary of box, and this must happen within D2 time units (because

w2 > q2D2). If w1 > q1D1, then it must first hit the W1 ¼ q1D1 line in D1 time units. This condition for type 1

is the same as for case A and requires w1 < /1D1. For type 2, hitting W2 ¼ q2D2 must happen in time t6D2
w2 � ð/2 � q2Þt ¼ q2D2 ) t ¼ w2 � q2D2

/2 � q2

6D2 () w2 < /2D2:
Case D: initial w above the line through upper left box corner with slope c. When draining, W will hit the

W1 ¼ 0 axis first, and then along that axis reach for the W2 ¼ q2D2 corner of box. If w1 > q1D1, then it must
first hit the W1 ¼ q1D1 line in D1 time units. This condition for type 1 is the same as for case A and requires

w1 < /1D1. For type 2, the first part of the trajectory will take a time t
w1 � ð/1 � q1Þt ¼ 0 ) t ¼ w1

/1 � q1

;

at which time W2ðtÞ ¼ w2 � cw1 > q2D2. Getting to q2D2 takes an additional time s2
W2ðtÞ � ð1� qÞs2 ¼ q2D2 ) s2 ¼
w2ð/1 � q1Þ � w1ð/2 � q2Þ � q2D2ð/1 � q1Þ

/1 � q1ð Þ 1� qð Þ :
For type 2, total time to corner of box must be less than D2
t þ s2 6D2 () wþ 6D2ð1� q1Þ:
A.4. Proof of Proposition 7

Summing over all types and checking the capacity constraint we establish necessity of these conditions.

Sufficiency is proved by constructing a policy that satisfies all leadtime constraints given (16). This policy is

a variation of GSD: it allocates a minimum level of effort to each type in order to clear old fluid out of the

system while di 6Di, and gives all remaining capacity to class iyðtÞ defined by the GSD policy. Let Z denote
the queue length vector at time tP t�.

Step 1: For all types i, if Zi P kiDi, _TiðtÞ ¼ qi, else, _TiðtÞ ¼ 0; this takes care of the ‘‘old’’ fluid.

Step 2: Allocate unused capacity, d ¼ 1�
P

i:Zi P kiDi
qi, to type iyðtÞ: _TiyðtÞðtÞ ¼ _TiyðtÞðtÞ þ d.

The proof is by induction on the type i and is very similar to that of Proposition 2. The only difference is

that for type i we need to account for all processing time allocated to lower priority types j > i to clear

‘‘old’’ type j fluid given by
P

j>i ðWj � qjðDj � DiÞÞþ. The remaining capacity must go to type iyðtÞ and the
argument of Proposition 2 completes the proof.
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