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How existing technologies and ideas are recombined into new innovations remains an important question, particularly
as the store of prior technology, art, and work expands at an increasing rate. Yet, methodologies for identifying effective
recombinations remain a nascent area of research. This paper extends our previous work, which developed a network
methodology for assessing a scientific article’s recombinations of prior work. The methodology uses information from
the entire co-citation network of all papers recorded in the Web of Science to identify combinations of prior work that
are conventional or atypical and then identifies the virtuous mix of conventional and atypical pairings associated with
high impact work. Here, we summarize our prior method and findings, present new findings, and perform a case study
application to the field of management science. First, the results show that despite an ever-increasing frontier of
possible new combinations of prior work, atypical combinations of prior work are becoming increasingly rare with
time, while the distribution of conventional pairings is increasing with time. Second, our analyses show that with time
the atypical pairings found in hit papers have a relatively stable mean rate at which they become conventional pairing.
Nevertheless, the variance around the mean is growing significantly, which indicates that there is a greater tendency
over time for novel pairings either to be virtually never used again or to become conventional pairings.

Practitioner Points

• High-impact work is sharply elevated when combina-
tions of prior work are anchored in substantial conven-
tionality while mixing in a left tail of combinations that
are rarely seen together.
• In business, companies and analysts could better
predict the value of a future patent or product based on its
combination of high conventionality and infusions of
novelty.
• Consumer products like computer games that are able
to incorporate conventional pairings with a small compo-
nent of novelty may be more likely to be popular.

Introduction

I nvention is spurred on when existing innovations or
their components are assembled into original new
designs (Becker, 1982; Guimera, Uzzi, Spiro, and

Amaral, 2005; Jones, 2009; Jones, Wuchty, and Uzzi,
2008; Schilling, 2005; Schumpeter, 1939; Usher, 1954;
Uzzi and Spiro, 2005; Weitzman, 1998). Nevertheless, it
remains a mystery as to what recombined elements of
existing innovations or components are likely to be prom-
ising and attractive to their intended audiences. In some
creative fields, it is often lamented that it is impossible to
know which recombinations will be fruitful (Committee
on Facilitating Interdisciplinary Research, 2004). In film-
making, it is accepted wisdom that “all hits are flukes,” an
idiom echoing Samuel Goldwin’s quip that “nobody
knows nothing” about what combination of previously
used, or altogether new plot details, actors, settings, or
direct references to past movies makes for a hit (Spitz and
Horvát, 2014a, 2014b). As a consequence, many expen-
sive failures must be suffered in the hope that one hit can
recover the costs of experimentation. To some degree,
similar uncertainty lies behind innovation in general
(Börner et al., 2011; Evans and Foster, 2011; Fiore, 2008;
Stokols, Hall, Taylor, and Moser, 2008; Wuchty, Jones,
and Uzzi, 2007).

Nevertheless, innovative ideas can be difficult to
absorb (Henderson and Clark, 1990) and communicate as
well, leading creatives to intentionally display conven-
tionality (familiar combinations used many times in pre-
vious work) side-by-side with atypical combinations. In
his Principia, Newton presented his laws of gravitation
using accepted geometry rather than his newly developed
calculus despite the latter’s importance in developing his
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insights (Whiteside, 1970). Similarly, Darwin devoted the
first part of On the Origin of Species to conventional,
well-accepted knowledge of the selective breeding of
dogs, cattle, and birds. In commercial product design,
similar dynamics between conventionality and novelty
may occur. For example, e-books retain page-flipping
graphics to remind the reader of physical books, and blue
jeans were designed with a familiar watch pocket to look
like conventional trousers. High gross movies like Avatar
mix conventional storylines with a novel setup of com-
puter graphics.

These patterns suggest that novelty and conventional-
ity are not necessarily factors in opposition where one
hand takes from the other; rather, innovations that mix
novelty with conventionality may produce enough added
value over the current state of the art while providing
enough accepted knowledge to allow easy adoption.

In our prior work, a network-based methodology was
developed for understanding innovation in science. Our
focus in this paper is to examine the diversity of the
conventional and atypical pairings of the content of the
innovation. In scientific work, conventional and atypical
pairing of the content of the innovation includes the
knowledge put forth in prior published work and repre-
sented by the papers referenced in a publications bibliog-
raphy. In our study of science, the focus is on “hit”
innovations—those papers in the top 5% of the citation
distribution for their field. To identify each article’s
pattern of conventional and atypical combinations of
prior work, we developed a network analysis method that
exploited the full co-citation network of the entire Web of
Science (WoS), which includes 17.9 million papers that
cite nearly three quarters of a billion papers over the
period 1950–2000. The level of conventional and novel
combinations of prior work is measured by coding all
17.9 million plus papers in the Web of Science across all
subfields of science.1 The relative conventionality and
novelty of the prior work that an article combines is
measured by examining the papers referenced in an arti-
cle’s bibliography (Small, 1973; Stringer, Sales-Pardo,
and Amaral, 2010). The pairwise combinations of prior
work in each article’s bibliography allows us to assess
how common or novel any pairwise combination of prior
work was. To determine this, a full co-citation network is
created and journal pairings are counted, using different
journals as a proxy for different areas of knowledge
(Itzkovitz, Milo, Kashtan, Ziv, and Alon, 2003; Small,
1973; Stringer et al., 2010). Having determined the
observed frequency of each journal pairing, we consid-
ered the frequency distribution for each journal pairing
that would have occurred by chance across the entire Web
of Science by permuting the co-citation network using a
variation of the Markov chain Monte Carlo (MCMC)
algorithm. The more often a journal pairing occurred
compared to chance, the more conventional the pairings
of prior work, and the less frequently a journal pairing
occurred compared to chance, the more novel the pairing.
Further, because the null model algorithm randomizes the
detailed article-level citation network structure of the

1 The Web of Science is the largest known repository on the planet for
recorded scientific papers worldwide, circa 1950–2000. We examined
approximately 17.9 million scientific publications across 12,000 journals as
indexed in the Thomson Reuters Web of Science (WoS) database, 1950–
2005 period. According to each journal’s subject area, the Institute for
Scientific Information further defines three fields and constituent subfields:
science and engineering (171 subfields), social sciences (54 subfields), and
arts and humanities (27 subfields) with coverage for research publications
in science and engineering since 1945, social sciences since 1956, and arts
and humanities since 1975. The WoS records papers’ citations, number of
authors, and citation links to other papers in the database.
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global citation network of the Web of Science, it pre-
serves each article’s in-degree and out-degree (i.e., back-
ward and forward) citation counts on a constantly
updated year-to-year basis, allowing each year of the Web
of Science to be compared to every other year on a rela-
tive basis (i.e., all comparisons are made to the same third
quantity—the null model), despite the growth in the size
of prior art and the rate of new publications (Uzzi,
Mukherjee, Stringer, and Jones, 2013). Because many

innovations are based on elements of prior published
work—patents, law, video games, or literature—the
method is general.

Figure 1 presents a stylized example of how article
pairs and journal pairs are drawn from the network struc-
ture of citations. In panel A, the circular nodes represent
papers and the directed links exist when the top article
cites the bottom four papers. In panel B, the circular
nodes represent papers and the undirected co-citation
links between papers are shown in black. A co-citation
exists between each pair of papers that occurs in the
reference list of the focal article. Here, there are four
references and therefore six (i.e., four choose two)
co-citation links. In panel C, article nodes are grouped by
journal; the shaded ovals represent the three journals in
which each of the cited papers is published. Finally, in
panel D, the co-citation links between papers are mapped
to the journal level, and the black links represent journal
co-citations. Note that the total number of article-to-
article co-citation links (six) is preserved at the journal
co-citation level.

Figure 2 shows how citation links between papers are
switched randomly but constrained to have the same
origin year and target year. Thus in the left panel, switch-
ing links A and B is allowed, while switching links A and
C is not allowed. The switching algorithm thus preserves
for each article its (1) number of references, (2) citation
count, (3) citation accumulation dynamics, and 4) the age
distribution of referenced work. Performing QE switches
(where Q = 10 and E is the number of edges in the graph)
converges to a random graph from the configuration

Figure 1. How the Null Model Relates Paper Pairs and
Journal Pairs with a Monte Carlo Simulation

Figure 2. The Model Preserves the Co-Citation Network Backwards and Forwards in Time
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model (26) where the number and dynamics of citations
are preserved but the origin of the citations is random-
ized. Since each node is equally likely to be the originat-
ing node of any citation, given the constraints, it is known
a priori that no disciplines exist in this randomized cita-
tion network. The middle panel above demonstrates the
citation history of an article—the citation history of every
article is exactly preserved under our null model, control-
ling for both the variation in magnitude and dynamics of
citation accumulation to papers.

Comparing the observed frequency with the frequency
distribution created with the randomized citation net-
works, a z-score for each journal pair is generated. This
normalized measure describes whether any given pair
appeared novel or conventional. Z-scores above zero
indicate pairs that appear more often in the observed data
than expected by chance, indicating relatively common or
“conventional” pairings. Z-scores below zero indicate
pairs that appear less often in the observed WoS than
expected by chance, indicating relatively atypical or
“novel” pairings.

The z-score measure has been used previously in
network analysis to determine the degree to which
observed linkages among nodes (in our case papers are
nodes and links are citations among nodes) are due to
chance (Saavedraa, Kathleen, and Uzzi, 2011;

Wasserman and Faust, 1994; Watts and Strogatz, 1998).
Viewed conceptually, our methodology uses the construct
of cut ups—random pairings—to define novel combina-
tions. The technique of “cut ups” was pioneered by poets
to drive the process of innovation. In cut ups, a poem or
text is written and then randomly cut into strips. The
strips are randomly reassembled and new poem or text is
written around random connections among the elements
of the original text with the intention of creating an inno-
vative, previously unimagined recombination of existing
elements.

Our method assigns each article a distribution of
journal pair z-scores based on the article’s reference list.
To characterize an article’s tendency to draw together
conventional and novel combinations of prior work, two
summary statistics were taken. First, the central tendency
of an article’s combinations is characterized by the
article’s median z-score. The median allows us to char-
acterize conventionality in the article’s main mass of
combinations. Second, the article’s 10th percentile
z-score is considered. The left tail allows us to character-
ize the article’s more unusual journal combinations
where novelty may reside.

Figure 3 uses a non-parametric categorization to sum-
marize how papers are classified by their conventionality
and novelty. An article is categorized as high or low

Low
Conventionality

On average few 
citations have 

appeared together 

High
Conventionality

On average most 
citations have 

appeared together 

High Novelty
Outliers of atypical 

pairings

Low Novelty
No outliers of atypical 

pairings

Darwin
Hypothesis

Accepted
Wisdom

Avant-garde

Platypus

Conven�onal

N
ov
el

Figure 3. Categorization of Types of Scientific Papers Based on their Combinations of Conventional and Novel Pairings of Prior
Published Work
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“median conventionality” if its median z score is in the
upper or lower half of all median z-scores, respectively,
and having high or low “tail novelty” if the article’s 10th
percentile z-score is above or below zero, respectively. As
shorthand, we term papers belonging to high-median
conventionality and high tail novelty as Darwin’s Tower,
consistent with his approach to presenting his ideas in the
Origin of Species. Papers with high median convention-
ality and low novelty are referred to as Accepted Wisdom;
papers with high tail novelty and low conventionality are
referred to as Avant-garde; and papers residing in the low
conventionality and low novelty category are termed
Platypuses because of their neither-nor-like quality.

Case Example for Management

Figure 4 illustrates the method for a single article in man-
agement, “A Dynamic Theory of Organizational Knowl-
edge Creation,” which proposes a theoretical framework
for managing the dynamical aspects of innovation cre-
ation process (Nonaka, 1994). For example, our demon-
stration article (Nonaka, 1994) belongs to the category of
high median conventionality and high tail novelty and
also accrued 311 citations through the first eight years of
publication (Uzzi et al., 2013). This paper cites 88 refer-
ences and a subset of all possible observed journal fre-
quency pairings of the article in Figure 4 is shown,
including, for example, (i) Brown and Duigud Organiza-

tion Science (1991) with Cohen, March and Olsen
Administrative Science Quarterly (1972), (ii) Brown and
Duigud Organization Science (1991) with Takeuchi and
Nonaka Harvard Business Review (1986), and (iii)
Takeuchi and Nonaka Harvard Business Review (1986)
and Prahlad and Hamel Harvard Business Review (1990).

Our basic measurement question is to assess how
much an article draws on conventional and atypical ideas
by examining to what extent each pairwise combination
of prior work listed in the reference section of the article
is a common or atypical combination. To do this, we
computed (1) the observed frequency of any given pairing
of references in the WoS and (2) the frequency of a given
pairing that would have occurred by chance. Combining
(1) and (2) creates a normalized measure to describe
whether any given pairing appears novel or conventional.
To measure the observed frequency of any given pairing
in the WoS, the following five steps are taken: (1) Take
the references listed in a given article’s bibliography. (2)
Consider all pairwise combinations of the papers refer-
enced in the bibliography of the article. (3) For each
pairwise combination, record the two journals that were
combined. (4) Repeat steps 1 to 3 for every article in the
WoS. (5) Count the aggregate frequency of each journal
pairing for all referenced pairs for a given publication
period (e.g., by year or decade).

Having determined the observed frequency of each
journal pairing, a null model is built to consider the

Figure 4. A Sample of the Journal Pair Frequencies, Expected Frequencies, and Z-score for an Illustrative Paper, “A Dynamic
Theory of Organizational Knowledge Creation”
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underlying frequency distribution for each journal pairing
that would have occurred by chance. The null model
randomly reassigns the citation links between papers
while preserving (1) the number of citations to and from
each article and (2) the citing and cited year for each link
using a variation of MCMC algorithm to randomly switch
co-citations between papers while preserving the detailed
article-level structure of the global citation network with
its 17.9 million papers (nodes) and 600 million citations
(edges).

Using this algorithm, 10 synthetic instances of the
entire WoS are created, each with a different set of ran-
domized citation links. For each instance of the WoS,
steps 1 to 5 above are repeated, calculating the frequency
of each co-referenced journal pair. Looking across all 10
randomized cases of the WoS, we generate a distribution
of frequencies for each journal pair. Next, the z-score for
each observed pair relative to what was expected by
chance is evaluated as:

z obs= −( )exp σ

where obs is the observed frequency of the journal pair in
the actual WoS, while exp is the mean and σ is the
standard deviation of the number of journal pairs
obtained from the 10 randomized simulations of the
article-to-article citation network. Returning to each indi-
vidual article, a z-score is assigned to each of the journal
pairs in that article’s reference list. Note that our method
examines journal pairings, using journals to proxy for

different areas of knowledge. The relative benefits of
using journals and randomizations at the article level for
defining areas of knowledge relative to other approaches
has been demonstrated elsewhere (Uzzi et al., 2013).

Figure 4 displays the observed frequency, expected
frequency, and z-score for several journal pairings in the
article. Further, the observed frequency of pairings
permits a distribution of journal pairings to be created for
each article, which represents the collective prior knowl-
edge of the papers in terms of conventionality and
atypicality. Figure 5 summarizes the information of the
distribution of the z-score for our example article from
management. Two primary summary statistics: the
median z-score for that article and the 10th percentile
z-score are taken for that article. The first measure is a
summary statistic that tells us about the central tendency
of the combinations of journals that an article cites. The
larger the median z-score for an article, the more the
journals referenced in the article are combined compared
to chance. The second measure is a summary statistic that
tells us about the left tail for that article, that is, journal
pairings that are relatively unusual among the set of
journal pairings an article’s reference list makes.

Key Results of the Method for Science
in General

The overriding result of our analysis is that there are
universal patterns of innovation in science expressed in
the relationship between an article’s impact and the

Figure 5. Distribution of Z-Scores of All Journal Pairs for the Paper, “A Dynamic Theory of Organizational Knowledge Creation”
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degree to which it draws on a virtuous mix of conven-
tional and atypical combinations of knowledge. Further,
our analysis shows that the virtuous mix appears not to be
a problem that is solved by individuals. Relatively speak-
ing, teams show a much higher probability of hitting on
the virtuous than do individuals. Moreover, at any mix of
conventionality and atypicality, teams do more to assimi-
late combinations of conventional and atypical ideas in a
single article.

First, hit papers are quantified as those papers in the
top 5% of the citation distribution. Our findings indicate
that papers that display a high level of median conven-
tionality with a mix of high tail novelty (Darwin’s Tower)
have a likelihood of becoming a hit that is nearly twice
that of the expected background rate of 5%. All other
combinations have no higher expectations of becoming
hits than that of the 5% background rate or have a rate
lower than the background rate with the Platypus class of
papers displaying a hit rate of just 2% (Uzzi et al., 2013).

Second, regression analysis with controls for other
variables known to affect citation counts and fixed effects
for year and each distinct field in the WoS shows that the
above patterns hold for definitions of hit papers in the top
10%, 5%, and 1% levels of the distribution of citations
and across time. Specifically, Figure 6 indicates that high
tail novelty mixed with high median conventionality
(Darwin’s Tower) outperforms other categories in all
decades from 1950 to 2000, regardless of whether a “hit”
article is defined as the top 1%, 5%, or 10% by citations
received. In all cases, Darwin’s Tower sees hit rates
approximately twice the background rate.

Third, Table 1 shows that the pattern of innovation
found for high median conventionality and high tail
novelty holds when regressions are run on a field-by-field
basis. For each of the 252 fields in the WoS, the papers are
categorized by ranking them according to their probabil-
ity of producing hit papers. This analysis revealed that
high tail novelty and high median conventionality (Dar-
win’s Tower) are the highest impact papers in 64.38% of
fields and either first or second in 85% of fields. And
while the effect holds for 64.38% of the fields, it holds for
the vast majority of all papers because it holds for the
fields with the largest number of scientists in them. By
contrast, low tail novelty and low median conventionality
are the lowest or second lowest in about 87 of fields
(Platypus) (see Uzzi et al., 2013, for additional details).

Fourth, our work shows that the process of finding the
right balance between conventional and novel pairings
favors teamwork over solo work. Solo authors and teams
commonly write papers with the same level of median
conventionality but teams are more likely to have left tail

novelty than solo authors. Further, it is observed that at
any combination of levels of conventionality and novelty,
team papers are more likely to be hits than are solo
papers. For example, taking a team and a solo article
whose median levels of conventionality are at the 90
percentile of the median conventionality distribution and
have high left tail novelty, the team article, on average,
has nearly twice the probability of a hit. This indicates
that teams not only reach for novelty more but appear to
assimilate it better with conventional knowledge.

Here, as a further extension of the findings of Uzzi
et al. (2013), we examined two dynamic processes related
to innovation: (1) how the level of conventionality and the
level of novelty in science are changing over time and (2)
whether novel pairings are the seeds of future conven-
tional pairings.

As mentioned above, scientific innovations draw
heavily on conventional combinations of the past. Our
analysis of the change in conventionality over time shows
that science is becoming significantly more conventional.
Figure 7A displays the cumulative distribution of median
z-scores across all papers in the WoS published in the
1950s through 1990s by decade. This plot shows that
there is a high propensity for conventionality in all years.
Further, with respect to time, conventionality is system-
atically and increasingly dominant in scientific papers. In
all decades, the cumulative distributions are moving sig-
nificantly to the right. By the 1980s and 1990s, fewer than
4% of papers have median z-scores below 0 and more
than 50% of papers have median z-scores above 64.
Figure 7B considers the 10th percentile z-scores, which
further suggest a propensity for conventionality. In all
decades, the curves are systematically falling. With each
decade that goes by, the level of novelty in scientific
papers drops systematically. Only 41% of papers in the
1980s and 1990s have a 10th percentile z-score below 0.
Overall, by these measures, science is increasingly
becoming conventional and more rarely drawing on
atypical pairings of prior work even as novel combina-
tions remain critical to hits and the percentage of science
done in teams has increased.

In regard to the changing distributions of convention-
ality and novelty for the field of management as defined
in the WOS, our findings indicate that management
reflects the pattern of most sciences. Figure 8A displays
the cumulative distribution of median z-scores across all
papers in the WoS published in the 1970s through 1990s
by decade. Considering that a z-score below zero repre-
sents a journal pair that occurs less often than expected by
chance, the analysis of median z-scores suggests very
high propensity of conventionality in all decades. Further,
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with respect to time, conventionality is systematically
and increasingly dominant. In all decades, the cumulative
distributions are moving significantly to the right. By the
1980s and 1990s, fewer than 5% of papers have median
z-scores below 0 and more than 50% of papers have

median z-scores above 32. In the 1990s, only 4.9% of
papers had median z-scores below 0, while in the 1990s
the percentage fell to 1.7%, indicating a persistent and
prominent tendency for high conventionality. Figure 8B
considers the 10th percentile z-scores, which further

Figure 6. Fixed Effects Regressions for Probability of Impact Defined Multiple Ways and Controlling for Time and Field Fixed
Effects Indicate a Robust Relationship between High Median Conventionality and High Tail Novelty in Scientific Papers
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suggest a propensity for conventionality. In all decades,
the curves are systematically falling. With each decade
that goes by, the level of novelty in management papers
drops. Only 19.6% of the papers in the 1970s, 17.9% of
the papers in the 1980s, and 16.8% in the 1990s have a
10th percentile z-score below zero.

Finally, the sources of conventionality are investigated
by examining whether the roots of conventional pairings
originated in the novel pairings of high impact papers.
Statistical power is gained by looking at all the fields of
science simultaneously. First, the top 5% of highly cited
papers published in 1980 is considered. We then examine
whether the 10th percentile journal pairs in these papers,
a combination known to be novel at the time, become
increasingly conventional with time. Figure 9 quantifies
the mean of the z-scores with time. The mean z-score of
novel pairings found in hit papers in 1980 and followed
through to 2000 show that novel pairings on average
remain novel up to 20 years later. This suggests that novel
pairings are not the seeds of conventional pairings but
remain conventional. Nevertheless, it is observed that
there is a significant increase in the variance around
which novel pairings become conventional pairings in
future. This suggests that over time, novel pairings are
more likely to become conventional pairings. For
example, in 1980, all the variance around the mean is
negative (which is expected, as this is the first year the
novel pairings appear). As time moves forward, novel
pairings have an increased chance of becoming conven-
tional pairings (i.e., there are now increased numbers of
pairings over the mean and into the positive range of the
z-score). While this evidence does not conclusively
support or disprove this exploratory analysis, the prima
facie evidence suggests that the mean is fairly stable but
that some novel pairings become conventional, suggest-
ing that these novel pairings hit on particularly virtuous
combinations. Knowing, at the time, which combinations

were virtuous was likely impossible given the broad vari-
ance in future outcomes among all novel pairings.

Discussion

Our analysis of 17.9 million papers across all scientific
fields has implications for theories of innovation. Com-
binations of existing material are centerpieces in theories
of creativity, whether in the arts, the sciences, or
commercial innovation (Becker, 1982; Collins, 1998;
Guimera et al., 2005; Jones et al., 2008; Schilling, 2005;
Schumpeter, 1939; Usher, 1954; Uzzi and Spiro, 2005;
Weitzman, 1998). Within the tradition of examining how
recombinations of work may impact innovation, two lines
of research have arisen. One line focuses on the ability of
teams of diverse individuals to bring together novel com-
binations of preexisting innovations or their elements. In
this view, each team member overcomes their tendency to
narrowly view the range of possible recombinations that
have been defined in their area of expertise or experience.
If the members of the team have uncorrelated expertise or
experience, chances are that unusual and new product
designs could emerge (Page, 2007). Building on this
approach is the idea that new ideas need to be embedded
in a framework of accepted conventions, which increase
the audience’s ability to fluently evaluate innovativeness
in an ever-expanding sea of knowledge (Einstein, 1949;
Fleming, 2001; Jones, 2009). Yet, it remains unknown as
to what mix of conventional and atypical ideas results in
a virtuous balance of convention and invention, as well as
how to measure convention and invention through time.
Our method provides a means for measuring the degree to
which a pairing of elements in an innovation are conven-
tional or innovative and what mix of convention and
atypical knowledge within an innovation is associated
with high impact.

Table 1. Darwin’s Tower Dominates Innovation in Science as Measured on a Strict Field-by-Field Basis

Rank

1st 2nd 3rd 4th

Avant-garde 20.25% 44.53% 28.74% 6.48%
High tail novelty and low median conventionality
Accepted knowledge 9.71% 26.72% 50.61% 12.96%
Low tail novelty and high median conventionality
Darwin’s Tower 64.38% 21.86% 3.64% 10.12%
High tail novelty and high median conventionality
Platypus 5.66% 6.89% 17.01% 70.44%
Low tail novelty and low median conventionality
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Our results show that the propensity for high impact
work is sharply elevated when combinations of prior
work are anchored in substantial conventionality, while
mixing in a left tail of combinations that are rarely seen
together. Further, a link between the mix of conventional
and atypical knowledge and teams is established. We find
that teams are more likely to reach for novel combina-
tions than are individuals, a fact that reinforces prior case
study and lab research. Moreover, it is observed that at
any mix of conventionality and novelty, teams do more
with the mixture, i.e., they produce higher impact science

at any mix of conventional and atypical knowledge. This
suggests that teams are better at reaching for novel com-
binations and better at assimilating conventional ideas
and novel ideas into new innovations.

We believe that our methods and conceptual approach
can be applied to other domains. In business, links
between novelty and conventionality in successful
patents is a natural extension. Patents also draw on prior
work and represent that prior work through citation pat-
terns to prior art. If this is the case, then companies and
analysts may be able to better predict the value of a future

Figure 7. Temporal Evolution of Conventionality and Novelty for All Disciplines in Web of Science
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patent based on its combination of high conventionality
and infusions of novelty. Similarly, consumer product
design might also benefit. Consider the development of
new games or apps. In each case, there are established
categories of story lines, settings, technical capabilities,
and so on. For example, a computer game could be first-
person or second-person shooter; online, computer spe-
cific, or both; any sports, racing, or fighting game; and
within each of these categories there may be finer distinc-
tions. In each case, these finer distinctions may provide a
basis for quantifying what are conventional pairings of

categories and novel pairings of categories in consumers’
minds based on the frequency of pairings in prior games
compared to chance. For example, those games that are
able to incorporate conventional pairings with a small
component of novelty may be more likely to be hits. In
this way, the methodology and approach could be con-
ceivably extended to diverse domains in technology,
medicine, or consumer products. At root, our work sug-
gests that creativity appears to be a nearly universal phe-
nomenon of two extremes. At one extreme is
conventionality and at the other is novelty. Curiously,

Figure 8. Temporal Evolution of Conventionality and Novelty in Management
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notable advances appear most closely linked not with
efforts along one boundary or the other but with efforts
that reach toward both frontiers.
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