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Abstract

In an election, the probability that a single voter is decisive is affected
by the electoral system—that is, the rule for aggregating votes into a single
outcome. Under the assumption that all votes are equally likely (i.e., ran-
dom voting), we prove that the average probability of a vote being decisive is
maximized under a popular-vote (or simple majority) rule and is lower under
any coalition system, such as the U.S. Electoral College system, no matter
how complicated. Forming a coalition increases the decisive vote probability
for the voters within a coalition, but the aggregate effect of coalitions is to
decrease the average decisiveness of the population of voters. We then review
results on voting power in an electoral college system. Under the random vot-
ing assumption, it is well known that the voters with the highest probability
of decisiveness are those in large states. However, we show using empirical
estimates of the closeness of historical U.S. Presidential elections that vot-
ers in small states have been advantaged because the random voting model
overestimates the frequencies of close elections in the larger states. Finally,
we estimate the average probability of decisiveness for all U.S. Presidential
elections from 1960 to 2000 under three possible electoral systems: popular
vote, electoral vote, and winner-take-all within Congressional districts. We
find that the average probability of decisiveness is about the same under all
three systems.
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1 Introduction

The 2000 U.S. Presidential election has rekindled interest in exploring electoral reform,
in particular the possible modification or outright elimination of the Electoral College.
While we do not directly address the normative question of the value of the U.S. Electoral
College, this paper does explore how coalitional behavior under various electoral rules
affects the probability a given voter is decisive in an election, a natural measure to
evaluate an electoral system. The Electoral College is just a particular coalitional voting
system in which voters in a given state give all of their votes to the majority winner in
that state.

The probability of a vote being decisive is important directly—it represents your
influence on the electoral outcome, and this influence is crucial in a democracy—and
also indirectly, because it could influence campaigning. For example, one might expect
campaign efforts to be proportional to the probability of a vote being decisive, multiplied
by the expected number of votes changed per unit of campaign expense, although there
are likely strategic complications since both sides are making campaign decisions (c.f.
Brams and Davis 1974). The probability that a single vote is decisive in an election is
also relevant in determining the utility of voting, the responsiveness of an electoral system
to voter preferences, the efficacy of campaigning efforts, and comparisons of voting power
(Riker and Ordeshook 1968, Ferejohn and Fiorina 1974, Brams and Davis 1975, Aldrich
1993). Perhaps the simplest measure of decisiveness is the (absolute) Banzhaf (1965)
index, which is the probability that an individual vote is decisive under the assumption
that all voters are deciding their votes independently and at random, with probabilities
0.5 for each of two candidates. We shall refer to this assumption as the random voting
model. While clearly an unrealistic assumption, it does provide a benchmark to evaluate
competing electoral rules and make the problem theoretically tractable.

In a complicated electoral system, different voters have different probabilities of de-
cisiveness, at which point it is natural to: (a) compare the probabilities for differently-
situated voters, and (b) average the probabilities across all voters in the electorate. As we
shall see, the results of (a) and (b) are closely related. Suppose that one is designing an
electoral system, allowing for coalitions and winner-take-all subsets and even coalitions
within coalitions (for example, subcommittees in a legislature or mini-electoral colleges
within states). We show that the average probability of decisiveness under the random
voting model is maximized under a popular-vote (or simple majority-rule) system. Any
coalitional formation can only reduce the average probability of decisiveness, averaging
across all the voters.

The random voting model is, of course, a gross oversimplification, and in fact its
implications for voting power in U.S. elections have been extremely misleading in the
political science literature, as has been discussed by Gelman, King, and Boscardin (1998).
Under the random voting model it is easy to see that the Electoral College increases the
voting power—that is, the probability of an individual’s vote is decisive—for voters in
larger states. However, this result is not relevant in practice as we will show by examining
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actual elections.

In calculating the probability that a voter is decisive allowing for coalitions there are
two relevant components: the probability that that the voter is pivotal in determining the
coalition’s (i.e., the state’s) choice and the the probability that the coalition is pivotal.
Under the random voting model, the probability that an individual voter is pivotal in the
coalitional choice decreases with size of the coalition, but this is more the compensated for
because the larger coalitions (states) have larger influence on the final outcome. However,
this result is artifactual when we examine actual U.S. Presidential returns state by state.
We large states are only slightly more likely than small states to have close elections,
and this difference is not enough to offset the benefit the small states get from having a
guaranteed minimum of three electoral votes. In total, we find that voters in small states
are actually advantaged by the Electoral College.

As second approach to the empirical analysis of U.S. Presidential elections, we use
results from every since 1960 as the basis of a set of simulations to calculate the average
probability that a given voter is decisive under the popular vote, the electoral college, and
an alternative system in which each Congressional district is worth one electoral vote.
We find that the average probability of decisiveness is similar under all three systems
(although they differ as to how this probability is distributed among the voters).

We review the basic ideas of voting power and decisive votes, as well as present our
basic notation, in Section 2. Then in Section 3 we present our main theoretical result
along with some heuristic explanations and a discussion of how endogenous coalitions
formation can arise that in the aggregate and make individual voters worse off. In
Section 4 we consider deviations from random voting and how to estimate probabilities
of decisive votes from actual elections. Section 5 applies these ideas to recent U.S.
Presidential elections. The final section concludes.

2 Voting power under the random voting model: a

review

We begin by reviewing the basic ideas of the voting-power literature and at the same
time introducing the mathematical notation that we shall use in Section 3 to prove our
main result.

We consider an election with two options, or candidates, which we shall refer to as
+ and −; and n voters with votes vi, i = 1, . . . , n, where each vi is either +1, a vote
for candidate +, or −1, a vote for candidate −. An electoral system is categorized by a
rule, which we label R, transforming the vector v = (v1, . . . , vn) to an electoral outcome:
R(v) = {−1, 0,+1}, where 0 denotes the (presumably unlikely) event of a tie. Ultimately,
a winner must be chosen, and so if R(v) = 0, a coin is flipped to see if the election goes
to + or to −.
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The simplest electoral system is the popular vote ormajority rule, under which R(v) =
sign(

∑n
i=1 vi). But more general systems are possible; in fact, we consider all possible

rules here (with some minor restrictions). A familiar example, from the U.S. Presidential
system, is an electoral vote or local winner-take-all rule, in which the n voters are grouped
into several coalitions, in which the winner in each coalition gets a fixed number of
“electoral votes” (with these electoral votes split or randomly assigned in the event of an
exact tie within the coalition), and then the candidate with the most electoral votes is
declared the winner (or with a coin flipped if the electoral vote is tied).

What is the probability that a given voter is decisive? This means that a change in
one vote from + to − could change the outcome of the election. We define

voting power = probability that voter i is decisive =
1

2
E(R(v+

(i))−R(v−
(i))), (1)

where v+
(i) is the complete vector of n votes if voter i chooses candidate + and v

−
(i) is the

vector if he or she votes for −. Thus, v+
(i) and v

−
(i) differ only in position i. Voting power,

then, is an expectation of a quantity that equals 0 (in the most likely event that the
vote makes no difference), 1/2 (if the vote can make or break a tie) or 1 (if the vote can
singlehandedly determine the winner). Since a tie itself would be broken at random, this
definition of voting power is equivalent to the probability that a change in vi will change
the election outcome.

Expression (1) is almost equivalent to the Banzhaf (1965) index, with the minor
change of treating ties as 1/2. Other power indexes, which we do not discuss here,
include that of Shapley and Shubik (1954) and the satisfaction index of Straffin (1978).
For both these indexes, a voter receives points for being on the winning side of a vote
even if the vote is not close. In this paper, we focus on the direct probability that a vote
is decisive. As we shall discuss in Section 4, a key concern in applying these results is not
the choice of “voting power” definition so much as the assumptions about the probability
distribution of the n votes (See also Finkelstein and Levin 1990 and Heard and Schwartz
1999) for further discussion of these issues.

2.1 Some examples

Before getting to our main result in Section 3, we explore the power index defined in
Equation (1) in some simple examples. For simplicity, we will just consider examples
with an odd number of voters, so that your vote is decisive if the other voters are exactly
split. We continue to assume random voting.

In a popular vote system with n voters, the probability that your vote is decisive is
(

n−1
(n−1)/2

)

2−(n−1); that is, the probability that x = n−1
2
where x has a binomial distribution

with parameters n − 1 and 1
2
. For large (or even moderate) n, this can be well approx-

imated using the normal distribution as
√

2
π
n−1/2, a standard result in probability (c.f.,

Woodroofe 1975).
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A. No Coalitions.
A voter is decisive if the others are split 4-4:

Pr(Voter is decisive) =
(8

4

)

2−8 = 0.273

Average Pr(Voter is decisive) = 0.273

.

B. A Single Coalition of 3 Voters.
A voter in the coalition is decisive if others in the coalition
are split 2-2 and the coalition is decisive:

Pr(Voter is decisive) =
1

2
· 50

64
= 0.391

A voter not in the coalition is decisive with probability:

Pr(Voter is decisive) =
(5

1

)

2−5 = 0.156

Average Pr(Voter is decisive) = 3

9
(0.391)+ 6

9
(0.156) = 0.234

3

C. A Single Coalition of 5 Voters.
A voter in the coalition is decisive if others in the coalition
are split 2-2:

Pr(Voter is decisive) =
(4

2

)

2−4 = 0.375

A voter not in the coalition can never be decisive:

Pr(Voter is decisive) = 0

Average Pr(Voter is decisive) = 5

9
(0.375) + 4

9
(0) = 0.208

5

B. Three Coalitions of 3 Voters Each.
A voter is is decisive if others in the coalition are split 1-1
and the other two coalitions are split 1-1:

Pr(Voter is decisive) =
1

2
· 1

2
= 0.250

Average Pr(Voter is decisive) = 0.250

3 3 3

Figure 1: An example of four different electoral systems with 9 voters. Each is a “one
person, one vote” system, but they have different implications for probabilities of casting a
decisive vote. The average probability of decisiveness is maximized under A, the popular-
vote rule.

Now consider coalitions, in which the members of a coalition with m members have
the prior agreement that they will separately caucus, and then the winner of the vote in
their coalition will get all of their m votes.
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Under the random voting model, it is smart to join a coalition. At one extreme,
suppose a single coalition has n+1

2
voters. Then this coalition determines the election

outcome, and if you are in that coalition, your vote is decisive with approximate prob-

ability
√

2
π

(

n
2

)−1/2
, which is approximately

√
2 times the probability of being decisive

under the popular vote system. However, the n−1
2
voters not in the grand coalition

have zero voting power; thus, the average probability of a decisive vote, averaging over

all voters, is approximately
√

1
π
n−1/2, a factor of

√
2 less that under the popular vote

system.

Voters benefit even under small coalitions. For a simple example, consider a election
with 9 voters under different electoral rules as depicted in Figure 1. Under the popular
vote system, any voter’s chance of being decisive is

(

8
4

)

2−8 = 0.273. Now suppose that 3
voters are in a coalition and the other 6 vote independently. Then how likely is your vote
to be decisive? If you are in the coalition, it is first necessary that the other 2 voters in the
coalition be split; this happens with probability 1/2. Next, your coalition’s 3 votes are
decisive in the entire election, which occurs if the remaining 6 voters are divided 3-3 or
4-2; this has probability 50

64
. The voting power any of the 3 voters in the coalition is then

1
2
· 50

64
= 0.391. What if you are not in the coalition? Then your vote will be decisive if the

remaining votes are split 4-4, which occurs if the 5 unaffiliated voters (other than you)
are split 4-1 in the direction opposite to the 3 voters in the coalition. The probability of
this happening is

(

5
1

)

2−5 = 0.156. Compared to the popular vote system, you have more
voting power if you are in the coalition and less if you are outside. The average voting
power is 3

9
0.391 + 6

9
0.156 = 0.234, which is lower than under the popular vote system

(see panel A. Figure 1).

Finally, one can consider more elaborate arrangements. For example, suppose there
are n = 3d voters, where d is some integer, who are divided into three equal-sized coali-
tions, each of which is itself divided into three coalitions, and so forth, in a tree structure.
Then all the n voters are symmetrically-situated, and a given voter is decisive if the other
2 voters in his or her local coalition are split—this happens with probability 1

2
—and then

the next two local coalitions must have opposite preferences—again, with a probability
of 1

2
—and so on up to the top. The probability that all these splits happen, and thus the

individual voter is decisive, is 1
2d = n− log3 2 = n−0.63, which is lower than the probability

under the popular vote system (for large n, that probability is approximately 0.8n−0.5).
For example, if n = 38 = 6561, then the probability of a decisive vote is 1/256 with the
tree-structure of coalitions, compared to about 1/102 with majority rule.

The above examples indicate that under the random voting model, it is to your benefit
to be in coalitions, with larger coalitions generally being better. If you are in a coalition
of size m, the probability that your coalition is tied is approximately proportional to
m−1/2, and the probability that your coalition is itself required to determine the election
winner is approximately proportional to m; the product of these two probabilities thus
increases with m, at least for m << n. A similar logic leads to large coalitions themselves
fragmenting into sub-coalitions.
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In a system such as the U.S. electoral college, the coalitions are set ahead of time rather
than being subject to negotiation, and the mathematical analysis just presented suggests
that voters in larger states have more voting power (Banzhaf 1967). This comparison
is not valid in practice, however, given the observed departures from the random voting
model, as we discuss in Section 5.

To return to the theoretical argument, however, it is sensible to be in a coalition, but
the end result of coalitioning, at least in the examples we have considered, is to decrease
the average probability of individual voters being decisive. We explore this paradoxical
finding in the next section.

3 Popular-vote system maximizes average voting pow-

er under the random voting model

We prove here the main theoretical finding of our paper. Before proceeding to our main
result we must assume the voting rules under consideration are monotonic:

Definition 1 (Monotonic) A voting rule is monotonic if a single vote changed from −
to + can never make the election of candidate + less likely.

This restriction can cause problems when several options or candidates are being con-
sidered (Arrow 1951) but is uncontroversial in a two-candidate election. Most common
voting rules satisfy this restriction.

We can now state our main theoretical result:

Proposition 1 Suppose that n voters vote according to the random voting model. Then,
for any monotonic voting rule, the average probability of voters’ being decisive is max-
imized under majority rule (i.e., popular vote); any other system for determining the
election winner, no matter how elaborate, can only decrease (or leave unchanged) the
average probability of decisiveness.

In order to prove this result we need to define the following notation. Let v represent
a vector of n votes, each of which is + or −. We use p(v) to index the n! permutations
of these votes. From Expression (1), the decisiveness of voter i is determined by the
possibilities v+

(i) and v
−
(i), which we call a configuration pair. If k is the number of voters,

excluding voter i, who vote +, then we consider all permutations p that carry all the k
voters for + to the beginning of the list, the n − k − 1 voters for − to the end of the
list, and put voter i in the k-th position. We call this an ordered permutation, and we
use the notation v(p) to indicate the vote vector for this permutation. For any given
configuration pair with k pluses and n− k − 1 minuses, there correspond k!(n− k − 1)!
ordered permutations.
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3.1 Proof

Under the random voting model, all configuration pairs are equally likely (each with
probability 2−(n−1)), and the probability that voter i is decisive is simply 2−(n−1) times
the sum over all configuration pairs of the voting power number 1

2
(R(v+

(i))−R(v−
(i))) from

Expression (1). The systemwide average probability of decisiveness is then just 1
n
times

the sum of this over all voters.

The key to our proof is a method of summing the voting power over all voters and all
configuration pairs. To sum over configuration pairs, we can sum over all ordered permu-
tations, giving each ordered permutation a weight of 1

k!(n−k−1)!
to correct for the multiple

counting and multiplying by 2−(n−1) because that is the probability of any configuration
pair under random voting. Then averaging the power index (1) yields,

Average Pr(Voter is decisive) =

1

n
2−(n−1)

∑

permutations p

n−1
∑

k=0

1

k!(n− k − 1)!
1

2

[

R(v(p)+(i))−R(v(p)−(i))
]

(2)

Each of the inner sums in (2) considers the n jumps between the n + 1 ordered vote
sequences (for example, if n = 4, these would be − − −−, + − −−, + + −−, + + +−,
+ + ++). For any permutation p, the n individual differences 1

2

[

R(v+
(i))−R(v−

(i))
]

are

each equal to 0, 1
2
, or 1 (because of the monotonicity assumption, they can never be

negative), and they sum to at most 1.

The inner sum of Expression (2) is therefore maximized when the positive differences
are attached to the highest values of the weight, 1

k!(n−k−1)!
. For an odd number of voters,

this occurs when k = n−1
2
, and under majority rule the difference 1

2

[

R(v(p)+(i))−R(v(p)−(i))
]

equals 1 at this point. For an even number of voters, the weight is maximized when
k = n−2

2
or n

2
, and under majority rule the difference is 1

2
at each of these points.

Thus, under majority rule, Expression (2) reduces, for odd n, to

1

n
2−(n−1)

∑

p

1

((n− 1)/2)!((n− 1)/2)! · 1 =
(

n− 1
(n− 1)/2

)

2−(n−1)

after summing over the n! permutations. This is the maximum value of Expression (2)
under any rule R for combining the n votes. Similarly, if n is even this expression is
maximized at

(

n−1
n/2

)

2−(n−1) which also is realized under majority rule.

3.2 Heuristic explanations

As noted at the end of Section 2, it appears paradoxical that coalition formation, which
increases the individual probability of decisiveness, uniformly decreases the probability
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when averaged across all voters. We have developed two heuristic arguments in order to
better understand this result.

First we provide a technical explanation based on the direct form of the proof of the
proposition. The switch from + to − has to occur at some point, and an equal split of
the remaining n− 1 votes is the most likely outcome (under the random voting model).
To put it another way, an electoral college system allows decisive votes when the votes
are not split exactly evenly, but this comes at a cost of not allowing decisive votes in the
more probable scenarios in which the votes are divided evenly.

Our second explanation considers the standpoint of the individual voter. Any aggre-
gation adds noise to the system. For example, the winner-take-all system within U.S.
states means that Florida’s electoral votes will be divided 25-0, rather than 12.5-12.5.
In a presidential system, a final aggregation is necessary to choose a single winner, but
any coalitioning before this stage adds randomness, which reduces the probability of in-
dividual voters being decisive. For an extreme example, suppose that 270 electoral votes
were chosen by a coin flip and the remaining 268 from the popular vote. In this case, all
voters are treated symmetrically (so the voting system is “fair”), but any vote has a zero
chance of being decisive. More generally, any randomness decreases the expected effect
of a change in any individual vote.

4 Estimating voting power empirically

As has been noted by many researchers (e.g., Beck 1975, Margolis 1977, Merrill 1978,
and Chamberlain and Rothchild 1981), there are theoretical and practical problems with
a model that assumes votes are independent coin flips. The simplest model extension
is to assume votes are independent but with probability p of going for the + outcome,
with some uncertainty about p (for example, p could have a normal distribution with
mean 0.50 and standard deviation 0.05). However, this model is still too limited to
describe actual electoral systems. In particular, the parameter p must realistically be
allowed to vary, and modeling this varying p is no easier than modeling vote outcomes
directly. Following Gelman, King, and Boscardin (1998), one might try to construct a
hierarchical model, as they did for U.S. Presidential elections with uncertainty at the
national, regional, and state levels.

It is not our purpose here to come up with realistic models for voting; rather, we wish
to understand the sensitivity of voting power results to the random voting assumption
that all 2n vote outcomes are equally likely. Here are some of the key implications of this
assumption.

First, the vote differential,
∑n

i=1 vi, is, under the model, unrealistically close to 0. For
example, if n = 1 million, this difference has a mean of 0 and a standard deviation of 1000,
and of course very few actual elections of this size are decided by less than 1000 votes.
The result is that the random voting model drastically overestimates the probability of
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decisiveness, which has implications when considering the instrumental benefits of voting
(see Beck 1975, and Gelman, King, and Boscardin 1988).

A second implication of random voting is that the vote differential within a coalition
of size m has mean 0 and standard deviation proportional to

√
m. The probability the

vote is exactly tied is thus approximately proportional to 1/
√
m. At the next stage,

the probability that the coalition is decisive for the final outcome is approximately pro-
portional to m (if m << n). The product of the two probabilities indicates the voting
power of an individual voter within the coalition, and is roughly proportional to

√
m,

thus favoring large coalitions. As we discuss in Section 5, it is a mistake to try to apply
this result to U.S. Presidential elections.

Third, the random voting model assumes that all voters are indistinguishable in their
preferences, which obviously does not describe the real world in where voters identify
themselves as Democrats and Republicans (and there are consistent differences among
individuals within each party) in elections or committees. The relevance for the voting
power results is that they assume coalitions of symmetric voters: for any individual voter,
the goal is to be in a coalition that is otherwise split evenly. In reality, however, coalitions
typically join like-minded voters, and so joining a coalition is probably less beneficial than
under random voting.

A key variable affecting the probability of decisive vote is how likely the popular
vote is to being tied. If the election is likely to be very close (as in the year 2000 U.S.
Presidential election), then the theoretical result of Section 3 should hold: the average
probability of a decisive vote should be highest under majority rule. If the most likely
outcome is an uneven split in the vote, then it is possible (but not necessary) that a
coalition system can increase the average probability of decisiveness. We explore this for
U.S. Presidential elections in Section 5.1.

In summary, real elections and legislatures have far fewer exact or close-to-exact
splits—among all n voters and within coalitions—than would be expected under the
random voting model. Any voter is less likely to be decisive, and the advantage to joining
a coalition, particularly a large coalition, is less would be estimated under random voting.

4.1 Using empirical models of votes to estimate the probability
of decisiveness

We now discuss how to use empirical models of votes to compute the probability that a
single vote is decisive. Consider a two-candidate election with majority rule in any given
jurisdiction. Let V be the proportional vote differential (e.g., the difference between the
Democrat’s and Republican’s vote totals, divided by the number of voters, n). If you
vote, that will add +1/n or −1/n to V ; the decisiveness of this vote is is 0 (if |V | > 1/n),
1/2 (if |V | = 1/n), or 1 (if V = 0).

10



Now suppose that that the proportional vote differential has an approximate con-
tinuous probability distribution, p(V ). This distribution can come from a theoretical
model of voting (e.g., the random voting model discussed above) or empirical models
based on election results or forecasts. Gelman, King, and Boscardin (1998) argue that,
for modeling voting decisions, it is appropriate to use probabilities from forecasts, since
these represent the information available to the voter before the election occurs. For
retrospective analysis, it may also be interesting to use models based on perturbations
of actual elections as in Gelman and King (1994). In any case, all that is needed here is
some probability distribution.

For any reasonably-sized election, we can approximate the distribution p(V ) of the
proportional vote differential by a continuous function. In that case, the expected prob-
ability of decisiveness is simply 2p(V )/n evaluated at the point V = 0. (If the number
of voters n is odd, this approximates Pr(V = 0), and if n is even, it approximates
1
2
Pr(V = −1/n) + 1

2
Pr(V = 1/n).) For example, in a two-candidate election with 10,000

voters, if one candidate is forecast to get 54% of the vote with a standard error of 3%,
then the vote differential is forecast at 8% with a standard error of 6%. The probability
that an individual vote is decisive is then 2 1√

2π(0.06)
exp(−1

2
(0.08/0.06)2)/10000 = 0.0055,

using the statistical formula for the normal distribution.

The same ideas apply for more complicated elections, such as multicandidate contests,
runoffs, and multistage systems (e.g., the Electoral College in the U.S. or the British
parliamentary system in which the goal is to win a majority of individually-elected seats).
In more complicated elections, it is simply necessary to specify a probability model for
the entire range of possible outcomes, and then work out the probability of the requisite
combination events under which a vote is decisive. For example, in the Electoral college,
your vote is decisive if your state is tied (or within one vote of tied) and if, conditional
on your state being tied, no candidate has a majority based solely on the other states.
Estimating the probability of this event requires a model for the joint distribution of the
vote outcomes in all the states (see Gelman, King, and Boscardin 1998).

4.2 What if an individual vote is never a decisive event?

As illustrated by the Presidential election in Florida in 2000, an election can be disputed
even if the votes are not exactly tied. This may seem to call into question the very
concept of a decisive vote. Given that elections can be contested and recounted, it seems
naive to suppose that the difference between winning and losing is no more than the
change in a vote margin from +1 to −1, which is what we have been assuming.

In fact, our decisive-vote calculations are reasonable, even for real elections with
disputed votes, recounts, and so forth. We show this by setting up a more elaborate
model that allows for a gray area in vote counting, and then demonstrating that the
simpler model of decisive votes is a reasonable approximation.
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As in the previous section, consider a two-candidate election and label V as the
difference between the true number of votes received by each of the two candidates,
divided by the number of votes, n. We model vote-count errors, disputes, etc., by defining
π(V ) as the probability that the “+” option wins, given a true vote differential of V .
With perfect voting, π(V ) = 0 if V < 0, 1 if V > 0, or 0.5 if V = 0. More realistically,
π(V ) is a function of V which equals 0 if V is clearly negative (e.g., V < −0.001), 1 if V
is clearly positive (e.g., greater than one-tenth of one percent), and is between 0 and 1 if
V is near 0.

In that case, the probability that your vote determines the outcome of the election,
conditional on V , is π(V + 1

n
) − π(V − 1

n
). If your uncertainty about V is summarized

by a probability distribution, p(V ), then your probability of decisiveness is,

voting power = E

[

π(V +
1

n
)− π(V − 1

n
)

]

=
∑

V

[

π(V +
1

n
)− π(V − 1

n
)

]

p(V ). (3)

At this point, we make two approximations, both of which are completely reasonable in
practice. First, we assume that the election will only be contested for a small range of
vote differentials, which will lie near 0: thus, there is some small ε such that π(V ) = 0 for
all V < −ε and π(V ) = 1 for all V > ε. Second, we assume that the probability density
p(V ) for the election outcome has an uncertainty that is greater than ε (for example,
perhaps ε = 0.001 and V can be anticipated to an accuracy of 2%, or 0.02). Then we
can approximate p(V ) in the range 0± ε by the constant p(0). Expression (3) can then
be written as,

voting power =

∫ ε

−ε

[

π(V +
1

n
)− π(V − 1

n
)

]

p(0)dV

= p(0)

∫ ε

−ε

[

π(V +
1

n
)− π(V − 1

n
)

]

dV

= p(0)

[

∫ ε+ 1

n

−ε+ 1

n

π(V )dV −
∫ ε− 1

n

−ε− 1

n

π(V )dV

]

= p(0)

[

∫ ε+ 1

n

ε− 1

n

π(V )dV −
∫ −ε+ 1

n

−ε− 1

n

π(V )dV

]

= p(0)

[

2

n
· 1− 2

n
· 0
]

= 2p(0)/n,

which is the same probability of decisiveness as calculated assuming all votes are recorded
correctly.
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5 Empirical results for the Electoral College

Perhaps the most frequently-considered example of voting power in elections (as distin-
guished from voting within a legislature) is the Electoral College system for the President
of the United States. How does the probability of a decisive vote vary among states? For
your vote to be decisive, two conditions must hold: (1) your state must be tied (or within
one vote of a tie), and (2) the electoral votes of the other states must be close enough to
a tie that your state’s electoral votes are needed for a majority. One would expect the
first condition to be more likely for small states and the second condition more likely for
large states.

Gelman, King, and Boscardin (1998) computed these probabilities using a forecasting
model for state-by-state Presidential election results from 1948 to 1992. The estimated
probability of decisiveness varied based on several factors, including: (a) the closeness
of the general election (the average probability of decisiveness was about 1 in a million
in close election years such as 1960 and 1976, and about 1 in 100 million in landslides
such as in 1964 and 1984); (b) the “median-ness” of the state (for example, in 1992,
the probability of a vote being decisive was estimated to be about 10 times higher in
Vermont, which was near the national median in vote preferences, than Utah, which
is a strongly Republican state); and (c) the size of the state, with the probability of
decisiveness being slightly higher, on average, in the smallest states. Figure 2 displays
the estimated average probability of a vote being decisive versus the number of electoral
votes in the individual’s state, with each year from 1948 to 1992 shown by a different
line.

In relation to the political science literature, the most important result in Figure 2 is
the extremely low probability that a vote is decisive, even in the most favorable conditions
of small states near the national median in a close election. The other important result
is the relatively weak relation between the probability of a vote being decisive and the
size of the state.

The result shown in Figure 2—that a voter in a small state is more likely to be
decisive that a voter in a medium-sized or large state—contradicts a long-established
claim in the political science literature that the Electoral College benefits voters in larger
states. For example, Banzhaf (1968) claims to offer “a mathematical demonstration” that
the Electoral College system “discriminates against voters in the small and middle-sized
states by giving the citizens of the large states an excessive amount of voting power,”
and Brams and Davis (1974) claim that the voter in a large state “has on balance greater
potential voting power . . . than a voter in a small state.” Owen (1975) and Rabinowitz
and MacDonald (1986) come to similar conclusions.

Why do their findings differ from ours? Their calculations are based on the random-
voter model or variants of it, and always with the assumption of independent and indistin-
guishable voters within each state, so that the standard deviation of the vote differential
within any state j with mj voters is proportional to

√
mj. The probability that the state

itself will be decisive in the national total is approximately proportional to ej, the number
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Figure 2: The probability of a decisive vote as a function of the number of electoral votes
in the voter’s state, for each U.S. Presidential election from 1948–1992. The probabilities
are calculated based on a forecasting model that uses information available two months
before the election. This figure is adapted from Gelman, King, and Boscardin (1998). The
most notable features of this figure are: first, that the probabilities are all very low; and
second, that the probabilities vary little with state size, with the only consistent pattern
being that voters in the very smallest states are a bit more likely to be decisive.

of electoral votes in the state. The voting power of an individual voter in the state is
then approximately proportional to ej/

√
mj, which is highest for the largest states.

The key assumption here is that the vote differential has a standard deviation of
√
mj,

which means that the proportion of the vote for either candidate within state j has a
standard deviation of 1/

√
mj. Thus, as Banzhaf (1968), Brams and Davis (1974; 1975,

p. 155), and Owen (1975, p. 953), make clear, the claim that voters in large states are
more likely to be decisive is a consequence of the claim that elections in large states are
more likely to be close.

In fact, however, this is not the case, or at least not to the extent implied by the 1/
√
mj

rule. For example, in the most recent Presidential election, none of the three largest states
(California, Texas, and New York) was close, and it was in fact recognized before the
election that the voters in these states had little chance of influencing the outcome. To be
more systematic, we extend an analysis by Colantoni, Levesque, and Ordeshook (1975,
pp. 144–145) and display in Figure 2 the vote differentials as a function of number of
voters for all states (excluding the District of Columbia) for all elections from 1960 to
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2000. On average, larger states have somewhat closer elections, but the pattern is very
weak, as can be seen by the fitted lowess curve on the plot. By comparison, the graph also
displays a curve proportional to 1/

√
mj, which shows how the absolute vote differential

would be expected to decrease with state size if the voting power measures based on the
random voting model were appropriate.
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Figure 3: The margin in state votes for President as a function of the number of voters
mj in the state: each dot represents a different state and election year from 1960–2000.
The margins are proportional; for example, a state vote of 400,000 for the Democratic
candidate and 600,000 for the Republican would be recorded as 0.2. Elections tend to
be closer in larger states, but this pattern is very weak, as is shown by the nearly flat
slope of the nonparametric (lowess) line displayed on the graph. By comparison, a line
proportional to 1/

√
mj is also shown; clearly, this theoretical curve does not fit the data.

For another attack at the problem, Gelman, King, and Boscardin (1998) estimate a

model with an error term for each state with a standard deviation proportional to m
−θ/2
j ,

and the parameter θ is estimated to be about 0.2 (using data from 1948 to 1992), as
compared to θ = 1 which would arise from the random voting model.

Thus, the earlier claims that large states benefit from the Electoral College were mis-
taken because of their implicit assumption that elections in larger states would be much
closer than those in small states. Although this 1/

√
mj rule does not empirically apply

to Presidential elections, it might hold in other elections or decision-making settings, in
which case results such as Banzhaf (1965) could be reasonable. Empirical studies (such
as that of Heard and Swartz (1999) for the Canadian Supreme Court) are needed to
answer these questions.

15



5.1 Comparing the average probability of decisiveness under
different electoral systems

We can also see if our theoretical finding that the average probability of decisiveness
should be larger under straight popular vote than under the Electoral College system
holds empirically by looking at past U.S. Presidential elections. That is, for each elec-
tion since 1960, we compare the average probability of decisiveness for voters under the
popular vote and electoral vote systems. We also compute the average probability of
decisiveness under an alternative system in which each Congressional district is worth
one electoral vote: that is, winner-take all in each of the 436 districts (counting D.C. as a
district). In order to estimate probabilities of close elections and decisiveness, it is neces-
sary to set up a probability model for vote outcomes. We want to go beyond the random
voting model and set up a more realistic descriptor of vote outcomes. Gelman, King,
and Boscardin (1998) fit a state-by-state election forecasting model, with probabilities
corresponding to the predictive uncertainty two months before the election. Here, we
use a simpler approach: we take the actual election outcome and perturb it, to represent
possible alternative outcomes.

We label vi as the observed outcome (the Democratic candidate’s share of the two-
party vote) in Congressional district i in a given election year and obtain a probability
distribution of hypothetical election outcomes yi by adding normally-distributed random
errors at the national, regional, state, and Congressional-district levels, with a standard
deviation of 2% at each level. We label ni as the turnout in each district i and consider
these as fixed—this is reasonable since uncertainty about election outcomes is driven by
uncertainty about v, not n.

For any given election year, we use the multivariate normal distribution of the vector
v of vote outcomes to compute the probability of a single vote being decisive in the
election. For the popular vote system, we determine this probability for any voter; for
the electoral-vote and congressional-district-vote systems, we determine the probability
within each state or district and then compute national average probabilities, weighing by
turnouts within states or districts. The actual probability calculations are done using the
multivariate normal distribution as described by Gelman, King, and Boscardin (1998).

Our results appear in Figure 4. The most striking feature of the figure is that the
average probability of decisiveness changes dramatically from year to year but is virtually
unaffected by changes in the electoral system. This may come as a surprise—given the
theoretical results from Section 3, one might expect the average probability of decisiveness
to be much higher for the popular-vote system.

The results in Figure 4 are only approximate, not just because of the specific modeling
choices made, but also because of the implicit assumption that the patterns of voting
would not be affected by changes in the electoral system. For example, states such as
California and Texas that were not close in the 2000 election might have had higher
turnout under a popular vote system in which all votes counted equally. Thus, our
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Figure 4: The estimated average probability of a decisive vote, for each presidential elec-
tion since 1960, calculated under the popular and electoral vote systems. The estimates
are based on simulations from actual election outcomes rather than the forecasting model
used in producing Figure 2. The average probability varies a lot by year but is not much
affected by the electoral rule.

results compare different electoral systems as applied to the actual observed votes and
do not directly address counterfactual questions about what would happen if the electoral
system were changed.

6 Discussion

As noted in Section 2, it makes sense for any individual to form a coalition, but as proved
in Section 3, this lowers the average voting power for everybody. Coalitioning is thus like
a prisoner’s dilemma, which without constraints will lead to a stable equilibrium that is
unfavorable to all (see, e.g., Luce and Raiffa 1957). These results hold under the random
voting model, which is implicit in general power indexes such as those of Banzhaf (1965)
and Shapley and Shubik (1954). One-person, one-vote does not mean that all voters have
equal voting power.

For actual elections, the probability of decisiveness must be assessed using an empir-
ical model of votes. In any such model, the key determinants of voting power are (1)
the anticipated closeness and the uncertainty about the election outcome (which jointly
determine the probability that the vote will be close to tied) and (2) the number of voters
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m (because the probability of an exact tie is proportional to 1/m). A careful analysis of
data from U.S. Presidential elections shows that a vote from a small state is, on average,
more likely to be decisive than a vote from larger states. Previous published results
claiming the opposite suffered from inappropriate models (explicit or implicit) for the
closeness of elections as a function of state size. In reality, voters in small states have
disproportionately high voting power because of the extra two electoral votes received by
each state.

The results for the Electoral College are interesting and suggest various lines of further
research, including analysis of other possible Presidential electoral systems, state and
local elections, and comparisons to other countries (including those with parliamentary
systems) and other time periods. In a slightly different direction, it would be interesting
to analyze the votes of legislators in subcommittees, committees, and roll-call votes, in
order to study the empirical effects of structural coalitions on voting power in legislatures.
Conversely, empirical results that do not follow directly from the theory (as in Figure 4)
suggest ways in which a theory of voting in coalitions must be improved in order to be
realistic.

Of course, our mathematical and empirical findings do not directly address normative
questions such as: Which electoral system should be used? Or in a legislature, how should
committees or subcommittees be assigned? Let alone more fundamental questions such
as, is it desirable for the average voting power to be increased? After the 2000 election,
some commentators suggested that it would be better if close elections were less likely,
even though close elections are associated with decisiveness of individual votes, which
seems like a good thing.

The issue of the desirability of close elections raises a conflict between two political
principles: on one hand, democratic process would seem to require that every person’s
vote has a nonzero chance (and, ideally, an equal chance) of determining the election
outcome. On the other hand, very close elections such as Florida’s damage the legitimacy
of the process, and so it might seem desirable to reduce the probability of ties or extremely
close votes.

No amount of theorizing will resolve this difficulty, which also occurs in committees
and leads to legitimacy-protecting moves such as voting with an informal straw poll.
The official vote that follows is then often close to unanimous as the voters on the losing
side switch to mask internal dissent. This paper’s theoretical findings imply that such
behavior is understandable but in a larger context can reduce the average voting power
of individuals.

We conclude by recalling that individual measures of political choice, even if ag-
gregated, cannot capture the structure of group power. For example, groups that can
mobilize effectively are solving the coordination problem of voting and can thus express
more power through the ballot box. For an extreme example, consider the case of Aus-
tralia, where at one time Aboriginal citizens were allowed, but not required, to vote in
national elections, while non-Aboriginal citizens were required to vote. Unsurprisingly,
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turnout was lower among Aboriginals. Who was benefiting here? From an individual-
rights standpoint, the Aboriginals had the better deal, since they had the freedom to
choose whether to vote. But, as a group, the Aboriginals’ lower turnout would be ex-
pected to hurt their representation in the government and thus, probably, hurt them
individually as well. Having voting power is most effective when you actually vote.
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