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Abstract

We study the gains from using short-dated options for volatility measurement and forecasting.

Using option portfolios, we estimate nonparametrically spot volatility under weak assumptions

for the underlying asset. This volatility estimator complements existing ones constructed from

high-frequency returns. We show empirically, using the market index and Dow 30 stocks, that

combining optimally return and option data can lead to nontrivial gains for volatility forecasting.

These gains are due to “diversification” of the measurement error in the two volatility proxies.

The information content of short-dated options, not spanned by the current spot volatility, is

of limited relevance for volatility forecasting.
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1 Introduction

The availability of reliable high-frequency financial data allows for efficient nonparametric mea-

surement of volatility. In the last two decades, a number of alternative jump-robust high-frequency

volatility estimators have been developed. These include the multipower variations of Barndorff-

Nielsen and Shephard (2004, 2006), the truncated variation of Mancini (2001, 2009) as well as

estimators based on the empirical characteristic function developed by Jacod and Todorov (2014,

2018).1 The improved precision in measuring volatility, offered by the high-frequency data, leads

to nontrivial gains in the estimation of stochastic volatility models, see e.g., Barndorff-Nielsen and

Shephard (2002), Bollerslev and Zhou (2002), Corradi and Distaso (2006), Takahashi et al. (2009),

Todorov (2009), Dobrev and Szerszen (2010) and Koopman and Schart (2013), the nonparametric

analysis of the volatility distribution, see e.g., Todorov and Tauchen (2012) and Christensen et al.

(2019), as well as in volatility forecasting and risk management, see e.g., Andersen et al. (2003),

Corsi (2009), Shephard and Sheppard (2010), Hansen et al. (2012), Bollerslev et al. (2016) and

Buccheri and Corsi (2020), among many others.

Parallel to the increased availability of reliable high-frequency return data, there has been also

a recent sharp increase in the trading of options, particularly those written on market indices and

with short time-to-maturity, see e.g., Andersen et al. (2017). The goal of the current paper is to

quantify empirically the incremental gains from adding option observations to high-frequency return

data when measuring and forecasting volatility. On one hand, the differences in the information

content of options and stock returns make it unclear whether options and option portfolios can

help volatility forecasts based solely on returns. On the other hand, if (true) volatility recovery

is possible from options, this should lead unambiguously to better measurement and forecasting

of volatility because of “diversification” in the measurement error of return- and option-based

volatility estimators. In this paper, we show empirically that option data offers nontrivial gains

for the purposes of volatility forecasting mostly because it allows for more precise measurement of

spot volatility. Additional forecasting gains due to information in short-dated options not spanned

by spot diffusive volatility are small.

Given the nonlinear payoff of options, their prices naturally depend on the volatility of the

underlying asset. Indeed, in the classical Black-Scholes volatility model (Black and Scholes (1973)),

there is a one-to-one map between the option price normalized by the current stock price and the

(constant) volatility of the underlying asset. As a result, the volatility parameter of the Black-

1The original estimators have been developed under the assumption of no microstructure noise in the observed
price. Many of them have been extended to settings with microstructure noise, see e.g. Jacod and Protter (2011).
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Scholes model can be backed out from the price of a single option written on the underlying

asset, with the resulting option-based volatility estimator being referred to as Black-Scholes implied

volatility (abbreviated henceforth as BSIV ). The assumptions behind the Black-Scholes model are

known to be violated in practice due to the time-variation in volatility, the presence of jumps in

asset prices and the risk premia demanded by investors for bearing these risks. This leads to a

well-established empirical pattern where BSIV is significantly higher than “historical” volatility

measured from past returns, and this pattern is particularly pronounced for BSIV of out-of-the-

money puts written on the market index, see e.g., Bates (2000) and references therein.

An alternative to the BSIV , often used in volatility forecasting, is a model-free measure of risk-

neutral expected integrated quadratic variation known as the V IX volatility index. It is constructed

from a portfolio of out-of-the-money options with different strikes and the same time-to-maturity,

see e.g., Britten-Jones and Neuberger (2000) and Carr and Wu (2008). While the construction of

the V IX, unlike BSIV , does not rely on a model for the underlying asset dynamics, the V IX

nevertheless differs substantially from return-based volatility measures. The reason for this is that

the V IX is a conditional expectation of return variance over a period in the future, and further the

expectation is under the so-called risk-neutral probability measure. Therefore, the mean-reversion

in volatility and the presence of nontrivial volatility and jump risk premia create a wedge between

true (spot) volatility and the V IX. Given that the risk premium component of the V IX is rather

nontrivial, see e.g., Carr and Wu (2008) and Bollerslev et al. (2009), the latter (just like BSIV )

is on average significantly above a “historical” measure of volatility formed from past returns and

this wedge is time-varying.

The increased availability and trading of options with very short tenor, however, allow for

developing nonparametric volatility measures from options that are robust to the time variation in

volatility and to the presence of jumps (and their pricing) in asset prices. Todorov (2019) develops

such an estimator (henceforth referred to as OV ) which is nearly rate-efficient and is based on an

option portfolio of short-dated options that “spans”, i.e., estimates nonparametrically, the risk-

neutral conditional characteristic function of the price increment over the time span of the options.

The option portfolio behind this nonparametric volatility estimator is formed from long and short

positions in options whose strikes are in the vicinity of the current stock price, with the magnitude

of the weights gradually declining as the strikes of the options move further away from the current

stock price. This portfolio puts significantly less weight to deep out-of-the-money options than the

one used in the construction of the V IX.

The option-based OV estimator, when combined with one formed from high-frequency returns,
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can provide efficiency gains in the measurement of volatility. Indeed, the Central Limit Theorem

(CLT) for the return-based volatility estimators is governed by the martingale component of the

price over the interval over which the estimator is computed while the CLT for the option-based

volatility estimator is driven by the measurement error in observed option prices at the point in

time they are recorded (typically at market close). Therefore, asymptotically, the return- and

option-based volatility estimators are uncorrelated and by combining them, we can gain precision

in measuring volatility. This, in turn, should lead to gains in volatility forecasting.

The use of alternative volatility proxies for improving the measurement and forecasting of

volatility adopted here is in part inspired by the approach of Ghysels et al. (2020) who show that

measurement and forecasting of volatility from high-frequency return data can be improved upon

by integrating return data across days, provided the volatility process is significantly persistent.

The two approaches (ours and that of Ghysels et al. (2020)) share the common feature that the

“measurement errors” in the two volatility proxies are uncorrelated (asymptotically). They differ,

however, in the bias in the volatility proxies. In our case, shrinking time-to-maturity for the option

estimator and a shrinking time window for the return-based volatility estimator will guarantee

that the volatility proxies have asymptotically negligible biases. In the setting of Ghysels et al.

(2020), on the other hand, past volatility proxies will have asymptotically negligible bias for today’s

volatility under the additional assumption of near unit root type dynamics for the volatility.

We quantify empirically the information gains from adding an option-based volatility measure

to one formed from high-frequency returns using data for the S&P 500 market index and 28 stocks

in the Dow Jones Industrial Average index (Dow 30) with good option data coverage. The sample

period for the S&P 500 index is 2008-2018 and that for the individual stocks is 2010-2019. The

option-based volatility estimator for the market index and a truncated variation estimator formed

from high-frequency price record of S&P 500 index futures are on average very close. Nevertheless,

the option-based estimator is far less noisy than the return-based one. This increased precision in

measuring spot diffusive volatility from options leads to a nonparametric estimate of its marginal

distribution which is significantly more concentrated around its mean compared to one recovered

from returns via the nonparametric deconvolution method of Todorov and Tauchen (2012). For

the individual stocks, option measures provide less reduction in the volatility measurement error.

This is not surprising given the lower number of available individual stock options.

We next assess the gains offered from the short-dated options for the purposes of volatility

forecasting. Earlier work that compares option and return-based volatility measures, see e.g.,

Fleming (1998), Christensen and Prabhala (1998), Blair et al. (2001), Jiang and Tian (2005),
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Koopman et al. (2005), Neely (2009), Martin et al. (2009), Busch et al. (2011), Bekaert and Hoerova

(2014), Kambouroudis et al. (2016) and Oikonomou et al. (2019) as well as the many references in

the review articles of Poon and Granger (2003) and Christoffersen et al. (2013), uses either BSIV

or the V IX. These measures, however, are biased estimates of volatility, with the bias due to

mean-reversion in volatility and the presence of volatility and jump risk premia. The bias in the

BSIV and V IX option measures can lead to their information inefficiencies as pointed by Chernov

(2007). Therefore, the comparison between the forecasting performance of return-based volatility

estimators on one hand and the BSIV and the V IX on the other hand will depend not only on the

measurement error in these estimates but also on the forecasting ability of the wedge between the

BSIV or the V IX and the true volatility. Perhaps in part due to this, the existing evidence for the

benefits from using option data for volatility forecasting is mixed. Some of the above-cited studies

have found gains from using BSIV or V IX for volatility forecasting (such as Blair et al. (2001),

Busch et al. (2011), Bekaert and Hoerova (2014), Kambouroudis et al. (2016) and Oikonomou et al.

(2019)) while others have found no such gains (such as Koopman et al. (2005), Neely (2009) and

Martin et al. (2009)).

As already discussed above, the OV estimator, unlike BSIV and V IX, is an option-based

estimator of the true spot volatility. Therefore, at least theoretically, it should always provide gains

in volatility forecasting when used together with return-based volatility proxies. This is because

the measurement errors in the two volatility proxies are uncorrelated. As a result, regardless of

the forecasting model, replacing the return-based volatility proxy with a linear combination of the

return- and option-based volatility proxies should always provide forecasting gains. We illustrate

this using the heteroskedastic autoregressive (HAR) model of Corsi (2009), which is a special case

of a MIDAS regression model (Ghysels et al. (2007)).2 Our benchmark model is a HAR model in

which we use solely truncated variance to predict future volatility. We compare this model with one

in which the truncated volatility is replaced with the option-based volatility estimator and mixture

models in which both volatility proxies are used as predictors or are combined in a single one based

on optimal weighting according to estimates of their asymptotic variances. Our empirical evidence

confirms the theoretical prediction of the superiority of the mixture models. They provide around

30% reduction in the time series median of the daily forecasting loss for the market and around 5%

2Recent work by Buccheri and Corsi (2020) shows that the simple linear HAR model contains misspecification due
to nonlinear volatility dependencies. While we use the HAR model (like most of the existing volatility forecasting
literature) to illustrate the gains from combining option and return data, these gains are obviously not specific to
our HAR illustration. Indeed, we performed the HAR volatility forecasting regressions in logs and we found similar
gains to the ones reported in the paper from combining return- and option-based volatility proxies. These results are
not reported in the paper in order to save space but are available upon request.
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reduction in that for the individual stocks. Combining option and return data continues to offer

advantages when the forecasting horizon is one week or one month, with the size of the gains being

statistically significant and larger than the daily ones in the case of individual stocks. Moreover,

the above-reported gains become much bigger when using a less noisy proxy of future volatility.

The weight assigned to the option-based volatility proxies in the volatility forecasts of the mixture

models is well above 50% in the case of the S&P 500 index and is around 50% in the case of the

individual stocks.

We finally study whether the additional information in the short-dated options that is not

contained in the spot (diffusive) volatility can provide any gains in volatility forecasting. We answer

this question by developing a test for independence of the future realized volatility and alternative

option measures, conditional on the values of the option-based volatility. The alternative option

measures are estimates of the risk-neutral jump variation, which together with the spot volatility

are the two state variables that determine uniquely the short-dated options. Our results show that

the risk-neutral jump variation does not contain statistically significant additional information,

relative to the one contained in spot volatility, that is relevant for forecasting future volatility. Any

potential gains from including such measures for volatility forecasting are mostly due to reduction in

the measurement error of the option-based quantities. Accordingly, upon augmenting the original

forecasting models with measures of risk-neutral jump variation we find relatively small additional

improvements in forecasting performance.

The rest of the paper is organized as follows. In Section 2, we introduce our return- and

option-based volatility estimates. In Section 3 we illustrate theoretically the gains from combining

alternative volatility estimates for the purposes of volatility forecasting. Section 4 compares empir-

ically the performance of various market volatility forecasting models that use return and option

volatility proxies. In Section 5 we investigate whether short-dated options contain more information

relevant for volatility forecasting in addition to that contained in the spot volatility and study the

impact of improved volatility measurement for studying return predictability. Section 6 concludes.

The Appendix contains additional details on the data, the construction of the volatility measures

and tests as well as volatility forecast results on an individual stock level.

2 Nonparametric Measurement of Volatility

We begin with introducing our nonparametric measures of volatility. The generic (univariate) log-

asset price is denoted with xt. It is defined on a filtered probability space,
(
Ω,F , (Ft)t≥0,P

)
, and
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is assumed to obey the following Itô semimartingale dynamics

xt = x0 +

∫ t

0
µsds+

∫ t

0

√
VsdWs +

∑
s≤t

∆xs, (1)

where µt is the drift term, Vt is the stochastic variance and Wt denotes a Brownian motion. We can

measure nonparametrically Vt from high-frequency return observations or from short-dated options

written on the asset. We introduce these estimators in the next two subsections.

2.1 Return-Based Measures

We start with the return-based volatility estimators. We assume that we sample the asset price

at equidistant times during the trading hours of a business day. Our unit of time for defining the

high-frequency measures is a business day. In particular, each unit interval [t− 1, t] consists of an

overnight period [t− 1, t− 1 + κ] and a trading period [t− 1 + κ, t], for t ∈ N+ and κ ∈ (0, 1). We

have n+1 equidistant observations during the trading hours. We define the high-frequency returns

as ∆n
t,ix = xt−1+κ+(1−κ)i/n− xt−1+(1−κ)(i−1)/n, for t ∈ N+ and i = 1, ..., n. Our first high-frequency

volatility estimator is the intraday realized volatility defined as

RVt =

n∑
i=1

(∆n
t,ix)2, t ∈ N+. (2)

RVt, is a consistent estimate of the integrated quadratic variation over the trading period,
∫ t
t−1+κ Vsds+∑

s∈[t−1+κ,t](∆xs)
2. Next, we introduce the truncated volatility of Mancini (2009) which separates

the volatility from jumps and is computed by

TVt =

n∑
i=1

(∆n
t,ix)21

(
|∆n

t,ix| ≤ 3
√
BVt ∧RVt × n−1/2

)
, t ∈ N+, (3)

with BVt = π
2

n
n−1

∑n
i=2

√
|∆n

t,i−1x||∆n
t,ix| being the bi-power variation of Barndorff-Nielsen and

Shephard (2004). BVt is a consistent and tuning-free estimator of the integrated volatility
∫ t
t−1+κ Vsds.

We use it to determine the truncation level in TVt, which is an efficient estimator of the integrated

volatility. If we consider estimation in which the length of the time interval is asymptotically shrink-

ing, as we sample more frequently, then this will provide a consistent and asymptotically normal

estimator of the spot volatility (as our option measure will do). In our estimation, as most of the
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volatility forecasting literature, we will use daily integrated volatility.3 It can be considered as an

estimator of spot volatility at market close in the asymptotic sense described above. The overnight

period is non-trivial for the individual stocks while it is negligible for the S&P 500 market index

as the futures written on it, which we will use in our analysis, trade for nearly 24 hours (except

during the weekend).4

2.2 Option-Based Measures

We continue with introducing our option-based measure of Vt. This measure is constructed from

the prices of out-of-the-money (OTM) options written on the underlying asset in the following way.

First, for a given point in time t, we denote with Ot,τ (k) the theoretical price of an OTM option

price written on the underlying asset which expires at time t + τ and has a strike K = ek (hence

k is the log-strike). The OTM option would be worth zero if it were to expire today. It is a put if

k ≤ log(Ft,τ ) and it is a call if k > log(Ft,τ ), where Ft,τ denotes the futures price written on the

underlying asset at time t and which expires at t+ τ . The available option prices are observed with

error and are denoted with Ôt,τ (k). The conditional characteristic function of the price increment

under the risk-neutral measure Q, denoted by Lt,τ (u) = EQ
t (eiu(xt+τ−xt)), can be spanned by a

portfolio of options in the following way

Lt,τ (u) = 1− (u2 + iu)

∫
R
e(iu−1)k−iuxtOt,τ (k)dk, u ∈ R, (4)

where in the above we have set the risk-free interest rate to zero (this is inconsequential as we

apply this formula only for τ very close to zero). We denote the feasible counterpart of Lt,τ (u)

by L̂t,τ (u), which is formed by a Riemann sum approximation of the integral in (4) on the basis

of the available options together with linear interpolation and extrapolation (in BSIV space) to

fill-in missing option observations for strikes within the available strike range and/or to extrapolate

option prices outside the available strike range in certain cases. The details of these calculations

are given in the Appendix.

Following Todorov (2019), the option estimator of volatility is given by

V̂t,τ (ût,τ ) = − 2

τ û2
t,τ

log |L̂t,τ (ût,τ )|, (5)

3We also experimented with spot volatility estimators constructed from using only returns in a local window
around market close, but the forecasting results were generally worse than the ones we report below for the daily TV .

4Recently, Bondarenko and Muravyev (2020) find that a significant part of the market risk premium is realized
during the opening hours of European market trading before regular US stock trading begins. Our data for the S&P
500 index futures covers that important period, see the Appendix for more detail.
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where we set ût,τ = û
(1)
t,τ ∧ û

(2)
t,τ with

û
(1)
t,τ = inf

{
u ≥ 0 : |L̂t,τ (u)| ≤ 0.2

}
, ut,τ =

√
−2 log(0.05)

τ σ̂2
t,ATM

, û
(2)
t,τ = argminu∈[0,u]|L̂t,τ (u)|, (6)

for σ̂t,ATM denoting the Black-Scholes implied volatility of the option with strike closest to the

current futures price at time t. The above choice of u aims to evaluate L̂t,τ (u) at a high value of its

argument for which the inference for L̂t,τ (u) is still reliable. The need to use u as high as possible

is because for high values of u, jumps play only negligible role in |Lt,τ (u)|. The choice of u can be

viewed as the counterpart of the choice of truncation level when computing the return-based TVt.

More specifically, Todorov (2019) shows that

L̂t,τ (u/
√
τ) ≈ EQ

t

(
e−

u2

2τ

∫ t+τ
t Vsds

)
≈ e−

u2

2
Vt , as τ ↓ 0 and for fixed u > 0. (7)

Intuitively, the short maturity of the options minimizes the impact on the above option portfolio

from time-varying volatility while the use of characteristic exponent u strictly away from zero

provides robustness against jumps. The Monte Carlo evidence in Todorov (2019) shows that the

main source of the approximation error in (7) is due to the separation of diffusive volatility from

jumps while the time variation in volatility plays a significantly smaller role. As a result of the

above result, V̂t,τ (ût,τ ) provides a consistent estimate of true spot diffusive volatility despite of the

fact that it is computed from options which are risk-neutral expectations of their payoffs.5 We

refer to Todorov (2019) for the formal statement of the above result and an associated CLT for

V̂t,τ (ût,τ ).

In Figure 1, we illustrate the decomposition of the estimate of (u2+iu)
∫
R e

(iu−1)k−iuxtOt,τ (k)dk,

from which our volatility estimator is constructed. The example is based on options written on

the S&P 500 index with time-to-maturity of 4 business days. As seen from the middle panel of

the figure, the value of the real part of L̂t,τ (ût,τ ) is formed from options whose strike is very close

to the current spot spot price. Indeed, options with strikes more than 2 standard deviations from

the current stock price receive almost zero weight. This is to be expected as there is very little

signal in the prices of deep OTM options about the diffusive spot volatility. We also note that the

portfolio of options that generates the real part of L̂t,τ (ût,τ ) involves both long and short positions

in options which are close to the money. The total value of the short position is relatively small

and it effectively serves as a way to remove the contribution of jumps in the option prices. Turning

5Recall that no-arbitrage implies that the diffusion coefficient of x is the same under P and Q.
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to the imaginary part of L̂t,τ (ût,τ ), we can see from the right panel of Figure 1 that the portfolio

that generates it goes long near the money calls and short near the money puts. Since the option

prices around the money are nearly symmetric, the total value of the imaginary part of L̂t,τ (ût,τ )

is close to zero. This is in line with the approximation in (7) which is behind the option-based

volatility estimator.
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Figure 1: Characteristic Function SPX Option Portfolio on February 1, 2016. The left
panel plots observed OTM option prices against their strikes. The next two panels plot their
contributions to the estimate of (u2 + iu)

∫
R e

(iu−1)k−iuxtOt,τ (k)dk. The time-to-maturity of the
options is 4 trading days and the forward price level on the date was 1938.3.

Since on a given day we can have several short maturities, we average the volatility estimates

from the two shortest available ones to arrive at the following option-based volatility estimator

OVt =
1

2

(
V̂t,τ1(ût,τ1) + V̂t,τ2(ût,τ2)

)
. (8)

We finally note that for individual stock options, pre-scheduled events such as earning and dividend

announcements can introduce non-trivial upward bias in the option-based volatility measures as

these jump events, with known arrival times, can generate nontrivial volatility. Therefore, whenever

an announcement is very close (but before) the expiration date of the options, we difference the

volatility estimates constructed from the options with the two different maturity dates in order to

annihilate the effect of the announcement jump. Details on this are provided in the Appendix.6

6Pre-scheduled macroeconomic announcements tend to have much smaller impact on index options, for tenors
considered here, compared to the effect earning announcements have typically on single-name equity options. For
example, on days prior to FOMC announcements (with both expiration dates being after the announcement), the

market index

√
V̂t,τ1(ût,τ1) has a mean which is only 5.5% higher than that of

√
V̂t,τ2(ût,τ2). By contrast, the mean

of

√
V̂t,τ1(ût,τ1) is on average 22.5% higher than that of

√
V̂t,τ2(ût,τ2) on days prior to earning announcements for

the individual stocks in our sample. For this reason, we do not perform the differencing of the near-by market index
option-implied volatility estimates as such a procedure has poorer finite sample properties.
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2.3 Combined Measures

Having two alternative estimates of spot volatility, it is natural to consider a combination of them

to improve efficiency in the measurement of volatility. This will work if we have “diversification”

of the measurement errors. This is indeed the case as shown formally in Todorov (2019). More

specifically, we have the following hold approximately:

V̂t,τi(ût,τi) = Vt +

√
Avar(V̂t,τi(ût,τi))Zt,τi , TVt = Vt +

√
Avar(TVt)Zt, i = 1, 2, (9)

where Avar(V̂t,τi(ût,τi)) and Avar(TVt) are F-adapted (conditional) asymptotic variances in CLT-

s for the two estimators (see Todorov (2019)) and {Zt,τ1}t≥1, {Zt,τ2}t≥1 and {Zt}t≥1 are three

independent i.i.d. sequences of standard normal random variables, defined on a product extension

of the original probability space, and independent from F (and in particular from {Vt}t≥1).7 If we

have estimates from the data for the asymptotic variances, denoted with {Âvar(V̂t,τi(ût,τi))}i=1,2

and Âvar(TVt), then it is easy to see that the optimal estimate of spot diffusive volatility is

EVt = ω
(1)
t V̂t,τ1(ût,τ1) + ω

(2)
t V̂t,τ2(ût,τ2) + ω

(3)
t TVt, (10)

where

ω
(1)
t =

Âvar(TVt)Âvar(V̂t,τ2)

Âvar(V̂t,τ1)Âvar(V̂t,τ2) + Âvar(TVt)Âvar(V̂t,τ1) + Âvar(TVt)Âvar(V̂t,τ2)
,

ω
(2)
t =

Âvar(TVt)Âvar(V̂t,τ1)

Âvar(V̂t,τ1)Âvar(V̂t,τ2) + Âvar(TVt)Âvar(V̂t,τ1) + Âvar(TVt)Âvar(V̂t,τ2)
,

and ω
(3)
t = 1−ω(1)

t −ω
(2)
t . The estimates for the asymptotic variances are given in the Appendix. As

seen from the above formula, higher asymptotic variance for a given volatility proxy naturally leads

to smaller weight in the optimal volatility estimator EV . Importantly, the weights {ω(j)
t }j=1,2,3 can

vary over time, reflecting time-varying precision in the recovery of spot volatility from the various

data sources.

The idea of improving on the volatility measurement by combining volatility proxies with un-

correlated measurement errors used above is in the spirit of Ghysels et al. (2020) who show that

one can improve on the measurement of volatility today by “borrowing” information from the past,

7The independence of {Zt,τ1}t≥1, {Zt,τ2}t≥1 and {Zt}t≥1 from F is because the CLT-s for V̂t,τi(ût,τi) and TVt
hold stably, see Todorov (2019) for details.
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provided the volatility process is persistent so that the potential bias in doing this is small. The

difference between the current paper and Ghysels et al. (2020) is that here the volatility proxies use

different sources of information, underlying asset returns and options, while in Ghysels et al. (2020)

inference is based only on returns. In the same spirit as Ghysels et al. (2020), one can also consider

potential further improvements of EVt by utilizing past return and option data in the inference.

2.4 Empirical Evidence

We compute the return- and option-based volatility measures for the S&P 500 market index and

individual stocks in the Dow Jones Industrial Average (DJIA). Our sample for the S&P 500 index

covers the period from the beginning of January 2008 till the end of December 2018, with a total

of 2758 trading days. We consider 28 individual stocks in the DJIA with good option coverage.

Due to the limited availability of short-dated option data on individual stocks in 2008 and 2009,

our sample for individual stocks starts at the beginning of January 2010 and ends at the end of

December 2019 with a total of 2494 trading days on average.8 We obtain option mid-quotes at

market close from OptionMetrics. On each day, we keep up to two maturities, with the shortest

being at least 2 trading days for the S&P 500 index options and at least 3 trading days for the

single-name options.9

We use E-mini S&P 500 futures for computing the return-based market volatility measures.

The high-frequency data for the E-mini S&P 500 futures and individual stocks are obtained from

TickData and TAQ, respectively. We use five-minute sampling frequency in order to minimize

the potential effect from presence of microstructure noise in observed prices. This is particularly

relevant for individual stock data.10 Additional details on the processing of the raw data and the

computation of the volatility measures are provided in the Appendix.

In Figure 2, we plot the return- and option-based volatility measures for the S&P 500 index

and in Panel A of Table 1 we report summary statistics for them. The OV and TV measures

are in general very close, which manifests in very similar time-series medians for the two series.

Nevertheless, we can see that the mean of TV exceeds that of OV . A potential reason for this is

that the separation of volatility from jumps from high-frequency returns is more difficult in periods

8Due to different availability of short-dated options for individual stocks during the sample, the dates of available
option-based volatility estimates differ slightly across stocks.

9The individual stock options are American style while our derivation above of OVt is based on European-style
options. One can correct for the early exercise premium using various approaches, see e.g., Broadie and Detemple
(1996) and references therein. We do not do this here, as the early exercise premium tends to be small for short-dated
out-of-the-money options which are used in our analysis, see e.g., Bakshi et al. (2003).

10We also experimented with realized market volatility measures based on one minute data, with the results being
qualitatively the same as the ones reported in the paper that are based on five-minute data.
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Figure 2: Volatility Estimates for the S&P 500 Index. The figure displays the daily OV
and TV estimates for the S&P 500 index from 2008 to 2018, where OV is the solid line and the
high-frequency measure is plotted with grey dots.

of high volatility where one needs to use a higher threshold.11 We further note that in the early

part of the sample until around the end of 2011, the maturity of the available options is longer

than that for the rest of the sample, see the Appendix for the details. For longer-dated options the

effect of the volatility and jump risk premium is larger and this might generate some upward bias

in the resulting option-based volatility measures.

From Figure 2 and Panel A of Table 1, we can observe that the option-based OV and the

combined EV estimators are both significantly less noisy than TV . In particular, the volatility of

the first-difference of OV is nearly one-fourth that of TV . This results in OV series which is more

persistent than TV .12 By comparing the medians of OV with RV , we can conclude that jump risk

contributes a nontrivial 30% in the total return variation. The difference between OV and EV

is relatively small, with EV having a smaller standard deviation than OV . Finally, in Table 1,

we also report summary statistics for the two popular option measures used in prior work, mainly

the at-the-money BSIV and the V IX.13 As seen from the reported results, the two measures

are significantly upward biased measures of volatility, compared to the return-based TV and our

option-based OV estimator. Not surprisingly, the bias in V IX is higher than that in BSIV as the

former uses out-of-the-money options which have higher implied volatility. The bias in BSIV and

V IX is rather nontrivial and hence they cannot be used directly for studying the volatility without

11The sensitivity of the truncated variation estimator to the choice of the threshold level suggests that realized
jumps are of smaller size and their separation from diffusive moves is difficult at the frequency of five-minute.

12The approximation in (7) shows that OV is an expectation of a (function of) forward looking integrated volatility
which will naturally make it smoother than the latent spot volatility itself due to the mean reversion in volatility.
However, the time-to-maturity of the options used in our analysis is very short and therefore this smoothing effect
should be relatively small.

13We computed the V IX index from our data following the Cboe white paper.
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Table 1: Summary Statistics of Daily Return- and Option-based Variance Measures

Panel A: S&P 500 Index

Mean STD STD(∆) Q25 Median Q75 AR(1)

RV 0.0396 0.0965 0.0724 0.0083 0.0161 0.0354 0.7188

TV 0.0281 0.0673 0.0458 0.0057 0.0113 0.0248 0.7693

OV 0.0222 0.0351 0.0121 0.0058 0.0108 0.0233 0.9404

BSIV 0.0363 0.0546 0.0185 0.0100 0.0188 0.0397 0.9427

V IX 0.0480 0.0714 0.0238 0.0140 0.0252 0.0501 0.9443

EV 0.0211 0.0331 0.0123 0.0056 0.0104 0.0219 0.9304

JV 0.0237 0.0371 0.0169 0.0078 0.0131 0.0235 0.8964

Panel B: Individual Stocks

Ticker #K RV TV OV BSIV V IX JV Ticker #K RV TV OV BSIV V IX JV

AAPL 35 0.0394 0.0323 0.0393 0.0530 0.0638 0.0232 KO 11 0.0172 0.0139 0.0134 0.0200 0.0239 0.0116

AXP 19 0.0264 0.0212 0.0255 0.0379 0.0457 0.0236 MCD 15 0.0189 0.0146 0.0149 0.0218 0.0271 0.0133

BA 22 0.0404 0.0310 0.0325 0.0464 0.0549 0.0243 MMM 14 0.0233 0.0184 0.0171 0.0290 0.0355 0.0205

CAT 22 0.0526 0.0403 0.0411 0.0574 0.0662 0.0265 MRK 16 0.0279 0.0226 0.0209 0.0303 0.0363 0.0176

CSCO 11 0.0483 0.0386 0.0286 0.0458 0.0531 0.0240 MSFT 17 0.0371 0.0297 0.0278 0.0400 0.0473 0.0198

CVX 19 0.0301 0.0249 0.0229 0.0344 0.0412 0.0188 NKE 19 0.0375 0.0291 0.0277 0.0390 0.0454 0.0200

DIS 20 0.0310 0.0252 0.0253 0.0372 0.0458 0.0200 PFE 10 0.0276 0.0225 0.0195 0.0295 0.0348 0.0186

GE 10 0.0411 0.0333 0.0296 0.0476 0.0594 0.0314 PG 17 0.0183 0.0148 0.0127 0.0197 0.0249 0.0137

GS 18 0.0401 0.0314 0.0377 0.0516 0.0599 0.0241 T 12 0.0234 0.0185 0.0172 0.0262 0.0316 0.0161

HD 17 0.0281 0.0220 0.0232 0.0337 0.0403 0.0188 UTX 16 0.0272 0.0214 0.0211 0.0326 0.0391 0.0222

IBM 16 0.0259 0.0207 0.0185 0.0267 0.0327 0.0153 VZ 15 0.0242 0.0189 0.0172 0.0256 0.0318 0.0171

INTC 12 0.0465 0.0372 0.0346 0.0500 0.0583 0.0249 V 17 0.0284 0.0221 0.0275 0.0395 0.0478 0.0217

JNJ 16 0.0159 0.0126 0.0119 0.0177 0.0224 0.0118 WMT 17 0.0220 0.0178 0.0163 0.0232 0.0276 0.0132

JPM 20 0.0368 0.0294 0.0283 0.0417 0.0494 0.0224 XOM 19 0.0249 0.0203 0.0184 0.0276 0.0330 0.0157

Notes: The table reports summary statistics of return- and option-based variance measures for S&P 500 Index from January
2008 to December 2018 (Panel A) and 28 individual stocks in the DJIA from January 2010 to December 2019 (Panel B). For
the S&P 500 Index, we report the time-series mean (Mean), standard deviation (STD), and quantiles (Q25, Median, Q75) for
each measures, together with the standard deviation of the first-order difference (STD(∆V )) and the first-order autocorrelation
coefficient (AR(1)). For individual stocks, we report the time-series medians for each measure together with the median number
of OTM strikes across the sample used for computing the option measures (second column). All variation measures are reported
in annual variance units. The RV and TV series have been annualized using overnight adjustment factor based on the average
variance of open-to-close versus close-to-open returns.

removing the (jump) risk premium component in them.

The significant improvement in precision offered by the option data for the measurement of

spot volatility should lead to nontrivial gains in the parametric and nonparametric study of the

volatility and its dynamics. Since volatility is not directly observable from a discrete price record

of the underlying asset, inference for it from returns is rather nontrivial. There is a large body of

work that deals with this problem. The short-dated option data and the nonparametric method of

Section 2.2 makes the spot volatility effectively observable and this should simplify significantly the
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inference for it. We illustrate this with the nonparametric estimation of the marginal distribution

of Vt. Using OV , we can estimate this distribution by a standard kernel density estimator. For

the estimation of the marginal volatility distribution from the high-frequency returns, we compute

the empirical characteristic function of the high-frequency returns and then perform a regularized

inversion as done in Todorov and Tauchen (2012) (see Christensen et al. (2019) for an alternative

approach). We note that this approach has the advantage of “built-in” robustness towards jumps,

i.e., unlike the computation of TV , it does not require explicit truncation of the returns, and the

associated choice of a tuning parameter for it, to filter out the jumps. In the recovery of the density

of the marginal law of Vt from the returns, we set the regularization parameter as high as possible

to achieve better precision but so that the recovered density has a small number of violations of

quasiconcavity, see Todorov and Tauchen (2012) for further details.

In Figure 3, we compare the density estimates of the spot volatility distribution from the high-

frequency returns and the options. As seen from the figure, the two estimated densities have very

similar modes. However, the return-based estimate implies a volatility density that is far more

dispersed around its mode than the option-based one. The comparison between the two estimated

volatility densities suggests that the primary reason for this is the lower precision in recovering

volatility from returns. This is particularly true for the instances with high volatility realizations

for which separation of volatility from jumps from returns is difficult. Overall, Figure 3 suggests

volatility of volatility is far smaller than implied from return-based volatility estimates. We leave

further analysis of the gains from using OV for studying the volatility dynamics for future work.

We turn next to the individual stock volatility estimates. In Panel B of Table 1 we provide

summary statistics for the volatility measures of each of the individual stocks. We do not compute

EV for the individual stocks as the estimates of the asymptotic variances needed for it are very

noisy, given the significantly smaller number of available short-dated options. Unlike the S&P 500

index case, the overnight period where there is no high-frequency record of the asset price, is rather

nontrivial for individual stock data. Indeed, the variance of the overnight return is around half (or

more) of the variance of the intraday return. Nevertheless, one can form a simple nonparametric

estimate of κ (the length of the overnight period) by simply comparing the average return variance

during the overnight and intraday periods. After scaling up TV using such an estimate of κ, we

can compare the two volatility proxies constructed from stock returns and options. As seen from

Table 1, the levels of the two volatility measures (after scaling up appropriately TV to account for

the overnight variance) are quite close for most of the stocks in the sample. This is remarkable given

that the recovery of volatility from options is significantly more difficult for individual stocks than
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Figure 3: Spot Volatility Density Estimates for S&P 500 Index. The solid line corresponds
to kernel density estimate of annualized

√
OVt, where we use Epanechnikov kernel and the Silver-

man’s automatic bandwidth of h = 0.79×IQR(
√
OVt)×T−1/5, with IQR denoting the inter-quartile

range. The dashed line is the spot volatility density estimate based on five-minute returns (adjusted
for the diurnal intraday pattern) on E-mini S&P 500 futures and using the method developed in
Todorov and Tauchen (2012), with regularization parameter set to R = 1.6.

for the market index due to the more erratic individual stock behavior and the lower number of

individual stock options. We also note that the option-based volatility estimates for the individual

stocks are significantly noisier than their counterparts for the market index. This is mostly due to

the fact that for many of the stocks, the number of available options per day is significantly lower

than for the market index. In spite of that, even for individual stocks, unreported results suggest

that OV is slightly smoother than TV . Finally, we can see that, similar to the market index, BSIV

and the V IX are significantly upward biased measures of the spot volatility of individual stocks.

For all stocks, BSIV is roughly 50% higher than TV and V IX is roughly twice as high as TV

in terms of time-series medians. As such, these measures, unlike OV , are not direct measures of

volatility and hence we will not use them in our analysis henceforth.

3 Forecasting Gains from Combining Noisy Volatility Proxies

Having a more precise estimate of spot volatility should help forecasting future volatility, a point

which is also made in Ghysels et al. (2020). We now illustrate this formally. Suppose that we are

interested in forecasting a random variable Zt+1 using two observable vectors V̂t,1 and V̂t,2 given
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by

V̂t,1 = Vt + Σt,1 × εt,1 and V̂t,2 = Vt + Σt,2 × εt,2, (11)

where Vt, εt,1 and εt,2 are N × 1 random vectors, and Σt,1 and Σt,2 are two diagonal N × N

matrices. The observation error vectors, εt,1 and εt,2, are independent of each other as well as of

Vt, Σt,1 and Σt,2, and Zt+1, and satisfy

E(εt,1) = E(εt,2) = 0N , var(εt,1) = var(εt,2) = IN . (12)

We will assume further that {(Zt,V >t )>}t≥1 is a covariance stationary process, and for simplicity of

exposition that Zt and Vt have both mean zero (i.e., we have de-meaned the variables of interest).

In addition, E(Σ2
t,1) = σ2

1IN and E(Σ2
t,2) = σ2

2IN , for some constants σ1 and σ2.

In our setting we can think of Zt+1 as being the value of a univariate volatility measure in the

next time period which we are trying to forecast using two noisy measures of daily volatility esti-

mates in the past and today - one from returns and one from options (i.e., TV and OV introduced

in the previous section). As mentioned above, limit theory for TV and OV , see Barndorff-Nielsen

and Shephard (2004) and Todorov (2019) and equation (9) above, implies that they satisfy approx-

imately the specification in (11)-(12). More specifically, consider V̂t,1 = (TVt, TVt−1, ..., TVt−N+1)>

and V̂t,2 = (OVt, OVt−1, ..., OVt−N+1)>, and recall that TVt and OVt are daily univariate estimates.

In this specific case, we have Vt = (Vt, Vt−1, ..., Vt−N+1)>. Further, by noting that Zt,τi and Zt in

(9) are independent i.i.d. sequences, defined on an extension of the original probability space and

independent from it, we have

Σ2
t,1 = diag (Avar(TVt), ...,Avar(TVt−N+1)) ,

Σ2
t,2 =

1

2

2∑
i=1

diag
(

Avar(V̂t,τi(ût,τi)), ...,Avar(V̂t−N+1,τi(ût−N+1,τi))
)
.

(13)

Our goal is to characterize the optimal linear forecast of Zt+1, with respect to a square loss function,

using the various volatility proxies constructed from V̂t,1 and V̂t,2. We will first consider the forecasts

based on linear combinations of V̂t,1 and V̂t,2, i.e., the case in which Σt,1 and Σt,2 are unknown.

As is well known, this optimal forecast is given by the linear projection which we will denote with

Ê(Z|X) when using a generic vector X to predict a generic random variable Z. We will first show

that

Ê(Zt+1|V̂t,1, V̂t,2) = Ê(Zt+1|V̂t,mix), (14)
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where we denote

V̂t,mix =
(
σ2

1 + σ2
2

)−1
σ2

2V̂t,1 +
(
σ2

1 + σ2
2

)−1
σ2

1V̂t,2. (15)

That is, the optimal way to combine the volatility proxies for the purposes of volatility forecasting

is by weighting them optimally which leads to using the single predictor V̂t,mix. Note that each

element of V̂t,mix puts the same weight to the corresponding elements of V̂t,1 and V̂t,2. To establish

the above result, suppose that Ê(Zt+1|V̂t,mix) is given by

Ê(Zt+1|V̂t,mix) = α>V̂t,mix, (16)

for some vector α of weights that satisfies

E
[
(Zt+1 −α>V̂t,mix)V̂t,mix

]
= 0N . (17)

To show the result in (14), we need to establish that the following two conditions hold

E
[
(Zt+1 −α>V̂t,mix)V̂t,1

]
= 0N and E

[
(Zt+1 −α>V̂t,mix)V̂t,2

]
= 0N . (18)

First, note that

E((Σt,1εt,1 −Σt,2εt,2)(V̂t,mix − Vt)>) =
σ2

2

σ2
1 + σ2

2

E(Σt,1Σ
>
t,1)− σ2

1

σ2
1 + σ2

2

E(Σt,2Σ
>
t,2) = 0N×N , (19)

and

V̂t,1 − V̂t,mix =
σ2

1

σ2
1 + σ2

2

(Σt,1εt,1 −Σt,2εt,2), V̂t,2 − V̂t,mix =
σ2

2

σ2
1 + σ2

2

(Σt,2εt,2 −Σt,1εt,1). (20)

Since εt,1 and εt,2 are both independent from Zt+1 and Vt, we have E[(Zt+1−α>Vt)(εt,1−εt,2)] = 0N .

This, combined with the above two results, yields:

E
[
(Zt+1 −α>V̂t,mix)(V̂t,1 − V̂t,mix)

]
= 0N and E

[
(Zt+1 −α>V̂t,mix)(V̂t,2 − V̂t,mix)

]
= 0N , (21)

and hence (18), which in turn implies (14). From here, for the expected losses from using V̂t,1 and

V̂t,2 separately and in combination in constructing linear forecasts for Zt+1, we can write

E
(
Zt+1 − Ê(Zt+1|V̂t,i)

)2
= E(Z2

t+1)−E(Zt+1V
>
t )
(
E(VtV

>
t ) + σ2

i IN

)−1
E(Zt+1Vt), i = 1, 2, (22)
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E
(
Zt+1 − Ê(Zt+1|V̂t,1, V̂t,2)

)2
= E(Z2

t+1)− E(Zt+1V
>
t )

(
E(VtV

>
t ) +

σ2
1σ

2
2

σ2
1 + σ2

2

IN

)−1

E(Zt+1Vt).

(23)

Clearly, mixing the two volatility proxies in a linear way leads to reduction in the forecast error,

with the size of this reduction depending on the noise in the two volatility proxies and the covariance

between Vt and Zt+1. Can we do better? Suppose we know Σt,1 and Σt,2. In this case, exactly as

in Section 2.3, we can construct the optimal estimate of Vt on each day by weighting appropriately

the two volatility proxies:

V̂t,opt = ωtV̂t,1 + (IN − ωt)V̂t,2, ωt =
(
Σ2
t,1 + Σ2

t,2

)−1
Σ2
t,2. (24)

The mean squared loss from using V̂t,opt for forecasting Zt+1 is now given by

E
(
Zt+1 − Ê(Zt+1|V̂t,opt)

)2
= E(Z2

t+1)− E(Zt+1V
>
t )
(
E(VtV

>
t ) + E(ωtω

>
t )
)−1

E(Zt+1Vt). (25)

By Jensen’s inequality, the difference

σ2
1σ

2
2

σ2
1 + σ2

2

IN − E(ωtω
>
t ), (26)

is positive semidefinite. Therefore, V̂t,opt provides more efficient forecast than V̂t,mix, with the

size of the efficiency gains depending on the time variation in ωt. Obviously, the same result will

continue to hold even when the vectors V̂t,1 and V̂t,2 are infinite dimensional (i.e., when we are

forecasting using the whole history of volatility proxies).

Overall, our theoretical analysis shows that for the purposes of volatility forecasting and filtering,

the optimal thing to do is to use the volatility proxies in a way that diversifies optimally the

measurement error in them.

4 Market Volatility Forecasting

We now study empirically the gains from including options for the purposes of generating volatility

forecasts. We first introduce in Section 4.1 the models we use for generating the volatility forecasts

as well as the estimation method and then in Section 4.2 we present the empirical results for the

S&P 500 index with the results for the individual stocks reported in the Appendix.

19



4.1 Volatility Forecasting Models and Inference

Our goal is to forecast total future return variance. In general, the optimal linear volatility forecast

will be a moving average of the current and past realizations of the variable used in the forecasting.

To achieve parsimony, we will follow the recent literature on volatility forecasting (see e.g., Bollerslev

et al. (2016)) and consider the heterogeneous autoregressive (HAR) type models proposed by Corsi

(2009), which are autoregressive models with coefficients that are suitably restricted. The generic

HAR forecasting model for h-day ahead realized variance RVt,t+h with predictor Vt is given by:

RVt,t+h = β0,h + β1,hVt,d + β2,hVt,w + β3,hVt,m + εt+h, (27)

where RVt,t+h =
∑h

j=1RVt+j , Vt,d = Vt, Vt,w =
∑5

j=1 Vt+1−j and Vt,m =
∑22

j=1 Vt+1−j . In addition

to the past value of the predictor, the predictive model in (27) also includes the average values

of the predictor over the past week and month. The weekly and monthly regressors allow to

capture in a parsimonious way the well-known long-memory feature of volatility. We refer to the

predictive model for the future RV based on the single variance predictor V as HAR-V . For V

(the predictor), we consider four different measures of volatility, mainly the return-based RV and

TV , the option-based OV and the combined EV .14

We also look at a forecasting model that combines the return- and option-based volatility

predictors TVt and OVt, which we refer to as the HAR-MV:

RVt,t+h = β0,h + β1,hOVt,d + β2,hOVt,w + β3,hOVt,m (28)

+ γ1,hTVt,d + γ2,hTVt,w + γ2,mTVt,m + εt+h.

As illustrated in Section 3, the inclusion of the two alternative volatility estimates helps “diver-

sify” the measurement error in them, and this should be beneficial for the purposes of volatility

forecasting. Unlike the HAR-EV model, however, in the HAR-MV model we do not restrict the

weights assigned to the return- and option-based volatility estimators. On one hand, this provides

an advantage as we do not need estimates of the asymptotic variances of the volatility estimators.

On the other hand, however, we have more parameters to estimate in the predictive regression and

we loose the advantage of assigning time-varying weights to the return- and option-based volatility

estimates. This tradeoffs will be assessed empirically below.

14In the case of individual stocks, we can consider also adding past squared overnight returns in the predictive
regressions because overnight periods generate nontrivial volatility for these assets. Similar to results in Bollerslev
and Todorov (2011), we find that the gains from this are rather limited and therefore we do not do this here.
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Finally, we compare the forecasting performance of the above models with that of the HARQ

model proposed recently by Bollerslev et al. (2016), which is given by

RVt,t+h = β0,h + (β1,h + β1Q,hRQ
1/2
t )RV t,d + β2,hRV t,w + β3,hRV t,m + εt+h, (29)

where RQt is the so-called realized quarticity (estimate for the asymptotic variance of RVt) con-

structed from the high-frequency data. The extra explanatory variable in the above predictive

regression (relative to HAR-RV) is aimed at assigning time-varying weight to past volatility when

forecasting future volatility according to a measure of the precision with each realized volatility is

estimated from the data.15

Turning next to the estimation, we employ robust inference techniques to guard against the

effect of outliers. This is very pertinent for the analysis here as, due to jumps, the RV series

contains a lot of outliers, particularly on the individual stock level. To this end, we use the

Huber loss function (Huber (1964)), which modifies the square loss function corresponding to OLS

estimation by replacing it with linear function for large values of the losses. The use of this robust

inference technique for the estimation of the model parameters, improves nontrivially the forecasting

performance of all considered models.

We evaluate the forecasting performance of the different models using two out-of-sample ap-

proaches, with forecasts generated using only past information. One approach uses a rolling window

(RW) for the model estimation and the other uses increasing window (IW) for this. In our imple-

mentation, we set the length of the rolling window to 1000 days. Our out-of-sample forecasting

period is from December 2011 to December 2018, with a total of 1758 trading days.

4.2 Empirical Evidence

We assess the forecasting performance of the different models using the following loss functions:

MSE(Y, Ŷ ) = (Y − Ŷ )2, QLIKE(Y, Ŷ ) =
Y

Ŷ
− log

(
Y

Ŷ

)
− 1, (30)

15In an analogy to the HARQ model, we also experimented with augmenting the HAR-EV model by including the

term EVt ×
√

Âvar(EVt), for Âvar(EVt) denoting an estimate for the asymptotic variance of EVt. For brevity, we
do not report the estimation results for such an extension of the HAR-EV model as we found its performance to be
very similar to that of HAR-EV.
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where Y denotes the generic variable to be predicted and Ŷ the candidate forecast.16 The above

loss functions differ in the weight they put on forecast errors of different size and/or relation to the

object that is forecasted.

The results for one-day ahead volatility forecasts are presented in Panel A of Table 2. For ease of

comparison, we normalize the forecast losses to the ones corresponding to the benchmark HAR-TV

model. As seen from the table, the HAR-TV model performs very similar to the HAR-RV model

in which the past values of RV are used instead of those of TV . We note in this regard that for

stochastic volatility models with price jumps in which the jump intensity is linear in the diffusive

spot volatility with no volatility jumps, the optimal forecast of RV is a function of the diffusive

volatility only, and hence it is beneficial to split return variation into diffusive and discontinuous

one and use the former only in the volatility forecasting (i.e., HAR-TV should perform better than

HAR-RV). However, if the diffusive volatility jumps and its jumps are related to the price jumps,

then it might be beneficial to use in addition to past TV also the past realized jump variation,

i.e., the difference RV-TV, when forming the volatility forecast. Finally, the comparison between

the HARQ model and our benchmark HAR-TV model provides mixed results. For some metrics,

HARQ provides an improvement over HAR-TV but for other metrics it does worse.

Turning next to a comparison between the return-based and option-based volatility forecasting

models, we note that the HAR-TV model is outperformed by the HAR-OV model for all metrics

and estimation methods with the exception of the QLIKE criterion for IW case. The improvement

offered by HAR-OV in terms of medians of the loss functions, in particular, is rather nontrivial. This

result is indicative of the fact that OV is a more precise estimator of the spot diffusive volatility.

Recall from our theoretical analysis in the previous section that the best performing forecasting

models should be the ones in which the return and option volatility proxies are combined, i.e.,

HAR-MV and HAR-EV should perform best. The results in Table 2 confirm that this is the case

empirically. We note that, since the reported forecasting results are out-of-sample, the evidence in

favor of HAR-MV is not due to overfitting as estimation of redundant coefficients will lead to noisier

forecasts. Recall also that HAR-EV has the same number of predictors as HAR-TV. The reduction

in the forecasting error from using HAR-MV over the benchmark return-based HAR-TV is rather

nontrivial, particularly when looking at the medians of the forecasting losses with those of HAR-

MV being more than 30% smaller than their counterparts for HAR-TV. This, of course, is in line

16When generating forecasts from each of the models, we apply an “insanity filter” for the forecasts, i.e., if a forecast
is outside of the range of the values of the target realized variance observed in the estimation period, the forecast is
winsorized by the minimum or maximum values of observed realized variance in the estimation period. Note that,
even though the considered models are linear and the predictors are non-negative, negative parameter estimates for
some of the coefficients in the forecasting models can nevertheless lead in certain cases to negative volatility forecasts.
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Table 2: Forecasting Results for the S&P 500 Index

Panel A: One-day Ahead Relative Forecasting Loss

Window Criterion HAR-RV HAR-TV HARQ HAR-OV HAR-MV HAR-EV

Rolling Window MSE (Median) 0.9753 1.0000 0.8769 0.6857 0.6680 0.6182

MSE (Mean) 0.9847 1.0000 1.0483 0.8927 0.8637 0.8665

QLIKE (Median) 0.9502 1.0000 0.8904 0.7315 0.6934 0.7107

QLIKE (Mean) 0.9695 1.0000 1.4667 0.9267 0.8152 0.8528

Increasing Window MSE (Median) 1.0317 1.0000 0.7435 0.6186 0.5797 0.5656

MSE (Mean) 0.9646 1.0000 0.9655 0.9016 0.8799 0.8740

QLIKE (Median) 1.0065 1.0000 0.7935 0.7335 0.6925 0.7426

QLIKE (Mean) 0.9980 1.0000 0.9005 1.0377 0.7729 0.9245

Panel B: One-week Ahead Relative Forecasting Loss

Window Criterion HAR-RV HAR-TV HARQ HAR-OV HAR-MV HAR-EV

Rolling Window MSE (Median) 1.0411 1.0000 0.8623 0.6522 0.6389 0.6133

MSE (Mean) 1.0161 1.0000 0.9715 0.8955 0.8728 0.8818

QLIKE (Median) 0.9686 1.0000 0.8531 0.7160 0.6953 0.7087

QLIKE (Mean) 0.9966 1.0000 1.0357 0.9121 0.8019 0.8814

Increasing Window MSE (Median) 0.9945 1.0000 0.8770 0.7246 0.6513 0.6559

MSE (Mean) 0.9920 1.0000 0.9970 0.8432 0.8653 0.8227

QLIKE (Median) 0.9670 1.0000 0.9078 0.8794 0.7522 0.8205

QLIKE (Mean) 0.9988 1.0000 0.9722 1.0954 0.8600 1.0007

Panel C: One-month Ahead Relative Forecasting Loss

Window Criterion HAR-RV HAR-TV HARQ HAR-OV HAR-MV HAR-EV

Rolling Window MSE (Median) 0.9759 1.0000 0.8593 0.7169 0.8331 0.7649

MSE (Mean) 1.0068 1.0000 0.9791 0.9851 0.9523 0.9856

QLIKE (Median) 0.9658 1.0000 0.8716 0.8533 0.8654 0.8641

QLIKE (Mean) 1.0050 1.0000 0.9904 0.9867 0.9146 0.9903

Increasing Window MSE (Median) 0.9878 1.0000 0.9245 0.6183 0.8846 0.6997

MSE (Mean) 0.9903 1.0000 1.0051 0.9021 0.9713 0.9078

QLIKE (Median) 0.9407 1.0000 0.9031 0.7491 0.8974 0.8027

QLIKE (Mean) 1.0007 1.0000 0.9950 1.0179 0.9796 1.0000

Note: The entries in the table are the ratios of the out-of-sample forecasting losses for different models relative to the ones for
the HAR-TV model.

with the “diversification” of the measurement error when combining TV and OV in the forecasting

model, and our empirical results show that the gains from doing this are rather nontrivial.

Finally, we note that the forecasting model HAR-EV performs similar to its counterpart HAR-

MV for some configurations and for others it performs somewhat worse. Recall from Section 3

that allowing for the weight assigned to return-based and option-based volatility to vary over time

can provide additional efficiency gains, provided this time variation is non-trivial. Our empirical

results indicate that such gains are small and even non-existent, which is probably due to the
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noise in estimating the asymptotic variances and the fact that time variation in the weight is not

significant. Another possible explanation is that there is some discrepancy between the return- and

option-based volatility proxies, i.e., a time-varying bias in one or both of them, which makes the

separate inclusion of OV and TV beneficial. Overall, the results reported in Panel A of Table 2

suggest that short-dated options can help nontrivially in forecasting one-day ahead volatility. These

gains are due to the more precise measurement of the true spot volatility and the “diversification”

of the error in measuring volatility when combining option- and return-based measures of volatility.

We next compare the forecasting performance of the different models for horizons of one-week

and one-month. The results are reported in Panels B and C of Table 2 and they are in line

with those for the one-day ahead forecasts reported above. Mainly, the HAR-OV model tends to

outperform the benchmark HAR-TV model. In addition, and as implied by the diversification of

the measurement error in the volatility proxies, the mixture models outperform all other models.

As expected, the gains decrease somewhat relative to the ones for the daily horizon, particularly

for the monthly horizon, but nevertheless they are still quite large.

In order to test formally whether the HAR-MV model provides a statistically significant im-

provement over the benchmark return-based HAR-TV model, we use the modification of the

Diebold-Mariano test proposed by Clark and West (2007) for comparing forecasts of nested models.

The null hypothesis of this test is that the HAR-TV and HAR-MV forecasting models generate the

same forecasting loss while the alternative is that HAR-MV performs better. The results of the test

for the three different forecasting horizons and the two estimation methods all indicate rejection of

the null hypothesis at conventional significance levels, with p-values in all cases being below 0.01.

Overall, the results above show that for the purposes of volatility forecasting, it is best to

combine the return- and option-based volatility proxies, with the size of the forecasting gains over

return-based models being statistically significant. To get a sense of how much the option and

return data contribute to the volatility forecast in the HAR-MV model, we compute the ratio
||βh||

||βh||+||γh|| , where βh = (β1,h, β2,h, β3,h) and γh = (γ1,h, γ2,h, γ3,h), and || · || denotes the Euclidian

norm. For the horizon of one day and when using rolling estimation window, the mean value of

this ratio is 0.74 (the results for the increasing estimation window and the weekly and monthly

horizons are similar). That is, the option-based volatility proxy plays the leading role in generating

the volatility forecast. This is in line with the evidence in Section 2.4 for the higher precision of

OV versus TV . Similarly, the average weight in the EV variable, defined in (10), that is assigned

to the option-based volatility proxy (i.e., ω
(1)
t + ω

(2)
t in (10)) is 0.83.17 We note that this weight,

17Note that option data enters slightly differently in OV and EV . Mainly, OV assigns equal weight to the volatility
estimates from the two maturities while EV weights optimally these two option-based volatility proxies.
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which recall is computed on a daily basis, varies a lot over the sample. This is in part a reflection

of the time-varying quality of the option data as evident for example from the time-variation in the

available options to compute the option-based volatility proxy from, see Figure 6 in the Appendix.

We end this section by comparing the forecasting performance of the best performing mixture

models HAR-MV and HAR-EV and the benchmark HAR-TV model when using an alternative

proxy for future total return volatility which is the variable that is forecasted. That is, in the fore-

casting models introduced above, we replace the future RVt,t+h with ORVt,t+h which we introduce

below. The forecasting gains of the mixture models over the benchmark HAR-TV model should

be easier to see with a less noisy proxy for future volatility. Towards this end, we can utilize the

efficient diffusive volatility estimator EVt to construct a more efficient estimate of total quadratic

variation over the day [t− 1, t] via

ORVt = EVt +RVt − TVt. (31)

The above estimator uses the optimal EVt for the diffusive part of the return variation and a return-

based estimate of the realized jump variation. We note that options cannot help in recovering the

realized jump variation. They can only be used to infer the conditional risk-neutral expectation of

this quantity. As discussed earlier, EVt is an estimate of the spot diffusive volatility at time t. It can

be viewed as an estimator of volatility over [t− 1, t], provided the stochastic variation in volatility

over the interval is negligible.18 ORV reduces the measurement error in RV , and therefore the

reduction in the expected losses of the HAR-MV and HAR-EV models over the HAR-TV model

should be bigger in percentage terms. The empirical results reported in Table 3 confirm this insight.

Indeed, the gains of HAR-MV over HAR-TV increase uniformly, across forecasting horizons and

estimation methods, relative to the case of forecasting the noisier RV .

Table 3: ORV Forecasting Results for the S&P 500 Index

One-day Ahead One-week Ahead One-month Ahead

Window Criterion HAR-MV HAR-EV HAR-MV HAR-EV HAR-MV HAR-EV

Rolling Window MSE (Mean) 0.7317 0.7136 0.7395 0.7209 0.8959 0.9083

QLIKE (Mean) 0.6007 0.5766 0.7268 0.7299 0.8916 0.9209

Increasing Window MSE (Mean) 0.6778 0.6650 0.6842 0.6731 0.7832 0.7600

QLIKE (Mean) 0.5158 0.5073 0.6386 0.6321 0.8232 0.8165

Note: The entries in the table are the ratios of the out-of-sample forecasting losses for different models relative to the ones for
the HAR-TV model when forecasting future ORV .

18An alternative is to use intraday option data and recover EV intraday.
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5 The Information Content of Short-Dated Options

In the analysis so far, we have aggregated the available short-dated options into portfolios that

allow us to estimate non-parametrically the spot diffusive volatility. Mainly, we have used OV for

volatility measurement and forecasting, in addition to the return-based TV , and we have argued

above that this should always provide gains, regardless of the forecasting model, because of the

diversification of the volatility measurement errors. It is natural to ask, however, whether there is

more relevant information in the short-dated options for the purposes of forecasting future volatility.

This is what we aim to answer in this section.

5.1 Risk-Neutral Jump Variation Measures and Their Information Content

We start with extracting jump variation measures from the options which will “span” the remaining

information in them.19 Suppose that the risk-neutral jump compensator of x is given by ηtdt ⊗
F (dx),20 for some time-invariant measure F capturing the distribution of the jump size and a

(predictable) stochastic process ηt capturing the time variation in the jump compensator.21 Then,

because of their short time-to-maturity, the option prices Ot,τ (k) depend on the information at

time t, Ft, only through the spot diffusive variance Vt and the process ηt. That is, the options

are functions of Vt and ηt. The estimator OVt is a measure of Vt and hence the only remaining

information to be extracted from the short-dated options is about the jump compensator. Since

here we are interested only in the predictive content of the option data, it suffices to identify ηt up

to a constant. Towards this end, we introduce a measure of the risk-neutral jump variation. It is

formed as a difference of total risk-neutral return variation and its contribution from the continuous

part of the price:

Ĵt,τ =
2

τ

Nτ∑
j=2

e−kj−1(1− kj−1 + xt)Ôt,τ (kj−1)(kj − kj−1)− V̂t,τ (ût,τ ), (32)

19Our focus in this section is the information content of the option data. For this reason, we do not consider
forecasting models in which jump variation measures constructed from returns are used as predictors. The risk-
neutral jump variation measures and the ones constructed from returns have different time series properties, see e.g.,
Andersen et al. (2015). Moreover, return-based jump variation measures have limited time series persistence and the
gains from their inclusion in volatility forecasting regressions tend to be small, see e.g., Andersen et al. (2007). This
is also indirectly confirmed here by the small differences in the performance of the HAR-RV and HAR-TV models.

20In its most general form, the jump compensator takes the form dt⊗Ft(dx) which allows for different dynamics of
the jumps of different size. However, in essentially all option pricing models considered in prior work, the compensator
is split into a stohastic process (possibly different for positive and negative jumps) that does not depend on the jump
size and a time-invariant measure of the jump size.

21The measure F is a Lévy measure, i.e., it satisfies
∫
R(x2∧1)F (dx) <∞, which allows for situations with F (R) =∞

(infinite activity jumps).
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and from here by averaging across the two available tenors, we get JVt = 1
2

(
Ĵt,τ1 + Ĵt,τ2

)
. The role

of the deep out-of-the-money options in Ĵt,τ is bounded by the weight assigned to them in the port-

folio spanning the second risk-neutral moment of returns given by the portfolio, 2
τ

∑Nτ
j=2 e

−kj−1(1−
kj−1 + xt)Ôt,τ (kj−1)(kj − kj−1), see the proof of Theorem 1 in Todorov (2019).

It is easy to show that

JVt ≈
∫
R
x2F (dx)× ηt, as τ1 ↓ 0 and τ2 ↓ 0. (33)

Note that, in general, we cannot identify separately ηt and the measure F as they enter in a

product form in the jump compensator. Therefore, some normalization of F is needed. A common

one would be to assume that F (R) = 1, i.e., that F is a probability distribution and in this case ηt

can be interpreted as the jump intensity capturing the probability of jump arrival. However, this

normalization is obviously not appropriate when jumps are of infinite activity, i.e., when F (R) =∞.

An alternative one that will work regardless of the jump activity is to set
∫
R x

2F (dx) = 1 in which

case JVt is an estimate of ηt. For the analysis here, we only need ηt up to a constant as a multiple

of ηt will obviously carry the same predictive content. That said, the short-dated options contain

information to identify completely the jump compensator ηtdt⊗F (dx), see Qin and Todorov (2019).

In Figure 4, we plot the market index OV and JV series and the cross-sectional averages of

these measures for the DJIA stocks while summary statistics for JV are reported in Table 1. It

is interesting to note that both for the individual stocks and the market index, the average values

of OV and JV appear very similar. This means that jumps play far more prominent role under

the risk-neutral measure than under the statistical one. This is of course not surprising and is

manifestation of the large risk premium demanded by investors for bearing jump risk. In terms of

time series properties, we can see that OV and JV have similar dynamics.22 This is in line with

parametric models in which the jump intensity is modeled as an affine function of the volatility (and

its factors), see e.g., Bates (2000). Nevertheless differences in the time series behavior of OV and

JV do appear and our formal results later on will confirm that. In particular, JV tends to spike

much higher during crisis episodes than OV . In addition, the market index JV declined somewhat

faster than market volatility after the crisis period in the beginning of 2009. Another notable and

persistent difference between market OV and JV emerges during the quiet period of 2017 and in

the aftermath of the market turmoil of February 2018 when JV was consistently above OV . This

22Note that our separation of the volatility from jumps is based on their different role in the prices of short-
dated options with various strikes. This separation does not rely on differences in time series behavior of the jump
compensator and the spot diffusive volatility.
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suggests that for the market index, the relationship between OV and JV seems to be shifting over

time, with periods in which JV can play more prominent role clearly present. For the DJIA stocks,

the differences between OV and JV seem less persistent and JV appears slightly below OV on

average.
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Figure 4: Option-Based Volatility Measures. Solid lines on the plots correspond to OV while
dotted lines correspond to JV . Top panel displays estimates for the S&P 500 index while bottom
panel displays cross-sectional averages of the option estimates for the DJIA stocks.

With the estimate of the quadratic variation due to jumps JV , the question whether short-

dated options contain additional relevant information for the purposes of volatility forecasting can

be equivalently stated as asking whether JV has incremental information, relative to OV , for future

volatility. Figure 4 suggests that OV and JV have somewhat different dynamics and what we aim

to investigate now is whether this difference contains signals for the value of future volatility. The

answer to this question will of course depend on the dynamics of (Vt, ηt). To fix ideas, let us suppose

that Vt = hv(Ft,1, Ft,2, Ft,3) and ηt = hη(Ft,1, Ft,2, Ft,3), for some time-invariant functions hv, hη

and a three-dimensional Markov process (Ft,1, Ft,2, Ft,3) with independent components. Virtually

all parametric continuous-time option pricing models, considered in prior work, have such dynamics

for the diffusive volatility and the jump intensity (and in most cases the functions hv and hη are

linear). In this setup, if both Vt and ηt load positively on the three latent factors, then adding JV

to OV in forming future volatility forecasts can provide gains. On the other hand, if Vt is loading

only on the first two latent factors while ηt can be represented as a function of Vt and the third

factor (similar to the models of Andersen et al. (2015) and Li and Zinna (2018)), then JV does not

offer additional gains (over OV ) for forecasting future volatility.
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Motivated by the above discussion, we will now test whether future volatility (measured by

realized volatility) and current JV are independent conditional on the current value of OV . That

is, we will test whether the following is true

RVt,t+h ⊥ ηt
∣∣Vt. (34)

This, in turn, can be equivalently formulated using conditional characteristic functions and using

log-transforms:

E
(
eiu log(RVt,t+h)+iz log(ηt)

∣∣ log(Vt)
)

= E
(
eiu log(RVt,t+h)

∣∣ log(Vt)
)
E
(
eiz log(ηt)

∣∣ log(Vt)
)
, (35)

for u, z ∈ R. The above expressions involve conditional expectations and therefore, without

additional assumptions, one would need to perform nonparametric regressions as in Wang and

Hong (2018). Alternatively, we can express the conditional characteristic functions as integrals

involving Vt and unconditional characteristic functions using Fourier inversion, following Bartlett

(1938). More specifically, with the notation ψRV,V,η(u, v, z) = E(eiu log(RVt,t+h)+iv log(Vt)+iz log(ηt)),

for u, v, z ∈ R, we have

E
(
eiu log(RVt,t+h)+iz log(ηt)

∣∣ log(Vt)
)

=

∫
R e
−iv log(Vt)ψRV,V,η(u, v, z)dv∫

R e
−iv log(Vt)ψRV,V,η(0, v, 0)dv

. (36)

From here, (35) leads to∫
R
e−iv log(Vt)ψRV,V,η(u, v, z)dv

∫
R
e−iv log(Vt)ψRV,V,η(0, v, 0)dv

=

∫
R
e−iv log(Vt)ψRV,V,η(u, v, 0)dv

∫
R
e−iv log(Vt)ψRV,V,η(0, v, z)dv,

(37)

and upon taking expectations, we have the following moment conditions involving only uncondi-

tional characteristic functions:∫
R

∫
R
ψRV,V,η(u, v, z)ψRV,V,η(0, w, 0)ψRV,V,η(0,−w − v, 0)dvdw

=

∫
R

∫
R
ψRV,V,η(u, v, 0)ψRV,V,η(0, w, z)ψRV,V,η(0,−w − v, 0)dvdw, u, z ∈ R.

(38)

Note that (38) implies (35) but the reverse does not need to hold. That is, (35) contains more

information than (38) regarding the conditional independence hypothesis in (34). Since testing
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(38) is relatively simple, we will proceed here with a test based on it for a few pairs of (u, z).

Of course, as already discussed above, we do not have direct observations of Vt and ηt but

instead we have estimates of them which satisfy approximately the following

log(OVt) = log(Vt) + εt,1, log(JVt) = log

(
ηt

∫
R
x2F (dx)

)
+ εt,2, (39)

where (εt,1, εt,2)>
∣∣RVt+h, Vt, ηt ∼ N(02×1,Ξt), for some variance-covariance matrix Ξt that is given

explicitly in the Appendix. Then, it is easy to see that the moment condition (38) is equivalent to∫
R

∫
R
ψRV,OV,JV (u, v, z)ψRV,OV,JV (0, w, 0)ψRV,OV,JV (0,−w − v, 0)dvdw

=

∫
R

∫
R
ψRV,OV,JV (u, v, 0)ψRV,OV,JV (0, w, z)ψRV,OV,JV (0,−w − v, 0)dvdw, u, z ∈ R,

(40)

where we denote ψRV,OV,JV (u, v, z) = E(eiu log(RVt,t+h)+iv log(OVt)+iz log(JVt)+(1/2)(v z)Ξt(v z)>). From

here, developing a test for (40) is relatively easy. Mainly, we can form sample moment conditions for

pairs of (u, z), based on (40), and using the empirical characteristic function of (RVt,t+h, OVt, JVt).

The infinite regions of integration in the finite sample counterparts of (40) are replaced with finite,

but asymptotically expanding ones, based on the assumption of smoothness of the probability

density of (RVt,t+h, Vt, ηt), see the Appendix for the details. If the sample moment condition vector

is denoted with m̂, which is of dimension J × 1, our test will measure the distance of m̂ from 0J×1.

The vector m̂ is asymptotically normally distributed with mean zero under the null hypothesis. If

we denote the length of the time-series with T and an estimate of the asymptotic variance with

Σ̂m, then our test statistics is given by

Ŵh = Tm̂>Σ̂−1
m m̂, (41)

and should have an asymptotic χ2(J) distribution if the hypothesis in (34) is true. The details on

the construction of the test and its asymptotic behavior are provided in the Appendix.

We implemented the test on the data for horizons corresponding to one-day, one-week and one-

month. Along with the above test, we also performed its counterpart in which OVt and JVt have

been swapped, i.e., we performed a test for the hypothesis RVt,t+h ⊥ Vt
∣∣ηt. Since for the individual

stocks, the computation of Ξ is unreliable (due to the fewer available strikes for most of the sample

period), we implemented the tests only for the market index. The value of the test statistic for the

hypothesis RVt,t+h ⊥ ηt|Vt is 4.0, 15.0 and 8.3, for horizons h = 1, h = 5 and h = 22, respectively.
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The critical value of the test for 5% significance level is 15.5. This means that the null hypothesis

cannot be rejected at this significance level for any of the three horizons. On the other hand, the

value of the test statistic for the hypothesis RVt,t+h ⊥ Vt|ηt is 19.7, 23.2 and 15.6, for horizons h = 1,

h = 5 and h = 22, respectively. This is evidence against the hypothesis RVt,t+h ⊥ Vt
∣∣ηt. Taken

together, these two sets of test results suggest that ηt has dynamics which differs from the diffusive

volatility Vt but this difference does not seem to be related to future volatility in a significant way.

This is consistent with the empirical finding of Andersen et al. (2015) who find that jump intensity

contains a component that is unrelated to diffusive volatility on the basis of a parametric option

pricing model fitted to market index options.

5.2 Augmented Volatility Forecasting Regressions

While the above results suggest that jump intensity contains no significant additional information

for forecasting future volatility over what is contained in the current level of diffusive volatility (at

least for the market), there can be nevertheless gains from including JV in a volatility forecasting

model. The reason is the measurement error. Mainly, the measurement error in OV and JV is neg-

atively correlated empirically and this means that if the information content of Vt and ηt is similar,

then one can benefit from combining OV and JV in the forecasting model. This diversification of

errors argument is exactly the same as the one discussed in Section 3.

With the above theoretical considerations and theoretical results in mind, we now augment the

HAR-MV model by including the past day value of JV . We refer to this model as HAR-MV-JV. The

reason for including only past day JV is that the gains from diversifying the measurement errors

are largest for the daily estimate. In Table 4, we compare the forecasting performance of HAR-MV

and HAR-MV-JV models. As seen from the table, their performance is similar. Nevertheless,

adding JV in the forecasting model does offer relatively small forecasting improvements. For the

case of the S&P 500 index, the adjusted Diebold-Mariano test of equal forecasting performance

yields p-values ranging from 0.24% to 6.13%, with the strongest statistical support for adding JV

being for the monthly forecasting horizon. The results for the the individual stocks are in general

similar to those for the S&P 500 index and are reported in the Appendix.

Overall, the above results show that the relevant information in the short-dated options for

forecasting future volatility is contained in a portfolio of options that spans (recovers) the diffusive

spot volatility. Additional (but relatively small) gains can be obtained by adding a measure of the

jump variation in the forecasting model.23

23The focus of this paper has been on the information in short-dated options as they allow for direct measurement
of the spot characteristics of the underlying asset, i.e., the diffusive volatility and the risk-neutral jump intensity.
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Table 4: Forecasting Results using Multiple Option Predictors for the S&P 500 Index

One-day Ahead One-week Ahead One-month Ahead

Window Criterion HAR-MV HAR-MV-JV HAR-MV HAR-MV-JV HAR-MV HAR-MV-JV

Rolling MSE 0.8637 0.8235 0.8728 0.7979 0.9523 0.9335

QLIKE 0.8152 0.7615 0.8019 0.7428 0.9146 0.9089

Increasing MSE 0.8799 0.7760 0.8653 0.8141 0.9713 0.9535

QLIKE 0.7729 0.7038 0.8600 0.8226 0.9796 0.9766

Note: The entries in the table are the mean relative losses of HAR-MV and HAR-MV-JV models with respect to
that of the HAR-TV model.

5.3 Implications for Return Predictability

We end this section by documenting the gains offered by the short-dated options for return pre-

dictability. As we will show now, these gains stem from the higher precision in measuring volatility

as well as from the extra information contained in the options (relative to that contained in the

spot volatility). In recent work, Bollerslev et al. (2009) have shown that the market variance risk

premium serves as a strong predictor of future returns. The variance risk premium measure of

Bollerslev et al. (2009) is given by

V RPt(1) = V IX2
t −RVt,m, (42)

where V IXt denotes the CBOE monthly volatility index, which is the risk-neutral expectation at

time t of the volatility over the next month. Using our efficient volatility estimate EVt, we can

improve on the measurement of the past month realized volatility and this leads to the following

more precise measure of the variance risk premium

V RPt(2) = V IX2
t −ORVt,m, (43)

where we recall that our efficient estimate of the realized volatility, ORV , is defined in (31). Upon

computing the two measures using the S&P 500 index data, we find that VRP(2) is significantly

less noisy than VRP(1), with the standard deviation of VRP(2) being approximately 50% smaller

than that of VRP(1). In addition to the above two measures of the variance risk premium, we also

Longer-dated options contain additional information about the volatility and jump risk dynamics but under the risk-
neutral probability. Whether and to what extent this information can help in volatility forecasting will depend on
the properties of the volatility and jump risk premia dynamics. If the latter can be disentangled from the volatility
dynamics under the statistical probability, then one would expect additional volatility forecasting gains from using
longer-dated options in forming the forecast. We leave the analysis of this question for future work.
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consider a jump risk premium predictor defined as

JRPt = JVt,m − (RVt,m − TVt,m). (44)

Note that JVt is a measure of instantaneous risk-neutral jump variation and for this reason we

subtract from it the daily realized jump variation. Since the latter is quite noisy over one day, we

average the jump risk premium estimate over one month.
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Figure 5: Return Predictability Results. Standard errors are computed using the Equal-
Weighted Cosine estimator of the long-run variance with fixed-b critical values proposed in Lazarus
et al. (2018) with degree of freedom equal to 0.4 × T 2/3. The critical value corresponding to the
one-sided 5% test is equal to 1.99 and is plotted as a solid line on the top panel.

We run the following return predictability regressions

rt,t+h = α0,h + α1,hXt + εt+h, (45)

for Xt being V RPt(1), V RPt(2) or JRPt, and rt,t+h being the market excess return over the interval

[t, t+ h] downloaded from Ken French’s website. In Figure 5, we plot the t-statistics for the three

predictors from the univariate predictive regressions along with the associated R2. We can make
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several conclusions from the reported results. First, consistent with existing empirical evidence,

the estimator V RP (1) of Bollerslev et al. (2009) works over short horizons of up to six months.

For horizons longer or equal to six months, the t-statistic for V RP (1) is below the critical value

of a one-sided test with size 5%.24 This is in sharp contrast to the reported results for V RP (2).

Mainly, V RP (2) is a statistically significant return predictor for horizons of six months and above.

These two results suggest that the measurement of the variance risk premium plays a critical role

in the findings regarding its predictive content. In particular, our results suggest that the short

term return predictability of the measure of Bollerslev et al. (2009) seems to be, at least in part,

due to the short-term predictability of the measurement error in RVt,m. The latter will depend on

realized jumps as well as volatility of volatility dynamics, so this type of return predictability seems

plausible. Finally, V RP (2) and JRP have similar predictive ability, with the latter performing

slightly better than the former, both in terms of t-statistics as well as R2.

To conclude, a more precise measure of variance risk premium, based on the short-dated options,

can have a big impact on the conclusion regarding its predictive content and the origins of the return

predictability.

6 Conclusion

In this paper we study empirically the gains offered by short-dated options for the measurement and

forecasting of volatility. Using the approach of Todorov (2019), we construct an option portfolio that

provides a nonparametric estimate of the latent spot volatility. Since the measurement errors in the

option-based volatility proxy and in a volatility estimate constructed from high-frequency returns

on the underlying asset are (asymptotically) uncorrelated, their combined use should provide gains

both for measuring volatility as well as for its forecasting. We document that this is the case

empirically for the S&P 500 market index and stocks in the Dow 30 index. More specifically, we

find that volatility forecasting models in which both past return- and option-based volatility proxies

are used in generating the volatility forecast outperform significantly forecasting models based only

on return or option data. The contribution of the option-based volatility proxy in the volatility

forecast of the mixture models is on average well above 50% for the S&P 500 index and it is around

50% for the individual stocks. We further show that in some cases the risk premium embedded in

the option prices as well as the quadratic variation of the jumps in the underlying asset can provide

24The t-statistic of the regression coefficient and the corresponding R2 viewed as functions of the horizon of the
predictive regressions reported here have very similar shape to those reported in Bollerslev et al. (2009) in spite of
the different samples used in the two papers.
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additional but small gains for volatility forecasting. Finally, the higher precision in measuring

volatility offered by combining return and option data manifests itself in a more precise estimate of

the market variance risk premium predictor used in prior work. We show that the latter exhibits

different predictive behavior for future market returns than previously documented, highlighting

further the importance of efficient volatility measurement proposed in the current paper.
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Appendix

A. Details on the High-Frequency Data and Filters

For the return-based volatility measures for the S&P 500 index we use high-frequency trade data

on the CME E-mini S&P 500 index futures (ES) over the trading hours Sunday to Friday 5:00

P.M. to 4:00 P.M. (Central Time). We obtain 5-minute high frequency trade series for ES futures

from TickData and use the rollover method recommended by TickData (i.e. rollover on the 12th

day of the expiration month). The return-based volatility measures for the individual stocks are

constructed from their high-frequency price records over the trading hours Monday to Friday 8:30

A.M. to 3:00 P.M. (Eastern Time). We obtain Millisecond Trade intraday records for each stock
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from Trade And Quotation (TAQ) dataset. Following Barndorff-Nielsen et al. (2009), we construct

five-minute trade-based price record for the individual stocks by applying the following filters:

1. Delete entries with a trade price of zero.

2. Delete entries with corrected trades (Trades with a nonzero Correction Indicator).

3. Delete entries with abnormal sale condition (Trades with a letter sale condition code).

4. If multiple transactions have the same time stamp: use the median price.

5. Delete entries for which the price deviated by more than 10 mean absolute deviations from

a rolling centered median (excluding the observation under consideration) of 50 observations

(25 observations before and 25 after).

B. Details on the Option Data and Filters

We obtain daily option data at market close for the S&P 500 index and 28 individual stocks in the

Dow 30 index from OptionMetrics IvyDB US file. The underlying spot price is from the security

file and the risk-free rate is from the 30-day maturity zero bond file. We download the earning

announcement and pre-announcement dates from Zacks. Following Andersen et al. (2017), we apply

a set of filters, retaining only trading days (t), maturities (T ) and option observations according to

the following criteria:

1. The trade date of the option is not an abbreviated trading day, a U.S. holiday, or a low-activity

trading day just prior to U.S. holidays.

2. The close-ask and close-bid quotes are not missing and are strictly positive, with the ratio of

close-ask to close-bid less than 10.

3. For the deep-out-of-money options, remove stale quotes by keeping the first call and put with

the minimum tick size.

4. Drop (t, T ) pairs with less than 3 distinct OTM calls and puts.

5. For S&P 500 index options, keep options with 2 to 33 business days to expiration. For

individual stock option, retain options with 3 to 45 business days to expiration.

The daily option-based volatility measures are calculated from up to two distinct short-dated op-

tions for S&P 500 index and single-name equity options, respectively. Figure 6 displays the time-

to-maturity and the number of strikes per day in our sample for the options on the S&P 500

index.
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Figure 6: Option Data Summary for SPX.

C. Details on the Option-based Volatility Measures

C.1. Time-to-maturity Convention and AM Settlement Adjustment

We count time-to-maturity in trading days (and exclude U.S. and exchange holidays). The tra-

ditional monthly SPX options are A.M. settled on the 3rd Friday of the calendar month and can

be traded until the end of trading on the preceding Thursday. The settlement takes place in the

morning of the expiration day. We calculate time-to-maturity for AM settlement SPX options using

an overnight adjustment factor. This overnight adjustment factor is computed as the ratio between

close-to-close full intraday return volatility and open-to-close intraday return volatility,

ON =

∑T
t=1(

∑ncc

i=1 ∆n
t,ix)2∑T

t=1(
∑noc

i=1 ∆n
t,ix)2

, (46)

where ncc and noc represent the number of close-to-close and open-to-close observed price incre-

ments. The time-to-maturity for the AM settled SPX option is then computed as

τ = τAM − 1 +
ON− 1

ON
, (47)
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where τAM denotes the number of business days till expiration (including the expiration day as

well). We calculate the overnight adjustment factor for SPX based on the 5-minute CME E-mini

S&P 500 index futures data for our sample period from January 2008 till December 2018.

C.2. Determining Option Moneyness

We determine moneyness using the synthetic forward level which we compute from the put-call

parity:

Ft,τ = Knear,τ + erf τ
[
Ôt,τ (Knear,τ , C)− Ôt,τ (Knear,τ , P )

]
, (48)

where rf is the risk-free rate and Knear,τ represents the strike price with smallest put-call absolute

price difference. In practice, we use up to 3 near-the-money put-call pairs with the smallest put-call

price absolute difference to calculate the forward level and we then take the median of the resulting

forward estimates.

C.3. Interpolation and Extrapolation for Missing Strikes

The integral in Equation (4) is approximated by a Riemann sum. In order to minimize the impact

from uneven strike grid or from missing option quotes for very low or very high strikes, we perform

interpolation and extrapolation which we now describe.

1. Interpolation. We fill strike gaps by linearly interpolating the Black-Scholes implied volatil-

ities calculated from the observed option prices on a dense uniform strike price grid:

K = [Klow : ∆K : Khigh] (49)

where Klow and Khigh stands for the lowest and highest observed strike price in the data.

We set the strike grid ∆K to 1/8 of the minimum observed strike intervals.We then calculate

option prices on the fine strike grid using the Black-Scholes formula and the interpolated

Black-Scholes implied volatilities. The above-described interpolation is applied both to the

S&P 500 index and individual stock options.

2. Extrapolation. The option-based volatility measure OV has its value determined mostly

from the prices of near-the-money options. Nevertheless, for individual stocks and in relatively

rare cases for the S&P 500 index options, we can have a lot of missing option observations

even for moderate levels of moneyness. That is, for the lowest and/or highest available strike,

the option price might be far from zero. This can have an adverse effect on the volatility

extraction from the options. To prevent this, we perform a tail extension for all individual
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equity option pair (t, τ). We follow Bollerslev et al. (2015) and assume that the return

distribution has regular variation in the tails. More specifically, we first compute the slopes

for left and right tail decays from the quantiles of the observed OTM call and put option

prices separately:

λ̂+ =
log(Ô(KQ75 , C)/Ô(KQ50 , C))

log(KC
Q50

/KC
Q75

)

∨
5, (50)

λ̂− =
log(Ô(KQ50 , P )/Ô(KQ25 , P ))

log(KP
Q50

/KP
Q25

)

∨
5, (51)

where KQp is the p-th quantile of the observed strike prices in the data. We then extend

both tails with strike increment ∆K starting from the deepest OTM call and put strikes in

the observed option data and iterating until the extrapolated call and put option prices fall

below the minimum tick size:25

Ôt,τ (K,C) = e−λ̂
+| log((Khigh+∆K)/Khigh)|Ôt,τ (Khigh, C), K > Khigh, (52)

Ôt,τ (K,P ) = e−λ̂
−| log((Klow−∆K)/Klow)|Ôt,τ (Klow, P ), K < Klow. (53)

where Klow and Khigh are the lowest and highest, respectively, observed strikes.

C.4. Volatility Estimation Prior to Earning Announcements

If on a given day prior to an earnings announcement, both available expiration dates are after the

announcement, we need to modify the original estimator in (5) in order to account for the fixed

time of discontinuity in the underlying asset price. More specifically, following Todorov (2020),

we estimate spot volatility by differencing the two estimators of volatility formed from the two

available tenors as follows

V̂t,τ (ût) = − 2

(τ2 − τ1)û2
t

(
log |L̂t,τ2(ût)| − log |L̂t,τ1(ût)|

)
, (54)

where ût = û
(1)
t ∧ û

(2)
t with

û
(1)
t = inf

{
u ≥ 0 : |L̂t,τ2(u)| ≤ 0.95

}
, ut =

√
−2 log(0.95)

τ2σ̂2
t,ATM

, û
(2)
t = argminu∈[0,u]|L̂t,τ2(u)|. (55)

25The minimum tick size is set according to options specifications on Cboe website: http://www.cboe.com/

products/contract-specs-and-trading-hours/contract-specs.
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We note that the tuning parameter ût is set in a slightly different way than for the original estimator

in (6). The reason for this is that in the presence of a fixed time to discontinuity prior to the

expiration of the option contract, the price increment is no longer of order op(1) but is Op(1).

The estimator V̂t,τ (ût) above is a valid volatility estimator on regular days (without fixed times

of discontinuity in the underlying prior to expiration) as well but it is far less efficient than the

original one in (5).

C.5. Efficient Volatility Estimator

For the construction of EV in Section 2.3, we need estimates for the asymptotic variances of each of

the two volatility proxies. We start with the option-based one. Each volatility estimator V̂t,τ (ût,τ )

is computed from options having time-to-maturity τ and whose log-strikes are given by

k1 < k2 < ... < kNτ ,

where in order to simplify notation, we suppressed dependence on t and τ in the notation of the

grid of log-strikes. Following Todorov (2019), the estimate for the asymptotic variance of the

option-based volatility estimate is given by

Âvar(V̂t,τ ) =
4

τ2û4
t,τ |L̂t,τ (ût,τ )|4

(
<
(
L̂t,τ (ût,τ )

)2
A

(1)
t,τ + =

(
L̂t,τ (ût,τ )

)2
A

(2)
t,τ

+ 2<
(
L̂t,τ (ût,τ )

)
=
(
L̂t,τ (ût,τ )

)
A

(3)
t,τ

)
,

(56)

where with the notation

ft(u, k) = (u2 + iu)e(iu−1)k−iuxt , (57)

we set

A
(1)
t,τ =

Nτ∑
j=2

<(ft(ûτ , kj−1))2σ̂t,τ (kj−1)2(kj−kj−1)2, A
(2)
t,τ =

Nτ∑
j=2

=(ft(ûτ , kj−1))2σ̂t,τ (kj−1)2(kj−kj−1)2,

A
(3)
t,τ =

Nτ∑
j=2

<(ft(ûτ , kj−1))=(ft(ûτ , kj−1))σ̂t,τ (kj−1)2(kj − kj−1)2,
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and we denote

σ̂t,τ (kj) =

√
2

3

(
Ôt,τ (kj)−

1

2
Ôt,τ (kj−1)− 1

2
Ôt,τ (kj+1)

)
, j = 2, ..., Nτ − 1, (58)

with σt,τ (k1) = σt,τ (k2), and further for kj∗ being the log-strike closest (in absolute value) to xt,

we set

σ̂t,τ (kj∗) = Ôt,τ (kj∗)− Ôt,τ (kj∗−1)− (Ôt,τ (kj∗−1)− Ôt,τ (kj∗−2))
Kj∗ −Kj∗−1

Kj∗−1 −Kj∗−2
, if kj∗ ≤ xt,

σ̂t,τ (kj∗) = Ôt,τ (kj∗)− Ôt,τ (kj∗+1)− (Ôt,τ (kj∗+1)− Ôt,τ (kj∗+2))
Kj∗ −Kj∗+1

Kj∗+1 −Kj∗+2
, if kj∗ > xt.

(59)

Finally, the estimate for the asymptotic variance of the return-based volatility estimate is given

by (see e.g., Jacod and Protter (2011)):

Âvar(TVt) =
2

3

n∑
i=1

(∆n
t,ix)41

(
|∆n

t,ix| ≤ 3
√
BVt ∧RVt × n−1/2

)
, t ∈ N+.

D. Testing for Conditional Independence

D.1. Formulation of the Test and the Asymptotics for it

We start with forming the empirical characteristic function:

ψ̂RV,OV,JV (u, v, z) =
1

T − h

T−h∑
t=1

eiu log(RVt,t+h)+iv log(OVt)+iz log(JVt)+(1/2)(v z)Ξt(v z)> , u, v, z ∈ R,

(60)

and using it, we define the following moment estimator

m̂(u, z) =

∫ vT

−vT

∫ vT

−vT
(ψ̂RV,OV,JV (u, v, z)ψ̂RV,OV,JV (0, w, 0)

− ψ̂RV,OV,JV (u, v, 0)ψ̂RV,OV,JV (0, w, z))ψ̂RV,OV,JV (0,−w − v, 0)dvdw,

(61)

for u, z ∈ R and where vT is a sequence going to infinity that satisfies vT /
√
T → 0. We denote a

vector formed of moment conditions m̂(u, z), for several different values of the pair (u, z), with m̂.
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We next define Σ̂m. For this, we first introduce the following notation

ζt(u, v, z) = eiu log(RVt,t+h)+iv log(OVt)+iz log(JVt)+(1/2)(v z)Ξt(v z)> − ψ̂RV,OV,JV (u, v, z), (62)

and denote

m̂t(u, z) =

∫ vT

−vT

∫ vT

−vT
m̂t(u, z; v, w)dvdw, (63)

where

m̂t(u, z; v, w) = ζt(u, v, z)ψ̂OV (w)ψ̂OV (−w − v) + ψ̂RV,OV,JV (u, v, z)ζt(0, w, 0)ψ̂OV (−w − v)

+ ψ̂RV,OV,JV (u, v, z)ψ̂OV (w)ζt(0,−w − v, 0)− ζt(u, v, 0)ψ̂OV,JV (w, z)ψ̂OV (−w − v)

− ψ̂RV,OV (u, v)ζt(0, w, z)ψ̂OV (−w − v)− ψ̂RV,OV (u, v)ψ̂OV,JV (w, z)ζt(0,−w − v, 0),

with the shorthand notation ψ̂OV (v) = ψ̂RV,OV,JV (0, v, 0), ψ̂RV,OV (u, v) = ψ̂RV,OV,JV (u, v, 0) and

ψ̂OV,JV (v, z) = ψ̂RV,OV,JV (0, v, z). Then, Σ̂m is simply the long-run variance estimate of the

moment vector, which we form using a Bartlett kernel:

Σ̂m = γ̂m(0) +

LT∑
l=1

(
1− k

LT + 1

)
(γ̂m(l) + γ̂m(l)>), (64)

for a sequence LT increasing to infinity as T →∞.

The behavior of the resulting test, given in (41), is not entirely standard because of the increasing

range of integration over the products of the joint characteristic functions. Therefore, we need to

ensure that the bias introduced in the moment condition introduced from that is asymptotically

negligible. This will follow by choosing vT appropriately and making use of an assumption for the

smoothness for the joint probability density of (RVt+h, Vt, ηt). More specifically, an assumption for

the existence and integrability of the first three partial derivatives of this probability density with

respect to the second element (Vt) ensures that (see e.g., Lemma XV.4.4 in Feller (1971)):

ψRV,OV,JV (u, v, z) = O(|v|−3), for |v| → ∞ and u, z ∈ R fixed. (65)

In addition, a standard ergodicity and mixing condition for the time series (RVt+h, Vt, ηt) yields

(see e.g., Theorem VIII.3.102 in Jacod and Shiryaev (2013)):

E||ψ̂RV,OV,JV (u, v, z)− ψRV,OV,JV (u, v, z)||2 ≤ C/T, for |v| ≤
√
T , (66)
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and some constant C that does not depend on T as well as u, v, z. These two results can be used to

reduce the asymptotics for the test to the derivation of a standard CLT for stationary sequences.

In particular, lets define

m(u, z) =

∫
R

∫
R

[(ψ̂RV,OV,JV (u, v, z)− ψRV,OV,JV (u, v, z))ψOV (w)ψOV (−w − v)

+ ψRV,OV,JV (u, v, z)(ψ̂OV (w)− ψOV (w))ψOV (−w − v)

+ ψRV,OV,JV (u, v, z)ψOV (w)(ψ̂OV (−w − v)− ψOV (−w − v))

− (ψ̂RV,OV (u, v)− ψRV,OV (u, v))ψOV,JV (w, z)ψOV (−w − v)

− ψRV,OV (u, v)(ψ̂OV,JV (w, z)− ψOV,JV (w, z))ψOV (−w − v)

− ψRV,OV (u, v)ψOV,JV (w, z)(ψ̂OV (−w − v)− ψOV (−w − v))]dvdw,

(67)

where we use the shorthand notation ψOV (v) = ψRV,OV,JV (0, v, 0), ψRV,OV (u, v) = ψRV,OV,JV (u, v, 0)

and ψOV,JV (v, z) = ψRV,OV,JV (0, v, z). Then, using (65) and (66), it is easy to show under the null

hypothesis in (40):

||m̂(u, z)−m(u, z)|| = Op

(vT
T

∨
v−2
T

)
. (68)

From here, by standard CLT for stationary and mixing sequences, one can establish under the null

hypothesis (40), and provided vT /
√
T → 0 and vT /T

1/4 →∞:

√
Tm̂

L−→ N(0,Σm), (69)

where Σm is the long-run variance-covariance matrix corresponding to the moment vector with

moment conditions given by m(u, z).

We proceed next with the consistency of Σ̂m. We first define mt(u, z; v, w) from m̂t(u, z; v, w)

by replacing ψ̂RV,OV,JV with ψRV,OV,JV , and from here

mt(u, z) =

∫
R

∫
R
mt(u, z; v, w)dvdw. (70)

With this notation, we introduce the long-run covariance matrix based on mt(u, z) as

Σm = γm(0) +

LT∑
l=1

(
1− k

LT + 1

)
(γm(l) + γm(l)>), (71)

where γm(l) is the sample autocovariance corresponding to mt(u, z). Using (65) and (66), it is easy
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to show under the null hypothesis in (40):

||Σ̂m −Σm|| = Op

(
vTLT√
T

∨
v−2
T LT

)
, (72)

which is asymptotically negligible when vT /
√
T → 0 and vT /T

1/4 → ∞, provided LT grows at a

slow rate (depending on the choice of vT ). The consistency of Σm for Σm follows by standard

arguments for stationary and mixing sequences.

D.2. Tuning Parameters

First, we set vT in the following way

vT =
2

3
× T 0.26

std(OVt)
. (73)

Second, in implementing the test, we use two different values for u and z, which results in 4 different

vectors (u, z) and a total of 8 moment conditions (recall that m̂(u, z) are complex numbers). The

two different values for u and z are such that the univariate characteristic functions of RVt+h and

JVt, respectively, reach values of 0.75 and 0.25.

Third, for the estimation of the long-run variance, we set LT = 132 (six months), which corre-

sponds approximately to three months.

Finally, the matrix of asymptotic variances Ξt is given by

Ξt =
1

4


1
OVt

0

0 1
JVt


0 1

1 −1

(Ξt,τ1 + Ξt,τ2
)
0 1

1 −1


>

1
OVt

0

0 1
JVt

 , (74)

where Ξt,τ is a 2× 2 matrix with the following entries

Ξ
(1,1)
t,τ =

1

τ2

Nτ∑
j=2

gt(kj−1)2σ̂2
t,τ (kj−1)(kj − kj−1)2, Ξ

(2,2)
t,τ = Âvar(V̂t,τ ), (75)

and

Ξ
(1,2)
t,τ = − 2

τ2û2
t,τ |L̂t,τ (ût,τ )|2

(
<
(
L̂t,τ (ût,τ )

)
A

(1)
t,τ + =

(
L̂t,τ (ût,τ )

)
A

(2)
t,τ

)
, (76)
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with the notation in (56) and (58)-(59) as well as


A

(1)
t,τ =

∑Nτ
j=2<(ft(ûτ , kj−1))gt(kj−1)σ̂t,τ (kj−1)2(kj − kj−1)2,

A
(2)
t,τ =

∑Nτ
j=2=(ft(ûτ , kj−1))gt(kj−1)σ̂t,τ (kj−1)2(kj − kj−1)2,

(77)

and

gt(k) = 2e−k(1− k + xt). (78)

Since on a few days, the estimation of Ξt can be unreliable (mainly due to low number of available

strikes on the day), we exclude these days from the calculation of the test. More specifically, we

drop days on which v2
TΞ

(11)
t > 2.

E. Volatility Forecasting for Individual Stocks

In this section we evaluate the gains from using option data for volatility forecasting on individual

stock level. We estimate the univariate volatility forecasting models for all 28 stocks in our sample.

Due to the shorter sample, our out-of-sample forecasting period is from January 2013 to December

2019. For each stock, we estimate the HAR models for generating one-day, one-week, and one-month

ahead volatility forecasts. In order to save space, we report only the average relative forecasting

loss ratios across all stocks for the different models, with the benchmark being again HAR-TV.

The volatility forecasting results are reported in Table 5. Starting with the one-day ahead

volatility forecasts, we can see from Panel A of Table 5 some differences in the ranking of the models,

according to their forecasting performance, relative to the case of forecasting market volatility.

First, HAR-TV performs best among the return-based forecasting models according to any metric

and estimation method. This is likely due to the fact that idiosyncratic jumps in individual stock

prices can make raw realized volatility rather noisy. Second, in sharp contrast to market volatility

forecasting, here the HAR-OV model is uniformly outperformed by HAR-TV. There are likely two

reasons for this. One is that the individual stock option data is of significantly lower quality than

the S&P 500 index option data (in terms of number of available options and the noise in them).

Another is the possible biases in the option-based volatility measure, e.g., due to the early exercise

premium in the American style individual stock options. Recall from our theoretical discussion

earlier, however, that even if OV is noisier than TV , combining OV and TV should still offer gains

for volatility forecasting. This is confirmed by our results here. Indeed, the HAR-MV model is the
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Table 5: Forecasting Results for DJIA Stocks

Panel A: One-day Ahead Relative Forecasting Loss

Window Criterion HAR-RV HAR-TV HARQ HAR-OV HAR-MV

Rolling Window MSE (Median) 1.0336 1.0000 1.0234 1.1385 0.9253

MSE (Mean) 1.0248 1.0000 1.0219 1.0293 0.9658

QLIKE (Median) 1.0320 1.0000 1.0105 1.1655 0.9569

QLIKE (Mean) 1.0224 1.0000 1.0413 1.1055 0.9414

Increasing Window MSE (Median) 1.0279 1.0000 1.0084 1.0049 0.8617

MSE (Mean) 1.0246 1.0000 1.0083 1.0556 0.9697

QLIKE (Median) 1.0255 1.0000 1.0123 1.1324 0.9199

QLIKE (Mean) 1.0130 1.0000 1.0361 1.1508 0.9481

Panel B: One-week Ahead Relative Forecasting Loss

Window Criterion HAR-RV HAR-TV HARQ HAR-OV HAR-MV

Rolling Window MSE (Median) 1.0178 1.0000 0.9941 0.8795 0.7921

MSE (Mean) 1.0265 1.0000 1.0114 0.9586 0.9140

QLIKE (Median) 1.0215 1.0000 0.9985 0.9288 0.8412

QLIKE (Mean) 1.0192 1.0000 1.0242 0.9731 0.8797

Increasing Window MSE (Median) 1.0200 1.0000 0.9766 0.7423 0.7122

MSE (Mean) 1.0204 1.0000 0.9985 0.9957 0.9270

QLIKE (Median) 1.0251 1.0000 0.9989 0.8611 0.8077

QLIKE (Mean) 1.0106 1.0000 1.0078 1.0243 0.8963

Panel C: One-month Ahead Relative Forecasting Loss

Window Criterion HAR-RV HAR-TV HARQ HAR-OV HAR-MV

Rolling Window MSE (Median) 0.9990 1.0000 0.9780 0.9429 0.8993

MSE (Mean) 1.0206 1.0000 0.9947 0.9925 0.9485

QLIKE (Median) 1.0170 1.0000 0.9906 1.0054 0.9330

QLIKE (Mean) 1.0102 1.0000 0.9997 0.9856 0.9572

Increasing Window MSE (Median) 0.9962 1.0000 0.9798 0.8349 0.8266

MSE (Mean) 1.0112 1.0000 0.9869 1.0170 0.9550

QLIKE (Median) 1.0054 1.0000 0.9847 0.9298 0.8859

QLIKE (Mean) 0.9993 1.0000 0.9929 1.0244 0.9568

Note: The entries in the table are the ratios of the cross-sectional averages of the out-of-sample forecasting losses for different
models relative to the ones for the HAR-TV model.

best among all considered models with gains of around 4-5% over HAR-TV. The test of Clark and

West (2007) of equal performance of HAR-TV and HAR-MV rejects that null at the conventional

5% significance level, both when using rolling and increasing estimation windows.

Turning next to the weekly volatility forecasts, we see from Panel B of Table 5 that the gains

from using option data get larger in relative terms than those for the daily horizon. Indeed, now

HAR-MV provides more than 15% reduction in the forecasting loss over the HAR-TV model when

using time series medians of the losses in the comparison and around 10% reduction when using
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time series means of the losses. The reason for the larger gain for the weekly horizon is likely

the fact that there is a lot of return variation at daily frequency in stocks that is hard to forecast

only with past volatility proxies as in the HAR models considered here, and this tends to put all

models closer together in terms of their forecasting performance. When looking at weekly and

longer horizons, the role of such higher frequency components of the return variation diminishes

and this makes the differences in the performance of the various forecasting models much bigger (in

relative terms). Finally, Panel C of Table 5 shows that gains from using options for the purposes of

volatility forecasting exist for a monthly horizon as well. Moreover, almost uniformly across stocks

(with the exception of two stocks for the monthly horizon with increasing window), these gains are

statistically significant at 5% significance level.

Overall, as in the case of S&P 500 index, the best model for forecasting individual stock volatility

is HAR-MV. For this model, we computed the ratio ||βh||
||βh||+||γh|| in order to assess the relative weight

assigned to the option-based volatility proxy in the volatility forecast. The cross-sectional mean of

the time series mean of this ratio for the daily horizon and when using rolling estimation window

is 0.48. This is somewhat lower than the corresponding number for the S&P 500 index and reflects

the lower quality of the individual option data relative to market index option data.

Finally, in Table 6, we compare the forecasting performance of the HAR-MV model with that

of the HAR-MV-JV model introduced in Section 5.2. Qualitatively, the results are similar to those

reported for the S&P 500 index in Table 4. Mainly, the risk-neutral jump variation measure JV

offers only minor forecasting gains (if any). The cross-sectional median of the adjusted Diebold-

Mariano test for equal forecasting performance has p-value ranging from 0.27% to 16.54%, with

the highest gains (statistically) from adding JV being for daily and weekly horizons.

Table 6: Forecasting Results using Multiple Option Predictors for DJIA Stocks

One-day Ahead One-week Ahead One-month Ahead

Window Criterion HAR-MV HAR-MV-JV HAR-MV HAR-MV-JV HAR-MV HAR-MV-JV

Rolling MSE 0.9658 0.9568 0.9140 0.8847 0.9485 0.9401

QLIKE 0.9414 0.9155 0.8797 0.8279 0.9572 0.9426

Increasing MSE 0.9697 0.9600 0.9270 0.9038 0.9550 0.9481

QLIKE 0.9481 0.9220 0.8600 0.8963 0.9568 0.9447

Note: The entries in the table are cross-sectional averages of the mean relative losses of HAR-MV and HAR-MV-JV
models with respect to that of the HAR-TV model.
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