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Abstract
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1 Introduction

The movements of financial asset prices are driven by underlying economic shocks. Large
market-wide shocks are often caused by unanticipated components of economic policies, such
as central banks’ decisions on interest rates and governments’ emergency aids during a crisis.
Understanding the impact of policy shocks on financial markets and the macroeconomy is evi-
dently of great interest for both academics and policy makers. Disentangling such shocks from
the other confounding factors, however, presents a difficult empirical challenge. The conven-
tional approach based on structural vector autoregressive (VAR) models ([9]) often relies on
strong orthogonalization assumptions, and may incorrectly interpret anticipated actions to be
shocks ([36], [13]).

An alternative approach to achieve identification, which has become increasingly popular in
the recent literature, is to study the behavior of asset prices in short time-windows around certain
news announcements, so that high-frequency price movements can be plausibly attributed to
the announced information. A prominent example in this regard concerns the reaction of asset
prices to monetary policy shocks triggered by FOMC announcements. For instance, [23], [13],
and [30] use moves in bond futures prices around FOMC announcements to identify monetary
shocks; [32, 33] and [5] use information in asset price data around FOMC announcements to
study the impact of monetary shocks on asset prices; and [3] study the effect of macroeconomic
news on long-term yields and compare it with that implied by structural models.'

A key implication of having one type of shock driving multiple asset prices around the news

event (e.g., FOMC announcements) is that the resulting abnormal change, or “jump,” in assets’

"There is also a large literature in finance that documents the equity risk premium earned
during different phases of the FOMC news release cycle; see, for example, [38], [28], and [10].
[1] provide a non-expected utility theory that explains the risk premium related to macro news
announcement.



stochastic covariance matrix should have a one-factor structure. A case in point is the conven-
tional monetary policy, which focuses solely on the short-term interest rate. But some policy
shocks may be multi-dimensional. For example, during the Great Recession of 2007-2009 and
its aftermath, the Federal Reserve and many other central banks were impelled to employ new
monetary policy tools such as forward guidance and large-scale asset purchases; see [4] for a
recent review. It is conceivable that the complex mix of policy tools may have resulted in multi-
dimensional policy shocks in the era of unconventional monetary policy. Nonetheless, if the
dimensionality of the policy shock is lower than the number of assets, which is likely the case,
the announcement-induced jump in the covariance matrix may still be of reduced rank. Pinning
down the dimensionality of policy shocks is a natural starting point for the further understand-
ing of their impact on asset prices and other economic quantities. The dimensionality, however,
cannot be directly read off from the actual announcement, because the shock stems from the
unanticipated policy component, rather than the policy itself.

Set against this background, our goal in this paper is to provide a formal test to rigorously
uncover the dimensionality of policy shocks as manifest in asset prices. The method is decidedly
nonparametric, and is based on intraday high-frequency observations of assets’ returns around
news events such as pre-scheduled macroeconomic announcements. Using the high-frequency
data, we form nonparametric estimates of the instantaneous (or “spot”) covariance matrices of
asset returns immediately before and after the event. Their difference is our estimate of the co-
variance jump matrix. With the underlying confounding factors differenced out, the covariance
Jjump matrix captures the effect of the policy shock on asset prices, and its rank is equivalent
to the shock’s dimensionality. Econometrically, we carry out the rank test by checking whether
all but the r largest (in magnitude) estimated eigenvalues are statistically equal to zero, where

r is the dimensionality being tested. The corresponding test statistic is defined as the sum of



squared estimated eigenvalues associated with the zero eigenvalues under the null hypothesis.

We establish the asymptotic properties of the test in an in-fill asymptotic framework with
the sampling interval of high-frequency observations going to zero asymptotically. The lim-
iting distribution of the test statistic is nonstandard: it takes form of a weighted mixture of
chi-squared random variables, with the random weights depending on the stochastic volatili-
ties before and after each event. Importantly, the event-specific heterogeneity is fully reflected
in these random weights, without being “averaged out” as in conventional event-study method
based on classical time-series tools. This desirable feature is achievable here because we draw
inference from the “large number” of intraday observations around individual events, rather
than by pooling a large number of distinct events based on a (likely fragile) homogeneity pre-
sumption.? For the same reason, the proposed high-frequency econometric method can in fact
be implemented on an event-by-event basis. Since the limiting distribution of the test statistic
is nonstandard, we propose and theoretically justify an easy-to-implement bootstrap method
for constructing critical values, which exhibits good finite-sample performance in empirically
realistically calibrated Monte Carlo experiments. Our analysis of the asymptotic behavior of
the test statistic and the associated bootstrap method is new to the literature, which is the main
theoretical contribution of the present paper.

On the empirical side, we apply the proposed inference procedure to study the dimension-
ality of policy shocks generated by FOMC announcements through testing the rank of the re-
sulting stochastic covariance jump matrix of the yield curve. Our sample spans the period from
October, 2001 till August, 2018, and covers 135 scheduled FOMC announcements. We study
the responses of Eurodollar and Treasury security futures with maturities ranging from one year

to thirty years. The testing results show that, prior to the financial crisis of 2007-2009, the co-

2See [24] for additional discussions on the conventional event-study approach and the related
fragility issue.



variance jump matrix of bond futures around FOMC announcements had a one-factor structure,
which suggests that monetary policy shocks were one-dimensional under the conventional mon-
etary policy regime. However, from the onset of the use of unconventional monetary policies
by the central bank, the dimensionality of the policy shock increased to three in the 2007-2009
crisis period, and largely stayed at two from then on. These findings formally demonstrate the
complex impact of monetary policy on asset prices during the crisis and its aftermath. In par-
ticular, they are consistent with the fact that news about forward guidance and large-scale asset
purchases can generate shocks not only to investors’ long-term expectations of interest rates but
also to bond risk premia as recently discussed by [4]. Our post-crisis testing results are also in
line with the findings of [18], [12], [11], and [40] for the multi-factor structure of asset returns
around FOMC announcements.

The present paper is related to several strands of literature. There is a large literature on
rank testing in various economic contexts; see, [35], [19], [25], [15], [17], and [34], among
others. Our theory is different from that prior literature mainly due to its nonstandard in-fill
asymptotic setting, which in particular allows for essentially unrestricted non-stationarity and
data heterogeneity in a non-ergodic setting. Under the in-fill asymptotic setting, [27] recently
studied a rank test for price jumps of multiple assets over a collection of statistically detected
jump events. But the econometric analysis here is fundamentally different from that prior work
for two reasons. One is that we focus on jumps in the spot covariance matrix, treating the
price jumps as a nuisance. The other difference is that we consider pre-scheduled macro news

announcements rather than statistically detected price-jump events.> These differences also

3[21] show both theoretically and empirically that a news announcement does not necessar-
ily cause a price jump, but generally leads to elevated trading activity when investors agree-
to-disagree on the interpretation of the news, which in turn results in heightened level of asset
price volatility after the announcement; see [28] and [6] for additional empirical evidence for
macro news announcements.



manifest in the methods’ distinct empirical scopes: our test speaks to the dimensionality of
announcement-induced policy shocks, whereas the method of [27] mainly concerns the stabil-
ity of factor loadings over time. Our analysis on the rank of the covariance jump matrix is
more generally related to heteroskedasticity-based identification of simultaneous linear equa-
tions models ([31], [33]), for which the key identification assumption is that the change in the
covariance matrix of asset returns has rank one. Our in-fill asymptotic theory also contributes
to the high-frequency econometrics literature on nonparametric volatility inference; see, for ex-
ample, [16], [14], [22], and [20]. However, unlike the prior work, our focus is not on the spot
volatility estimation per se, but rather on the rank of the covariance jump matrix. Finally, our
bootstrap inference shares the same “local 1.i.d.” re-sampling scheme as originally proposed by
[6]. Our new bootstrap result is developed under much weaker conditions (regarding jump ac-
tivity) in a more general multivariate setting; moreover, [6] does not consider rank test, which
is exactly the focus here.

The remainder of the paper is organized as follows. Section 2 describes the new infer-
ence method and the underlying asymptotic theory. In Section 3, we examine the finite-sample
performance of the proposed test in a Monte Carlo experiment. An empirical application on
monetary policy shocks is presented in Section 4. Section 5 concludes. The online supplemen-
tal appendix contains all proofs and additional numerical results. The following notation will be
used. We denote the d-dimensional identity matrix by /;. The Euclidean norm is denoted |-||.
For a matrix A, we use A;;, and A" to denote its (j, k) element and transpose, respectively. For
two real sequences a,, and b,,, we write a,, < b, if a,,/C < b, < Ca,, for some finite constant

¢ >1.



2 The econometric method

We describe the rank test of spot covariance jump matrix in this section. Section 2.1 introduces

the setting, and Section 2.2 describes the test and establishes its asymptotic validity.

2.1 The setting

Suppose that the vector of log price processes X is a d-dimensional Itd semimartingale, d > 2,

defined on a filtered probability space (2, F, (F;):>0, P) that can be written as
t t
Xe=Xo+ / bsds + / osdWy + Jy, 2.1
0 0

where the d-dimensional drift process b is optional, the stochastic volatility matrix process o is
cadlag adapted and takes values in R%*¢, and W is a standard d-dimensional Brownian motion.
The J process captures the price jumps, defined as the sum of a purely discontinuous local
martingale with jump sizes no bigger than 1 and a pure-jump process with jump sizes bigger
than 1, both of which are driven by a homogeneous Poisson random measure on R, x R. We

impose the following regularity conditions on the underlying processes.

Assumption 1. Suppose that X has the form (2.1) and there exists a sequence (T,,)m>1 of
stopping times increasing to infinity and a sequence (Km)m21 of constants such that the fol-

be| + |ou| + [ou| " +

lowing conditions hold for each m > 1: (i) for some constant v € [0, 2),
J (=" A1) Fy(dz) < Ky, for all t € [0,T,,), where Fy denotes the spot Lévy measure of J; (ii)

El|loinr, — osnr, 2] < K|t — 8| forall t,s € [0,T).

Assumption 1 entails some very mild and rather standard regularity conditions, allowing

for essentially unrestricted price and volatility jumps, leverage effect, and intraday periodicity.



Condition (i) imposes local boundedness on various processes, and condition (ii) states that the
volatility process o is locally (1/2)-Holder continuous under the L, norm, which can be readily
verified if o is an It6 semimartingale or a long-memory process driven by a fractional Brownian
motion.

The spot covariance matrix process is formally defined as

— T
Ct = 00y

which can be interpreted as the instantaneous covariance matrix of the diffusive returns (i.e.,
o.dW;). As mentioned in the introduction, we focus not on the level of spot covariance matrix
per se, but rather on its jump at the news announcement time, which precisely measures the
“abnormal” movement induced by the “lumpy” information embedded in the announcement.
More precisely, with 7 = {r, ..., 7,,, } denoting a collection of announcement times, we denote

the spot covariance jump matrix at each time 7 € T as

Ac, =y — ¢,

with ¢,_ and ¢, being the left and right limits of the ¢ process at time 7, respectively.* Note
that the spot covariance matrix ¢; at a given point in time generally has full rank when the assets
under consideration are non-redundant. However, the jump matrix Ac, may be of reduced rank
if the underlying policy shock has a lower-dimensional structure. For example, if the Federal
Reserve surprises the market by only altering the short-term interest rate, as is typical under the

conventional monetary policy, we may find a one-factor structure in Ac, (see, e.g., [33]). On

“Since the ¢ process is right continuous, we simply have ¢, = c,. Nevertheless, we adopt
the ¢, notation because it matches the same notational convention in (2.4) below, and is con-
venient for later discussions.



the other hand, a multi-dimensional policy shock may arise if the announcement also contains
forward guidance regarding the future trajectory of interest rates, which in turn can result in a
higher rank in the jump matrix Ac,.

The main goal of this paper is to uncover the dimensionality of policy shocks through
testing the rank of the spot covariance jump matrix. The method is decidedly nonparametric
without imposing any parametric restrictions. That noted, the proposed method also speaks to
more specific structural estimation problems concerning policy impact. One case in point is the
heteroskedasticity-based identification and estimation of linear simultaneous equation models
as considered by [31] and [33]. The key premise of this identification strategy is that there is
a single source of policy shock, which implies that the difference between assets’ covariance
matrices in two subsamples (corresponding to announcement and non-announcement periods)
has rank one. The rank test proposed below may be used to test the underlying identification
assumption. Recently, [26] proposes an empirical strategy to identify announcement-specific
decompositions of asset price changes into monetary policy shocks using high-frequency data.
He does not provide formal inference theory for his empirical procedure, as the “parameters”
of econometric interest are themselves random quantities, which is typical in non-ergodic high-
frequency inference problems as studied in the present paper. Our theory may also shed light
on further theoretical development in this direction.’

These economic considerations motivate us to rigorously test the rank of the spot covari-

ance jump matrix. Formally, the null and alternative hypotheses of interest are represented,

STt is also worth noting that heteroskedasticity-based inference may encounter weak-
identification issues if time-variation in some component of the volatility process is moderate.
In such a scenario, the econometric method of [8] may be applied to achieve robust and efficient
inference.



respectively, by the following events:

Q, = {Rank (Ac;) =rforallTt € T}, Q,, ={Rank(Ac,;) > rforsomer € T}, (2.2)

where r € {1,...,d — 1} is the candidate rank to be tested. We note that in the present setting,
the spot covariance jump matrix Ac, is itself a random matrix, and the null hypothesis €2,
contains the sample paths on which this random matrix has rank r. Specifying hypotheses as
random events is common in the high-frequency econometrics literature, because the “popu-
lation quantity” is the realized sample paths of processes of interest, instead of some constant
parameter; see [2] for a comprehensive review.

Our inference is developed under an in-fill asymptotic framework that is now standard in the
high-frequency econometrics literature (see, e.g., [20] and [2]). Suppose that the price vector
process X is observed at discrete times iA, for ¢ = 0,1,..., within the fixed time interval

[0, T]. We denote the ith return of X by

Ry = Xin, — X(i—1)An-

Since we are interested in the local behavior of the spot covariance matrix process near an-
nouncement times, we focus on return observations in local windows before and after each an-
nouncement. For each 7 € T, let i, denote the unique integer such that 7 € ((i, — 1) A,,, i, A,].
We pick a local window sequence k,, of integers satisfying k,, — oo and k,,A,, — 0, which plays
a similar role as the “bandwidth” parameter in conventional kernel-based nonparametric esti-

mation. Our inference relies on observations in the pre-event window Z,, . and the post-event

10



window Z,, ., defined respectively as
Lore ={ir —knyooyir =1}, Loy ={i,+1,... 0+ kn}. (2.3)

Each of these local windows consists of k,, returns. It is instructive to note that the return at
the announcement time (indexed by ¢, ) is excluded from these windows, as it is likely to be
“contaminated” by the price jump at the announcement time, which may bias the estimation of
the spot covariance matrix.

The spot covariance matrix estimators before and after each announcement are constructed
essentially as the second sample moments of returns from the corresponding local windows.

Specifically, we estimate the pre-event and post-event spot covariance matrices using

R 1
Crgrt = Z R iRy (R s <un}s (2.4)

knA
n n iEI’ﬂ,Ti

where the 1{r, ;<u,} Indicator is a standard device used to eliminate price jumps in the spot
covariance estimation (as originally proposed by [29]), with u,, being a (shrinking) sequence
of truncation threshold. By well-known results in the literature (see, e.g., Chapter 9 of [20]),
the spot estimators ¢, . and ¢, - consistently estimates the pre-event and post-event spot

covariance matrices c,_ and ¢, , respectively.

The consistent spot estimation relies on the length of the local windows, k,A,,, shrinking
to zero asymptotically, as is standard in kernel-based nonparametric statistics. From their con-
structions, it is clear that the pre- and post-event spot estimators are in fact consistent estimators

of the local averages (k,A,)”" fikn A, Csds and (knN,) 7! / THnAn . ds, respectively. This

-
latter interpretation is somewhat more robust in a finite-sample sense, because it holds true even

if one treats the window length k,A,, as fixed, and our results may be interpreted accordingly.
That being said, we note that, under commonly used term-structure models (see, e.g., [39]), the
average volatility is typically close to the spot values over short windows. Hence, the afore-
mentioned distinction is often immaterial, and we adopt the standard “spot” interpretation in
our subsequent discussion.

11



An important advantage of the in-fill asymptotic setting considered here is that it permits
theoretically valid inference even if there are only a small number of events. This is reflected
by the fact that the sample span [0, T'] is explicitly fixed under our in-fill asymptotic framework,
so the collection 7 of event times is treated as a finite set. Indeed, our test can be applied even
when 7 is a singleton {7}, corresponding to a single-case study. This feature is empirically
desirable because important macro news announcements are infrequent (e.g., FOMC meetings
are scheduled only eight times per year), and their effects can be highly heterogeneous depend-
ing on the prevailing macroeconomic and policy environment. Our approach overcomes this
“small-sample” issue by exploiting the “large sample” of high-frequency price observations in

the neighborhood of announcement times. We next proceed with the details.

2.2 The rank test

A natural way to carry out the rank test is to examine the number of zero eigenvalues of Ac.
While the ¢ process takes values as positive semidefinite matrices, its jump Ac, is only a sym-
metric matrix and may have negative eigenvalues. It is thus more convenient to consider the
squared jump matrix

Q- = (Ac)?,

which is positive semidefinite by construction. The rank test can then be implemented by exam-
ining whether the smallest d — r eigenvalues of (). are all identically zero. More precisely, let
(Aj+)1<j<a denote the eigenvalues of Ac,, so each )\iT is an eigenvalue of (), and order them

as )\%’T > )\377 > > )\3’7. We then set

d
S, = ZS”, where S, = Z )\Qﬁ. (2.5)

TET j=r+1

12



In restriction to €2y, (resp. €2,,), we have S, = 0 (resp. S, > 0). Therefore, we can rely on the
S, variable to discriminate the null and alternative hypotheses.
Our test statistic is simply the sample analogue of S,.. Based on the spot estimators in (2.4),

we estimate () using

Q\n,f = (én,7+ - én,‘rf)2

~9 ~2 . ~ ...
Let A, ;. > -~ 2> A, ., be the (ordered) eigenvalues of (), ;. The test statistic is then defined

analogously to (2.5) as

d
§n,m, where §n,mz Z S\i’jﬁ. (2.6)

TET j=r+1

~
Sn,r

To obtain the critical value, we need to characterize the asymptotic distribution of §n,r under
the null hypothesis. Some additional notation is needed to describe the asymptotic distribution.
Clearly, the sampling variability of the test statistic is solely driven by that of the spot covariance
matrix estimators. To represent the latter, we consider d x d random matrices (Cr—, (ri), o7
that are F-conditionally independent, centered Gaussian, with the covariances between their

components characterized by

E [Cjk,TiClm,T:t|F] - le,T:I:Ckm,T:t + ij,T:I:Ckl,Tzl:a for 1 S j7 k7 la m S d.

It can be shown that
L-s

(/{371/2 (én,fr_ - CT—) s leL/2 (énﬂ'—i- - CT+))TET — (CT—7 (T'i')TGT’ (27)

L-s . . .
where — denotes stable convergence in law. We also need to consider an eigenvalue decom-

13



position of Ac, in the form

Ac, = U\ U], (2.8)

where A, is a diagonal matrix collecting the ordered (in magnitude) eigenvalues (\; ;)1<;<q4, and
U is an orthogonal matrix consisting of the corresponding eigenvectors. Finally, we partition
U, = [I';:V,] such that ", and V; contain r and d — r columns, respectively. Theorem 1, below,

establishes the asymptotic distribution of the test statistic §W under the null hypothesis.

Theorem 1. Suppose that (i) Assumption 1 holds and (ii) k, < A_? and u,, < AT such that

1 p 1

2
- =1 - — —. 2.
0<p<<7 )/\2, 2(2_7)<w<2 2.9)

Then, in restriction to the null hypothesis (),

FnSur =3 &= 3 |V Gy — G V[ (2.10)

COMMENTS. (i) The limiting variable &, described in (2.10) has a nonstandard distribution.
It is instructive to elaborate on the structure of this variable. Since each (. — (;_ matrix is
JF-conditional centered Gaussian, V" (¢, — (,_) V; is also a mixed centered Gaussian matrix.
Consequently, |V." (¢;+ — ) V;||* is the sum of (conditionally correlated) scaled chi-squared
variables. These variables generally have different F-conditional distributions resulting from
the heterogeneity of different events. They are JF-conditionally independent across different
7’s, and &, is their sum.

(ii) Although we are mainly interested in the rank of the jump matrix Ac,, our method can
be easily adapted to study the rank of ¢, and c,_ as well. For example, if ¢, is of interest,

then one can simply replace the returns in the pre-event window with zeros, so that Ac, = ¢, ;.

14



Our theoretical results remain valid in this partially degenerate case.

The nonstandard limiting distribution described in Theorem 1 does not appear to be piv-
otalizable. We instead propose a bootstrap algorithm for estimating the limiting distribution,
particularly its quantiles. Analogous to (2.8), we perform the following eigenvalue decomposi-
tion for each estimated jump:

R R ~ N o
Cnor+ — Cpgr— = Un,TAn,TU

n,T?

where the eigenvalues and eigenvectors are ordered in magnitude. We then set \A/m to be the
d x (d — r) matrix consisting of the last d — r columns of [7”,7, which consistently estimates
V.- up to rotation. The bootstrap algorithm for computing the critical value at significance level

a € (0,1) is detailed below.

Algorithm 1 (bootstrap critical value for rank test)

Step 1: For each 7 € T, generate i.i.d. draws (R}, ;)icz, ._ and (R )iz, ., from (Ry;)icz, . _
and (R, )icrz, .. - respectively.

Step 2: Compute ¢;, . in the same way as ¢, -+, except that the original data R,,; is replaced
with Ry, ;. Set ¢ = ki *(&5 4 — Gnra)-

Step 3: Repeat steps 1 and 2 many times. Set the critical value cv, , as the 1 — a quantile of

> et H‘A/HTT (Grre —Cors) V,..-||? at significance level a. O

n,T—

The intuition underlying the bootstrap algorithm is as follows. Step 1 of the algorithm
implements i.i.d. re-sampling of the return vectors in each local window. The “localized” re-
sampling is needed to address the data heterogeneity across different estimation windows (i.e.,

7, -+). Note that even within each local window, the return observations are not assumed to

15



be actually i.i.d. In fact, since the returns depend on the stochastic volatility, they are generally
heterogeneous and serially highly dependent. Nevertheless, return observations within each
local window are approximately conditionally i.i.d., which is the intuition why the local i.i.d.
re-sampling is valid. The (; . variables defined in step 2 are exactly the bootstrap analogues
of kL/? (Cnr+ — ¢rx), and their conditional distribution estimates that of the ¢, limiting vari-
ables. The ||\7nTT (Gre —Cors) ‘A/,WH2 variable in step 3 clearly mirrors the limiting variable

IV." (¢4 — ¢—) V;||? in Theorem 1. The validity of the bootstrap algorithm and the asymptotic

properties of our rank test are described in Theorem 2 below.

Theorem 2. Suppose that the conditions in Theorem 1 hold and w > 1/(4 — 7). Then, (a)
the conditional distribution function of ) __+ H‘A/nTT (Grre = Cors) \77%7 ||? given data converges
in probability to the JF-conditional distribution of &, under the uniform metric; (b) the test

associated with the critical region {k,S,, > cv,.} has asymptotic level o under the null

hypothesis and asymptotic power 1 under the alternative hypothesis, that is,
P(kngn,r > cvn,a‘Qo’T) — «a, P(kngm > cvn,a‘Qa,r) — 1.

We close this section with two practical remarks about the purposed test. The first concerns
the threshold u,,, which is a statistical device for eliminating price jumps in the volatility esti-
mation. In practice, recognizing that the price jump is very likely to occur either at or very close
to the announcement time, one may exploit this prior knowledge and eliminate price jumps by
simply removing a few returns near the announcement time, without performing any additional
“statistical” truncation (i.e., use u,, = 00). This is our recommended method that is adopted in

the subsequent numerical work.’

"More generally, one may use the w,,-based truncation to further guard against price jumps
occurring within the local estimation windows. For example, when jumps have finite variation,

16



Secondly, we note that null hypotheses with different  values are ordered and the alternative
hypotheses are nested. As illustrated in [34] (see Section 5), this structure naturally suggests
that tests with different » values may be interpreted as a sequential testing procedure: we can
implement the test with increasing r values, and stop at the first non-rejection. Since the pro-
posed test is consistent, this procedure will rule out all r values strictly less than Rank(Ac;)
with probability approaching 1. In particular, if Ac, is of full rank, the sequential procedure
will reject all reduced-rank null hypotheses, and hence, provide a consistent estimator for the
true rank. On the other hand, when Ac; is of reduced rank, the true null hypothesis at stage
r = Rank(Ac,) will be rejected with asymptotic probability «, reflecting the type-I error of the

test.

3 Monte Carlo simulations

In this section, we examine the performance of the proposed test in a Monte Carlo experiment.

The unit of time is one day. Let (W;+)1<;<3 and (B;;) be independent standard Brownian

1<5<3

motions. We consider three assets and simulate their log returns according to

1 05 0.5

dXe=1 45 1 o5 |9

05 05 1

a theoretically valid adaptive choice is u,, = 3 X 7 X AY ° with & being some preliminary
estimate of volatility. That said, for frequencies of several minutes, this choice very rarely leads
to any additional truncation after the returns near the announcement time are removed.

17



where f is a three-dimensional factor process with its jth component satisfying
dfjie =05 dWje, 1 <5 <3.

The volatility processes are simulated according to the following stochastic differential equa-

tions:

do?, = 0.6930(0.4068 — o2,)dt + 0.7023, /02, (deu /1o p2dBl,t> + Jy02, Ly,
do?, = 0.0128(0.4068 — 02,)dt + 0.0954 /0%, <de27t /1 p2d327t> + $Jp02, lery,

)

do?, = 0.0128(0.4068 — 02,)dt + 0.0954, /02, (de&t /1o p2d337t> ,

)

where the parameter values are calibrated according to [7], and we set p = —0.7 in order to
capture the well-documented negative correlation between price and volatility shocks (i.e., the
“leverage” effect). The first volatility factor ait is quickly mean-reverting with a half-life of
one day, and it jumps at the announcement time 7 with relative jump size J, ~Exp(7), where
the mean of the exponential distribution is calibrated to the empirical estimates of [6]. The other
two volatility factors, o3 , and 03 ,, are highly persistent with a half-life of 2.5 months. The o3,
process also jumps at time 7 when ¢ # (0. The ¢ parameter conveniently controls the relative
magnitude of the jump in 0§7t with respect to that in ait. These continuous-time processes are
simulated using an Euler scheme on a one-second mesh. The observed returns actually used in
the calculations are re-sampled at A,, = 1, 3, and 5 minutes intervals.

This data generating process permits a simple characterization of the factor structure of spot
covariance matrix jumps. Let Ac; and Acy . denote the jumps of the spot covariance matrices

of X and f, respectively. It is easy to see that Ac, and Acy , share the same rank, and the latter
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is diagonal with elements J,07 ., ¢.J,05 ., and 0. Therefore,

1 when ¢ =0,
Rank (Ac,) =

2 when ¢ > 0.

We can then impose the null hypothesis in two ways: when ¢ = 0, the null hypothesis cor-
responds to 7 = 1, and when ¢ > 0, the null hypothesis corresponds to » = 2. Moreover,
specifications with ¢ > 0 also provide a range of alternative hypotheses versus the 7 = 1 null.
To trace out the power function, we consider a range of ¢ values in {0,0.05,0.1,...,1}, and
expect to see higher finite-sample power associated with larger ¢.

Finally, we allow for the presence of microstructure noise in the data. That is, instead of the
“efficient price” X, the econometrician observes noise-contaminated price Y; given by

v =x9 4yx? =123 i>0, 3.1)

1Qn [7AvS i

where the constant 7 determines the noise scale and {el(-j )}izo are i.1.d. standard normal error
terms that are independent across assets. Note that our asymptotic theory is designed for the no-
noise case with 7 = 0. That being said, in the more realistic setting with microstructure noise,
the common practice in the high-frequency econometrics literature is to mitigate the effect of
noise by using sparsely sampled data, which we adopt throughout our numerical work. In this
regard, we use the noisy setting as a robustness check. We calibrate = 0.0156 according
to the noise-to-signal ratio in our empirical data, determined using the two-scale method of

[42]. Consistent with aforementioned conventional wisdom, we find that the proposed test is
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indeed robust to the presence of noise when applied to sparsely sampled data. Therefore, for
brevity, we only present results in the (more challenging) case with noisy data in the subsequent
discussion.?

Below, we report rejection frequencies of tests based on two local window specifications.
Specifically, we fix the width of each local window to be either 60 minutes or 90 minutes, so
k,, takes different values for different sampling frequencies. For example, we have k,, = 60
or 90 when A,, = 1 minute, and &k, = 12 or 18 when A, = 5 minutes. This setup makes
numerical results for different sampling frequencies more comparable. The bootstrap algorithm

is implemented using 1,000 repetitions. For all tests below, we fix the significance level at 5%,

and compute finite-sample rejection frequencies based on 100,000 Monte Carlo replications.

[Table 1 Here]

Table 1 reports the test’s rejection rates under the null hypothesis. Panel A reports results
for the » = 1 null hypothesis imposed by setting ¢ = 0. We see that the test controls size well
across different sampling frequencies and window sizes. The rejection rates are slightly lower
than the 5% nominal level, suggesting that the test is somewhat conservative in finite samples.
Panel B reports the rejection rates for the » = 2 null hypothesis for a range of positive ¢ values.

Again, we see that the test controls size quite well across the board.

[Figure 1 Here]

We next turn to the power analysis. As mentioned above, alternative hypothesis with respect
to the » = 1 null hypothesis can be imposed by setting ¢ > 0. The value of ¢ measures the

“distance” between the null and the alternative hypotheses. Figure 1 plots the test’s rejection

8In the no-noise case, we find that the test has similar size properties and, as expected, its
power is higher than that in the noisy case.

20



rates as functions of ¢ separately for three sampling frequencies and two local window sizes.
Consistent with Table 1, we see that the test controls size well in all settings under the null
hypothesis (i.e., = 0). As ¢ increases, the power of the test clearly increases as predicted by
the asymptotic theory. Other things being equal, the test rejects more often for more frequently
sampled data (i.e., smaller A,,). In addition, the rejection rates for the 90-minute window appear
to be higher than those for the 60-minute window, which can be explained by the former’s larger
sample size. As a caveat, we note that this finding does not automatically imply one should
always use larger local windows, which would be subject to more nonparametric estimation
bias stemming from the time-variation in stochastic volatility.

Overall, these simulation results show that the proposed test has excellent size control and
adequate power for a range of commonly used sampling frequencies. The results also appear
to be stable for different choices of local window sizes. These findings support our asymptotic
theory developed above, and suggest that the test can be reliably used in empirical work, to

which we now turn.

4 FOMC announcements and monetary policy shocks

To demonstrate the usefulness of the proposed rank test, we conduct a formal econometric
analysis to study the dimensionality of monetary policy shocks triggered by scheduled FOMC
announcements. There is already a large literature in macroeconomics studying the effect of
monetary policy shocks induced by FOMC announcements. Early notable contributions include
[23], [13], [33], and [5]. More recently, [30] rely on intraday high-frequency data on short-term
interest rate futures to measure policy shocks and then use these measures to test for monetary

non-neutrality. Although the target federal funds rate is conventionally the main policy tool
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of the central bank, the Federal Reserve has relied heavily on unconventional monetary policy
tools such as forward guidance and quantitative easing (QE) during the Great Recession and
its aftermath ([24], [4]). The plurality of policy tools naturally suggests that the notion of a
“monetary policy shock™ is a multi-dimensional concept in the era of unconventional monetary
policy. We apply the rank test to formally test hypotheses regarding the shock’s dimensionality.

Our data consists of intraday transaction prices for four interest rate futures contracts in-
cluding: 12-month Eurodollar, 2-year and 10-year Treasury notes, and 30-year Treasury bond.
The sample period is from October 2, 2001, to August 13, 2018. The data is obtained from Tick
Data. We rely on Bloomberg’s Economic Calendar to pinpoint the exact announcement times
for each of the 135 scheduled FOMC announcements that occurred during regular trading hours
over our sample period.

The rank test is implemented as follows. To help mitigate the effect of market microstructure
“noise,” we follow standard practice in the literature to sparsely sample the data at a 3-minute
sampling frequency (see, e.g., the discussion in [42]).° We take the block size k, = 30, corre-
sponding to a 90-minute window for spot estimation as we have done in the simulation study
above. As a conservative way to remove announcement-induced price jumps, we exclude the
returns from the five minutes immediately before and the five minutes immediately after each
announcement time, so that there is a 10-minute gap between pre-event and post-event win-

dows.!? Critical values are computed using Algorithm 1 based on 100,000 bootstrap re-samples

°Our choice of the 3-minute sampling frequency is justified by a preliminary analysis based
on the volatility signature plot (see Figure S.1 in the online supplemental appendix). We find
that realized volatility estimates are insensitive to the change of sampling frequency when A,, >
3 minutes, but they appear to carry large positive bias at higher sampling frequencies. Also
recall that with the level of noise calibrated to the data, our Monte Carlo experiment indicates
that the 3-minute sampling frequency is sparse enough to sufficiently mitigate the effect of noise
on the proposed test.

%0ur subsequent empirical results are not sensitive to the choice of the 10-minute gap be-
tween the pre- and post-event windows. In results not presented here, we also conducted the
empirical analysis with 8-minute and 12-minute gaps as robustness checks. Our main empirical
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in order to minimize the effect of random re-sampling on the testing results.

The most important episode in our sample period arguably is the global financial crisis and
the Great Recession of 2007-2009, which marked the beginning of the recent era of unconven-
tional monetary policy. From September 16, 2007 to December 16, 2008, the Federal Reserve
gradually lowered the target federal funds rate from the peak level of 5.25% to the [0, 0.25%)
range, namely, the zero lower bound. The rate stayed at the lower bound till the end of 2015,
and gradually increased to the [1.75%, 2%| range by the end of our sample. During the crisis
and the subsequent recovery period, the Federal Reserve was impelled to rely on unconven-
tional monetary policy tools such as forward guidance and QE to steer the macroeconomy. It is
thus economically important to examine whether, and to which extent, the multifaceted policy
tools are associated with multi-dimensional policy shocks, which should manifest in the factor
structure of the spot covariance jump matrix of bond futures.

To have a clear narrative relating unconventional monetary policy and announcement-induced
shocks, we start with a case study based on two specific FOMC announcements that involve for-
ward guidance and QE. The first announcement, which occurred on January 25, 2012, provided
an explicit forward guidance that “economic conditions [...] are likely to warrant exceptionally
low levels for the federal funds rate at least through late 2014.” The second example pertains
to the announcement on March 18, 2009, when the Federal Reserve stated that it would be
purchasing an additional $300 billion of Treasury bonds as part of its QEl program. These
two examples are chosen solely based on the recent review article by [37] on unconventional
monetary policy, which also provides additional policy background.

We test the ranks of the spot covariance jump matrices for these two announcements sep-

arately. For the announcement on January 25, 2012, we reject the null hypothesis of » = 1 at

findings are qualitatively unaltered with respect to these changes.
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the 5% significance level, but do not reject r = 2 or r = 3. This result thus suggests that the
announcement was associated with two distinct sources of policy shocks. According to [37],
during the early recovery period (2010-2011) after the Great Recession, market investors ex-
pected a quick policy rate liftoff. In contrary to this anticipation, the Federal Reserve ruled out
the possibility of raising the rate not only in short-term, but also throughout a three-year hori-
zon, which may explain the finding of a two-dimensional policy shock. The QE announcement
on March 18, 2009, tells a similar story.!! We reject the null hypothesis of 7 = 1 and 7 = 2 both
at the 1% significance level, and reject the null hypothesis of » = 3 at the 5% significance level,
indicating the presence of an even higher dimensional policy shock that had distinct impact on
different sections of the yield curve.

The two examples discussed above are intentionally presented here to highlight how a multi-
dimensional policy shock, backed with a clear economic narrative, may be revealed by the
proposed rank test. Due to their unique nature, these announcements (particularly the one on
March 18, 2009) are not meant to be thought of as “typical” policy announcements. It is thus
instructive to contrast them with others. To prevent confounding factors from complicating the
comparison, we compare these two events with the two FOMC announcements that occurred
immediately after them (and hence under similar macroeconomic conditions), on March 13,
2012, and April 29, 2009, respectively. For these comparison events, we do not reject the
r = 1 null hypothesis at any conventional significance levels, and hence, find evidence for a

one-dimensional policy shock.
[Figure 2 Here]

To gain further insight on these testing results, in Figure 2 we plot the relative magnitude

of the covariance jump matrix’s eigenvalues (i.e., |\;|/ S, |Ax|) for these events. The top

""This announcement also contains a forward guidance; see the discussion in [24], p. 130.
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panel corresponds to the January 25, 2012, announcement and its comparison event on March
13, 2012. For the former, the contribution of the second largest (in magnitude) eigenvalue is
nontrivial, which contrasts sharply with the notable one-factor pattern for the March 13, 2012,
event shown on the top-right panel. These plots are consistent with the formal testing results
that suggest a two-factor structure for the former, and a one-factor structure for the latter. The
bottom panel of Figure 2 tells a similar story for the announcements on March 18, 2009, and

April 29, 2009.

[Figure 3 Here]

The sharp one-factor structure in the covariance jump matrix for the March 13, 2012, and
April 29, 2009, events seen in Figure 2 is remarkable, because it suggests a single source of pol-
icy shock to the four interest rate futures contracts. It is important to note that this finding speaks
to the covariance jump matrix at the announcement time, rather than the assets’ spot covariance
matrix itself. Indeed, a reduced-rank in the covariance matrix of the asset returns would imply
the redundancy of certain assets, which is highly unlikely for the four bond futures studied here.
To make this point more concrete, in Figure 3 we compare the normalized eigenvalues of ¢, _,
¢r+, and Ac, for the announcements on March 13, 2012, and April 29, 2009. From the figure,
we see that the low-rank structure is indeed much more pronounced in the jump matrix than the
pre-event and post-event covariance matrices. Formally, the » = 3 null hypotheses are strongly
rejected for both ¢, _ and ¢, suggesting that they have full ranks as expected.

It is interesting to note that the FOMC meetings on January 25, 2012 and March 18, 2009,
for which we find strong evidence for a multi-factor structure of the generated policy shock,
are both followed by ones for which our test suggests the policy shocks were one-dimensional.

This shows that there can be significant time variation in the nature of the policy shocks trig-
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gered by the FOMC announcements and further illustrates the benefits of the developed testing

procedures based on event-by-event analysis.

[Table 2 Here]

In order to gain further insight about the change in the yield curve triggered by the pol-
icy shocks, we present the first two eigenvectors of Ac, in Table 2 for the announcements on
January 25, 2012, and March 18, 2009. These eigenvectors have remarkably similar structure
across the two dates.'> The first eigenvector appears to collect loadings of a “level” factor
that moves all yields in the same direction. Not surprisingly, the weights assigned to the 12-
month Eurodollar and the 2-year Treasury note are close to zero, whereas most of the weight is
assigned to the 30-year Treasury bond. The ranking of these weights are in line with the volatil-
ities of the four assets, with the 12-month Eurodollar contract and the 30-year Treasury bond
being the least and most volatile, respectively. The second eigenvector of Ac, reveals a “slope”
factor as it moves the yields in different directions. Again, we see that the weights assigned
to the 12-month Eurodollar contract and the 2-year Treasury note are small in magnitude. In
contrast to the first eigenvector of Ac,, the second eigenvector puts most weight on the 10-year
Treasury note, suggesting that the corresponding policy shock is particularly relevant for the

medium term. '3

2The value of the first eigenvector is in fact quite stable across all announcements in our
sample. The second eigenvector is more difficult to interpret across the board because it is not
uniquely identified for announcements whose policy shock is only one-dimensional.

13 As mentioned above, the two announcements discussed here were picked on the basis of
the review article of [37]. We also implemented a similar analysis on the FOMC announcement
days during the QEI (December 16, 2008, January 28, 2009, and March 18, 2009) and QE2
(August 10, 2010 and September 21, 2010) episodes. These additional results are qualitatively
similar to those presented in the main text. Specifically, for all of the FOMC announcements
in QE1 and QE2, we find evidence for multi-dimensional policy shocks. Moreover, the de-
composition of the eigenvectors of Ac, on these dates is similar to the ones reported in Table
2. In particular, we do not see a qualitative difference in the structure of Ac, for the events
in QE1 and QE2. [41] argue for the existence of different economic channels of the QE1 and
QE2 programs: QEI contains liquidity and risk premia channels which are not operative during
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To draw more general conclusions regarding lower frequency variation in the nature of the
policy shocks, we next turn to aggregated testing results by pooling information from all an-
nouncements in our sample. In view of the evolution of monetary policy during this sample
period, we also divide the 18-year sample period between 2001 and 2018 into six 3-year sub-
samples. The two pre-crisis subsamples spanning 2001-2003 and 2004—2006 are mainly sub-
ject to conventional monetary policy. The 2007-2009 period witnessed the financial crisis and
the Great Recession, during which the Federal Reserve employed both conventional and un-
conventional policy tools. The next two subsamples cover the 2010-2015 period, when the
target federal funds rate was maintained at the zero lower bound, and the rate was gradually
raised during the last subsample between 2016 and 2018. We implement the rank test for the
six subsamples separately. To guard against concerns pertaining to “multiple testing,” we use
a relatively stringent 1% significance level for all tests. Formally, because of the asymptotic
conditional independence among test statistics formed on the nonoverlapping subsamples, we
may equivalently interpret the testing results jointly across all six subsamples at significance

level 1 — (99%)° ~ 5.85%.
[Table 3 Here]

Table 3 reports whether the null hypotheses with different ranks (i.e., 7) are rejected.'* From
the full-sample results displayed in column 1, we see that both » = 1 and r = 2 null hypotheses
are rejected at the 1% significance level, whereas the » = 3 hypothesis is not rejected. This
echoes our earlier finding for the QE announcement on March 18, 2009, further confirming that

some announcements within this sample period triggered multi-dimensional policy shocks.

QE2. These different economic channels may be further analyzed (identified) by the inclu-
sion of additional fixed income securities, such as mortgage backed securities and fixed income
derivatives, to the ones considered in our analysis.

“The null hypothesis with r = 0 is overwhelmingly rejected in the data, suggesting the
presence of volatility jumps; this is consistent with prior findings of [6].
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The subsample analysis reveals richer and economically more interesting information. From
columns 2 and 3, we see that none of the null hypotheses (particularly including r = 1) is re-
jected for the first couple of 3-year subsamples. This suggests that during the pre-crisis 2001—
2006 period, when the conventional monetary policy was largely in force, monetary policy
shocks delivered by FOMC announcements is one-dimensional, which is consistent with the
notion that the Federal Reserve achieves its macroeconomic objectives mainly by altering the
short-term interest rate. However, the story is drastically different during the 2007-2009 crisis
period. As shown in column 4 of the table, both the » = 1 and » = 2 null hypotheses are
rejected at the 1% significance level, suggesting formally that some FOMC announcements had
triggered multi-dimensional policy shocks. The evidence is in line with the policy environment
during that period when the Federal Reserve deployed a complex mix of policy tools including
the reduction of the target federal funds rate gradually to the zero lower bound, forward guid-
ance about future rate policy, large-scale purchases of both mortgage-backed securities and US
Treasury securities, and policies aimed at stabilizing dysfunctional financial markets ([4]).

In the post-crisis period, we again find a low-dimensional structure for policy shocks. Specif-
ically, during the 2010-2012 subsample, we do not reject the » = 1 null hypothesis at the 1%
significance level. This likely reflects the limited policy tools at the central bank’s disposal dur-
ing the early recovery phase after the crisis. Interestingly, for the 2013—-2015 and 2016-2018
subsamples, we reject the » = 1 null hypothesis, and hence, find evidence for two-dimensional
policy shocks. Relative to the 2010-2012 period, the higher rank in these two later periods
may be attributed to two important policies. The first pertains to a sequence of decisions on
the QE program. After Bernanke’s congressional appearance in May 2013, hints that asset
purchases might begin to slow led to a “taper tantrum” in bond markets. In its September 18,

2013, announcement, the FOMC clarified that it would not immediately slow down the pace of
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asset purchasing. The Federal Reserve then announced its decision to taper QE on December
18, 2013, and ended the asset purchasing program in October, 2014. The other policy con-
cerns raising the target federal funds rate. Following the ending of the QE program, the FOMC
carefully indicated the possibility of a rate increase in its announcements throughout 2015, and
eventually raised the rate by 0.25% on December 16, 2015. The target rate gradually rose to the
[1.75%, 2% range by the end of our sample period (August 13, 2018).

The evidence above shows that the jump in spot covariance matrix of bond prices triggered
by the FOMC announcement is generally of reduced rank, even in the more recent period asso-
ciated with unconventional monetary policy. It is thus possible to carry out heteroskedasticity-
based structural identification in the spirit of [31] using changes in high-frequency volatility
estimates. Note that this empirical regularity is mainly driven by the elevated trading activity in
the (short) post-announcement window, when the new information is incorporated into the asset
prices, rather than due to any “abnormal” volatility dynamics in the pre-announcement window.
To illustrate this point concretely and further buttress the findings in Table 3, we replace the
pre-announcement “control” c¢,_ with a post-announcement version c(-41)+ (i.€., the next-day
spot covariance matrix at the same time of day as ¢, ) and test the rank of ¢,y — ¢(r11)4+. The
resulting rejection decisions are exactly the same as those reported in Table 3, confirming that

the findings are robust to the selection of “control,” or non-announcement, time windows.
[Table 4 Here]

The evidence for increased dimension of the policy shock triggered by FOMC announce-
ments following the start of the unconventional monetary policy by the Federal Reserve can
be contrasted with the reaction of the yield curve following the other types of pre-scheduled
macroeconomic announcements. More specifically, we look at the CPI, the initial jobless claims

(IC), and the non-farm payroll (NFP) announcements. All of them are issued at 8:30 EST and
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there are altogether 1,248 of them during our sample period. These events are typically asso-
ciated with nontrivial change in the volatility matrix of the four fixed income contracts that we
analyze here. We conduct our rank test for Ac, triggered by these announcements by pooling
the data in the same subperiods as those reported in Table 3. The results from the test are re-
ported in Table 4 and are in sharp contrast to those for the FOMC announcements presented in
Table 3. Mainly, throughout our sample period, we find no evidence that the jump Ac, triggered
by the CPI, IC, and NFP announcements is of multi-dimension. This reinforces the observation
that the evidence for higher rank of the generated policy shock triggered by FOMC announce-
ments is to do with the change of monetary policy around the period of the financial crisis rather
than because of a change in the overall economic environment.

In summary, the multi-dimensionality of policy shocks uncovered by our rank test is closely
in line with the underlying economic narrative, and demonstrates the empirical usefulness of
the proposed econometric method. The finding that FOMC announcements during the pre-
crisis period triggered one-dimensional monetary shocks confirms the view that conventional
monetary policy has its direct impact mainly on the short-end of the yield curve. Meanwhile, the
rank test also formally reveals the multifaceted nature of the Federal Reserve’s policy shocks
during the Great Recession and its aftermath. Our findings also have useful implications for
studies on the identification and estimation of the effect of monetary shocks on asset prices and

macroeconomic quantities (see, e.g., [33], [5], [30]).

5 Conclusion

Motivated by the recent literature on the high-frequency identification of policy shocks, we

propose a test for the rank of spot covariance jump matrix of asset prices at macro news an-
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nouncement times. The test statistic is formed using the eigenvalues of the covariance jump
matrix estimated nonparametrically from high-frequency asset returns in local windows around
announcement times. The test statistic has a nonstandard limiting distribution. We propose an
easy-to-implement bootstrap algorithm to compute the critical value, and justify its asymptotic
validity. Empirically, we apply the method to test the dimensionality of monetary policy shocks
triggered by FOMC announcements using intraday transaction data for interest rate futures con-
tracts in a sample from 2001 to 2018. We document empirical evidence for one-dimensional
policy shocks before the Great Recession, when conventional monetary policy largely prevailed,
and find support for multi-dimensional policy shocks in the era of unconventional monetary pol-

icy, especially during the 2007-2009 financial crisis.
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60-Minute Window 90-Minute Window

A,=1 A,=3 A,=5 A,=1 A,=3 A,=5

Panel A: Caser =1
=0 0.050 0.035 0.036 0.053 0.036 0.034

Panel B: Case r = 2

¢ =0.25 0.037 0.037 0.043 0.040 0.034 0.038
¢ =0.50 0.044 0.043 0.048 0.047 0.040 0.043
¢ =0.75 0.048 0.045 0.051 0.050 0.044 0.046
¢ =1.00 0.051 0.047 0.053 0.051 0.047 0.048

Table 1: Monte Carlo Rejection Rates Under Null Hypothesis. This table reports the finite-
sample rejection rates of the 5% level rank test under the null hypothesis for various data gen-
erating processes. Panel A reports results for the null hypothesis with » = 1 that is imposed
by setting ¢ = 0. Panel B reports results for the null hypothesis with » = 2 that is imposed
by setting ¢ > 0. The sampling interval A,, ranges from 1 minute to 5 minutes. The length of
the local estimation window is fixed in calendar time to be 60 or 90 minutes, corresponding to
k, € {60,20,12} and k,, € {90, 30, 18}, respectively, for the three different sampling frequen-

cies. The volatility of microstructure noise is set to be = 0.0156.
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Ist Eigenvector

2nd Eigenvector

Maturity Jan 25,2012 Mar 18, 2009 Jan 25,2012 Mar 18, 2009
1Y 0.0108 0.0188 -0.0215 -0.0648
2Y -0.0035 0.0271 -0.0852 -0.0761
10Y 0.3888 0.3920 -0.9178 -0.9140
30Y 0.9212 0.9194 0.3873 0.3932

Table 2: Eigenvectors of Spot Covariance Jump Matrix. The table reports the first two

eigenvectors of spot covariance jump matrices for FOMC announcements on January 25, 2012,

and March 18, 2009.
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Subsample Periods

Null 2001- 2001- 2004 2007—- 2010- 2013—- 2016—
2018 2003 2006 2009 2012 2015 2018

r=1 Yes No No Yes No Yes Yes
r=2 Yes No No Yes No No No
r=23 No No No No No No No

Table 3: Rejection Decision of Rank Tests for FOMC Announcements. We report the rejec-
tion decisions of the rank tests for the spot covariance jump matrix for the full sample (column
1) and 3-year subsamples (columns 2—7). The rows correspond to null hypotheses with rank
r = 1, 2, and 3, respectively. The test is implemented for A,, = 3 minutes and k,, = 30. The

significance level is fixed at 1%.
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Subsample Periods

Null 2001- 2001- 2004 2007- 2010- 2013- 2016-
2018 2003 2006 2009 2012 2015 2018

r=1 No No No No No No No
r=2 No No No No No No No
r=23 No No No No No No No

Table 4: Rejection Decision of Rank Tests for non-FOMC Announcements. We report
the rejection decisions of the rank tests for the spot covariance jump matrix for the full sample
(column 1) and 3-year subsamples (columns 2—7) for the inflation, initial jobless claims, and the
nonfarm payroll announcements. The rows correspond to null hypotheses with rank » = 1, 2,
and 3, respectively. The test is implemented for A,, = 3 minutes and k,, = 30. The significance

level is fixed at 1%.
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Figure 1: Monte Carlo rejection rate of rank test. The figure plots the rejection frequencies
of the » = 1 null hypothesis at 5% nominal level for sampling frequencies at 1, 3, and 5 minutes
(solid, dash-dot, and dashed). The test is implemented using 60-minute and 90-minute local
windows. The shaded area signifies the 5% nominal level. The null and alternative hypotheses
correspond to ¢ = 0 and ¢ > 0, respectively. The critical value for each test is computed using
1,000 bootstrap repetitions. The rejection rates are computed for ¢ € {0,0.05, ..., 1} based on

100,000 Monte Carlo trials.
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Figure 2: Eigenvalues of spot covariance jump matrix at selected announcement times.
The figure plots the relative magnitudes of the eigenvalues of spot covariance jump matrices
for four FOMC announcements. The relative magnitude is computed as the absolute value
of each eigenvalue normalized by the sum of the absolute values of all eigenvalues. The two
announcements displayed on the left column are examples for forward guidance (January 25,
2012) and quantitative easing (March 18, 2009) as discussed in [37], respectively, and the right

column corresponds to the two subsequent announcements used for comparison.
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Figure 3: Eigenvalues of spot covariance matrix at selected announcement times. The
figure plots the relative magnitudes of the eigenvalues of spot covariance matrices before and
after two FOMC announcements, along with those of the covariance jump matrices. The relative
magnitude is computed as the absolute value of each eigenvalue normalized by the sum of the

absolute values of all eigenvalues.
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