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Abstract

We propose a test for anticipated changes in spot volatility, either due to continuous or discon-

tinuous price moves, at the times of realization of event risk in the form of pre-scheduled releases

of economic information such as earnings announcements by firms and macroeconomic news

announcements. These events can generate nontrivial volatility in asset returns, which does not

scale even locally in time. Our test is based on short-dated options written on an underlying asset

subject to event risk, which takes place after the options’ observation time and prior to or after

their expiration. We use options with different tenors to estimate the conditional (risk-neutral)

characteristic functions of the underlying asset log-returns over the horizons of the options. Us-

ing these estimates and a relationship between the conditional characteristic functions with three

different tenors, which holds true if and only if continuous and discontinuous spot volatility does

not change at the event time, we design a test for this hypothesis. In an empirical application,

we study anticipated individual stocks’ volatility changes following earnings announcements for

a set of stocks with good option coverage.
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1 Introduction

Inference for time-varying volatility has a long history in financial econometrics. Early work has

considered estimation of volatility dynamics using low frequency asset return data. In this case,

one cannot estimate consistently the realized volatility path in general but nevertheless studying

the dynamics of the latent volatility process is possible using various analytic and simulation-based

techniques.

When asset prices can be sampled at high frequencies, then one can estimate consistently either

spot or integrated volatility. Following the studies of Andersen et al. (2003) and Barndorff-Nielsen

and Shephard (2004a,b, 2006), there is a large body of work that deals with the problem of non-

parametric high-frequency volatility estimation in various settings, see e.g., Aı̈t-Sahalia and Jacod

(2014) and references therein. With high-frequency data, volatility can be treated as observable

and this facilitates inference for the volatility dynamics, see e.g., Barndorff-Nielsen and Shephard

(2002), Bollerslev and Zhou (2002), Bandi and Phillips (2003), Corradi and Distaso (2006) and

Todorov (2009), among others.

An alternative source of information for volatility is options written on the underlying asset.

Indeed, in the classical Black-Scholes model of Black and Scholes (1973), there is a one-to-one map

between the option price and the volatility parameter (volatility is constant in this model). In

more general settings with stochastic volatility, one cannot estimate consistently volatility using a

limited number of noisy option observations at any given point in time. This asymptotic setup is

thus akin to the low frequency sampling of asset prices. The fixed cross-section of options can be

used, nevertheless, to study the volatility dynamics, see e.g., Pan (2002), Bates (2003) and Eraker

(2004), among others. On the other hand, if the cross-section of option observations is large in an

asymptotic sense, then one can estimate consistently volatility from options in a parametric setting

as shown in Andersen et al. (2015).

For nonparametric identification of spot volatility from options one needs their time-to-maturity

(tenor) to be short. This asymptotic setting can be viewed as the natural analogue of the high-

frequency sampling of the asset price. In this setting, one can pretend that the semimartingale

characteristics (diffusive volatility and jump compensator) are constant over the short interval, i.e.,

that the process is conditionally Lévy (a process with i.i.d. increments). In the conditional Lévy

setting, the conditional return distribution, which can be uniquely identified from options, see e.g.,

Breeden and Litzenberger (1978), can be used to estimate the spot diffusive volatility in a nonpara-

metric way. One such way is to use the characteristic function as proposed by Todorov (2019).1

1An alternative is to use the Black-Scholes implied volatility, see e.g., Medvedev and Scaillet (2007) and Durrleman

(2008). As shown in Todorov (2019), Black-Scholes implied volatility has a much larger bias in general than a spot

volatility estimate based on the characteristic function that we consider here.
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More specifically, utilizing the dominant role of the diffusion for high values of the characteristic

exponent, see e.g., chapter 2 of Sato (1999), we have for the conditional characteristic function

Lt,T (u) = Et(eiu(xt+T−xt)) of a log-asset price xt:

− 2

u2T
log |Lt−,T (u)| → σ2t−, as u→ ∞, a.s., (1)

for some small T > 0 and where σt is the spot diffusive volatility of the asset. This is illustrated in

Figure 1, which plots − 2
u2T

log |Lt−,T (u)| for a parametric model that we will use in our Monte Carlo

study. For u approaching zero, − 2
u2T

log |Lt−,T (u)| is an estimate of total spot variance (including

the one due to the jumps in x). As u increases, the positive bias of the estimator due to the price

jumps gradually disappears. The empirical analysis in Todorov and Zhang (2022) shows that an

option-based estimator of volatility based on (1) plays a nontrivial role in optimal measurement of

spot volatility that combines options and returns data.
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Figure 1: Characteristic Function Estimation of Diffusive Variance in Absence of Event

Risk. Dashed line corresponds to true variance and solid line to − 2
u2T

log |Lt−,T (u)|.
The parametric model for computing the characteristic function is given in (33)-(36),

with σ2t∗ = σ2t∗− = 0.01, ∆xt∗ = 0 and T = 5/252.

The above approach of identifying spot volatility from options breaks down, however, in the

presence of event risk. That is, in a situation where prior to the options’ expiration, there is a pre-

announced event at a fixed and known in advance time in the future that can trigger a jump in the

asset price with a positive probability. In this case, as the length of the time window shrinks, then
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the event risk starts to dominate the price increment. More specifically, suppose that at t∗ ∈ (t, t+ϵ)

for some ϵ > 0, the stock price is exposed to event risk, i.e., that ∆xt∗ ̸= 0 with positive probability.2

If this is the case, then it is easy to see that Et−(xt+ϵ − xt)
2/Et−(∆xt∗)2 → 1 as t ↑ t∗ and ϵ → 0.

In other words, the price increment is dominated by the event risk ∆xt∗ when the length of the

increment shrinks. In this case, the signal about the non-event risk in xt+ϵ − xt becomes small in

relative terms.

We illustrate this in Figure 2 by plotting the time series of risk-neutral return variance backed out

from short-dated options written on the Facebook stock, i.e., we plot in the top panel of Figure 2 the

end-of-day estimates from options of 1
T Et−(xt+T −xt)2, where expectation is under the risk-neutral

probability measure and T is the shortest available tenor on that day exceeding 2 business days. The

volatility time series exhibits big spikes that occur periodically. They are due to the risk associated

with pre-scheduled earnings announcements that happen once every quarter.3 When the interval

[t, t + T ] includes such event risk, the continuously compounded return xt+T − xt is dominated

by it, and since this risk is not proportional to time, the annualized variance 1
T Et−(xt+T − xt)

2

explodes when T approaches zero. We can compare the risk-neutral variance estimates with the

daily realized volatility, which is displayed in the bottom panel of Figure 2. This series exhibits

occasionally very big spikes during the earnings announcement periods but the periodicity pattern

in it is much weaker.4

How can we measure nonparametrically volatility from options in the case of event risk? Suppose

that the occurrence of the event risk does not trigger a jump in the diffusive volatility and/or the

jump compensator. In this case, we can recover the characteristic function of the non-event part

of the asset return by using the ratio of the characteristic functions of returns over two horizons.

More specifically, one can show under some conditions that

− 2

u2(T2 − T1)
log

∣∣∣∣Lt−,T2(u)Lt−,T1(u)

∣∣∣∣→ σ2t−, as u→ ∞, a.s., (2)

for some 0 < T1 < T2 ≤ ϵ. This strategy will work, however, only if the semimartingale character-

istics do not jump at the event time. Indeed, if say the diffusive volatility can jump at time t∗ to a

level σt∗ , then the diffusive component of the price increment, even after conditioning on Ft− , has
a mixed Gaussian law and hence it can be fat-tailed. Therefore, one can no longer disentangle this

2We note that for the common way of modeling asset prices via Itô semimartingales, the probability of a jump at

a fixed point in time is zero, see e.g., Corollary II.1.19 in Jacod and Shiryaev (2003).
3We refer to Dubinsky et al. (2019) for a parametric analysis of earnings announcement risk. Da and Warachka

(2009) and Savor and Wilson (2016) show that earnings announcement risk has a systematic component and is

therefore important for the aggregate pricing of risk.
4Hence, predicting realized volatility using option-implied volatility (as often done in the volatility forecasting lit-

erature) without adjustment for the earnings announcement effect on both series will typically lead to poor forecasting

results.

4



2014 2015 2016 2017 2018 2019 2020 2021 2022
0

20

40

60

80

100

120
V

o
la

ti
lit

y
 (

%
)

2014 2015 2016 2017 2018 2019 2020 2021 2022
0

50

100

150

200

250

300

V
o

la
ti
lit

y
 (

%
)

Figure 2: Risk-Neutral Return Variance and Daily Realized Volatility for Facebook.

Both quantities are reported in annualized percentage units.

piece in a nonparametric way from the jump part of the asset price like in the standard no-event

case.

In this paper we propose a nonparametric test based on options with short tenor observed

shortly before the occurrence of an event risk, which allows us to decide whether the semimartingale

characteristics (diffusive volatility and jump intensity) are anticipated to jump at the event time

(known to the econometrician) with positive probability. As argued above, the test can be used to

decide on whether spot volatility can be extracted in a nonparametric way from short-dated options

prior to event times. More generally, the developed techniques in the paper can be used to study

anticipated changes in volatility at event times. As discussed later in the paper, short-dated options

are a unique source of information about this and contain information about volatility jumps at

event times which cannot be extracted from return data in general.

The proposed test is based on option-based estimates of the characteristic functions of returns

over three different periods recorded prior to the time of the event risk. The first period does not

cover the event time while the other two time periods do. The test utilizes the fact that, under

the null hypothesis, the characteristic exponent of the non-event risk component of the asset price
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is proportional to time. This implies a simple functional relation between the three characteristic

functions under the null hypothesis, which does not hold under the alternative hypothesis.

For characterizing the asymptotic behavior of the test statistic under the null hypothesis, we

derive a functional Central Limit Theorem (CLT) for certain transforms of the three characteristic

functions used in the test. The convergence takes place in a weighted L2 Hilbert space of complex-

valued functions. The limit is a mixed Gaussian process with conditional volatility depending on

the risks in the underlying asset price as well as on the variance of the option observation error.

The limit distribution of the test statistic is non-standard. To determine the critical values of the

test, we develop an easy to implement wild bootstrap approach. Using noisy estimates of the option

observation error and a sequence of standard normal random variables defined on an extension of

the original probability space, we generate new option prices by perturbing by the right amount

the observed ones. We then recompute the characteristic functions. The deviation of the newly

generated statistic from the one computed from the observed data has the same limit distribution

as the one of our test statistic and its quantiles can be easily evaluated via simulation.

We find good finite sample performance of the developed test procedure on simulated data

in a Monte Carlo study. In an empirical application we study the behavior of stocks’ volatility

around quarterly earnings announcements for a cross-section of stocks with liquid option markets

over the period 2016-2021. We find evidence for jumps in volatility and/or jump intensity at the

announcement times for more than half of the stock and announcement pairs. We document that

this shock to volatility is a source of priced risk by investors. More specifically, the expected

return variation after the announcement backed out from the options is on average higher than its

realization.

The test developed in this paper complements the one in Todorov (2020). Todorov (2020)

proposes a test based on short-dated options for deciding whether the underlying asset price is

exposed to event risk (which in technical terms means fixed times of discontinuity in the price

process). By contrast, in the current paper we assume that the econometrician knows that the

stock price is exposed to event risk and we are interested in the spot volatility behavior at the

event time. Knowledge of the arrival of the event risk by the econometrician seems proper for

certain events such as earnings announcements by firms and macroeconomic news announcements

which are pre-scheduled and information for which is easily accessible both to market participants

and the econometrician. The test developed here and the one in Todorov (2020) are both based

on measuring distances between certain transforms of characteristic functions of asset returns over

several short intervals. The different testing goals, however, manifest in very different properties of

the test statistics. Mainly, Todorov (2020) derives a CLT for the test statistics of that paper when

there is no event risk while here we derive a CLT for our test statistic when event risk is present
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in the asset price. With no event risk, short-dated out-of-the-money options are asymptotically

shrinking which is not the case in presence of event risk. This means faster rate of convergence and

in general different asymptotic behavior of the option-based estimate of the characteristic function

with and without event risk. This leads to different behavior of the test statistic of this paper and

the one in Todorov (2020).

The rest of the paper is organized as follows. We start in Section 2 with introducing our formal

setup and assumptions. Section 3 contains the theoretical results of the paper. In Section 4, we

present a Monte Carlo study of the finite sample behavior of the test. In Section 5 we implement our

specification test to study firms’ volatility behavior following earnings announcements. Section 6

concludes. Proofs are given in Section 7.

2 Setting and Assumptions

2.1 Asset Price Dynamics

The asset price process is denoted with X and the logarithm of it with x. The price process is

defined on the sample space Ω, with the associated σ-algebra F , and (Ft)t∈R+ being the filtration.

We will consider two probability measures, one being the true (statistical) one, denoted with P, and

the other one being the risk-neutral one, denoted with Q. The latter, under the weak condition of

arbitrage-free asset prices, is locally equivalent to the true one, see e.g., Duffie (2001) and definition

III.3.2 in Jacod and Shiryaev (2003). The significance of Q stems from the fact that the discounted

at the risk-free rate payoff process of any asset is a local martingale under Q. We introduce the

measure Q here because our inference will be based on option prices whose theoretical values equal

conditional risk-neutral expectations of certain functions of the underlying stock price. Naturally,

inference will be conducted under the statistical probability measure.

We proceed with our assumption for the dynamics of the underlying stock price. Our interest in

this paper is the behavior of the asset price around a fixed time denoted with t∗. At time t∗, there

is an event, such as a pre-scheduled release of economic news, that generates price and potentially

volatility jump risk in the asset price. The dynamics of x in a local small window around t∗ is given

in the following assumption.

A. For s ∈ [t∗ − ϵ, t∗ + ϵ], where ϵ > 0 is an arbitrary small number, we have under Q:

xs = xt∗−ϵ +

∫ s

t∗−ϵ
audu+

∫ s

t∗−ϵ
σu−dWu +

∫ s

t∗−ϵ

∫
R
zµ(du, dz) + ∆xt∗1{s≥t∗}, (3)

where W is a Brownian motion, µ is a integer-valued random measure on R × R with predictable
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compensator ϕu−du⊗ ν(dz), as = −1
2σ

2
s − ϕs

∫
R(e

z − 1− z)ν(dz), and further

σs =

 σt∗−, s < t∗

σt∗ , s ≥ t∗
, ϕs =

 ϕt∗−, s < t∗

ϕt∗ , s ≥ t∗
, s ∈ [t∗ − ϵ, t∗ + ϵ], (4)

with (σt∗−, ϕt∗−) being Ft∗−ϵ-adapted random variables and (σt∗ , ϕt∗ ,∆xt∗) being Ft∗-adapted ran-

dom variables. Furthermore, the jumps (σ2t∗ − σ2t∗−, ϕt∗ − ϕt∗−,∆xt∗) are independent from Ft∗−
and ∆xt∗ is Ft∗−-conditionally independent from σ2t∗ and ϕt∗. Finally, for any u ∈ R, we have

|EQ
t∗−(e

iu∆xt∗ )| > 0.

We make several comments regarding the above assumption. First, assumption A is for the risk-

neutral dynamics of x. The local equivalence of P and Q, however, restricts the diffusive coefficient,

σt, to be the same under P and Q. Nevertheless, the risk premium can drive a wedge between

the P and Q conditional expectations of future σt and its jump at time t∗. Related to this, the

restriction on the drift coefficient at in assumption A is due to the fact that the cum-dividend and

discounted at the risk-free stock price is a martingale under Q. To keep notation simple, and since

our interest is in asset behavior over short time intervals, we have implicitly set the risk-free rate

and the dividend yield to zero. Third, we allow both the diffusive volatility and the jump intensity

to jump at time t∗ and our interest is to design a test for deciding if this can happen with nontrivial

probability. Fourth, the volatility and jump intensity are assumed constant before and after t∗. This

is a simplification of the analysis, as the asymptotics here is for shrinking time windows around t∗.

This assumption can be further relaxed at the expense of more complicated proofs.

Finally, we note that we need non-vanishing characteristic function for the price jump ∆xt∗ at

arbitrary levels of u. The reason for this is that in our analysis, we use returns over intervals includ-

ing t∗, and our interest is in the return outside the jump at t∗. The latter, however, is convoluted

with that jump in the observed asset return. This situation is analogous to a standard deconvo-

lution problem in statistics. Such a restriction on EQ
t∗−
(
eiu∆xt∗

)
is satisfied for many distributions

commonly used in applied work.

2.2 Observation Scheme

We next describe the observation scheme. As already mentioned, we will use options with short time-

to-expiration for designing our test. We will use the options to recover the risk-neutral conditional

characteristic function of the log-price increment. We denote this quantity with

Lt,T (u) = EQ
t (e

iu(xt+T−xt), u ∈ R, (5)

8



and we note that unlike the introduction, here the expectation has a superscript Q to signify the

fact that it is a risk-neutral expectation.5 The conditional characteristic function of the log-return

can be computed from a portfolio of options over a continuum of strikes. More specifically, following

Carr and Madan (2001), we have

Lt,T (u) = 1−
(
u2 + iu

) ∫
R
eiu log(K/Xt)Ot,T (K)

K2
dK, (6)

where Ot,T (K) denotes the price at time t of a European-style out-of-the-money (OTM) option

price, expiring at time t + T with strike K, and whose underlying asset price at time t is Xt. We

recall that Ot,T (K) is the minimum of the put and call option prices with strike K. In practice,

we do not observe options on a continuum of strikes but rather on a discrete grid, which we denote

with

K1 < ... < KNt,T
, for some integer Nt,T . (7)

For simplicity, we will assume that the grid is equidistant and we will denote ∆ = Kj −Kj−1. In

order to keep the notation simple, we suppress dependence of the observed strike grid on (t, T ).

Option prices are observed with error, i.e., we observe

Ôt,T (Kj) = Ot,T (Kj) + ϵt,T (Kj), (8)

where the errors ϵt,T (Kj) are defined on a space Ω(1) = RR
+ × RR

+ × ... (each RR
+ being reserved for

the option errors corresponding to a specific pair (t, T )), which is equipped with the product Borel

σ-field F (1), and transition probability P(1)(ω(0), dω(1)) from the probability space Ω(0), on which

X is defined, to Ω(1). We further define,

Ω = Ω(0) × Ω(1), F = F (0) ×F (1),

and

P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)) .

Using the observed options, we can construct the feasible counterpart of Lt,T (u) via Riemann

sum:

L̂t,T (u) = 1− (u2 + iu)

Nt,T∑
j=2

eiu log(Kj−1/Xt) Ôt,T (Kj−1)

K2
j−1

(Kj −Kj−1). (9)

The above option-based estimator of the characteristic function is very similar to that of Todorov

(2020) given in equation (3.2) in that paper (see also (3.12) in Todorov (2019)). The slight difference

comes from the fact that in Todorov (2019, 2020), the feasible estimator is constructed on the basis

of discretizing the equivalent representation of Lt,T (u) in equation (6) above in terms of an integral

5For the discussion in the introduction, there was no need to specify the probability measure under which the

expectations were taken.
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with respect to log-strike. This difference is numerically small and is asymptotically of higher order

relative to the rate of convergence in a CLT for L̂t,T (u).
For our testing procedures, we will use option-based characteristic functions all computed at a

point in time t and which have three different times-to-maturity, T1, T2 and T3. For characterizing

the asymptotic behavior of L̂t,T (u), for T = T1, T2 and T3, we need a set of assumptions on the

strike grid and the option observation errors. They are stated below.

B1. We have ϵt,Tl(Kj) = s∆ϵt,l,jOt,Tl(Kj) for l = 1, 2, 3, where s∆ is a deterministic sequence

satisfying s∆ → 0 and s∆/
√
∆ → ∞ as ∆ ↓ 0. The three sequences {ϵt,1,j}

Nt,T1
j=1 , {ϵt,2,j}

Nt,T2
j=1 and

{ϵt,3,j}
Nt,T3
j=1 are defined on F (1), are i.i.d. and independent of each other and of F (0), and bounded

in absolute value. We further have E(ϵt,l,j |F (0)) = 0 and E((ϵt,l,j)2|F (0)) = vt,l for l = 1, 2, 3 and

some positive F (0)
t -adapted processes vt,1, vt,2 and vt,3 which are left continuous.

B2. There exist sufficiently small ϵ > 0 such that for t ∈ [t∗ − ϵ, t∗) and s ∈ [t∗, t∗ + ϵ], we have

EQ
t

(
e(2+ι)|xs|

)
<∞, almost surely, for some ι > 0.

B3. We have K2
1/∆ → 0 and K2

Nt,Tl
∆ → ∞, as ∆ ↓ 0 and for l = 1, 2, 3.

We make several comments about these assumptions. First, the observation errors are assumed

to have F (0)-conditional means of zero and they are assumed proportional to the true option prices

they are added to. The size of the error is assumed to be shrinking asymptotically as ∆ ↓ 0 at

an arbitrary slow rate. Obviously, in practice ∆ is fixed. The current asymptotic setup for the

observation error seems proper in light of the fact that observed bid-ask spreads are small relative

to the mid option quotes, which we take as noisy proxies for the true option prices in the application

of the developed theory, see e.g., Figure 2 in Andersen et al. (2015). The empirical relevance of the

above shrinking error assumption will be confirmed later on in our numerical analysis.

We also note that for deriving infeasible CLT result in Theorem 2 below, we do not need s∆ → 0

and s∆ fixed will work too. The shrinking observation error, i.e., s∆ → 0 is needed only for the

approach adopted here for feasible estimation of the asymptotic variance of the limiting distribution.

Finally, the requirement s∆/
√
∆ → ∞ guarantees that bias terms in our test statistic are of higher

asymptotic order relative to the term due to the observation error that drives the CLT for the

statistic.

Assumption B2 is a conditional moment restriction. The existence of conditional moments of

the increments of xt have implications for how fast the true option price, Ot,T (K), decays as K ↓ 0

and K ↑ ∞. We note that for the existence of Ot,T (K) for K > Xt, we need EQ
t (e

xt+T ) < ∞.

Finally, assumption B3 imposes conditions on the strike range and the mesh of the strike grid. It is

clear that for L̂t,T (u) to be a consistent estimate of Lt,T (u), we need ∆ ↓ 0, K1 ↓ 0 and KNt,T
↑ ∞.

Assumption B3 restricts the rate at which this happens and ensures that the error due to the
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discrete strike grid is larger asymptotically than the error due to the lack of option observations for

K < K1 and K > Kt,T . These conditions are connected with the moment condition in B3, with a

stronger moment condition corresponding to a weaker requirement for K1 and Kt,T .

3 Tests for Anticipated Event Risk Volatility Jumps

This section contains the main theoretical results of the paper. Formally, our interest is to design a

test that can allow us to determine in which of the following two subsets of Ω, the random outcome

ω belongs to:

Ω0 = {ω : Qt∗−(σ
2
t∗ = σ2t∗−) = 1 and Qt∗−(ϕt∗ = ϕt∗−) = 1},

ΩA = {ω : EQ
t∗−(σ

2
t∗ − σ2t∗−) ̸= 0 or EQ

t∗−(ϕt∗ − ϕt∗−) ̸= 0}.
(10)

We note that the union of Ω0 and ΩA is not Ω. The remaining part of the sample space consists

of outcomes for which EQ
t∗−(σ

2
t∗ − σ2t∗−) = EQ

t∗−(ϕt∗ − ϕt∗−) = 0 but either EQ
t∗−(σ

2
t∗ − σ2t∗−)

2 ̸= 0

and/or EQ
t∗−(ϕt∗ − ϕt∗−)

2 ̸= 0. We discuss this situation in more detail after Theorem 1 below.

We start in Section 3.1 with designing a statistic that can separate the null from the alternative

hypothesis on the basis of characteristic functions of price increments over three distinct short time

windows. Following this, we derive a functional Central Limit Theorem (CLT) for a version of the

statistic constructed from observable options in Section 3.2. Since the limit of the statistic is non-

standard, we develop a bootstrap type procedure for determining the quantiles of the test statistic

in Section 3.3, and finally we present the test in Section 3.4.

3.1 Return Characteristic Functions in Presence of Event Risk

We start first with decomposing the characteristic function of the log-price increment that covers

a time window including t∗ in terms of the event price jump and the non-event risks in the asset

price. Towards this end, let us denote

ψt(u) = iuat −
u2

2
σ2t + ϕt

∫
R
(eiuz − 1)ν(dz), u ∈ R, t > 0. (11)

Using successive conditioning, Lévy-Khinchine formula (see e.g., Theorem 8.1 in Sato (1999)), the

assumption for the spot characteristics of x and the jump ∆xt∗ in assumption A, we can write

Lt,T (u) = e(t
∗−t)ψt∗−(u)EQ

t∗−

(
eiu∆xt∗+(t+T−t∗)ψt∗ (u)

)
, (12)

where t ∈ (t∗ − ϵ, t∗) and t + T ∈ (t∗, t∗ + ϵ). If σt and ϕt do not jump at t = t∗, then

Lt,T (u)/EQ
t∗−
(
eiu∆xt∗

)
is the conditional characteristic function of the increment of a Lévy pro-

cess and hence its logarithm scales linearly with T . This suggests a testable implication using

conditional characteristic functions Lt,T (u) for three different values of T .
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Let us consider t∗ − ϵ < t < t + T1 < t∗ < t + T2 < t + T3 < t∗ + ϵ. Note that the first time

window [t, t + T1] does not include the event time t∗ while the other two, [t, t + T2] and [t, t + T3],

do. Conditional on Ω0 and using (12), it is easy to see that we have

Lt,T1(u)
T3−T2

T1 Lt,T2(u) = Lt,T3(u), for {u ∈ R : max{T1, T3 − T2}|ℑ(ψt∗−(u))| < π}, (13)

where the power in the above expression is uniquely defined by the principal value of the argument

of the complex number. Note that we restrict the values of u in (13) to ensure that both eT1ψt∗−(u)

and e(T3−T2)ψt∗−(u) are away from the negative real axis where the complex power function has a

discontinuity. Of course, since ℑ(ψt∗−(u)) = Op(u) as u → ∞, any value of u will be included for

sufficiently small T .

Given the identity in (13), it is natural to consider the following quantity as a way to separate

the situation in which σt and/or ϕt jump at t = t∗ with positive probability:

Wt,T =

∫
|u|≤uT

∣∣∣∣Lt,T1(u)T3−T2
T1 Lt,T2(u)− Lt,T3(u)

∣∣∣∣2w(u)du, (14)

for some positive-valued and continuous weight function w and uT being a deterministic sequence

of positive numbers. We will use weight functions with exponential tail decay, i.e., ones for which

the following holds:∫
|z|>u

w(z)dz = o(e−αu
ρ
) as u→ ∞, for some α > 0 and ρ > 0. (15)

As an example, in our numerical analysis, we will use the probability density function of a normal

random variable as our choice for the weight function w. This choice clearly satisfies the exponential

tail decay requirement in (15) above.

We can compare the quantity Wt,T, which we will use to test our null hypothesis, with the

one considered by Todorov (2020) for testing against presence of event risk. In the notation here,

Todorov (2020) considers the following two alternative quantities

W̃(1)
t,T =

∫
R

∣∣∣∣Lt,T3(u)− Lt,T1(u)
T3
T1

∣∣∣∣2w(u)du, W̃(2)
t,T =

∫
R

∣∣∣∣Lt,T3(u)− Lt,T2(u)
T3
T2

∣∣∣∣2w(u)du. (16)

If there is no event risk i.e., t∗ is outside the interval [t, t+ T3], then it is easy to see based on the

analysis above that W̃(1)
t,T = W̃(2)

t,T = 0. On the other hand, if t∗ − ϵ < t < t + T1 < t∗ < t + T2 <

t + T3 < t∗ + ϵ, which is our assumption here, W̃(1)
t,T ̸= 0 and W̃(2)

t,T ̸= 0 and this outcome is in the

alternative hypothesis of Todorov (2020) therefore.

We have the following result for our distance measure Wt,T:

Theorem 1. Suppose t∗ − ϵ < t < t+ T1 < t∗ < t+ T2 < t+ T3 < t∗ + ϵ and T1 ≍ T , T2 ≍ T and

T3 ≍ T , for some T ↓ 0. Let uT satisfy

uT → ∞ and u2TT → 0. (17)
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We have:

(a) P(Wt,T ̸= 0|Ω0) → 0.

(b) Wt,T ≍ T conditional on ΩA.

In Theorem 1, we restrict the rate of growth of uT . With this restriction, given the expression

for (11), we have that Lt,T1(u) converges to 1 as T → 0. This restriction on uT guarantees that,

with probability approaching 1, the range requirement for u in (13) is satisfied. Conditional on

ΩA, the distance measure Wt,T is Op(T ). We note in this regard that in the definition of ΩA we

require either EQ
t∗−(σ

2
t∗) ̸= σ2t∗− and/or EQ

t∗−(ϕt∗) ̸= ϕt∗−. If this is not the case but we still have

jump at t = t∗ in either σ2t or ϕt with positive probability, i.e., if EQ
t∗−(σ

2
t∗ − σ2t∗−)

2 ̸= 0 and/or

EQ
t∗−(ϕt∗ − ϕt∗−)

2 ̸= 0, then one can show that Wt,T ≍ T 2.

Since for sufficiently small T , uT exceeds the absolute value of any u, the measure Wt,T can

detect jumps in either σ2t or ϕt. For higher values of |u|, ψt(u)/u2 converges to −1
2σ

2
t . Therefore, if

in defining the statistic Wt,T, we use only large in absolute value u-s, then we can detect expected

jumps only in σ2t at t = t∗.

3.2 Infeasible Limit Theory

We note thatWt,T is an integral over a function of u, which we can estimate from the data. Therefore,

we will need to derive functional convergence results for the characteristic function estimates L̂t,T (u).
This is what we do in this section. The functions that we consider take value in the complex-valued

Hilbert space L2(w):

L2(w) =

{
f : R → C

∣∣∣∣ ∫
R
|f(u)|2w(u)du <∞

}
, (18)

where w is the weight function in (14) and satisfys the exponential tail decay condition in (15). The

inner product on L2(w) is induced from the inner products of its real and imaginary parts, i.e., for

f and g two elements of L2(w), we set

⟨f, g⟩ =
∫
R
f(z)g(z)w(z)dz. (19)

Next, for a random complex function Z taking values in L2(w), we introduce the covariance operator

Kh = E[(Z−E(Z))⟨h, Z−E(Z)⟩] and the relation operator Ch = E[(Z−E(Z))⟨h, Z − E(Z)⟩], where
h ∈ L2(w). We recall that a Gaussian law on L2(w) is uniquely identified by the mean, covariance

and relation operators and we denote it with CN (µ,K,C), for µ being the mean, K being the

covariance and C being the relation operator, see e.g., Section 2 of Cerovecki and Hörmann (2017).

We are now ready to derive our functional convergence results. We denote the counterpart of

Wt,T estimated from the data with Ŵt,T. We further define

13



Ẑt,T(u) =


L̂t,T1

(u)
T3−T2

T1 L̂t,T2
(u)− L̂t,T3

(u)− (Lt,T1
(u)

T3−T2
T1 Lt,T2

(u)− Lt,T3
(u)), if |u| ≤ uT ,

0, otherwise,

(20)

where uT is the sequence used in Wt,T. From Theorem 1, conditional on Ω0 and with probability

approaching one, we have that ||Ŵt,T|| = ||Ẑt,T||. For characterizing the behavior of Ŵt,T conditional

on Ω0, we need therefore a functional CLT for Ẑt,T. This is given in the following theorem in the

statement of which we use s∆ defined in assumption B1.

Theorem 2. Suppose assumptions A and B1-B3 hold and consider t < t∗ < t+ T1 < t∗ < t+ T2 <

t + T3. Let t ↑ t∗, together with ∆ → 0, T1 ≍ T , T2 ≍ T and T3 ≍ T , for some T ↓ 0, and

Tα/∆ → 0, for some arbitrary big α > 0. Let uT satisfy (17). We then have

1

s∆
√
∆
Ẑt,T

L|F(0)

−−−−→ Z, (21)

with Z defined on an extension of the original probability space and having F (0)-conditional law of

CN (0,K,C), for K and C being covariance and relation operators with integral representations

Kh(z) =

∫
R
k(z, u)h(u)w(u)du, Ch(z) =

∫
R
c(z, u)h(u)w(u)du, ∀h ∈ L2(w), (22)

for some functions k(z, u) and c(z, u) defined in (61)-(62) the proof.

The rate of convergence of Ẑt,T is determined by the mesh of the strike grid and the asymptotic

size of the observation error. The above limit result is therefore of joint type, i.e., both ∆ ↓ 0 and

T ↓ 0. The requirement that Tα/∆ → 0, for some arbitrary big α > 0, is relatively weak and can

be further relaxed. It is needed because Ẑt,T(u) takes value of zero for |u| > uT while the limit Z(u)

does not. We do not provide explicit expressions for K and C here as we will not need them in

our feasible implementation of the above result. These quantities are governed by the conditional

distribution of the jump ∆xt∗ . If the variance of the latter is zero or of asymptotically shrinking

size, then the rate of convergence in (21) will change as well.

We can compare the above limit result with that of Todorov (2020) given in Theorem 1 of that

paper. The test statistic of Todorov (2020) is the feasible counterpart of the quantity in (16). The

asymptotic result in Theorem 2 and the one in Theorem 1 of Todorov (2020) are very different.

We derive the asymptotic result under the assumption that event risk is present while the CLT

result in Todorov (2020) holds only under the assumption of no event risk. That results in a very

different asymptotic behavior of the cross-sections of options considered in the analysis in our setting

and that of Todorov (2020). Indeed, when no event risk is present, then the option prices shrink

asymptotically to zero as their tenor shrinks. Moreover, this rate of time decay of the option prices

is different depending on the distance of the strikes of the options to the current stock price. This
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does not happen when event risk is present in the underlying price between the observation time and

the expiration of the options. As a result, the rate of convergence of the statistic in Todorov (2020)

is faster than the one here. In addition, the limit of our statistic here depends on the observation

errors of all options used in the estimation while the limit of the statistic in Todorov (2020) is

driven only by the option prices with the strikes in the vicinity of the current stock price given their

asymptotically dominant role in the case of no event risk.

3.3 Feasible Limit Theory

For feasible inference, we will need estimates of the F (0)-conditional variance of the option ob-

servation errors. They are not directly observed but we can take advantage of the in-fill asymp-

totic setting here and the fact that the true option prices, with strikes away from Xt, are dif-

ferentiable as functions of their strikes. A natural choice for an error estimate would be to use√
2
3

[
Ôt,Ti(Kj)− 1

2

(
Ôt,Ti(Kj−1) + Ôt,Ti(Kj+1)

)]
as done in Andersen et al. (2021) and Todorov

(2020) for example. Since ∆ ↓ 0, Ot,Ti(Kj) − 1
2 (Ot,Ti(Kj−1) +Ot,Ti(Kj+1)) is approximately zero,

and the above is an estimate of ϵt,Ti(Kj)− 1
2 (ϵt,Ti(Kj−1) + ϵt,Ti(Kj+1)). This approach is not going

to work very well, however, in finite samples with relatively coarse strike grid for two reasons. First,

it does not utilize the fact that the estimation error is proportional to the option price and the

latter varies a lot across strikes. Second, when the strike grid is coarse, the convexity of the true

option price can be nontrivial, particularly for strikes close to the current stock price.

For this reason, we propose an alternative estimate for the volatility of the observation error,

which utilizes the observation error structure of assumption B1. Our estimate for ϵt,Ti(Kj) is given

by

ϵ̂t,Ti(Kj) = ŝi,∆Ôt,Ti(Kj), j = 1, ..., Nt,Ti , i = 1, 2, 3, (23)

where the estimates ŝi,∆ are given by

ŝi,∆ =


√

2
3

1
|Iit |
∑

j∈Iit

(
log(Ôt,Ti(Kj))− 1

2 log(Ôt,Ti(Kj−1))− 1
2 log(Ôt,Ti(Kj+1))

)2
, if Iit ̸= ∅,

1, if Iit = ∅,
(24)

and the sets Iit are defined as:

I1t =
{
j ∈ {2, ..., Nt,T1 − 1} \ {j∗1} : |Kj −Xt| ≤

√
T1 × Ct,1

}
, (25)

Iit =
{
j ∈ {2, ..., Nt,Ti − 1} \ {j∗i } : Ôt,Ti(Kj) > Ct,i

}
, i = 2, 3, (26)

with {Ct,i}i=1,2,3 being F (0)
t -adapted and strictly positive random variables and j∗i being the smallest

element of {2, ..., Nt,Ti − 1} for which |Kj −Xt| is the smallest.
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We make several observations regarding ϵ̂t,Ti(Kj). First, due to the fact that the observation

error is asymptotically shrinking, nonlinear transformations of the option price can be made in the

estimation of the F (0)-conditional variance of ϵt,Ti(Kj). Second, the use of the log transformation in

ŝi,∆ allows us to estimate the variance of ϵt,Ti(Kj)/Ot,Ti(Kj) which does not depend on the strike.

This way we can pool information across strikes and significantly reduce the error in estimating the

option error variance. Third, by taking logarithm of the option prices in ŝi,∆, we reduce the positive

bias in the estimation that is due to the convexity of the true option price because for a convex,

positive and twice-differentiable function f(k), we have f(k)(log(f(k))′′ ≤ f ′′(k). Finally, the sets

of strikes, {Iit}i=1,2,3, used in the estimation of ŝi,∆, are determined so that the true option prices

are strictly above zero, which carries over to the ratio
Ot,Ti

(Kj)√
Ot,Ti

(Kj−1)Ot,Ti
(Kj+1)

as well. Note that

this leads to slightly different sets I1t and {Iit}i=2,3. The reason for this is that the event risk takes

place after the expiration of the shortest tenor options and before that of the rest of the options

used in forming the test. As a result, {Ot,T1(Kj)}j≥1 shrink asymptotically while {Ot,Ti(Kj)}j≥1,

for i = 1, 2, do not.

We continue next with describing a feasible CLT using the estimates ϵ̂t,Ti(Kj). As discussed in

the previous section, the limit distribution in (21) is non-standard and we will therefore develop a

wild bootstrap approach for evaluating its quantiles. With this in mind, using the noisy proxies for

the observation error, we generate new option prices as follows:

Ô∗
t,Ti(Kj) = Ôt,Ti(Kj) + ϵ̂t,Ti(Kj)zi,j , j = 1, ..., Nt,Ti , i = 1, 2, (27)

where {z1,j}
Nt,T1
j=1 , {z2,j}

Nt,T2
j=1 and {z3,j}

Nt,T3
j=1 are three i.i.d. sequences of standard normal variables

defined on an extension of the original probability space and independent from F and from each

other. We then define L̂∗
t,Ti

from L̂t,Ti by replacing Ôt,Ti(Ki,j) with Ô
∗
t,Ti

(Ki,j). With this notation,

we set

Ẑ∗
t,T(u) =


L̂∗
t,T1

(u)
T3−T2

T1 L̂∗
t,T2

(u)− L̂∗
t,T3

(u)− (L̂t,T1(u)
T3−T2

T1 L̂t,T2(u)− L̂t,T3(u)), if |u| ≤ uT ,

0, otherwise.

(28)

The following theorem shows that the F-conditional limit distribution of Ẑ∗
t,T is the same as

that of Ẑt,T.

Theorem 3. In the setting of Theorem 2, we have

1

s∆
√
∆
Ẑ∗
t,T

L|F−−→ Z, (29)

with Z defined on an extension of the original probability space and having the same F-conditional

law as that of the limit in Theorem 2.
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3.4 The Test

We are now ready to state formally our test, which will be based on Ŵt,T. Under the null hy-

pothesis, i.e., conditional on Ω0, we have Ŵt,T = ||Ẑt,T||2 with probability approaching one and the

F (0)-conditional quantiles of ||Ẑt,T|| can be estimated by those of ||Ẑ∗
t,T|| using simulation. More

specifically, we denote

ĉvα = Q1−α(||Ẑ∗
t,T||2 |F), α ∈ (0, 1), (30)

where Qα(Z) is the α-quantile of the random variable Z. We can evaluate ĉvα easily via simulation.

The following corollary follows from Theorems 1, 2 and 3:

Corollary 1. In the setting of Theorem 2 and for α ∈ (0, 1), we have

(a)

P
(
Ŵt,T > ĉvα|Ω0

)
−→ α. (31)

(b)

P
(
Ŵt,T > ĉvα|ΩA

)
−→ 1, provided s∆

√
∆/T → 0. (32)

The requirement s∆
√
∆/T → 0 in part (b) of the above corollary is natural given the results

of Theorems 1 and 2. If this condition does not hold, then the option observation error is too

big relative to the changes caused by the jumps in volatility and/or jump intensity to the return

distribution.

We finish this section with a brief discussion about a natural potential alternative to the above

testing procedure that is based on high-frequency returns of the underlying asset. Mainly, one can

form estimates of volatility in local blocks before and after the event time and using these two

estimates test for volatility jump at the event time, see e.g., Jacod and Todorov (2010). There

are several important differences between the two approaches. The first is that here we use data

strictly before the occurrence of the event for conducting the test while with the high-frequency

return-based approach we have to use data after the event too. Second, with high-frequency return

data, in general, we can only recover jump in the diffusive volatility but we cannot say anything

about the intensity of the jumps. This is due to the rare nature of jumps: over a short interval of

time jumps might not occur while their intensity is nevertheless strictly positive. Third, with the

high-frequency return data one has access only to the realized volatility jump. By contrast with the

option data, we can infer risk-neutral moments of the jump in the diffusive volatility and the jump

intensity. As a result, we can have a situation in which ω ∈ ΩA but nevertheless no volatility jump

takes place at the event time. Fourth, the estimators of spot diffusive volatility from option data

can in some cases have higher precision than the return-based ones, see e.g., Todorov and Zhang

(2022). Finally, with the option data one can study the pricing of the volatility jump risk at the

event time as we will show later on in the empirical section.
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4 Monte Carlo Study

4.1 Setup and Choice of Tuning Parameters

The model for the underlying asset price in the Monte Carlo is specified by the following choices:

• The jumps outside t∗ are specified by

ν(dz) =
λ2

2

e−λ|z|

|z|
, and ϕs = σ2t∗−. (33)

The Lévy measure ν corresponds to Variance Gamma Lévy process, and we set its scale

parameter so that
∫
R z

2ν(dz) = 1. We choose λ = 50, which implies Lévy tail decay that is

roughly consistent with that found in previous studies.

• The instantaneous drift term is given by

as = −1

2
σ2s + σ2t∗−

λ2

2
log

(
1− 1

λ2

)
. (34)

• For the event jump, we set

∆xt∗ ∼ N(−σ2∗/2, σ2∗), (35)

for some parameter σ∗. With this specification, we have Et∗−(e∆xt∗ ) = 1.

• The diffusive volatility after the event is specified as

σ2t∗ |Ft∗− is Inverse Gaussian with mean µ∗ and standard deviation v∗. (36)

We consider different values for the initial diffusive volatility σt∗−, the variance of the event jump

σ2∗, and the parameters µ∗ and v∗ of the conditional distribution of σ2t∗ . The different parameter

configurations are given in Table 1. The first five columns correspond to different configurations in

which the diffusive volatility does not jump at t∗, which is the null hypothesis we test. We consider

three different levels of the diffusive volatility: low, medium and high. For each of these three levels

of volatility, we consider a scenario with small and big event risk. The small even risk scenario is

one in which the variance of the event risk is half of the diffusive variance over an interval of five

days and in the big event risk scenario we double that number. In the specifications under the

alternative, reported in the last five columns of Table 1, we add a volatility jump at t∗ to their

counterparts under the null hypothesis. In all considered scenarios, the mean of σ2t∗ is double the

value of σ2t∗− and the standard deviation of σ2t∗ is 20% of its mean.

Turning next, to the specification of the observation setup, we set t − t∗ = 7/252, T1 = 5/252,

T2 = 10/252, T3 = 15/252. This corresponds to options which expire in one, two and three weeks

from now, respectively and the event is approximately in the middle of the second week. This setup
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Table 1: Monte Carlo Parameter Settings

Case Parameters Case Parameters

σ2
t∗− σ2

∗ µ∗ v∗ σ2
t∗− σ2

∗ µ∗ v∗

N-L-S 0.005 0.0025× 5/252 0.005 0 A-L-S 0.005 0.0025× 5/252 0.0075 0.0075× 0.2

N-M-S 0.010 0.0050× 5/252 0.010 0 A-M-S 0.010 0.0050× 5/252 0.0150 0.0150× 0.2

N-H-S 0.020 0.0100× 5/252 0.020 0 A-H-S 0.020 0.0100× 5/252 0.0300 0.0300× 0.2

N-L-B 0.005 0.0050× 5/252 0.005 0 A-L-B 0.005 0.0050× 5/252 0.0075 0.0075× 0.2

N-M-B 0.010 0.0100× 5/252 0.010 0 A-M-B 0.010 0.0100× 5/252 0.0150 0.0150× 0.2

N-H-B 0.020 0.0200× 5/252 0.020 0 A-H-B 0.020 0.0200× 5/252 0.0300 0.0300× 0.2

mimics roughly the one in the empirical study. The current value of the underlying asset price is

set to X0 = 250. The mesh of the strike grid ∆ is set to 1. For each maturity, starting from a

strike equal to X0, we keep adding strikes above and below X0 at increments of ∆ until the true

option price falls below 0.01. This strike grid mimics roughly the one of observable individual equity

options that we will use in our empirical analysis. Finally, observed options are contaminated with

error, i.e., we observe

Ôt,Ti(Kj) = (1 + 0.1× zt,i,j)Ot,Ti(Kj), (37)

where zt,i,j are i.i.d. across both i and j, and each zt,i,j has a truncated standard normal distribution

with truncation interval (−1.96, 1.96).

We finish this section with describing our choice of tuning parameters. First, we set uT to

ûT = inf
{
u ≥ 0 : |L̂t,T1(u)| ≤ 0.5

}
. (38)

Second, we set the weight function to

w(u) = exp

(
− u2

u2T

)
, uT = inf

{
u ≥ 0 : |L̂t,T3(u)| ≤ 0.5

}
. (39)

Finally, the random variables Ct,i in the definition of the sets Iit are set to

Ct,1 = 4× σBSIVt,1 and Ct,2 = 0.01, (40)

where σBSIVt,1 denotes the at-the-money Black-Scholes implied volatility extracted from the options

with tenor T1.
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4.2 Results

The results from the Monte Carlo are reported in Table 2. They indicate good finite sample perfor-

mance of the test under the null hypothesis, with empirical rejection rates close to the significance

level of the test in the various configurations under the null hypothesis. The test has good power

also under the considered alternatives. The power is higher for higher initial volatility σt∗−. The

reason for this is that when volatility is high, the available number of options is higher as more

strikes are needed to cover the effective support of the return distribution. As a result, the effect

from the observation error on the estimation gets reduced, which in turn allows for a higher power

of the test. We further note that the power of the test decreases when the variance of the jump

∆xt∗ increases. The reason for this is that the information about the jump in σt and ϕt in the

returns over time increments including t∗ gets reduced, in relative terms, when the event risk is

larger. This effect is similar to the standard deconvolution problem in which higher noise makes it

more difficult to learn about the signal.

Table 2: Monte Carlo Results

Case Significance Level Case Significance Level

α = 10% α = 5% α = 1% α = 10% α = 5% α = 1%

N-L-S 10.06% 5.56% 1.36% A-L-S 56.08% 43.20% 20.78%

N-M-S 10.50% 5.34% 1.02% A-M-S 72.64% 60.48% 35.18%

N-H-S 10.60% 5.56% 1.28% A-H-S 87.28% 78.28% 53.08%

N-L-B 10.00% 5.42% 1.62% A-L-B 51.36% 38.28% 18.62%

N-M-B 10.16% 5.48% 1.60% A-M-B 64.84% 51.06% 26.94%

N-H-B 10.10% 5.06% 1.24% A-H-B 82.32% 70.78% 46.04%

Note: The entries in the table correspond to the empirical rejection rates of the volatility jump test (in percentage)

based on 5, 000 Monte Carlo draws.

5 Empirical Analysis of Earnings Announcement Volatility

In this section, we perform the proposed test for jumps in spot volatility at event times for a sample

of individual stocks.6 We focus on the event risk generated by the pre-scheduled quarterly earnings

6As recently documented in Jeon et al. (2022), jumps in stock prices are typically associated with important news

releases. Our focus here is on a specific type of firm-related news which are pre-scheduled (and hence there is no

uncertainty about their time arrival).
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announcements.7 We select a sub-sample of 38 individual stocks from the S&P 100 Index across

different sectors with liquid options. Our sample period is from January 2, 2014 until December

31, 2021. For each stock, we obtain the earnings announcement history from the Zacks earnings

calendar, where both earnings dates and times (e.g., after close of before open) are provided.8 We

align the “after close” with the “before open” announcements by adding one business day to the

original “after close” announcement dates. Over the period from January 2, 2014 until December

31, 2021, each stock in the sample has 32 earnings announcement events.

The option data is obtained from OptionMetrics. It consists of closing best bid and ask quotes.

For each day in the sample, we keep the three shortest available tenors with time-to-maturity of

at least 2 business days. We consider only tenors for which there are at least 10 out-of-the-money

options with different strikes and non-zero bid quotes. The moneyness is determined by the implied

forward rate, which in turn is computed by using put-call parity for three distinct strikes with the

smallest gap between call and put mid-quotes. To perform the specification test, three distinct

tenors are needed, among which only the last two include the earnings event. Since weekly options

for individual stocks always expire on Fridays, we first locate the Friday prior to the week of the

earnings announcement, which we refer to as the first prior-earning Friday.9 We then find the Friday

in the week before the first prior-earning Friday and perform the specification test on this date,

i.e., on the so-called second prior-earning Friday. If the second prior-earning Friday is a holiday, we

then use the following trading day.

Summary statistics for the data are reported in Table 3. On average, the number of strikes for

the different stocks is high, which is important for the good finite sample performance of the test.

The stocks with the highest number of strikes under consideration are Amazon (AMZN), Google

(GOOG), Netflix (NFLX), and Tesla (TSLA). For most stocks, the strike range is also wide. Of

course, the length of the strike range naturally depends on the volatility of the underlying stock,

with more volatile stocks such as Tesla having wider strike range. We also note that the strike

range for essentially all stocks is a bit skewed to the left, relative to the current stock price, which is

manifestation of the negative skew of the risk-neutral return distribution. This effect is quite mild

though compared to the one observed for market index options.

We implement the test for every stock-announcement pair in the sample. The results from the

7The results of the current paper can be also used to study anticipated changes in spot volatility due to macroeco-

nomic announcements. There is a large literature in finance that studies various effects of macroeconomic announce-

ment on asset prices, see e.g., Cochrane and Piazzesi (2002), Rigobon and Sack (2004), Bernanke and Kuttner (2005),

Savor and Wilson (2014), Lucca and Moench (2015), Ai and Bansal (2018) and Nakamura and Steinsson (2018),

among many others.
8The Zacks earnings calendar is publicly accessible via https://www.zacks.com/stock/research/“XXX”/earnings-

calendar, where “XXX” represents the ticker symbol of the stock.
9If Friday is a holiday, then preceding Thursday is used instead.
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Table 3: Summary Statistics for Short-dated Options across Earnings Announcements

Ticker # of Strikes log(K/S)min log(K/S)max Ticker # of Strikes log(K/S)min log(K/S)max

AAPL 43 0.76 1.22 JNJ 23 0.85 1.09

AMZN 139 0.71 1.30 JPM 30 0.81 1.14

AXP 29 0.83 1.12 KO 21 0.86 1.12

BA 40 0.76 1.23 MCD 22 0.86 1.10

BAC 21 0.79 1.16 MMM 22 0.85 1.11

BLK 35 0.83 1.10 MRK 23 0.88 1.09

C 28 0.82 1.15 MS 21 0.82 1.12

CAT 34 0.80 1.15 MSFT 31 0.81 1.13

COF 31 0.83 1.12 NFLX 63 0.67 1.36

CSCO 23 0.83 1.14 NKE 30 0.84 1.14

CVX 26 0.87 1.10 NVDA 50 0.69 1.30

DIS 32 0.81 1.18 PFE 20 0.87 1.16

FB 41 0.75 1.23 PG 25 0.88 1.08

GE 18 0.77 1.23 T 17 0.85 1.11

GOOG 86 0.82 1.16 TSLA 76 0.56 1.46

GS 28 0.78 1.15 V 27 0.83 1.11

HD 26 0.82 1.11 VZ 17 0.87 1.08

IBM 28 0.82 1.14 WMT 30 0.86 1.14

INTC 26 0.81 1.16 XOM 26 0.87 1.10

Note: The table reports the average number of strikes per tenor, the minimum and maximum log-moneyness of the

available options for each stock across earnings announcement events with valid option data (i.e., there are three

consecutive weekly expiration dates available on the Friday two weeks prior to the scheduled earnings announcement

date and the minimum number of strikes across all three tenors is higher than 10).

tests are summarized in Table 4. Overall, these results provide nontrivial evidence for the anticipated

jump at the earnings announcement time t∗ in the stocks’ volatility and/or jump intensity. Indeed,

at 10% significance level, the test rejects more than half of the times for the stock/announcement

pairs in our sample. Table 4 also reveals some variation in the test results across the stocks in the

sample. For example, for stocks such as Amazon, Google and Netflix, the rejection rates are very

high. On the other end of the spectrum are stocks such as Facebook, Home Depot and IBM.
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Table 4: Earnings Announcement Volatility Jump Test Results

Ticker # of Obs. α = 10% α = 5% α = 1% Ticker # of Obs. α = 10% α = 5% α = 1%

AAPL 32 22 21 15 JNJ 30 21 15 9

AMZN 32 32 30 29 JPM 30 16 14 10

AXP 30 20 17 14 KO 12 8 5 4

BA 31 17 16 12 MCD 29 13 9 9

BAC 12 6 4 4 MMM 27 14 12 7

BLK 15 13 10 8 MRK 31 22 20 15

C 31 19 15 11 MS 28 19 15 14

CAT 32 19 16 13 MSFT 30 19 16 12

COF 27 21 20 16 NFLX 32 26 23 17

CSCO 16 11 11 9 NKE 28 15 10 6

CVX 32 23 21 18 NVDA 27 17 14 9

DIS 31 18 14 9 PFE 10 6 6 6

FB 32 15 14 11 PG 30 22 19 14

GE 6 3 2 2 T 21 7 4 2

GOOG 30 29 29 25 TSLA 32 24 22 20

GS 31 18 15 8 V 32 16 16 9

HD 31 8 6 5 VZ 26 8 7 5

IBM 31 14 8 5 WMT 30 19 12 8

INTC 25 12 9 6 XOM 32 23 22 16

Note: The table reports the total number of earnings announcement events with valid option data (i.e., there are three

consecutive weekly expiration dates available on the Friday two weeks prior to the scheduled earnings announcement

date and the minimum number of strikes across all three tenors is higher than 10), and the number of times the

volatility jump test rejects for different significance levels.

We note that we conduct the test for every single earnings announcement in the sample. This is

similar to the way tests for presence of jumps in high-frequency data are typically implemented. Of

course, given the derived limit results in the paper, it is easy to design a test for the null hypothesis

that there were no anticipated changes in volatility and jump intensity for a fixed number of earning

announcements for a given stock. This can be done either using the supremum or the sum of the

test statistics for all earning announcement events.
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In Figures 3-4, we illustrate the data used in the construction of the test as well as the two trans-

formations of the characteristic functions that are contrasted in Ŵt,T for two earnings announce-

ments of Facebook (FB) in 2021. As seen from the left panels of the two figures, the longer-dated

options are considerably more expensive. This is to be expected as the longer dated options contain

more risk than their short-dated counterparts. What is unique for the option prices prior to the

earnings announcements displayed on the left panels of the figures is that the gaps between the

option prices (with the same strike) with tenors T2 and T3 is much smaller than the one between

those with tenors T1 and T2. This is due to the announcement risk anticipated by investors. Recall

that the announcement takes place somewhere in the interval (t+T1, t+T2) and the risk it generates

is, therefore, not priced in the shortest tenor options.

The right panels of the two figures display |L̂t,T1(u)|
T3−T2

T1 |L̂t,T2(u)| and |L̂t,T3(u)|. Under the

null hypothesis, these two quantities should be the same up to measurement error. This seems to be

the case for the second of the two events with the two lines being almost on top of each other. For

the announcement in Figure 3, however, there seems to be considerable and persistent difference

between the two lines.
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Figure 3: OTM Option Prices and Characteristic Function Estimates for Facebook on

15-Jan-2021.

Given the above evidence for jumps in σt and/or ϕt, it seems difficult in general to separate

nonparametrically the expected volatility jump at t∗ from the one in the jump intensity for many
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Figure 4: OTM Option Prices and Characteristic Function Estimates for Facebook on

29-July-2021.

of the earnings announcement events in the sample. The risk-neutral expectation of their sum is,

however, easy to estimate using estimates of the risk neutral quadratic variation over the different

tenors. The latter are given by

Q̂V t,Tl
=

Nt,T∑
j=2

(
1− log

(
Kj−1

Xt

))
Ôt,Tl(Kj−1)

K2
j−1

(Kj −Kj−1), l = 1, 2, 3. (41)

Under similar conditions to the ones for proving the limit behavior of L̂t,Tl(u) in our theoretical

analysis, one can show that Q̂V t,Tl
is a consistent estimator for the expected risk-neutral quadratic

variation EQ
t (QVt,Tl), where we denote

QVt,T =

∫ t+T

t
σ2sds+

∑
s∈[t,t+T ]

(∆xs)
2. (42)

Now, for our setting with event risk (under assumption A), we have

EQ
t (QVt,T1) = T1(σ

2
t∗− + ϕt∗−

∫
R
z2ν(dz)),

EQ
t (QVt,T3 −QVt,T2) = (T3 − T2)EQ

t∗−(σ
2
t∗ + ϕt∗

∫
R
z2ν(dz)).

(43)

Therefore, we can compare 1
T3−T2 (Q̂V t,T3 − Q̂V t,T2) with 1

Nt

∑
i:ti∈(t+T2,t+T3]

1
Ti
Q̂V ti,Ti , where

the ti-s in the summation are the times of market close on each of the trading days between t+ T2
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and t+ T3, Ti is the shortest available tenor at time ti, and Nt is the number of observations in the

interval (t + T2, t + T3]. The sum 1
Nt

∑
i:ti∈(t+T2,t+T3]

1
Ti
Q̂V ti,Ti is a proxy for σ2t∗ + ϕt∗

∫
R z

2ν(dz).

We note that the expected value EP
(
σ2
t∗ + ϕt∗

∫
R z

2ν(dz)− EQ
t∗−(σ

2
t∗ + ϕt∗

∫
R z

2ν(dz))
)
reflects risk pre-

mium for the jump in σ2t + ϕt
∫
R z

2ν(dz) at the announcement time t∗ demanded by investors. To

study the potential existence of such premium, in Table 5, we report the time-series average of

1
Nt

∑
i:ti∈(t+T2,t+T3]

1
Ti
Q̂V ti,Ti (column Realized QV) and 1

T3−T2 (Q̂V t,T3 − Q̂V t,T2) for each ticker. As

the results of the table show, for most of the stocks, the option-implied expected value is above

the realization on average.10 This is an indication that this risk is priced by investors. The eco-

nomic rationale for that is that earnings announcements contain information about systematic risk,

particularly for big companies, and this carries over to the extra volatility triggered by the an-

nouncements.

Table 5: Earnings Announcement Volatility Jump Risk Premium

Ticker Realized QV QVD23 Ticker Realized QV QVD23 Ticker Realized QV QVD23

AAPL 0.2527 0.2693 GE 0.3105 0.3502 MSFT 0.2225 0.2230

AMZN 0.2724 0.3124 GOOG 0.2240 0.2374 NFLX 0.3608 0.3841

AXP 0.2258 0.2416 GS 0.2394 0.2608 NKE 0.2212 0.2239

BA 0.2931 0.3035 HD 0.2032 0.1940 NVDA 0.3832 0.4008

BAC 0.3089 0.3159 IBM 0.1972 0.1881 PFE 0.2751 0.2559

BLK 0.2269 0.2681 INTC 0.2762 0.2735 PG 0.1634 0.1658

C 0.2524 0.2710 JNJ 0.1680 0.1724 T 0.1906 0.2060

CAT 0.2635 0.2661 JPM 0.2152 0.2415 TSLA 0.4978 0.5597

COF 0.2824 0.2975 KO 0.1840 0.2065 V 0.2170 0.2166

CSCO 0.2104 0.2243 MCD 0.1750 0.1883 VZ 0.1647 0.1729

CVX 0.2366 0.2316 MMM 0.1997 0.2053 WMT 0.1893 0.1764

DIS 0.2107 0.2279 MRK 0.2153 0.1910 XOM 0.2348 0.2344

FB 0.2864 0.2964 MS 0.2653 0.2850

Note: The table reports the time-series averages of 1
Nt

∑
i:ti∈(t+T2,t+T3]

1
Ti
Q̂V ti,Ti

(column Realized QV) and
1

T3−T2
(Q̂V t,T3

− Q̂V t,T2
) (column QVD23) for each stock in the same sample.

10A formal test shows high statistical significance of this difference.
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6 Conclusion

In this paper we consider the behavior of assets’ volatility and jump intensity following the oc-

currence of pre-scheduled events. Our analysis is based on options with short time to maturity

written on an underlying asset prior to the event and expiring before or shortly after it. We derive

a functional relation between characteristic functions of returns with different horizons that can

discriminate between the hypothesis that volatility and jump intensity are anticipated to remain

unchanged following the event and the alternative hypothesis where this is not the case. Using

functional limit theory, we derive an asymptotically valid test for no jump in volatility and/or jump

intensity at the event time. In an empirical application to earnings announcements, we find evidence

for volatility jump at the earnings announcement event times for many stocks and announcements.

The implied earnings announcement volatility jump from options is on average higher than the

realized one suggesting that investors are willing to pay in order to avoid this volatility jump risk.

On a general level, the results of the paper can be used for deciding on the way option data can

be incorporated in the estimation of spot volatility when options are “contaminated” by event risk.

Our results, and extensions of them, can be used also for the study of the volatility risk generated

by important events.

7 Proofs

7.1 Proof of Theorem 1

The proof of part(a) follows by use of successive conditioning and taking into account that on Ω0,

Qt∗−(σ
2
t∗ = σ2t∗−) = 1 and Qt∗−(ϕt∗ = ϕt∗−) = 1. The equality in (13) holds for values of u for

which max{T1, T3 − T2}|ℑ(ψt∗−(u))| < π. Note that |
∫
R sin(uz)ν(dz)| ≤ C|u|, for some positive

constant C. Therefore, max{T1, T3 − T2}|ℑ(ψt∗−(u))| < π holds for |u| < u∗T = π
max{T1,T3−T2}Cϕt∗−

.

From here, since u2TT → 0, we have the result in part (a).

We proceed with part (b). A first-order Taylor expansion, yields

eTaψt∗ (u) = 1 + Taψt∗(u) +RTa(u), (44)

for some RTa(u) satisfying |RTa(u)| ≤ C(u2Ta)
2 with C being a positive constant. Similarly,

eTbψt∗−(u) = 1 + Tbψt∗−(u) +RTb(u), (45)

for some RTb(u) satisfying |RTb(u)| ≤ Ct∗−(u
2Tb)

2 with C being a positive constant.

Using these two results and (12), we can write for |u| < u∗T (u∗T being the quantity defined in
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the proof of part (a) above):

Lt,T1(u)
T3−T2

T1 Lt,T2(u)− Lt,T3(u) = e(t
∗−t)ψt∗−(u)

×
{
EQ
t∗−

(
eiu∆xt∗+(t+T2−t∗)ψt∗ (u)+(T3−T2)ψt∗−(u)

)
− EQ

t∗−

(
eiu∆xt∗+(t+T3−t∗)ψt∗ (u)

)}
.

(46)

Next, using the above expansion results above, we get

EQ
t∗−

(
eiu∆xt∗+(t+T2−t∗)ψt∗ (u)+(T3−T2)ψt∗−(u)

)
− EQ

t∗−

(
eiu∆xt∗+(t+T3−t∗)ψt∗ (u)

)
= −(T3 − T2)EQ

t∗−
(
eiu∆xt∗ (ψt∗(u)− ψt∗−(u))

)
+RT (u),

(47)

for RT (u) satisfying |RT (u)| ≤ CT 2
3 u

4 and some positive constant C. Using the Ft∗−-independence
of ∆xt∗ from σ2t∗ − σ2t∗− and ϕt∗ − ϕt∗−, we have

EQ
t∗−
(
eiu∆xt∗ (ψt∗(u)− ψt∗−(u))

)
= EQ

t∗−
(
eiu∆xt∗

)
EQ
t∗− (ψt∗(u)− ψt∗−(u)) . (48)

For u sufficiently high, ψt∗(u)− ψt∗−(u) is dominated by −u2

2 (σ2t∗ − σ2t∗−), and hence if EQ
t∗−(σ

2
t∗ −

σ2t∗−) ̸= 0, we have

EQ
t∗−

(
eiu∆xt∗+(t+T2−t∗)ψt∗ (u)+(T3−T2)ψt∗−(u)

)
− EQ

t∗−

(
eiu∆xt∗+(t+T3−t∗)ψt∗ (u)

)
≍ T. (49)

If EQ
t∗−(σ

2
t∗ − σ2t∗−) = 0, then since EQ

t∗−(ψt∗ − ψt∗−) ̸= 0 by the definition of ΩA, we have again

EQ
t∗− (ψt∗(u)− ψt∗−(u)) ̸= 0, and therefore the above result holds again.

7.2 Proof of Theorem 2

Throughout the proof we do the normalization Xt = 1 and we set τ = T3−T2
T1

. We start with

establishing some preliminary results. We can decompose

1√
∆

(
L̂t,T (u)− Lt,T (u)

)
= Lt,T (u) +R

(1)
t,T (u) +R

(2)
t,T (u), (50)

where we denote

Lt,T (u) = − 1√
∆
(u2 + iu)

Nt,T∑
j=2

eiu log(Kj−1)
ϵt,T (Kj−1)

K2
j−1

(Kj −Kj−1), (51)

R
(1)
t,T (u) =

1√
∆
(u2 + iu)

Nt,T∑
j=2

∫ Kj

Kj−1

(
eiu log(Kj−1)Ot,T (Kj−1)

K2
j−1

−
eiu log(K)Ot,T (K)

K2

)
dK, (52)

R
(2)
t,T (u) = − 1√

∆
(u2 + iu)

∫ K1

0

eiu log(K)Ot,T (K)

K2
dK − 1√

∆

∫ ∞

KNt,T

eiu log(K)Ot,T (K)

K2
dK. (53)

We start with analyzing R
(1)
t,T (u) and R

(2)
t,T (u). Using the definition of Ot,T (K), we have

Ot,T (K) ≤ Ct

(
EQ
t

(
e2|xt+T−xt|

)
+ 1
)(

e− log(K/Xt)1{K>Xt} + e3 log(K/Xt)1{K≤Xt}

)
, (54)
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and

|Ot,T (K2)−Ot,T (K1)| ≤ |K2 −K1|Q(xt+T − xt ≤ log(K1/Xt)), for K1 ≤ K2 ≤ Xt,

|Ot,T (K2)−Ot,T (K1)| ≤ |K2 −K1|Q(xt+T − xt ≥ log(K2/Xt)), for Xt ≤ K1 ≤ K2.
(55)

From here, we have altogether:

|R(1)
t,T (u)| ≤ Ct(|u|3 ∨ |u|)

√
∆, |R(2)

t,T (u)| ≤ Ct(|u|3 ∨ |u|)
(
K2

1 +K−2
Nt,T

)
. (56)

Next, using assumption B1 (the F (0)-conditional independence of the observation errors in partic-

ular), it is easy to derive

E
(
|Lt,T (u)|p

∣∣F (0)
)
≤ Cts

p
∆(|u|

2 ∨ |u|)p, for p > 1, (57)

where the F (0)
t -adapted random variable Ct depends on p.

We are now ready to prove the limit result of the theorem. We denote

Zt,T(u) =
√
∆τLt,T2(u)Lt,T1(u) +

√
∆Lt,T2(u)−

√
∆Lt,T3(u). (58)

With the notation of u∗T as in the proof of Theorem 1, we have the following decomposition:

Ẑt,T(u)− Zt,T(u) = Zt,T(u)1{|u|>uT } + (L̂t,T1(u)τ − Lt,T1(u)τ )(L̂t,T2(u)− Lt,T2(u))1{|u|≤uT }

+ (R
(1)
t,T3

(u) +R
(2)
t,T3

(u))1{|u|≤uT } + Lt,T1(u)τ (R
(1)
t,T2

(u) +R
(2)
t,T2

(u))1{|u|≤uT }

+ τLt,T1(u)τ−1Lt,T2(u)(R
(1)
t,T1

(u) +R
(2)
t,T1

(u))1{|u|≤uT∧u∗T }1{|L̂t,T1
(u)−Lt,T1

(u)|≤ 1
2
Lt,T1

(u)}

+ (τ(Lt,T1(u)τ−1 − 1)Lt,T2(u)
√
∆Lt,T1(u) + (Lt,T1(u)τ − 1)

√
∆Lt,T2(u))1{|u|≤uT }

+ τ(τ − 1)L̃t,T1(u)τ−2Lt,T2(u)(L̂t,T1(u)− Lt,T1(u))21{|u|≤uT∧u∗T }1{|L̂t,T1
(u)−Lt,T1

(u)|≤ 1
2
Lt,T1

(u)}

+ τLt,T1(u)τ−1Lt,T2(u)
√
∆Lt,T1(u)1{|u|≤uT }1{(|u|≤u∗T ∩ |L̂t,T1

(u)−Lt,T1
(u)|≤ 1

2
Lt,T1

(u))c}

+ (L̂t,T1(u)τ − Lt,T1(u)τ )1{|u|≤uT }1{(|u|≤u∗T ∩ |L̂t,T1
(u)−Lt,T1

(u)|≤ 1
2
Lt,T1

(u))c},

(59)

where L̃t,T1(u) is an intermediate value between L̂t,T1(u) and Lt,T1(u). Using the bounds for Lt,T (u),
R

(1)
t,T (u) and R

(2)
t,T (u), derived above and taking into account the rate condition in assumption B3,

we can then show
1

s∆
√
∆
||Ẑt,T − Zt,T|| = op(1). (60)

We are thus left with showing 1
s∆

√
∆
Zt,T

L|F(0)

−−−−→ Z, where Z is the limit process of the theorem

with kernels of the covariance and relation operators given by

k(z, u) = k2(z, u)− k3(z, u), and c(z, u) = c2(z, u) + c3(z, u), (61)

where

kl(z, u) = vt,l

∫ ∞

0
(z2 + iz)eiz log(K)(u2 + iu)eiu log(K)

O2
t∗(K)

K4
dK,

cl(z, u) = vt,l

∫ ∞

0
(z2 + iz)eiz log(K)(u2 + iu)eiu log(K)O

2
t∗(K)

K4
dK, l = 2, 3,

(62)
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and Ot∗(K) = Et∗−(e∆xt∗ −K)+
∧
Et∗−(K − e∆xt∗ )+ with the notation x+ = max{0, x} for x ∈ R.

Using a subsequence criterion for convergence in probability, we need to show that for all ω(0)

and every subsequence, there is a further subsequence along which we have 1
s∆

√
∆
Zt,T(ω

(0)) converge

in distribution to Z.

To show the functional convergence, we first show that the sequence is asymptotically finite-

dimensional, see Section 1.8 in van der Vaart and Wellner (1996). That is, we need to establish

that for arbitrary δ > 0 and ϵ > 0, there is J > 0 big enough such that

lim sup
∆↓0

P

 1

s2∆∆

∑
j>J

⟨Zt,T, ej⟩2 > δ

∣∣∣∣F (0)

 < ϵ, (63)

where {ej}j≥1 denotes an orthonormal basis in L2(w). We first note that by Bessel’s inequality,∑
j>J

⟨Zt,T, ej⟩2 ≤ ||Zt,T||2. (64)

In addition, using our assumptions for the option observation error as well as the fact that the

option price is monotonic for K < 1 and K > 1, we have

1

s2∆∆
E
(
||Zt,T||2

∣∣F (0)
)
≤ Ct

∑
i=1,2,3

∫ ∞

0

O2
t,Ti

(K)

K4
dK, (65)

for some F (0)
t -adapted random variable Ct > 0.

Using our assumptions for the option observation error

1

s2∆∆
E

∑
j>J

⟨Zt,T, ej⟩2
∣∣F (0)

 ≤ Ct
∑

i=1,2,3

∫ ∞

0

∑
j>J

(∫
R
ft,i(u,K)ej(u)w(u)du

)2 O2
t,Ti

(K)

K4
dK +Rt,∆,

(66)

for some functions ft,i(u,K) which depend on u, K, t and T, and where Ct > 0 is F (0)
t -adapted

random variable and Rt,∆ satisfies lim sup∆↓0Rt,∆ = 0. For showing the negligibility of Rt,∆, we

use the fact that for l = 1, 2, 3:

Nt,Tl∑
i=1

∫ Ki

Ki−1

∑
j>J

(∫
R
(ft,l(u,K)− ft,l(u,Ki−1))ej(u)w(u)du

)2 O2
t,Tl

(K)

K4
dK

≤
Nt,Tl∑
i=1

∫ Ki

Ki−1

||ft,l(·,K)− ft,l(·,Ki−1)||2
O2
t,Tl

(K)

K4
dK → 0, as ∆ ↓ 0

(67)
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as well as

Nt,Tl∑
i=1

∫ Ki

Ki−1

∣∣∣∣∣∣
∑
j>J

⟨ft,l(·,K)− ft,l(·,Ki−1), ej⟩⟨ft,l(·,Ki−1), ej⟩

∣∣∣∣∣∣ O
2
t,Tl

(K)

K4
dK

≤
Nt,Tl∑
i=1

∫ Ki

Ki−1

√∑
j>J

⟨ft,l(·,K)− ft,l(·,Ki−1), ej⟩2
√∑
j>J

⟨ft,l(·,Ki−1), ej⟩2
O2
t,Tl

(K)

K4
dK

≤
Nt,Tl∑
i=1

∫ Ki

Ki−1

||ft,l(·,K)− ft,l(·,Ki−1)||||ft,l(·,Ki−1)||
O2
t,Tl

(K)

K4
dK → 0, as ∆ ↓ 0

(68)

where the last inequality follows from application of Cauchy-Schwarz and Bessel inequalities. We

further use∫ K1

0

∑
j>J

⟨ft,l(·,K), ej⟩2
O2
t,Tl

(K)

K4
dK ≤

∫ K1

0
||ft,l(·,K)||2

O2
t,Tl

(K)

K4
dK → 0, as ∆ ↓ 0, (69)

and a similar result for the right tail.

From here, the asymptotic finite dimensionality result to be proved follows by an application of

Lebesgue’s dominated convergence theorem. Therefore, the limit result of the theorem will follow

from Theorem 1.8.4 in van der Vaart and Wellner (1996) if we can establish

1

s∆
√
∆
⟨Zt,T, h⟩

L|F(0)

−−−−→ ⟨Z, h⟩, (70)

h being an arbitrary element in L2(w). Note that this is F (0)-conditional convergence in distribution

of a bivariate random vector, conditions for which are readily available. In addition, since Z is F (0)-

conditionally CN (0,K,C), we have

E
(
⟨Z, h⟩⟨Z, h⟩

∣∣F (0)
)
= ⟨Kh, h⟩, E

(
⟨Z, h⟩2

∣∣F (0)
)
= ⟨Ch, h⟩. (71)

The finite-dimensional CLT, in turn, will therefore hold by application of Theorem VIII.5.25 of

Jacod and Shiryaev (2003), if we can establish the following convergence results:

1

s2∆∆
E
(
⟨Zt,T, h⟩⟨Zt,T, h⟩

∣∣F (0)
)

P−→ ⟨Kh, h⟩, 1

s2∆∆
E
(
⟨Zt,T, h⟩2

∣∣F (0)
)

P−→ ⟨Ch, h⟩, (72)

1

s2+ε∆ ∆1+ε/2
E
(
|⟨Zt,T, h⟩|2+ε

∣∣F (0)
)

P−→ 0, for some ε ∈ (0, 1). (73)

These results can be shown using our assumption for the option observation error.

7.3 Proof of Theorem 3

As in the proof of Theorem 2, we do the normalization Xt = 1 and set τ = T3−T2
T1

. We define for

l = 1, 2, 3:

L∗
t,Tl

(u) = − 1√
∆
(u2 + iu)

Nt,Tl∑
j=2

eiu log(Kj−1)
ϵ̂t,T (Kj−1)zl,j

K2
j−1

(Kj −Kj−1). (74)
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Next, with the notation

L̆∗
t,Tl

(u) = − 1√
∆
(u2 + iu)

Nt,Tl∑
j=2

eiu log(Kj−1)
s∆
√
vt,lOt,Tl(Kj−1)zl,j

K2
j−1

(Kj −Kj−1), (75)

where we recall the definition of vt,l in assumption B1 and using this assumption for the option

observation error, we have

E
(
||L∗

t,Tl
− L̆∗

t,Tl
||2
∣∣F) ≤ Ct

Nt,Tl∑
j=2

(ŝl,∆Ôt,Tl(Kj−1)− s∆
√
vt,lOt,Tl(Kj−1))

2

K4
j−1

(Kj −Kj−1)

≤ Ct(ŝl,∆ − s∆
√
vt,l)

2∆

Nt,Tl∑
j=2

Ôt,Tl(Kj−1)
2

K4
j−1

+ Cts
2
∆∆

Nt,Tl∑
j=2

(Ôt,Tl(Kj−1)−Ot,Tl(Kj−1))
2

K4
j−1

.

(76)

Using again assumption B1 for the observation error and the integrability assumption in B2, we get

∆

Nt,T1∑
j=2

Ôt,T1(Kj−1)
2

K4
j−1

= Op(T
3/2
1 ), ∆

Nt,T1∑
j=2

(Ôt,T1(Kj−1)−Ot,T1(Kj−1))
2

K4
j−1

= Op(T
3/2
1 s2∆), (77)

∆

Nt,Tl∑
j=2

Ôt,Tl(Kj−1)
2

K4
j−1

= Op(1), ∆

Nt,Tl∑
j=2

(Ôt,Tl(Kj−1)−Ot,Tl(Kj−1))
2

K4
j−1

= Op(s
2
∆), l = 2, 3. (78)

Next, using the algebraic inequality |√y −
√
x| ≤

√
|y − x|, for x, y ∈ R+, we need to analyze

|ŝ2l,∆ − s2∆vt,l|. First, we note that using Lemma 2 of Todorov (2019), we have that for j ∈ I1t ,

Ot,T1(Kj) > Ct
√
T1 for some strictly positive F (0)

t -adapted random variable Ct (this is because

the diffusive volatility σt∗− > 0). Similarly, because of the boundedness of the option observation

error assumed in B1, we have Ot,T2(Kj) > Ct,2/2 and Ot,T3(Kj) > Ct,3/2, for j ∈ I2t and j ∈ I3t ,

respectively (Ct,2 and Ct,3 are the variables appearing in the definition of I2t and I3t ). Combining

these results, we have∣∣∣∣log(Ot,Tl(Kj))−
1

2
(log(Ot,Tl(Kj−1)) + log(Ot,Tl(Kj+1)))

∣∣∣∣ ≤ Ct∆, for j ∈ I lt and l = 1, 2, 3. (79)

Next, utilizing the boundedness of the observation error and the fact that s∆ → 0 as ∆ ↓ 0, we

easily have that for ∆ sufficiently small:

| log(1 + s∆ϵt,l,j)− s∆ϵt,l,j | ≤
1

4
s2∆ϵ

2
t,l,j , for j ∈ I lt and l = 1, 2, 3. (80)

Altogether, since | log(1 + s∆ϵt,1,j)| is bounded uniformly over j, we get

|ŝ21,∆ − s2∆vt,1| =

 Op(1), if
√
T1/∆ is bounded,

Op(s
2
∆

√
∆/T

1/4
1

∨
s4∆), if

√
T1/∆ → ∞.

(81)
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Further, since varQt∗−(∆xt∗) > 0, this means that Ot,Tl(K) > Ct,Tl for K in a neighborhood of Xt

and l = 2, 3. Therefore,

|ŝ2l,∆ − s2∆vt,l| = Op(s
2
∆

√
∆
∨
s4∆), for l = 2, 3. (82)

Combining these results, and taking into account that s∆/
√
∆ → ∞ by assumption B1, we get

E
(
||L∗

t,Tl
− L̆∗

t,Tl
||2
∣∣F) ≤ Ctl(∆)s2∆, (83)

where Ct is a positive-valued F (0)
t -adapted random variable and l(∆) is a deterministic sequence

with l(∆) → 0 when ∆ → 0. We can similarly establish

E
(
|L∗
t,Tl

(u)− L̆∗
t,Tl

(u)|2
∣∣F) ≤ Ct(|u|2 ∨ |u|)l(∆)s2∆. (84)

Further, exactly as in the proof of Theorem 2, we can show

E
(
|L̆∗
t,Tl

(u)|p|F (0)
)
≤ Ct(|u|2 ∨ |u|)psp∆, (85)

for some F (0)
t -adapted random variable Ct that depends on p.

With this we are ready to complete the proof of the theorem. We denote

Z
∗
t,T(u) = τLt,T1(u)τ−1Lt,T2(u)

√
∆L∗

t,T1(u) + Lt,T1(u)τ
√
∆L∗

t,T2(u)−
√
∆L∗

t,T3(u), (86)

and the set

ÛT = {u : |u| ≤ u∗T , |L̂t,T1(u)− Lt,T1(u)| ≤
1

2
|Lt,T1(u)|, |L̂∗

t,T1(u)− L̂t,T1(u)| ≤
1

2
|L̂t,T1(u)|}. (87)

With this notation, using first-order Taylor series expansion, we have

Ẑ∗
t,T(u)− Z

∗
t,T(u) = −Z∗

t,T(u)1{|u|>uT } + (L̂∗
t,T1(u)

τ − Lt,T1(u)τ )(L̂∗
t,T2(u)− L̂t,T2(u))1{|u|≤uT }

+ (L̂∗
t,T1(u)

τ − L̂t,T1(u)τ )(L̂t,T2(u)− Lt,T2(u))1{|u|≤uT }

+ (L̂∗
t,T1(u)

τ − L̂t,T1(u)τ )Lt,T2(u)1{|u|≤uT &u/∈ ÛT }

+ τ(L̃∗
t,T1(u)

τ−1 − Lt,T1(u)τ−1)(L̂∗
t,T1(u)− L̂t,T1(u))Lt,T2(u)1{|u|≤uT &u∈ ÛT }

− τLt,T1(u)τ−1
√
∆L∗

t,T1(u)Lt,T2(u)1{|u|≤uT &u/∈ ÛT }

+ (τLt,T1(u)τ−1Lt,T2(u)(R
(1)
t,T1

+R
(2)
t,T1

) + Lt,T1(u)τ (R
(1)
t,T2

+R
(2)
t,T2

)− (R
(1)
t,T3

+R
(2)
t,T3

))1{|u|≤uT },

(88)

and L̃∗
t,T1

(u) is an intermediate value between L̂∗
t,T1

(u) and L̂t,T1(u).
Similar to the proof of Theorem 2, using the bounds for L∗

t,Tl
(u), L̆∗

t,Tl
(u), R

(1)
t,T (u) and R

(2)
t,T (u),

we can establish
1

s∆
√
∆
||Ẑ∗

t,T − Z
∗
t,T|| = op(1). (89)

33



Since from the bounds above E
(
||L∗

t,Tl
− L̃∗

t,Tl
||2
∣∣F) ≤ Ctl(∆)s2∆ and also ||Lτ−1

t,T1
−1||+||Lτt,T1−1|| =

oP (1) (recall that t+ T1 < t∗), we further have

1

s∆
√
∆
||Z∗

t,T − Ž∗
t,T|| = op(1), (90)

where

Ž∗
t,T(u) = τLt,T2(u)

√
∆ Ľ∗

t,T1(u) +
√
∆ Ľ∗

t,T2(u)−
√
∆ Ľ∗

t,T3(u). (91)

Hence, we are left with establishing a CLT for 1
s∆

√
∆
Ž∗
t,T. This can be done in exactly the same way

as the CLT for 1
s∆

√
∆
Zt,T is shown in the proof of Theorem 2.
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