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Abstract

In this paper we develop tests for detecting systematic jump risk in asset prices of general form
and we further propose nonparametric estimates for it. The inference is based on a panel of
high-frequency asset returns, with both the sampling frequency and the size of the cross-section
increasing asymptotically. The feasible limit theory developed in the paper utilizes the differ-
ent asymptotic roles played by diffusive versus jump risks and systematic versus idiosyncratic
risks in statistics that involve cross-sectional averages of suitably chosen transforms of the high-
frequency price increments. The rate of convergence of the statistics is determined by the two
asymptotically increasing dimensions of the panel, without imposing restrictions on their rela-
tive size. In an empirical application, using the developed tools, we document the existence of
systematic jump risk, that is not spanned by traditional (observable) risk factors, and we further
show that this risk commands a nontrivial risk premium.
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1 Introduction

Large moves in stock prices in the form of jumps play important role in asset pricing. Early work, fol-

lowing Merton (1976), models jump risk as idiosyncratic and without aggregate pricing implications.

However, recent empirical evidence, based on nonparametric jump tests developed by Barndorff-

Nielsen and Shephard (2004, 2006), Aı̈t-Sahalia and Jacod (2009) and Lee and Mykland (2008) and

applied to market indices, shows that some of the jump risk in asset prices is systematic. Addi-

tional nonparametric tests for co-jumps in Bollerslev, Law, and Tauchen (2008), Jacod and Todorov

(2009), Mancini and Gobbi (2012) and Caporin, Kolokolov, and Renò (2017) further suggest that

jumps cluster cross-sectionally.1 Empirical evidence in Todorov and Bollerslev (2010), Bollerslev,

Li, and Todorov (2016) and Aı̈t-Sahalia, Jacod, and Xiu (2020) show that jumps in systematic risk

factors are priced in the cross-section of asset prices.2

Can observable risk factors span all systematic jump risk in asset prices? In other words, is there

cross-sectional jump clustering outside the jumps of observable risk factors? The goal of this paper

is to design nonparametric methods for detecting presence of systematic jump risk in asset prices,

without any assumption regarding the existence of factor structure of jump risk, and further provide

measures for this risk and for the assets’ sensitivity towards it.

A natural approach for studying systematic jump risk is to assume the existence of a linear

latent factor structure (with constant factor loadings) and perform classical principal component

analysis on asset jumps filtered from the data. Such an approach has been formally developed

by Pelger (2019) and applied empirically by Pelger (2020), with Pelger (2020) documenting the

existence of one (stable) jump factor associated with the jumps in the market portfolio. However,

jump factor loadings can change rather rapidly or more generally jumps can cluster cross-sectionally

without exhibiting a linear factor structure. In addition, due to the nontrivial idiosyncratic risk in

asset prices, the threshold approach for jump detection, when applied on an individual asset level,

can allow the identification of the relatively large jumps only. This makes difficult and practically

impossible to infer latent jump factors, associated with large cross-sectional variation in the assets’

response to them, from jumps detected on an individual asset level.

In this paper, therefore, we pursue a different approach of making inference for systematic jump

risk which does not require an assumption for the existence of a linear jump factor model, or its

1Additional work on co-jumps can be found in Lahaye, Laurent, and Neely (2011), Gilder, Shackleton, and Taylor
(2014), Bibinger and Winkelmann (2015), Dungey, Erdemlioglu, Matei, and Yang (2018), Novotnỳ and Urga (2018)
and Corradi, Distaso, and Fernandes (2019), among others.

2Inference for jump factor models with observable factors has been developed by Todorov and Bollerslev (2010),
Li, Todorov, and Tauchen (2017a,b, 2019) and Aı̈t-Sahalia, Kalnina, and Xiu (2020). The case of latent jump factors
has been considered by Pelger (2019, 2020). Other work on estimation of factor models using high-frequency returns
includes Chang, Choi, Kim, and Park (2016), Fan, Furger, and Xiu (2016), Ait-Sahalia and Xiu (2017) and Dai, Lu,
and Xiu (2019) among others.
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temporal stability, and can further minimize the role of idiosyncratic risk as well as systematic

diffusive risk in the inference. We first cross-sectionally average suitable transforms of the assets

return increments and then take first difference of these cross-sectional averages. This approach

allows for separating effectively systematic jump risk from the rest of the risks contained in asset

prices. In particular, the cross-sectional averaging smooths out idiosyncratic risk in asset prices

and by differencing consecutive cross-sectional average statistics, we further remove the leading

component of idiosyncratic risk in our statistic and we also minimize the contribution to it that is

due to the systematic diffusive risk. Our aggregate measure can thus identify systematic jump risks

even in settings in which this type of risk is small relative to idiosyncratic risk on an individual

asset level. Finally, the transform of the returns in our statistics allows us to separate systematic

jump risk from systematic diffusive risk by utilizing the fact that jumps feature more prominently

in higher powers of returns. Additional improvements can be achieved when subtracting from the

return increments the cross-sectional average of the asset returns. The aggregate effect of this is to

minimize the role of systematic diffusive risk in the inference.

We derive a Central Limit Theorem (CLT) for our aggregate systematic jump risk measure as

well as for a measure that captures an asset’s exposure towards this type of risk. The limit is mixed

Gaussian and the convergence is in a joint asymptotic setting of increasing sampling frequency

and growing cross-sectional dimension of the panel of return observations. The rate of convergence

depends on both dimensions of the panel and is determined by two sources of error in the estimation.

One is the diffusive systematic risk around the times of the systematic jumps (which depends on

the sampling frequency) and the second is the cross-sectional dispersion in the systematic jump

risk (which depends on the size of the cross-section). We extend these results to separately identify

systematic jump risk that happens outside the jump times of observable systematic risk factors using

jump detection techniques for the latter.

We further propose a test for deciding whether a time interval contains a systematic jump event

that happens outside of the jump times of observable risk factors. The test utilizes the fact that our

systematic jump risk measure shrinks to zero when this risk is absent from the cross-section of asset

prices. We derive the limit in probability of the properly rescaled statistic in this case. This limit

is determined by the systematic diffusive risk as well as by the idiosyncratic jump risk in the asset

prices. Using these results, we propose a test for systematic jumps on the basis of the difference

between our statistic and its truncated counterpart which removes the systematic jumps from it.

We implement the developed inference techniques on high-frequency data on the 500 largest stocks

by market capitalization, traded in US, for the period 2001-2020. We provide nontrivial evidence

for presence of systematic jumps that occur outside the jump times of the Fama-French (FF) three
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factors (market, size and value). The non-FF systematic jump risk exhibits significant time variation,

with dynamics that differs from that of the market variance. Similarly, the assets’ sensitivities to

this risk differ from their exposures to traditional risk factors such as the market portfolio return.

These differences are shown to have nontrivial pricing implications.

The rest of the paper is organized as follows. In Section 2 we introduce our setup and state the

assumptions. In Section 3 we derive nonparametric estimates for systematic jump risk as well as

for assets’ sensitivity towards it. In Section 4, we develop tests for detecting presence of systematic

jump risk from discrete returns. Section 5 and 6 contain a Monte Carlo study and our empirical

application, respectively. Section 7 concludes. Proofs are given in the online Appendix.

2 Setup and Assumptions

We start with introducing our setup. We denote the log-price of an asset j at time t with Xj
t . Asset

prices are defined on a filtered probability space (Ω,F , (Ft)t≥0,P) with the σ-field F being separable.

The dynamics of all Xj ’s is given by the following continuous-time model

Xj
t = Xj

0 +
∫ t

0
bjs ds+

∫ t
0
σjs dW̃

j
s +

∫
(0,t]×R θ

j(s, z) (µj − ν)(ds, dz)

+
K∑
l=1

∫ t
0
λj,ls dW l

s +
∑
p≥1

βjp 1{ρp≤t} +
∑
p≥1

δjp 1{τp≤t}.
(1)

The driving terms above are as follows:

• W 1, . . . ,WK , W̃ 1, W̃ 2, . . . are independent Brownian motions;

• (µj)j≥1 are independent Poisson measures on R+ × R+ with compensator ν(dt, dz) = dt⊗ dz;

• (τp)p≥1 are the successive jump times of a Poisson process, independent of all µj ’s;

• (ρp)p≥1 ia a strictly increasing sequence of positive stopping times going to ∞ and distinct from

all τp’s.

The other ingredients, bjs, σ
j
s, θ

j , λj,ls , β
j
p and δjp, will be specified in assumption (A1) below. Taking

the measures µj on R+ × R instead of the more usual R+ × E for some Polish space E, and all

with the same compensator ν, is not a restriction for our model. This is because while the jump

measures µj have the same compensator ν, the corresponding jump size functions can differ across

the different assets. When the ρp’s are the jump times of another Poisson-type process, each Xj is

an Itô semimartingale. This is the standard setting in the literature. Here, however, we allow for

an extra generality. Mainly, the ρp’s can be predictable, or even deterministic, to account for jumps

occurring at the times of economic announcements.

The first line on the right hand side of (1) captures the idiosyncratic risks in Xj . The terms in

the second line of (1) are due to the systematic risk in Xj : the first one is the asset’s response to the
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continuous systematic risk while the last two are the asset’s response to systematic jumps (which

are thus assumed to be of finite activity).

The reason to single out two distinct terms for the systematic jumps is as follows. In practice,

one may observe some risk factors, e.g. the Fama-French factors, whose jumps occur at the times

ρp, and which typically induce jumps for all or most stock prices, and the jump size for stock j is

then βjp. However, we may also have systematic jumps at the times τp or τ ′p, that are not associated

with an observable risk factor, inducing jumps of size δjp or δ′jp for stock j. The aim of this paper is

these hidden systematic jumps, which we simply refer to henceforth as systematic jumps.

If we do not observe risk factors or do not want to separate their jumps from the rest of the

systematic jumps, then we may take ρp =∞ for all p, and the second term on the second line of (1)

then simply disappears.

Finally, we write Wt and λjt for the K-dimensional vectors with components W l
t and λj,lt , so

the continuous part of the systematic risk component of Xj is
∫ t

0
λj,>s dWs, with > denoting the

transpose, whereas ‖λjt‖ is the usual norm on RK . We also write the last integral in the first line of

(1) as θj ∗ (µj − ν)t.

The assumptions on the coefficients bj , σj , θj , λj , βjp and δjp are as follows:

Assumption (A1). (i) The processes λj and σj are càdlàg adapted, the processes bj are optional,

and the functions θj are predictable on Ω × R+ × R, and each variable βjp, resp. δjp is measurable

with respect to Fρp , resp. Fτp .

(ii) There are a sequence T1, T2, . . . of stopping times increasing to ∞, [0, 1]-valued functions ϕjm

on R with
∫
R ϕ

j
m(z)w dz ≤ 1, for some number w ∈ [0, 2), and [1,∞)-valued random variables χjm,

satisfying supj E
(
|χjm|q

)
<∞ for any q ∈ R+, such that for all m, j, z, p, ω:

t < Tm ⇒ ‖λjt‖+ |σjt |+ |b
j
t | ≤ χjm, t ≤ Tm ⇒ |θj(t, z)| ≤ ϕjm(z)χjm, τp ≤ Tm ⇒ |δjp| ≤ χjm.

Moreover, for any m, j ≥ 1 and any finite stopping time S ≤ Tm we have

sup
j≥1

E
(

sup
s′∈[(S−s)+,S)

(
‖λjs′ − λ

j
S−‖

2 + |σjs′ − σ
j
S−|

2
))
→ 0 as s ↓ 0,

and, for some constants ρ > 0 and Cm,

EFS
(

sup
s′∈[S,S+s]

(‖λjs′∧Tm − λjS‖2 + |σjs′∧Tm − σ
j
S |2

(χjm)2

)
≤ Cm sρ. (2)

Part (i) of the above assumption is rather standard and ensures that all terms in (1) make

sense. Part (ii) imposes various smoothness and integrability assumptions. For a fixed j, all of these

conditions are standard, except for the degree of jump activity index which is assumed to be strictly
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below 2. This is a rather mild assumption, though, given the fact that the maximal possible value

of the jump activity index is 2. In part (ii) of (A1), we require some kind of uniformity in j of the

various smoothness and integrability conditions. Such uniformity will hold if, for example, λj and σj

are identically distributed across j-s after conditioning on a set of common systematic shocks. We

finally note that the last property in (ii) holds with ρ = 1 as soon as λj and σj are themselves Itô

semimartingales, but here we simply assume ρ > 0, which is much weaker.

Besides this general assumption, we need an assumption about the cross-sectional behavior of

the variables δjp and the processes λjt . For stating this assumption, we first introduce a number of

σ-fields, sometimes depending on an asset index j:

J = σ
(
τp, ρp : p ≥ 1

)
, Jj = J

∨
σ(δjp : p ≥ 1), J ′ = J

∨
σ
(
δkp : k, p ≥ 1

)
J = J

∨
σ(Wt, λ

k
t : t ≥ 0, k ≥ 1), J j = J

∨
Jj
∨
σ(W̃ j

t , σ
j
t ; t ≥ 0).

For a σ-field G ⊂ F we write PG,ω, or simply PG , for a regular version of the G-conditional probability,

which exists because F is separable, and EG,ω or EG for the associated conditional expectation.

Assumption (A2). (i) For each j and P-almost all ω the sequences (δkp )p≥1 are i.i.d. under PJ ,ω,

resp. PJ ,ω, resp. PJ j ,ω, as k varies in N∗, resp. N∗, resp. N∗\{j}.

(ii) For P-almost all ω the processes W , W̃ j and the measures µj are still independent Brownian

motions and Poisson measures under both PJ ,ω and PJ ′,ω.

(iii) There are càdlàg processes λ(1) = (λ(1),l)1≤l≤K and λ(2) = (λ(2),l,l′)1≤l,l′≤K such that, with

Tm as in (A1)-(ii) and as N →∞ and for any pair l, l′:

E
(

sup
s≤t∧Tm

(∣∣∣ 1

N

N∑
j=1

λj,ls − λ(1),l
s

∣∣∣+
∣∣∣ 1

N

N∑
j=1

λj,ls λ
j,l′

s − λ(2),l,l′

s

∣∣∣)) P−→ 0, for all t ∈ R+,

and furthermore we have
∫ T

0
‖λ(1)

s ‖2 ds > 0 a.s., where T > 0 is our time horizon.

As Lemma 2 in the Appendix shows, assumption (A2) implies that, for P-almost all ω the law of

δjp is the same under PJ ,ω and PJ ,ω and PJ k,ω if k 6= j, and when further (A1) holds δjp has finite

moments of all orders under these conditional probabilities. Then the law of large number implies

the existence, for any Borel function h with at most polynomial growth, of Fτp -measurable variables

δh,p such that, as N →∞ and for any k and k′ 6= k,

δNh,p :=
1

N

N∑
j=1

h(δjp)
a.s.−→ δh,p, with δh,p = EJ

(
h(δkp )

)
= EJ

(
h(δkp )

)
= EJ k′

(
h(δkp )

)
. (3)

Recall that the variables δjp capture the hidden systematic jump events and, as already mentioned,

our goal in this paper is to identify and assess the impact they have on asset prices.
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Finally, part (iii) of (A2) assumes that systematic diffusive risk “survives” cross-sectional aggre-

gation. This condition is rather mild and is expected to be true in the data. The results that follow

can be easily extended to accommodate situations without aggregate systematic diffusive risk but

we do not do this here as such an extension seems empirically irrelevant.

We finish this section with introducing our sampling scheme. Our inference is based on a large

panel of high-frequency return observations of N assets, each one being observed on the equidistant

observation grid 0,∆n, 2∆n...., up to some fixed time horizon T , and with ∆n = T/n for some integer

n. The number of observations for each asset is then n + 1. “Large panel” and “high-frequency”

mean that we assume

n→∞, N →∞,
√
n

N
→ φ ∈ [0,∞], (4)

and we note that in our analysis we allow for φ = 0 or φ =∞, i.e., one of the two dimensions of the

panel may grow at a faster rate than the other one.

For i = 1, . . . , n, we denote the ith time interval between two successive observations and the

increment of a price, or more generally of any process Y , over this interval by

I(n, i) =
(
(i− 1)∆n, i∆n

]
, ∆n

i Y = Yi∆n
− Y(i−1)∆n

.

Finally, throughout the paper we use many different statistics computed from the observed incre-

ments ∆n
i X

j for j = 1, . . . , N and i = 1, . . . , n. They depend on n and/or N , of course, but for ease

of notation we simply write them with a “hat”. For instance, our basic statistic below, depending

on both n and N , is written as ŜJg instead of ŜJn,Ng .

3 Inference for Systematic Jump Risk

We start in this section with designing measures that quantify systematic jump risk as well as assets’

sensitivity towards it, and we further derive results for their asymptotic behavior.

3.1 Measuring Systematic Jump Risk

For our measures of systematic jump risk, we use various test functions g on R belonging to one of

the following two sets:

C : the set of all C3 nonnegative functions with g′′, g′′′ bounded, and g(0) = g′(0) = 0

C+ : the set of all g ∈ C with g′′(0) > 0 and g(x) > 0 for all x 6= 0.

Obvious examples of functions in C are g(x) = x2e−ax
2

, for some a ≥ 0, or g(x) = x2 1{x ≥ 0}.

Although g(x) = x2 is perhaps the most natural test function, using a bounded function provides

robustness in finite samples against outliers in the data.
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The aggregate measure associated with g over the time interval [0, T ] of the systematic jump risk,

outside the jump times of observed factors, will be, with the notation in (3) and omitting T since

this time is fixed throughout:

SJg =
∑

p≥1:τp≤T

(δg,p)
2.

The function g in C is allowed to vanish outside a subset A of R in order to obtain an aggregate

measure of systematic jumps whose size lies in A (for example of positive jumps if A = (0,∞)).

In what follows, it is convenient to separate systematic jumps into two groups: one for which the

average asset price jumps and one for which this is not the case. Towards this end, lets denote the

identity function with I(x) = x on R. We then split SJg into the sum of the following two quantities:

SJ ′g =
∑

p≥1:τp≤T

(δg,p)
2 1{δI,p=0}, SJ ′′g =

∑
p≥1:τp≤T

(δg,p)
2 1{δI,p 6=0}. (5)

The reason for splitting SJg into SJ ′g and SJ ′′g is that, in order to improve efficiency, their estimation

will be done slightly differently. When the market portfolio is among the observed systematic factors,

one may expect that if δI,p 6= 0 the price jumps at the time τp induce a jump of this market portfolio

factor, so within our setting this time is indeed included among the jump times ρp’s of the factors.

In other words, in this case one should have δI,p = 0 for all p, and thus SJ ′′g vanishes identically.

We next define the following sets on which there is no systematic jump on [0, T ]:

ΩnoSJ =
{
ω : δjp(ω) = 0 for all j ≥ 1 and all p ≥ 1 with τp(ω) ≤ T

}
Ω′noSJ =

{
ω : δjp(ω) = 0 for all j ≥ 1 and all p ≥ 1 with τp(ω) ≤ T and δI,p(ω) = 0

}
Ω′′noSJ =

{
ω : δI,p(ω) = 0 for all p ≥ 1 with τp(ω) ≤ T

}
.

By virtue of (3), we either have δg,p = 0 for all g ∈ C+, implying δjp = 0 a.s. for all j ≥ 1, or δg,p > 0

for all g ∈ C+, implying δjp 6= 0 a.s. for infinitely many j. Therefore

ΩnoSJ = {SJg = 0}, Ω′noSJ = {SJ ′g = 0}, Ω′′noSJ = {SJ ′′g = 0} a.s., for any g ∈ C+. (6)

For measuring the sensitivity of any particular asset j towards systematic jump risk, we use the

following aggregated measures of sensitivity, where both functions g, h are in C:

SJ ′jg,h =
∑

p≥1: τp≤T
h(δjp) δg,p 1{δI,p=0}, SJ ′′jg,h =

∑
p≥1: τp≥T

h(δjp) δg,p 1{δI,p 6=0}

SJjg,h = SJ ′jg,h + SJ ′′jg,h.

(7)

For example, with g and h being equal to the square function, we can measure asset’s exposure to

systematic jump risk in terms of variance risk. If g ∈ C+ and h are vanishing on R+ or R−, SJjg,h

allows us to measure also the direction in which the asset prices move during systematic jump events.
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3.2 Preliminary Estimators

In this section we exhibit our preliminary estimators of the various quantities introduced above. We

also aim to consistently recover from the data the systematic jump times, which will be needed for

construction of confidence intervals and testing.

We start first with eliminating the systematic jump risk due to observable factors, i.e., the jumps

occurring at the times ρp. The factors are observed also at the times i∆n for i = 1, . . . , n, and

they are supposed to have finite jump activity and with continuous parts being Itô semimartingales.

Therefore, by using standard truncation methods, see e.g. Jacod and Protter (2012) and our imple-

mentation in Section 5, and on the basis of the observation of these factors, one can construct a set

Î of integers between 1 and n such that:

P(Î = In)→ 1, where In =
{
i = 1, . . . , n : I(n, i) contains no ρp

}
, (8)

and for convenience we write the random elements of Î, in increasing order, as î1, î2, . . . , îp̂. Note

that p̂ ≤ n and p̂/n
a.s.−→ 1. Of course, when no jumping factor is observed or if we do not want to

separate these jumps from the rest of the systematic jumps, we simply take Î = {1, 2, . . . , n}.

For our inference for the systematic jump times, instead of the raw asset returns, we will use

excess returns over equally-weighted market proxy constructed from the cross-section of asset prices.

More specifically, we define the cross-sectional average process

XN
t =

1

N

N∑
j=1

Xj
t . (9)

Then, with a fixed number ψ and a sequence un,N satisfying the conditions below, we set

r̂ji = ∆n
i X

j − ψr̂i, with r̂i = ∆n
i X

N 1{|∆n
i X

N |≤un,N},

assuming for some ε ∈ (0, 1): ψ 6= 1, un,N → 0, u2
n,N (n1−ε ∧N)→∞.

(10)

The reason for using r̂ji in the inference, instead of ∆n
i X

j , is to remove (at least partially) the

systematic diffusive risk in the asset prices. As we will see later on, this reduces the estimation error

of our estimation procedure in a nontrivial way. Note that in defining r̂i, we truncate ∆n
i X

N in

order not to affect the systematic jumps in ∆n
i X

j .

In our analysis, we also need a truncated version of both ∆n
i X

j and r̂ji , associated with a sequence

ujn and a constant C > 0, by

∆n,T
i Xj = ∆n

i X
j 1{|∆n

i X
j |≤ujn}

r̂T ji = r̂ji 1{|r̂ji |≤u
j
n},

 assuming
1

C
≤ ujn∆−$n ≤ C, $ ∈

(
0,

1

2

)
. (11)
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The requirements on the threshold above are standard and are the same as those used in prior work

on truncated volatility estimation. We note also that the threshold levels for ∆n
i X

j and r̂ji can differ

but should both satisfy the growth condition above.

The key ingredient of our inference procedure is the following cross-sectional average quantity,

for any function g on R:

â(g)i = 1
N

N∑
j=1

g(r̂ji ), âT(g)i = 1
N

N∑
j=1

g(r̂T ji ),

for i ∈ Î. If τp ∈ I(n, i), then â(g)i will provide an estimate of δg,p. If I(n, i) does not contain

a systematic jump, then â(g)i will shrink asymptotically to zero. We will also make use of bias-

corrected versions of â(g)i, given for any i ∈ Î by:

ă(g)i = â(g)i − 1
2 â(g)i− − 1

2 â(g)i+ , ăT(g)i = âT(g)i − 1
2 â
T(g)i− − 1

2 â
T (g)i+

where, when i = îl: i− =

 îl−1 if l > 1

îl+1 if l = 1
i+ =

 îl+1 if l < p̂

îl−1 if l = p̂.

(12)

As will become clear later, this differencing of sequential cross-sectional averages has no impact on

our ability to estimate the systematic jump risk but it reduces significantly the effect of the systematic

diffusive risk as well as the idiosyncratic risks in the asset prices on our estimates of the systematic

jump risk. A bias-corrected version of the variable g(r̂ji ) for any index j, analogous to ă(g)i, is also

defined as follows:

ğji = g(r̂ji )−
1

2
g(r̂ji−)− 1

2
g(r̂ji+), for i ∈ Î and i± as in (12). (13)

Finally, for identifying the systematic jump times, we are also going to use

V̂Jg =
∑
i∈Î

|ăT(g)i|.

With all this notation, we can now proceed to estimating the set of all integers i in In such

that I(n, i) contains at least one systematic jump time τp. As a matter of fact, in view of the

decomposition SJg = SJ ′g + SJ ′′g , we have two sets of interest (with some g ∈ C+ for I ′n, which does

not depend on the choice of such a g):

I ′n =
{
i ∈ In : I(n, i) contains a τp with δI,p = 0 and δg,p > 0

}
I ′′n =

{
i ∈ In : I(n, i) contains a τp with δI,p 6= 0

}
.

(14)

Note that the random set I ′n ∩ I ′′n may be non-empty, but P(I ′n ∩ I ′′n = ∅)→ 1.

For estimating I ′′n we use the averaged prices Xn of (9) and set, with un,N as in (10):

Î ′′ =
{
i ∈ Î : |∆n

i X
N | > un,N

}
. (15)
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For I ′n we define a first estimator as follows, with some given f ∈ C+:

Î ′1 =
{
i ∈ Î\Î ′′ : ă(f)i > γn,N V̂Jf

}
, with

 γn,N satisfying, for some ε ∈ (0, 1),

γn,N → 0, γn,N
(
n1−ε ∧N

)
→∞.

(16)

Intuitively, we label an interval I(n, i) as one with systematic jump risk if ă(f)i is larger than a

multiple of its average absolute value computed after removing jumps in the individual return series.

The estimator Î ′1 is “asymptotically perfect” in the sense that P(Î ′1 = I ′n)→ 1. However, when N

is relatively small, Î ′1 could be bigger than I ′n, due to the presence of some large idiosyncratic jumps,

which can increase the value of ă(f)i (this is contrast to the case of (15), because the idiosyncratic

jumps tend to cancel each other in the average XN ). To avoid this, we rather use the following:

Î ′ = Î ′1 ∩ Î ′2, Î ′2 =
{
i ∈ Î\Î ′′ : â(f)i > γ′n,N

√
â(f2)i

}
, assuming γ′n,N → 0, (17)

which will also satisfy P(Î ′ = I ′n) → 1. Intuitively, Î ′2 removes increments for which the cross-

sectional average â(f)i is quite smaller than the cross-sectional standard deviation
√
â(f2)i. This

will never be the case asymptotically if the interval contains a systematic jump, but may happen if

the interval I(n, i) contains no systematic jump but some large idiosyncratic jumps.

For obtaining the property P(Î ′ = I ′n)→ 1, which are crucial for our main results, we need that

V̂Jf does not converge to 0. For deriving the probability limit of V̂Jf , we need some additional

notation. For any K ×K matrix M with entries M l,l′ and any vector x ∈ RK with components xl,

we set

Fψ(M,x) = E
(∣∣∣ K∑

l,l′=1

(
M l,l′ + (ψ2 − 2ψ)xlxl

′)(
Φl1Φl

′

1 − 1
2 Φl2Φl

′

2 − 1
2 Φl3Φl

′

3

)∣∣∣),
where the Φlm for l = 1, . . . ,K and m = 1, 2, 3 are independent N (0, 1) variables.

(18)

The function Fψ(M,x) is not explicit, but we will see that it is non-vanishing as soon as x 6= 0 and ψ 6=

1 and M−xx> is symmetric nonnegative. This property is indeed obvious when K = 1, because then

F (M,x, ψ) is simply M−x2+(1−ψ)2x2 times the (positive) expectation of |(Φ1)2− 1
2 (Φ2)2− 1

2 (Φ3)2|.

Below, λ
(2)
t and λ

(1)
t are the matrix and vector with components λ

(2),l,l′

t and λ
(1),l
t , defined in (A2).

Theorem 1 Assume (4), (A1) and (A2) and ψ 6= 1. If g ∈ C+ we have

V̂Jg
P−→ Ag :=

g′′(0)2

2

∫ T

0

Fψ(λ
(2)
t , λ

(1)
t ) dt. (19)

and also P(Î ′ = I ′n)→ 1 and P(Î ′′ = I ′′n)→ 1.

The above theorem establishes the consistency of Î ′ and Î ′′ for estimating I ′n and I ′′n , respectively.
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3.3 Aggregate Measures of Systematic Jump Risk

For estimating SJ ′g and SJ ′′g we propose the following estimators (recall the notation in (12)):

ŜJzg =
∑
i∈Îz

(
1

2
(â(g)i − â(g)i−)2 +

1

2
(â(g)i − â(g)i+)2

)
, z = {′}, {′′}. (20)

For SJg we can use one the following three estimators:

ŜJg = ŜJ ′g + ŜJ ′′g

ŜJ[g = 1
2

p̂∑
i=2

(
â(g)̂ii − â(g)̂ii−1

)2
+ 1

2

(
â(g)2

î1
+ â(g)2

îp̂

)
, ŜJ[[g =

p̂∑
i=1

(
â(g)̂ii

)2
.

(21)

These three estimators enjoy the same CLT, and we will comment on the best choice among them

in the end of this section below.

For stating the CLT, we need some further notation. First, we define the following random

variables (not depending on the choice of j):

V ′g = 4EJ
(( ∑

p≥1:τp≤T
δg,p

(
g(δjp)− δg,p − ψδg′,pδjp

)
1{δI,p=0}

)2)
V ′′g = 4EJ

(( ∑
p≥1:τp≤T

δg,p
(
g(δjp)− δg,p

)
1{δI,p 6=0}

)2)
.

(22)

With the notation λ
(1)
t in (A2) we also set

Γ−g,p = δg,p δg′,p ‖λ(1)
τp−‖, Γ+

g,p = δg,p δg′,p ‖λ(1)
τp ‖. (23)

Next, we need a collection of variables, all defined on an extension (Ω̃, F̃ , P̃) of the original space

(Ω,F ,P) and independent of F , and all being mutually independent. These are: N (0, 1) variables

Z ′, Z ′′, Z+
p , Z−p , and uniform on [0, 1] variables κp.

Finally, let us also recall that if G is a sub-σ-field of F , the G-stable convergence of a sequence

Yn of variables to a limit Y defined on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P) means that

E
(
ΨF (Yn)

)
→ Ẽ

(
ΨF (Y )

)
, (24)

for any bounded G-measurable variable Ψ and any continuous bounded function F , and this conver-

gence is denoted Yn
LG−s−→ Y (when G = F this is simply called stable convergence in law, written

Yn
L−s−→ Y ). This obviously implies the ordinary convergence in law, and its main interest for us is

because, if it holds and if further ζn
P−→ ζ for some sequence of F-measurable variables with a limit

ζ that is G-measurable, the pair (Yn, ζn) converges in law to (Y, ζ).

Theorem 2 Assume (4), (A1) and (A2), and set G = J when φ ∈ (0,∞] and G = F when φ = 0.

12



(a) If g ∈ C the joint convergence
(√
n ∧N(ŜJ ′g − SJ ′g),

√
n ∧N(ŜJ ′′g − SJ ′′g )

) LG−s−→ (Z̃ ′g, Z̃
′′
g )

holds, where with the convention 1/∞ = 0 and with matrix notation,

Z̃ ′g = (1
∧
φ)
√
V ′g Z

′ + 1
1
∨
φ Z
′
g, Z̃ ′′g = (1

∧
φ)
√
V ′′g Z

′′ + 1
1
∨
φ Z
′′
g ,

Z ′g = 2(1− ψ)
√
T

∑
p≥1: τp≤T

(
Γ−g,p
√
κp Z

−
p + Γ+

g,p

√
1− κp Z+

p

)
1{δI,p=0}

Z ′′g = 2
√
T

∑
p≥1: τp≤T

(
Γ−g,p
√
κp Z

−
p + Γ+

g,p

√
1− κp Z+

p

)
1{δI,p 6=0},

(25)

(b) We have
√
n ∧N(ŜJg − SJg)

LG−s−→ Z̃ ′g + Z̃ ′′g and
√
n ∧N(ŜJ[g − SJg)

LG−s−→ Z̃ ′g + Z̃ ′′g and
√
n ∧N(ŜJ[[g − SJg)

LG−s−→ Z̃ ′g + Z̃ ′′g .

(c) As soon as g ∈ C+, we have P
(
SJ ′g = 0 < ŜJ ′g) → 0 and P

(
SJ ′′g = 0 < ŜJ ′′g ) → 0, hence

P
(
SJ ′g = 0 < ŜJg)→ 0 as well.

Note that if g ∈ C+, on the set Ω′noSJ = {SJ ′g = 0} we have V ′g = 0 and Z ′g = 0 by construction,

hence Z̃ ′g = 0 and the CLT in (a) above is degenerate, but (b) tells us that on this set ŜJ ′g is a

“perfect” estimator of SJ ′g (and of course the same applies for SJ ′′g and ŜJ ′′g , or for SJg and ŜJg).

The CLT in Theorem 2 (a) is governed by two sources of error. The first one is the error associated

with measuring systematic jumps from discrete observations of the asset prices. Its size depends on

the sampling frequency n and is determined by the systematic diffusive components of the assets’

price increments containing the systematic jumps. The uncertainty of the jump location within the

discrete interval adds an additional source of error captured by the κp’s. We note that the size of

Γ±g,p depends on the average diffusive systematic risk in asset prices around the systematic jump

times, λτp− and λτp .

The second source of error driving the CLT result is due to the cross-sectional heterogeneity in

the systematic jumps. Naturally, this error depends on the size of the cross-section N . Importantly,

we note that in this theorem there is no restriction on the relative size of the two dimensions of the

high-frequency panel, n and N , apart from n/N → φ2, with φ ∈ [0, 1]. In particular, both n >> N

and N >> n are allowed.

We note that the constant ψ, used in (10), appears in the limit in (25). This constant plays no

role for the estimation of SJ ′′g , but for estimating SJ ′g, taking ψ close to 1 improves the efficiency of

the estimator. The optimal choice seems to be ψ = 1, but if n >> N (i.e., if φ = 0) this would then

lead to a degenerate limit of the CLT in Theorem 2-(a). We could have a proper CLT when ψ = 1,

with the limit for ŜJ ′g being
√
V ′g Z

′, but only under an additional restriction on how fast N can

grow relative to n.

Which estimator for SJg? All three estimators ŜJg, ŜJ
[
g, ŜJ

[[
g are asymptotically equivalent.

The simplest ones are ŜJ[[g and ŜJ[g as, unlike ŜJg, they do not require the choice of tuning param-
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eters. Of course, if one wants to construct confidence intervals for SJg, then for all estimators we

still need the set estimators Î ′ and Î ′′ identifying the systematic jump times.

On the other hand, all three estimators have different asymptotically negligible biases. These

biases are difficult to evaluate in general, but one can get a handle on them by looking at the

asymptotic behavior when SJg = 0 in the case g in C+ satisfies |g(x + y) − g(x) − g(y) − g′(x)y| ≤

C|x|y2 for some constant C, and under the (mild) additional assumption that the processes t 7→

θ(t, z)j/φjm(z) satisfy for all j, z the same condition (2) as σjt . Then

in restriction to the set {SJg = 0} :


ŜJg = 0 with a probability going to 1

(n ∧N)(ŜJ[g −An,Ng )
P−→ 0

(n ∧N)(ŜJ[[g −An,Ng −A′n,Ng )
P−→ 0,

(26)

where

An,Ng =

∫ T

0

(Tg′′(0)2

2n

( 1

N2

N∑
j,k=1

(λj,>t λkt )2 + ((ψ − 1)4 − 1)
∥∥∥ 1

N

N∑
j=1

λjt

∥∥∥4)
+

1

N

N∑
j=1

∫
R
g(θj(t, z)2 dz

)
dt,

A′n,Ng =

∫ T

0

(g′′(0)

2

∥∥∥ 1

N

N∑
j=1

(
‖λjt‖2 + (σjt )

2
)

+ (ψ2 − 2ψ)
∥∥∥ 1

N

N∑
j=1

λjt

∥∥∥2

+
1

N

N∑
j=1

∫
R
g(θj(t, z) dz

)2

dt

Apart from the first line in (26), which is a part of Theorem 2, those properties are rather complicated

to prove, and since they are not formally used in the sequel we omit the proof. Note that the first

term under the integral
∫ T

0
, for both An,Ng and A′n,Ng , is nonnegative for all values of ψ, and minimal

for ψ = 1.

The convergence result in (26) provides clear ranking of the estimators of SJg in terms of bias.

On the set {SJg = 0}, where there are no systematic jumps in the asset prices, the bias is zero with

a large probability for ŜJg, positive with probability 1 for ŜJ[g, and even bigger for ŜJ[[g . We note

that ψ shows up in An,Ng and Ãn,Ng , and with a choice of ψ close to one, we can minimize the bias

in the statistics that is due to the systematic diffusive component of asset prices. The value of Ãn,Ng

reveals the gains from the sequential differencing of â(g)i in the construction of ŜJ[g (and ŜJg).

Indeed, when going from ŜJ[[g to ŜJ[g, we minimize the effect on the measurement of SJg from all

risks in asset prices. In particular, the asymptotic limit of the rescaled ŜJ[g does not depend on the

idiosyncratic diffusive risk, which is typically nontrivial.

On the set {SJg 6= 0} one should add the sum of the biases induced by the estimation of (δg,p)
2

at each systematic jump time τp ≤ T . One might expect those to be of the same order of magnitude

for all three statistics, so the bias increases when going from ŜJg to ŜJ[g, and from ŜJ[g to ŜJ[[g .
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3.4 Asset Sensitivity towards Systematic Jump Risk

We next estimate the sensitivity of any particular asset to systematic jump risk as expressed by

SJ ′jg,h, SJ ′′jg,h and SJjg,h. For the first two ones we use the following statistics, where both functions

g, h are in C and Î ′, Î ′′ as in (17) and (15), plus the notation (12) and (13):

ŜJ ′jg,h =
∑
i∈Î′

h̆ji ă(g)i, ŜJ ′′jg,h =
∑
i∈Î′′

h̆ji ă(g)i.

For SJjg,h, in accordance with (21), we have three possible estimators:

ŜJjg,h = ŜJ ′jg,h + ŜJ ′′jg,h

ŜJj,[g,h = 1
2

( p̂∑
i=2

(
h(r̂j

îi
)− h(r̂j

îi−1
)
)(
â(g)̂ii − â(g)̂ii−1

)
+ h(r̂j

î1
)â(g)̂i1 + h(r̂jp̂)â(g)̂ip̂

)
ŜJj,[[g,h =

p̂∑
i=1

h(r̂j
îi

)â(g)̂ii .

For stating the CLT enjoyed by these statistics, we define the following two variables, similar to

(22) and not depending on the choice of k as soon as k 6= j:

V ′jg,h = EJj
(( ∑

p: τp≤T

(
h(δjp)

(
g(δkp )− δg,p

)
− ψh(δjp)δg′,pδ

k
p − ψh′(δjp)δg,pδkp

)
1{δI,p=0}

)2)
V ′′jg,h = EJj

(( ∑
p: τp≤T

h(δjp)
(
g(δkp )− δg,p

)
1{δI,p 6=0}

)2)
.

(27)

We also define the following analogues Γ′+,jg,h,p, Γ′−,jg,h,p, Γ′′+,jg,h,p, Γ′′−,jg,h,p of Γ+
g,p and Γ−g,p in (23), with the

convention τp+ = τp below:

Γ′±,jg,h,p =
(∥∥((1− ψ)h(δjp)δg′,p− ψh′(δjp)δg,p

)
λ

(1)
τp±+ h′(δjp) δg,p λ

j
τp±
∥∥2

+
(
δg,p h

′(δjp)σ
j
τp±
)2)1/2

Γ′′±,jg,h,p =
(∥∥h(δjp) δg′,p λ

(1)
τp± + h′(δjp) δg,p λ

j
τp±
∥∥2

+
(
δg,p h

′(δjp)σ
j
τp±
)2)1/2

.

(28)

Then, with Z ′, Z ′′, Z+
p , Z

−
p , κp as after (23), we have the following CLT:

Theorem 3 Assume (4), (A1) and (A2), and set G = J j if φ ∈ (0,∞] and G = F if φ = 0. If

g, h ∈ C the joint convergence
(√
n ∧N(ŜJ ′jg,h − SJ ′jg,h),

√
n ∧N(ŜJ ′′jg,h − SJ ′′jg,h)

LG−s−→ (Z̃ ′jg,h, Z̃
′′j
g,h)

holds, where

Z̃ ′jg,h = (1
∧
φ)
√
V ′jg,h Z

′ + 1
1
∨
φZ
′j
g,h, Z̃ ′′jg,h = (1

∧
φ)
√
V ′′′jg,h Z

′′ + 1
1
∨
φZ
′′j
g,h

Z ′jg,h =
√
T

∑
p≥1: τp≤T

(
Γ′−,jg,h,p

√
κp Z

−
p + Γ′+,jg,h,p

√
1− κp Z+

p

)
1{δI,p=0}

Z ′′jg,h =
√
T

∑
p≥1: τp≤T

(
Γ′′−,jg,h,p

√
κp Z

−
p + Γ′′+,jg,h,p

√
1− κp Z+

p

)
1{δI,p 6=0}.

(29)

Moreover, we have
√
n ∧N(ŜJjg,h−SJ

j
g,h)

LG−s−→ Z̃ ′jg + Z̃ ′′jg and
√
n ∧N(ŜJj,[g,h−SJ

j
g,h)

LG−s−→ Z̃ ′g + Z̃ ′′g

and
√
n ∧N(ŜJj,[[g,h − SJ

j
g,h)

LG−s−→ Z̃ ′g + Z̃ ′′g .
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This CLT is of similar type as Theorem 2. The only qualitative difference is that here, on top of

the times τp, the limit also depends on the asset specific variables δjp, λ
j
τp±, σ

j
τp±. Again, the three

statistics ŜJjg,h, ŜJj,[g,h and ŜJj,[[g,h are asymptotically equivalent, and similar comparisons about their

biases can be made as in the previous section.

3.5 Feasible Inference

For feasible inference based on the previous theorems, we need to know the variance or the quantiles

of the limiting variables Z̃ ′g, Z̃
′′
g , Z̃ ′jg,h or Z̃ ′′jg,h, at least asymptotically. However, those limits are

in general not G-conditionally Gaussian, so the best one can do is to find a sequence of observable

variables which approach the limit. For this, besides the sets Î ′ and Î ′′, we need three ingredients:

1) Consistent estimators for the conditional variances (22) or (27). Recalling (12) and (13) and with

the notation LjN = {k ∈ N : k 6= j, 1 ≤ k ≤ N}, we use

V̂ ′g = 4
N

N∑
j=1

(ĉ(g)′j)
2, ĉ(g)′j =

∑
i∈Î′

ă(g)i
(
ğji − ă(g)i − ψă(g′)iĬji

)
V̂ ′′g = 4

N

N∑
j=1

(ĉ(g)′′j )2, ĉ(g)′′j =
∑
i∈Î′′

ă(g)i
(
ğji − ă(g)i

)
V̂ ′jg,h = 1

N−1

∑
k∈LjN

(
ĉ(g, h)′jk

)2
, ĉ(g, h)′jk =

∑
i∈Î′

(
h̆ji
(
ğki − ă(g)i

)
−ψ
(
h̆′
j

i ă(g)i + h̆ji ă(g′)i
)
Ĭki
)

V̂ ′′jg,h = 1
N−1

∑
k∈LjN

(
ĉ(g, h)′′jk

)2
, ĉ(g, h)′′jk =

∑
i∈Î′′

h̆ji
(
ğki − ă(g)i

)
2) Consistent estimators for the variables in (23) or (28). These involve the processes λj and σj at

time τp, or their left limits at this time. We thus need the truncation procedure (11) for eliminating

the jumps, and rolling windows of mn successive increments, with mn satisfying as n→∞:

mn →∞,
mn

n
→ 0, (30)

For any i ∈ Î ′ ∪ Î ′′, necessarily of the form i = îl for some l between 1 and p̂, a time i′∆n will belong

the window on the left, resp. right, side of the time i∆n if i′ belongs to the set M+
n,i = {̂i(l+m)∧p̂ :

m = 1, . . . ,mn}, resp. M−n,i = {̂i(l−m)∨1 : m = 0, . . . ,mn − 1}. With this notation, we set

Γ̂±g,i = ă(g)i ă(g′)i

(
n
mn

∑
i′∈M±n,i

(
1
N

N∑
j=1

∆n,T
i′ X

j
)2)1/2

Γ̂′±,jg,h,i =
(

n
mn

∑
i′∈M±n,i

(
(1− ψ)ă(g′)ih̆

j
i

1
N

N∑
k=1

∆n,T
i′ X

k + ă(g)ih̆′
j

i ∆n,T
i′ X

j
)2)1/2

Γ̂′′±,jg,h,i =
(

n
mn

∑
i′∈M±n,i

(
ă(g′)ih̆

j
i

1
N

N∑
k=1

∆n,T
i′ X

k + ă(g)ih̆′
j

i ∆n,T
i′ X

j
)2)1/2

.

(31)

Note that here we use the truncated increments ∆n,T
i Xj and not r̂T ji . This is because the latter were

introduced to eliminate the systematic diffusive part of asset prices, as much as possible, whereas

16



here we want to estimate for example λ
(1)
t which depends on this component of asset prices. Note

also that, when i ∈ Î ′ ∪ Î ′′, the number of points in M±n,i equals mn with a probability going to 1.

However, for small samples this number could actually be quite smaller than mn.

3) An extra set of variables, all mutually independent, and independent of the observations: Z,Z ′

and Z+
i , Z

−
i which are N (0, 1), and κi which are uniformly distributed on [0, 1].

With all these ingredients, we can now set

Ẑ ′g =
√

n∧N
N

√
V̂ ′g Z

′ + 2(1− ψ)
√

N
n∨N

∑
i∈Î′

(
Γ̂−g,i
√
κi Z

−
i + Γ̂+

g,i

√
1− κi Z+

i

)
Ẑ ′′g =

√
n∧N
N

√
V̂ ′′g Z

′′ + 2
√

N
n∨N

∑
i∈Î′′

(
Γ̂−g,i
√
κi Z

−
i + Γ̂+

g,i

√
1− κi Z+

i

)
Ẑ ′jg,h =

√
n∧N
N

√
V̂ ′jg,h Z

′ +
√

N
n∨N

∑
i∈Î′

(
Γ̂′−,jg,h,i

√
κi Z

−
i + Γ̂′+,jg,h,i

√
1− κi Z+

i

)
Ẑ ′′jg,h =

√
n∧N
N

√
V̂ ′′jg,h Z

′′ +
√

N
n∨N

∑
i∈Î′′

(
Γ̂′′−,jg,h,i

√
κi Z

−
i + Γ̂′+,jg,h,i

√
1− κi Z+

i

)
.

(32)

Theorem 4 Under the assumptions of Theorem 2 the F-conditional law of the two-dimensional vari-

ables (Ẑ ′g, Ẑ
′′
g ) (resp. (Ẑ ′jg,h, Ẑ

′′j
g,h)) converge to the F-conditional law of (Z̃ ′g, Z̃

′′
g ) (resp. (Z̃ ′jg,h, Z̃

′′j
g,h)).

This result allows us to conduct feasible inference, as will be shown below. We note in this

regard that the estimates in (31) do not require prior knowledge regarding the number of systematic

diffusive risk factors and they do not need prior estimates of the factor loadings λjt . This is despite of

the fact that the limits in Theorems 2 and 3 depend on these factor loadings, and is very convenient

for applications.

3.6 Estimation of Aggregated Measures of Systematic Jumps

We now show how the previous theorems can be put in use for feasible inference of the quantities

SJg, SJ
′
g, SJ

′′
g , SJjg,h, SJ ′jg,h or SJ ′′jg,h, when g and h are in C.

Let us consider the case of our aggregate systematic jump measure SJ ′g. We construct a confidence

interval for SJ ′g, with asymptotic level α ∈ (0, 1). For this, note that the PF -conditional law of Z̃ ′g

has clearly no atom, hence PF (Ẑ ′g > α)→ PF (Z̃ ′g > α) by Theorem 4. Recall also that V̂ ′g and Γ̂′±g,i

and Î ′ are known to the econometrician. Then, one can simulate M copies of the variables Z ′, Z±i

and κi for all i ∈ Î ′, and compute the associated Ẑ(m)′g for m = 1, . . . ,M by the first formula in

(32). The confidence interval is then constructed from

Â−α = sup
(
x : x > 0, 1

M

M∑
m=1

1{Ẑ(m)′g≤−x}
> α

2

)
Â+
α = inf

(
x : x > 0, 1

M

M∑
m=1

1{Ẑ(m)′g≥x}
> α

2

)
.
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In the important special case in which the systematic jump times are not accompanied by jumps in

the diffusive factor loadings λjt , then the limit in Theorem 2 is F-conditionally Gaussian. Therefore,

Â±α can be computed without simulation as

Â±α = Q1−α/2

√√√√ 1

N
V̂ ′g + 2

1

n
(1− ψ)2

∑
i∈Î′

(
(Γ̂−g,i)

2 + (Γ̂+
g,i)

2
)
, (33)

where Qx is the x-quantile of a standard normal random variable. Given Â±α , a confidence interval

is given by

Î(SJ ′g)α =
[
ŜJ ′g − Â−α , ŜJ ′g + Â+

α ],

and the following is easily deduced from Theorems 2 and 4:

Theorem 5 Under the assumptions of Theorem 2 we have P(SJ ′g /∈ Î(SJ ′g)α)→ α as n,N,M →∞.

The estimation of SJg, SJ
′′
g , SJjg,h, SJ ′jg,h or SJ ′′jg,h can be conducted in a similar way.

4 Testing for the Presence of Systematic Jump Risk

We next design tests for deciding whether systematic jumps occur within the time interval [0, T ).

A systematic jump time is a jump time τp at which the jump sizes δjp significantly impact most of

the assets. By this, we mean that the averaged absolute jump sizes 1
N

∑N
j=1 |δjp| do not go to 0 as

N →∞. Under (A2) and by (6), this amounts to saying that we are not in the set ΩnoSJ .

Therefore, below we derive a test for the following (random) null and alternative hypotheses:

Ωnull = Ω\ΩnoSJ , Ωalt = ΩnoSJ . (34)

Let us recall that a sequence of tests with critical regions Cn is called asymptotically null-

consistent, resp. alternative-consistent, if P(Cn ∩ Ωnull) → 0, resp. P((Cn)c ∩ Ωalt) → 0. If further

P(Cn|B) converges to some α > 0 for all measurable subsets B of Ω0 with P(B) > 0, one says that

the sequence of tests has the strong asymptotic size α.

For testing the null Ωnull against the alternative Ωalt of (34), we can use the statistics ŜJg of

(21) and define the critical (rejection) regions

Ĉg =
{
ŜJg > ζn,N

}
,

for a double sequence ζn,N of positive reals going to 0 as n,N → ∞. An obvious consequence of

Theorems 2 is as follows:

Theorem 6 Under (A1), (A2) and if g ∈ C+, the critical regions Ĉg are asymptotically null-

consistent and alternative-consistent.
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The test above has asymptotic size of α = 0. However, the main problem with this test is that

we have no guidance about how to choose ζn,N for a given pair (n,N). Obviously, if we increase ζn,N

the error of the first kind (the conditional probability of rejection under the null) decreases, whereas

the error of the second kind increases.

A natural way for constructing classical tests with some prescribed asymptotic size α > 0 would

be to derive a CLT for ŜJg under the null. However, part (b) of Theorem 2 shows that such a

CLT cannot exist. Another approach is to use ŜJ[g instead of ŜJg, computed for (n/2, N/2) and

for (n,N). It is easy to show, based on the results derived above, that a ratio of ŜJ[g, computed for

(n/2, N/2) and for (n,N), converges to 2 under the null and to 1 under the alternative. Deriving a

CLT under the null for ŜJ[g, however, is challenging.

We will, therefore, develop an alternative and simpler strategy, using the statistic ŜJ[g. In fact,

ŜJ[g − ŜJg is basically the same as ŜJ[g would be if we deleted all systematic jumps from the Xj ’s.

Therefore, from the result in (26), ŜJ[g − ŜJg will be shrinking asymptotically, both under the null

and under the alternative hypothesis. As a result, for any α ∈ (0, 1) we propose a systematic jump

test with the following critical region:

Ĉ(α) =
{
ŜJg > |ŜJ[g − ŜJg|(Q1−α − Z∗)

}
,

where Z∗ is a N(0, 1) random variable, which is simulated independently from the observations, and

Qx denotes again the x-quantile of the standard normal distribution. We take the absolute value of

ŜJ[g − ŜJg because this might be negative, although it is positive with a probability going to 1.

Theorem 7 Assume (4), (A1), (A2), and also g ∈ C+. Then, the critical regions Ĉ(α) have the

strong asymptotic size α and are asymptotically alternative consistent.

One can also conduct tests for deciding whether SJ ′g > 0 or SJ ′′g > 0 in pretty much the same

way. We leave this to the reader.

5 Monte Carlo Study

We next evaluate the finite sample performance of the developed testing and inference procedures.

5.1 Setup

We use the following model for the log-prices of the assets in our Monte Carlo:

dXj
t = λjdXt +

√
Vt

(
dW̃ j

t + dL̃jt + φβjdSt

)
, dXt =

√
Vt−(dWt + dLt),

dVt = 8.3(0.02− Vt)dt+
√
Vt(−0.1dWt + 0.2

√
0.75dBt),
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whereWt, Bt and {W̃ j
t }j=1,...,N are independent standard Brownian motions, Lt and {L̃jt}j=1,...,N are

independent pure-jump Lévy martingales with respective Lévy measures cL e
−λL|x| dx and c̃ e−λ̃|x| dx,

with
4cL
λ3
L

= 0.2 and
2cL
λL

= 52,
4c̃

λ̃3
= 0.4 and

2c̃

λ̃
= 52.

St is systematic jump in asset prices that is independent from Lt and {L̃t,j}j=1,...,N . It is given by

St =

 ∆Sτ , for s ≥ τ

0, otherwise
, τ ∼ U

(
T

4
,

3T

4

)
.

Finally, {λj}j=1,...,N is an i.i.d. sequence with λj ∼ N(1, 0.5/3) and {βj}j=1,...,N is another i.i.d.

sequence with βj ∼ U(−2, 2).

In the specification above, xt can be thought of as the market index and therefore λj is the market

beta of asset j, W̃ j
t and L̃jt are idiosyncratic diffusive and jump risks, and St captures non-market

systematic jump risk, with βj being the exposure of asset j to such risk. All jump processes in

the model, but St, are double-exponential and for all of them, the parameters are set so that their

expected jump arrival is approximately once every week and their contribution to the quadratic

variation of Xt and {Xj
t }j=1,...,N is around 16%. All risks in asset prices have time-varying volatility

proportional to Vt, which is modeled as a square-root diffusion process with half-life of mean-reversion

coefficient corresponding to one month (our unit of time is one year) and mean of 0.02. Finally, the

parameter φ takes two values: zero (corresponding to null hypothesis of no systematic jump risk

other than market jump risk) and one (corresponding to presence of non-market systematic jump

risk in asset prices).

The size of the systematic jump, ∆Sτ , is set to
√
Vτ ×0.015. This means that the contribution of

the systematic risk due to S in the average cross-sectional daily realized variance is approximately

2.8%. This is rather small and therefore inference for such a jump is challenging. To illustrate this,

if we use a standard truncation method to identify the jumps in the individual assets, see equation

(35) above, then on average only three stocks will be detected to have jumped at the time of the

systematic jump introduced here for ten minute sampling frequency (n = 40).

Turning next to the sampling scheme, we will set T to one day and we will use sampling frequency

of n = 80 and n = 40. This corresponds to sampling asset prices approximately every five and ten

minutes, respectively, in a 6.5 hours trading day. We will experiment with size of the cross-section

of N = 300 and N = 500.

5.2 Choice of Tuning Parameters

For implementing the developed inference procedures, we need to choose the function g and also set

the tuning parameters for identifying the set of systematic jumps. This is what we describe in this
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section.

Throughout the numerical analysis, we use the following function for g:

ga(x) =


1
2x

2 exp
(
− x2

2a2−x2

)
+ a2

(
1− exp

(
− x2

2a2−x2

))
, if |x| < a

√
2,

a2, if |x| ≥ a
√

2,

for some a > 0. The function ga can be viewed as a smooth approximation of x2 ∧ a2 and it can

be shown that it belongs to C+. We set a = 0.025, which can be viewed as “smooth winsorizing” of

the square function at the level of 2.5% return size. This should provide robustness in the analysis

against extreme return observations (mostly due to idiosyncratic jumps).

Our interest is in the systematic jumps, which happen outside the times of observable systematic

risk factors (such as the market portfolio jumps). As common in the literature, we identify the set

of jumps in a process X observed at high frequencies via

{i = 1, ...., n : |∆n
i X| > un(X)} , un(X) = 3

√
min{BV nT , RV nT }∆

0.49
n , (35)

where BV nT = π
2

∑n
i=2 |∆n

i X||∆n
i−1X| and RV nT =

∑n
i=1(∆n

i X)2. The set Î is then formed as the

intersection of the complements of the above sets for the set of observable systematic factors (which

in the model in our Monte Carlo is just one). We set the truncation levels ujn in (11) for the price

increments to un(Xj). The truncation of the cross-sectional average of the returns, un,N in (10) is

then set to un,N =
(

1 ∨ 1
N0.49∆0.49

n

)
1
N

∑N
j=1 u

j
n. Finally, the excess returns r̂ji in (10) are constructed

by setting ψ = 1.01.

Turning next to the set Î ′ in (17), we set f = g and we need to select γn,N and γ′n,N . For γ′n,N ,

we use

γ′n,N =
4√
N
.

Note that, if I(n, i) contains a systematic jump, 1√
N

√
â(f2)i is an estimate of the asymptotic stan-

dard deviation of measuring the systematic jump in this increment that is due to the cross-sectional

dispersion of the systematic jump risk. Therefore, with the above choice of γ′n,N , we require â(f)i

to be four standard deviations away from zero. Next, we set

γn,N = γ ×
(
n−1+0.01 ∨N−1+0.01

)
,

for some constant γ > 0. We experiment with several choices of γ: 2.5, 3.0 and 3.5. Intuitively, 1
n V̂ Jf

is an estimate of the “normal” behavior of ă(f)i, and our choice for γn,N requires ă(f)i to be several

times bigger than this average value. Of course, lower value of γ means that we can erroneously

classify some increments as containing systematic jumps when they do not while a higher value of γ

means that we can omit some increments that do contain systematic jumps.

Finally, for constructing the confidence intervals, we set mn to 10 for n = 40 and to 14 for n = 80.
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5.3 Results

On the simulated data, we evaluate the precision in recovering SJg, the finite sample behavior of

a test for systematic jumps as well as the accuracy of confidence intervals for SJg. Since in the

simulated model the diffusive volatility of the assets do not jump at the time of the systematic jump

time τ , in order to save on computational time, we construct confidence intervals using Â±α computed

as in (33).

In Table 5.3, we report the quantiles of the ratios ŜJg/SJg and ŜJ[g/SJg (note that SJg is a

random variable) when asset prices contain a systematic jump. For brevity, we report only the results

for the threshold level of γ = 3.0 as the results for the other two values of γ are very similar. As seen

from the reported results, ŜJ[g is slightly upward biased. This is to be expected as the size of the

systematic jump is small relative to the other risks in the asset prices. Not surprisingly, the bias in

ŜJ[g is larger for lower values of n and N . We note also that the bias in ŜJ[g is significantly smaller

(by a factor of at least ten) than the one in the “raw” statistic ŜJ[[g . After the truncation, i.e., when

switching from ŜJ[g to ŜJg, the bias gets effectively eliminated.

Table 1: Monte Carlo Results, Part I

Quantiles of ŜJ[g/SJg Quantiles of ŜJg/SJg

n N 25% 50% 75% 25% 50% 75%

80 500 1.084 1.229 1.466 0.894 0.992 1.100

40 500 1.140 1.357 1.719 0.886 1.012 1.177

80 300 1.143 1.349 1.708 0.861 0.973 1.101

40 300 1.201 1.489 1.991 0.835 0.989 1.176

Note: ŜJ[
g and ŜJg are computed using γ = 3.0. The reported results are based on 5000 Monte Carlo

replications.

We continue next with evaluating the performance of the test for systematic jumps and the

accuracy of a confidence interval for SJg. These results are reported in Table 2. The test for

systematic jumps performs overall well under the null hypothesis in the various configurations and

for the different choices of γ for detecting systematic jump occurrences. We notice only some mild

over-rejection in the case N = 500 and n = 40 when γ = 2.5 and γ = 3.0. This is because for

a lower level of the threshold, there is a larger number of increments (in relative terms) which are

misclassified to contain systematic jumps. Table 2 shows that the test has good power against the

considered alternative. We recall that the systematic jump in our setting is very small, particularly

relative to the remaining risks in the individual asset prices. Our aggregate measure ŜJg is able,

nevertheless, to identify the systematic jumps by utilizing the different cross-sectional and pathwise
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properties of the various risks embedded in the asset prices. Consistent with the asymptotic theory,

the power of the test tends to increase when either of the two dimensions of the high-frequency return

panel increases, with N playing a slightly more important role in this regard.

We finish this section with analyzing the precision of the confidence intervals for SJg. Consistent

with earlier work on realized volatility, we construct confidence intervals for the log of SJg using

the Delta method and our theoretical results. We see from Table 2 that the constructed confidence

intervals have empirical coverage rates that are similar to the nominal ones for all considered cases

and for the different choices of γ.

Table 2: Monte Carlo Results, Part II

Test for SJg = 0 CI Coverage Rate

Size Power for SJg

n N 10% 5% 10% 5% 90% 95%

Panel A: γ = 2.5

80 500 0.118 0.058 0.958 0.935 0.901 0.954

40 500 0.145 0.078 0.913 0.869 0.888 0.942

80 300 0.111 0.056 0.822 0.754 0.899 0.947

40 300 0.127 0.066 0.816 0.735 0.905 0.953

Panel B: γ = 3.0

80 500 0.115 0.056 0.956 0.930 0.903 0.954

40 500 0.141 0.076 0.902 0.845 0.892 0.945

80 300 0.107 0.052 0.825 0.754 0.899 0.947

40 300 0.119 0.061 0.805 0.725 0.907 0.954

Panel C: γ = 3.5

80 500 0.102 0.051 0.948 0.921 0.905 0.955

40 500 0.104 0.053 0.874 0.809 0.895 0.947

80 300 0.099 0.051 0.821 0.749 0.898 0.946

40 300 0.102 0.050 0.789 0.706 0.906 0.954

Note: the reported results are based on 5000 Monte Carlo replications.

6 Empirical Study

In this section we provide empirical evidence regarding systematic jump risk in asset prices using the

developed techniques. Our sample covers the period from January 1, 2001 till December 31, 2020,

and we sample asset prices every five minutes, excluding the first minutes of the trading day. The
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composition of our cross-section of stocks varies over the sample. In each year, we select the 500

largest stocks by market capitalization as of the end of the previous year. In our analysis, we use

high-frequency data for the three Fama-French (FF) systematic risk factors (which are market, HML

and SMB).3

Our interest in the empirical study is the existence and importance of systematic jump risk

outside that of the FF systematic risk factors. We rescale the high-frequency returns by a time of

day factor to account for the well-known intraday seasonality in volatility. Finally, the selection of

the tuning parameters for conducting the test for systematic jump risk as well as for the computation

of the standard errors is done exactly as in the Monte Carlo. For brevity, we report only results with

γ = 3.0, with the results for γ = 2.5 and γ = 3.5 being similar.

On Figure 1, we plot the test statistic for presence of systematic jump risk not spanned by the

three FF factors. As seen from the figure, there is nontrivial evidence for such type of systematic

jump risk in asset prices. Moreover, the reported results suggest that the systematic jump risk

is scattered over the entire sample. Formally, the percentage of days where evidence for non-FF

systematic jump risk is detected, based on a test with size of 5%, is 15.88%. We also notice from

the figure that the median value of the statistic is slightly above zero. This is indicative of a lot of

systematic jumps of smaller size.
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Figure 1: Daily Test for non-FF Systematic jumps. Solid line corresponds to the critical value of the
test for non-FF systematic jumps at 5% significance level.

3We also performed the analysis using the Fama-French five factor model, with the results being qualitatively the
same as the ones reported here.
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On Figure 2, we plot the time series of
√
ŜJ[g against that of market realized variance. The

non-FF systematic jump risk exhibits a lot of time series variation. Similar to market variance,

our aggregate systematic jump risk measure spikes typically during and in the aftermath of periods

of market turbulence. That said, Figure 2 reveals nontrivial differences in the two series. Mainly,√
ŜJ[g spikes less (in relative terms) during the 2008 financial crisis and the pandemic-triggered

market turmoil of 2020. It has also higher elevated level during prolonged periods when the market

is relatively calm as in 2001 and 2016-2017.

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
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Figure 2: Systematic non-FF Jump Risk versus Market Realized Variance. The series are normalized

by dividing each of them by their sample means. Blue line corresponds to
√
ŜJ[g and the red line to

market realized volatility. Both series are computed on a rolling windows basis with window length
of one month.

Given the strong evidence for non-FF systematic jump risk, it is interesting to analyze the assets’

sensitivity to this risk and to contrast this sensitivity to squared market betas. Towards this end,

we compute the ratio of ŜJj,[g,g/ŜJ
[
g on a rolling window basis, with window length of one month,

and we compare this quantity with squared market beta. To reduce the effect of measurement error,

we aggregate the sensitivity measures over industry portfolios (using the industry classification on

Ken French’s website). On Figure 3, we plot time series of these quantities for three representative

industry sectors. The figure reveals persistent patterns in ŜJj,[g,g/ŜJ
[
g which differ from market betas.

For example, the non-FF systematic jump risk sensitivity of the financial sector is significantly lower

than its market exposure for long periods prior to 2008 and after 2010. Similarly, the non-FF

systematic jump risk sensitivity of the energy sector increases after 2014 in contrast to the behavior
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of the market beta over the same period. Overall, Figure 3 suggests significant differences in the

behavior of assets’ sensitivity towards non-FF systematic jump risk and market risk.
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Figure 3: Sensitivity to non-FF systematic jump risk. On each plot, we display average ŜJj,[g,g/ŜJ
[
g

across stocks in the corresponding sector (blue line) against that of squared market beta (red line).
Both series are computed on a rolling windows basis with window length of one month.

A natural question is whether these differences have pricing implications. Given the bigger role

played by jumps in higher asset return moments, it is easier to study the pricing of systematic jump

risk as manifest in the variance risk premium, which is the compensation demanded by investors

for bearing variance risk. Proxies for variance risk premium can be constructed using volatility

estimates from asset returns and options written on them. Sorting stocks into quintiles according

to their systematic jump exposures, ŜJj,[g,g/ŜJ
[
g, generates big spreads in their variance risk premia.

Our results show that these spreads cannot be rationalized by the stocks’ exposure to FF jump risk.

This indicates that the systematic jump risk that is not spanned by the FF factors is priced in the

cross-section of asset prices. For brevity we do not present these results here and we leave a complete

exploration of the pricing implications of systematic jump risk for future work.
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7 Conclusion

In this paper, we develop nonparametric measures for systematic jump risk in asset prices using a

panel of high-frequency returns. The asymptotic setting is of joint type: both the number of assets

and the sampling frequency increase while the time span of the data remains fixed. The developed

statistics use sequential differences of cross-sectionally averaged transforms of individual asset returns

to disentangle systematic from idiosyncratic risk and utilize the leading role in higher-order moments

played by jump risk. We derive Central Limit Theorems for our statistics, whose rate of convergence

depends on the two asymptotically increasing dimensions of the return panel. We further derive the

probability limit of the properly rescaled statistics when no systematic jump risk is present in the

asset prices (outside the jump times of observable systematic risk factors). Using these limit results,

we further propose a test for presence of systematic jump risk that is not spanned by observable

risk factors. The empirical analysis reveals the existence of nontrivial systematic jump risk, which

is not spanned by the three Fama-French factors (market, size and value), as well as its importance

for asset pricing.

8 Proofs

1) Preliminaries. Using the same localization procedure as in the proof of Lemma 4.4.9 (see part

1 of that proof) of Jacod and Protter (2012), one easily sees that it suffices to prove all theorems

when in (A1) and (A2) we have T1 = ∞. So below we always assume T1 = ∞, and also (4).

Therefore, there are [0, 1]-valued functions ϕj on R and [1,∞)-valued random variables χj and a

number w ∈ (1, 2), such that for any finite stopping time S we have

• ‖λjt‖+ |bjt |+ |σ
j
t |+ |δj(t, z)|+ |δjp| ≤ χj |θj(t, z)| ≤ ϕj(z)χj ,

∫
R ϕ

j(z)w dz ≤ 1

• q ∈ R+ ⇒ supj≥1 E
(
(χj)q

)
<∞, hence supN≥1 E

(
χ

(q)
N )q

)
<∞ if χ

(q)
N = 1

N

N∑
j=1

(χj)q

• supj≥1 E
(

sups∈[(S−s)+,S)

(
‖λjs − λ

j
S−‖2 + |σjs − σ

j
S−|2

))
→ 0 as s ↓ 0

• supj≥1 E
(

sups∈[S,S+s)

(
‖λjs − λ

j
S‖2 + |σjs − σ

j
S |2
))
→ 0 as s ↓ 0

• EFS
(

sups′∈[S,S+s]

(
‖λj
s′−λ

j
S‖

2+|σj
s′−σ

j
S |

2

(χj)2

)
≤ C sρ.

(36)

Note that the fourth line in (36) is implied by the second and fifth ones.

The functions g, h are always in C, and the function f used for defining Î ′ is in C+. Below, we

consider variables indexed by n and/or N and sometimes an extra index j. We write Y n,N
P−→ Y

for the convergence in probability, as both n and N go to ∞. We denote with C a generic positive

constant which might change from one equation to another (written Cq if it depends on an extra

parameter q). The Cauchy-Schwarz inequality being used very often, we abbreviate it by “C-S”.
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We use the original filtration (Ft), the initially enlarged one F ′t = Ft
∨
J ′, and the notation

Eni (·) = E(·|Fi∆n
), E′ni (·) = E(·|F ′i∆n

).

We also write, with mn as in (30) and the convention sup(∅) = 0 and In, I
′
n, I
′′
n as in(8) and (14):

P = sup(p ∈ N : τp ≤ T ), 1 ≤ p ≤ P ⇒ in,p = the integer such that τp ∈ I(n, in,p)

P = sup(p ∈ N : ρp ≤ T ), 1 ≤ p ≤ P ⇒ in,p = the integer such that ρp ∈ I(n, in,p)

Ĩn = In\(I ′n ∪ I ′′n)

Ωn = the set on which Î = In and the distance between any two of the

numbers 0, τ1, . . . , τP , ρ1, . . . , ρP is at least (3 ∨mn)∆n, and also T − τP ≥ (3 ∨mn)∆n,


(37)

(so I ′n = {in,p : 1 ≤ p ≤ P, δf,p > 0, δI,p = 0} and I ′′n = {in,p : 1 ≤ p ≤ P, δI,p 6= 0}, for any

f ∈ C+). In particular, on the set Ωn any I(n, i) with i ≤ n contains at most either one τp or one

ρp. Since the τp’s for p ≤ P and the ρp’s for p ≤ P are a.s. all distinct and different from 0, and

τP < T a.s., whereas (3 ∨mn)∆n → 0, we deduce that P(Ωn)→ 1.

Lemma 1 Let G,G′ be two sub-σ-fields of F and (ζj)j≥1 be a sequence of E-valued variables for

some Polish space E. If this sequence is i.i.d. under PG,ω and Pg′,ω for P-almost all ω, the laws of

ζj under PG,ω and PG′,ω (not depending on j) are the same for P-almost all ω.

Lemma 2 For any Borel function h with at most polynomial growth we have for all p ≥ 1:

on {τp ≤ T}:
1

N

N∑
j=1

h(δjp)λ
j
τp

P−→ δh,pλ
(1)
τp ,

1

N

N∑
j=1

h(δjp)λ
j
τp−

P−→ δh,pλ
(1)
τp−. (38)

2) Some estimates. It is convenient to single out some of the constituents of Xj as

X
(λ),j
t =

∫ t
0
λj> dWs, X

(σ),j
t =

∫ t
0
σjs dW̃

j
s , X

(θ),j
t = θj ∗ (µj − ν)t, X

(b),j
t =

∫ t
0
bjs ds

X
(c),j
t = X

(λ),j
t +X

(σ),j
t +X

(b),j
t , X

(I),j
t = X

(σ),j
t +X

(θ),j
t +X

(b),j
t , X

(A),j
t = X

(c),j
t +X

(θ),j
t .

With ψ as in (10), ujn as in (11) and (S) being (λ), (σ), (b), (θ), (c), (I) or (A), set

XN,(S) = 1
N

N∑
j=1

X(S),j , X(S),N,j = X(S),j − ψXN,(S)

X̂
(S),T ,j
i = ∆n

i X
(S),N,j 1{|∆n

i X
(S),N,j |≤ujn}, ∆n,T

i X(S),j = ∆n
i X

(S),j 1{|∆n
i X

(S),j |≤ujn}

ã(g)n,Ni = 1
N

∑N
j=1 g(∆n

i X
(A),N,j), ãT (g)n,Ni = 1

N

∑N
j=1 g(X̂

(A),T ,j
i ).

(39)

For any process Y (such as Xj , X(λ),j , and so on) and positive integers n, i we write Y (n, i)∗ =

supt∈I(n,i) |Yt − Y(i−1)∆n
|. By virtue of (2.1.33), (2.1.34) and Lemma 2.1.5 of Jacod and Protter
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(2012)), plus (36), we easily obtain that for any F ′0-measutable random integer i:

q > 0 ⇒ E′ni−1(X(b),j(n, i)∗q) ≤ Cq∆q
n E′ni−1((χj)q), E(X(b),j(n, i)∗q) ≤ Cq∆q

n

q ≥ 1 ⇒ E′ni−1(X(λ),j(n, i)∗q) ≤ Cq∆q/2
n E′ni−1((χj)q), E(X(λ),j(n, i)∗q) ≤ Cq∆q/2

n

q ≥ 1 ⇒ E′ni−1(X(σ),j(n, i)∗q) ≤ Cq∆q/2
n E′ni−1((χj)q)), E(X(σ),j(n, i)∗q) ≤ Cq∆q/2

n

q ≥ w ⇒ E′ni−1(X(θ),j(n, i)∗q) ≤ Cq∆n E′ni−1((χj)q)), E(X(θ),j(n, i)∗q) ≤ Cq∆n.

(40)

Thus, by supj E((χj)q) <∞ for all q > 0 and Hölder’s inequality, we get

E(|∆n
i X

(S),j |q + |∆n
i X

N,(S)|q + |∆n
i X

(S),N,j |q) ≤


Cq∆

q/2
n if q ≥ 1, (S) = (b), (λ), (σ), (c)

Cq∆n if q ≥ 2, (S) = (θ), (A), (I)

Cq∆n if q ≥ w, (S) = (θ), (b).

(41)

Lemma 3 For any J ′-measurable random integer i ≥ 1 we have (recall (36) for χ
(q)
N ):

∣∣E′ni−1

(
|∆n

i X
N,(I)|2

)∣∣ ≤ C(∆3/2
n +

∆n

N

)
E′ni−1(χ

(2)
N ), (42)

j 6= k ⇒


∣∣E′ni−1

(
∆n
i X

(I),j∆n
i X

(I),k
)∣∣ ≤ C∆

3/2
n E′ni−1

(
(χj)2 + (χk)2

)∣∣E′ni−1

(
∆n
i X

(I),N,j∆n
i X

(I),N,k
)∣∣ ≤ (∆

3/2
n + ∆n

N

)
E′ni−1

(
(χj)2 + (χk)2 + χ

(2)
N

)
.

(43)

Lemma 4 For any g, h ∈ C and J ′-measurable integer i we have (with w ∈ (1, 2) as in (36)):

E
(
(ã(g)n,Ni )2

)
+ E

(
h(∆n

i X
(A),N,j) ã(g)n,Ni

)
≤ C

(
∆1+1/w
n + ∆n/N

)
.

Lemma 5 If i is any J ′-measurable positive (random) integer we have for all q ≥ 1 and γ > 0:

P
(
|∆n

i X
N,(A)| > γ

)
≤ Cq

∆q
n

γ2q
+ C

∆n

γ2N
, P

(
|ã(g)n,Ni | > γ

)
≤ Cq

∆q
n

γq
+ C

∆n

γ N
. (44)

Lemma 6 There is ε > 0 such that, for any J ′-measurable integer i,

E
(∣∣X̂(A),T ,j

i X̂
(A),T ,k
i −∆n

i (X(λ),N,j +X(σ),N,j) ∆n
i (X(λ),N,k +X(σ),N,k)

∣∣) ≤ C∆1+ε
n ,

E
(∣∣∆n,T

i X(A),j ∆n,T
i X(A),k −∆n

i (X(σ),j +X(σ),j) ∆n
i (X(λ),k +X(λ),k)

∣∣) ≤ C∆1+ε
n .

3) The proof of Theorem 1. Theorem 1 is a trivial consequence of the next three lemmas.

Lemma 7 We have P(Ωn)→ 1 and P(Î ′′ = I ′′n)→ 1, where

Ωn is the subset of Ωn on which r̂i =


∆n
i X

N,(A) if i ∈ Ĩn
∆n
i X

N,(A) − δNI,p if i = in,p ∈ I ′n
0 if i ∈ I ′′n .

Lemma 8 We have (19).
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Lemma 9 We have P(Î ′ = I ′n)→ 1.

4) Proof of Theorem 2. We need a few preliminary lemmas. To start with, we also set, for (S)

being any of our usual symbols (λ, ), (σ), (θ), (b), (I), (A),

P ′ = {p = 1, . . . , P : δI,p = 0}, P ′′ = {p = 1, . . . , P : δI,p 6= 0}

δN,jp =

 δjp − ψδNI,p if p ∈ P ′

δjp if p ∈ P ′′,
X̂

(S),j
p =

 ∆n
in,p

X(S),N,j if p ∈ I ′n
∆n
in,p

X(S),j if p ∈ I ′′n .

(45)

Then the variable r̂ji of (10) satisfy

on the set Ω′n = Ωn ∩ {Î ′ = I ′n, Î
′′ = I ′′n}: r̂ji =

∆n
i X

(A),N,j if i ∈ Ĩn,

X̂
(A),j
p + δN,jp if i = in,p, p = 1, . . . , P,

(46)

and by Lemmas 7 and 9 we have P(Ω′n)→ 1. We also consider the modified statistics

ŜJ ′∗g =
∑
i∈Î′

(
â(g)i

)2
, ŜJ ′′∗g =

∑
i∈Î′′

(
â(g)i

)2
, ŜJ∗g = ŜJ ′∗g + ŜJ ′′∗g .

Lemma 10 We have
√
n(ŜJ ′g−ŜJ ′∗g )

P−→ 0 and
√
n(ŜJ ′′g−ŜJ ′′∗g )

P−→ 0 and
√
n ∧N(ŜJ[g−ŜJ∗g)

P−→

0 and
√
n ∧N(ŜJ[[g − ŜJ∗g)

P−→ 0.

When g, h ∈ C one can expand those functions around δN,jp or δN,kp to get, in restriction to Ω′n

and in view of (46) and X̂
(A),j
p = X̂

(λ),j
p + X̂

(I),j
p :

h(r̂jin,p)g(r̂kin,p) = h(δN,jp )g(δN,kp ) + h(δN,jp )g′(δN,kp )X̂
(λ),k
p + h′(δN,jp )g(δN,kp )X̂

(λ),j
p

+h(δN,jp )g′(δN,kp )X̂
(I),k
p + h′(δN,jp )g(δN,kp )X̂

(I),j
p + h′(δN,jp )g′(δN,kp )X̂

(A),j
p X̂

(A),k
p

+αn,kp h(δN,jp )(X̂
(A),k
p )2 + αn,jp g(δN,kp )(X̂

(A),j
p )2 + αn,kp h′(δN,jp )X̂

(A),j
p (X̂

(A),k
p )2

+αn,jp g′(δN,kp )X̂
(A),k
p (X̂

(A),j
p )2 + αn,jp αn,kp (X̂

(A),j
p )2(X̂

(A),k
p )2,

(47)

where αn,jp is a family of random variables, bounded uniformly in ω, n, j, p. We also set, with P being

either P ′ or P ′′,

T NP =
∑
p∈P

1

N2

N∑
j,k=1

g(δN,jp )g(δN,kp ), Un,NP =
∑
p∈P

2

N2

N∑
j,k=1

g(δN,jp )g′(δN,kp )X̂(λ),k
p .

Then (47) with h = g, the properties of g and
∑N
j=1 |∆n

i X
(A),N,j | ≤ (1 + |ψ|)

∑N
j=1 |∆n

i X
(A),j | yield

∣∣ŜJ ′∗g − T NP′ − Un,NP′ ∣∣+
∣∣ŜJ ′′∗g − T NP′′ − Un,NP′′ ∣∣ ≤ C 3∑

m=1
|Ψn,N
m | on Ω′n, where

Ψn,N
1 =

P∑
p=1

1
N

N∑
j=1

(X̂
(A),j
p )4, Ψn,N

2 =
P∑
p=1

1
N2

N∑
j,k=1

g(δN,jp )g′(δN,kp ) X̂
(I),k
p ,

Ψn,N
3 =

P∑
p=1

1
N2

N∑
j,k=1

(δN,jp )2(X̂
(A),k
p )2.

(48)
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Lemma 11 We have
√
nΨn,N

m
P−→ 0 for m = 1, 2, 3.

Lemma 12 If Y ′N =
√
N(T NP′ − SJ ′g) and Y ′′N =

√
N(T NP′′ − SJ ′′g ), and under PJ ,ω for P-almost

all ω, the two-dimensional sequence (Y ′N , Y ′′N ) converges in law to (
√
V ′g(ω)Z ′,

√
V ′′g (ω)Z ′′).

Lemma 13 For P = P ′,P ′′ one can write
√
nUn,NP = Yn,NP + Ỹ n,NP , where Ỹ n,NP is J -measurable

and goes to 0 in probability, and further the pair (Yn,NP′ ,Y
n,N
P′′ ) converges stably in law to (Z ′g, Z

′′
g ),

as given in (25).

We can now turn to the proof of Theorem 2. Recalling I ′n = ∅ if SJ ′g = 0 and I ′′n = ∅ if SJ ′′g = 0,

when g ∈ C+, (c) of Theorem 2 follows from Theorem 1 and the definitions of ŜJ ′g and ŜJ ′′g .

For (a) and (b), in view of (48) and Lemmas 10 and 11, it is enough to show that

(√
n ∧N

(
T NP′ + Un,NP′ − SJ

′
g

)
,
√
n ∧N

(
T NP′′ + Un,NP′′ − SJ

′′
g

)) LG−s−→ (Z̃ ′g, Z̃
′′
g ).

With the notation of Lemmas 12 and 13 and

Y N =

 Y ′N

Y ′′N

 , Yn,N =

Yn,NP′
Yn,NP′′

 , Y = (Vg)
1/2

 Z ′

Z ′′

 , Y =

 Z ′g

Z ′′g

 ,

and φn,N =
√
n/N , this amounts to proving that

(1 ∧ φn,N )Y N +
1

1 ∨ φn,N
Yn,N LG−s−→ (1 ∧ φ)Y +

1

1 ∨ φ
Y. (49)

Toward this aim, we single out the two cases φ = 0 and 0 < φ ≤ ∞.

(i) The case of φ = 0: We have G = F , so Lemma 13 implies Yn,N LG−s−→ Y. Moreover, the

sequence Y N is bounded in probability by Lemma 12, whereas φn,N → 0. We thus deduce (49).

(ii) The case of φ ∈ (0,∞]: We have G = J , and (49) clearly follows from the G-stable convergence

(
Y N ,Yn,N

) LG−s−→ (Y,Y).

Recalling the definition (24) and by a density argument, it suffices to show that, for any bounded J -

measurable variable Φ and any two continuous bounded functions Ψ,Ψ′ on R2 we have, as n,N →∞:

E
(
Φ Ψ(Y N ) Ψ′(Yn,N )

)
→ Ẽ

(
Φ Ψ(Y ) Ψ′(Y)

)
. (50)

Now, since Yn,N is J -measurable, the left hand side above equals E
(
Φ Ψ′(Yn,N )EJ (Ψ(Y N ))

)
,

whereas Lemma 12 yields EJ (Ψ(Y N ))→ ẼJ (Ψ(Y )) (with ẼJ denoting the J -conditional expecta-

tion for P̃). Because of the boundedness of Φ, f, f ′ we deduce

E
(
Φ Ψ(Y N ) Ψ′(Yn,N )

)
− E

(
Φ Ψ′(Yn,N ) ẼJ (Ψ(Y ))

)
→ 0.
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An application of Lemma 13 yields

E
(
Φ Ψ′(Yn,N ) ẼJ (Ψ(Y ))

)
→ Ẽ

(
Φ Ψ′(Y) ẼJ (Ψ(Y ))

)
= Ẽ

(
Φ Ψ(Y ) Ψ′(Y)

)
(because under P̃ the variables Y and Y are J -conditionally independent), and (50) follows. �

5) Proof of Theorem 3. The proof follows similar steps as the ones of Theorem 2. We fix the

index j ≥ 1 and suppose that N ≥ j. We consider the modified statistics

ŜJ ′∗,jg,h =
∑
i∈Î′

h(r̂ji ) â(g)i, ŜJ ′′∗,jg,h =
∑
i∈Î′′

h(r̂ji ) â(g)i, ŜJ∗,jg,h = ŜJ ′∗,jg,h + ŜJ∗,jg,h.

Lemma 14 We have
√
n(ŜJ ′jg,h − ŜJ

′∗,j
g,h )

P−→ 0 and
√
n(ŜJ ′′g − ŜJ ′′∗g )

P−→ 0 and
√
n ∧N(ŜJj,[g,h −

ŜJ∗g,h)
P−→ 0 and

√
n ∧N(ŜJj,[[g,h − ŜJ∗g,h)

P−→ 0.

Next, we replace T NP and Un,NP for P = P ′ and P = P ′′ by

T N,jP =
∑
p∈P

1
N

N∑
k=1

h(δN,jp )g(δN,kp )

Un,N,jP =
∑
p∈P

1
N

N∑
k=1

(
h(δN,jp )g′(δN,kp )X̂

(λ),k
p + h′(δN,jp )g(δN,kp )X̂

(A),j
p

)
.

Upon using (47) and X̂
(A),j
p = X̂

(λ),j
p + X̂

(I),j
p , we obtain instead of (48):∣∣ŜJ ′∗,jg,h − T

N,j
P′ − U

n,N,j
P′

∣∣+
∣∣ŜJ ′′∗,jg,h − T

N,j
P′′ − U

n,Nj
P′′

∣∣ ≤ C∑3
m=1 |Ψn,N,j

m | on Ω′n, where

Ψn,N,j
1 =

P∑
p=1

1
N

N∑
k=1

(
(X̂

(A),j
p )4 + (X̂

(A),k
p )4

)
, Ψn,N,j

2 =
P∑
p=1

1
N

N∑
k=1

h(δN,jp )g′(δN,kp ) X̂
(I),k
p

Ψn,N,j
3 =

P∑
p=1

1
N

N∑
k=1

(
(δN,jp )2(X̂

(A),k
p )2 + (δN,kp )2(X̂

(A),j
p )2

)
.

(51)

Lemma 15 We have
√
nΨn,N,j

m
P−→ 0 for m = 1, 2, 3.

Lemma 16 If Y ′N,j =
√
N(T N,jP′ −SJ

′j
g,h) and Y ′′N,j =

√
N(T N,jP′′ −SJ

′′j
g,h), under PJ j ,ω for P-almost

all ω, the 2-dimensional sequence (Y ′N,j , Y ′′N,j) converges in law to (

√
V ′jg (ω)Z ′,

√
V ′′jg (ω)Z ′′).

Lemma 17 For P = P ′,P ′′ one can write
√
nUn,N,jP = Yn,N,jP + Ỹ n,N,jP , where Ỹ n,N,jP is J j-

measurable and goes to 0 in probability, and further the pair (Yn,N,jP′ ,Yn,N,jP′′ ) converges stably in law

to (Z ′jg,h, Z
′′j
g,h), as given in (29).

At this stage, in view of (51) and Lemmas 14, 15 and 16, and with J j instead of J , the proof of

Theorem 2 can be reproduced word for word for showing Theorem 3.
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6) Proof of Theorem 4. Since n∧N
N → 1 ∧ φ2 and N

n∨N →
1

1∨φ2 , by comparing (32) with the

definitions of Z̃ ′g, Z̃
′′
g , Z̃

′j
g,h, Z̃

′′j
g,h and by Lemmas 7 and 9, it is enough to show the following properties:

(a) : V̂ ′g
P−→ Vg, V̂ ′′g

P−→ V ′′g , V̂ ′jg,h
P−→ V ′jg,h, V̂ ′′jg,h

P−→ V ′′jg,h

(b) : (Γ̂±g,in,p)2 P−→ T (Γ±g,p)
2 on {p ≤ P}

(c) : (Γ̂′±,jg,h,in,p
)2 P−→ T (Γ′±,jg,h,p)

2 on {p ∈ P ′}, (Γ̂′′±,jg,h,in,p
)2 P−→ T (Γ′′±,jg,h,p)

2 on {p ∈ P ′′}.

(52)

Those three properties are proven in the next section.

7) Proof of Theorem 7. If Gj is the set where λjt = 0 for all t ∈ [0, T ], it is obvious that

P
(
(Gj)

c∩{∆n
i X

j = 0 for all i = 1, . . . , n}
)

= 0. Since g ∈ C+ we thus have P
(
(Gj)

c∩{ŜJ[g = 0}
)

= 0

as soon as j ≤ N . Now, (A2) implies that P
(
∩1≤j≤N Gj

)
→ 0, and thus P(ŜJ[g = 0)→ 0. Then, in

view (b) of Theorem 2 we deduce that the asymptotic size of the test is α.

For the asymptotic alternative consistency, we use the fact that by Theorem 2 both ŜJg and ŜJ[g

converge in probability to SJg, so ŜJ[g − ŜJg
P−→ 0. Since SJg > 0 on Ωalt, the claim is obvious. �

9 Proof of the Technical Lemmas

Proof of Lemma 1. For any Borel subset A of E set HA = PG(ζ1 ∈ A) and H ′A = PG′(ζ1 ∈ A).

Our assumptions and the law of large numbers imply SN = 1
N

∑N
j=1 1A(ζj)

a.s.−→ HA(ω) under PG,ω

for P-almost all ω, and since H is G-measurable we deduce

P(SN → HA) =

∫
Ω

PG,ω
(
{ω′ : Sn(ω′)→ HA(ω)}

)
P(dω) = 1,

and analogously P(SN → H ′A) = 1. Therefore HA = H ′A P-a.s., implying the claim. �

Proof of Lemma 2. By (A2)-(iii), for the first claim it is enough to show that

YN :=
1

N

N∑
j=1

ξj
P−→ 0, ξj =

(
h(δjp)− δh,p

)
λj,lτp ,

for any l = 1, . . . ,K. By (A2)-(i), (3) and the J -measurability of λjτp , for P-almost all ω, under PJ ,ω
the variables ξj are independent, centered, with variances vj = (λj,lτp )2

(
δh2,p − (δh,p)

2
)

smaller than

C(χj)2 EJ ((χj)q) for some q > 0 because of (36) and the polynomial growth of h. Then, successive

conditioning yields

E
(
(YN )2

)
=

1

N2
E
( N∑
j=1

vj
)
≤ 1

N2

N∑
j=1

E
(
(χj)q+2

)
→ 0,

by (36), which implies the first claim. The second claim is proved analogously. �
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Proof of Lemma 3. We start with the first line of (43), for which it clearly suffices to prove the

bound for each product ∆n
i X

(S),j∆n
i X

(S′),k, when both (S) and (S ′) are either (b) or (σ) or (θ).

When at least one of (S) and (S ′) is (b), the bound trivially follows from (40) and C-S. In the other

cases, both ∆n
i X

(S),j and ∆n
i X

(S′),k are the increments over I(n, i) of square-integrable martingales,

which further are orthogonal because W̃ j , W̃ k, µj and µk are independent (so the latter two have

no common jumps). Therefore in those cases E′ni−1

(
∆n
i X

(S),j∆n
i X

(S′),k) = 0, and the claim follows.

We have (∆n
i X

N,(I))2 = 1
N2

∑N
j,k=1 ∆n

i X
(I),j∆n

i X
(I),k, and (40) yields E′ni−1

(
(∆n

i X
(I),j)2

)
≤

C∆n E′ni−1((χj)2). Then (42) follows from the first line of (43). Finally, since X(I),N,j = X(I),j −

ψXN,(I), the second line of (43) follows from the first line, plus (42). �

Proof of Lemma 4. Suppose for a while that we have, for any indices j, k,

E
(
(∆n

i X
(A),j)2(∆n

i X
(A),k)2

)
≤ C

(
∆1+1/w
n + ∆n 1{j=k}

)
. (53)

In view of the definitions of XN,(A) and X(A),N,j , this successively implies

E
(
(∆n

i X
N,(A))4

)
≤ C

(
∆

1/1/w
n + ∆n/N

)
E
(
(∆n

i X
(A),N,j)2(∆n

i X
(A),N,k)2

)
≤ C

(
∆

1/1/w
n + ∆n/N + ∆n 1{j=k}

)
.

Since both g(x) and h(x) are smaller than Cx2, and in view of the definition of ã(g)n,Ni , the claim

readily from the second bound above. It thus remains to prove (53). This follows from (41) when

j = k, so below we assume j 6= k. Using (x+ y)2 ≤ 2x2 + 2y2 and X(A),j = X(c),j +X(θ,j , to obtain

(53) it suffices to show that E(Um) ≤ C∆
1+1/w
n for m = 1, 2, 3, where

U1 = (∆n
i X

(c),j)2(∆n
i X

(c),k)2, U2 = (∆n
i X

(c),j)2(∆n
i X

(θ),k)2, U3 = (∆n
i X

(θ),j)2(∆n
i X

(θ),k)2.

(41) and C-S yield E(U1) ≤ C∆2
n. (41) and Hölder’s inequality (with the second conjugate exponent

q = w) yields E(U2) ≤ C∆
1+1/w
n . An integration by parts yields (∆n

i X
(θ),j)2 = ζj + ζ ′j , where

ζj =

∫
I(n,i)×R

(
2X(θ),j(n, i)t θ

j(t, z) + θj(t, z)2
)
(µj − ν)(dt, dz), ζ ′j =

∫
I(n,i)×R

θj(t, z)2 dt dz.

The bound |ζ ′j | ≤ C(χj)2∆n is obvious, and Lemma 2.1.5 of Jacod and Protter (2012) implies

E(|ζj |w) ≤ Cq∆n. Moreover E(ζjζk) = 0 if j 6= k because then ζj and ζk are increments over I(n, i)

of two orthogonal martingales, so Hölder’s inequality again implies E(U3) ≤ C∆
1+1/w
n . �

Proof of Lemma 5. As seen in the previous proof, E(∆n
i X

(θ),j∆n
i X

(θ),k) = 0 when j 6= k. We

then deduce from (41) and |∆n
i X

N,(θ)|2 = 1
N2

∑N
j,k=1 ∆n

i X
(θ),j∆n

i X
(θ),k that

E
(
|∆n

i X
N,(c)|2q

)
≤ Cq∆q

n, E
(
|∆n

i X
N,(θ)|2

)
≤ C ∆n

N
, (54)
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for all q ≥ 1. Since ∆n
i X

N,(A) = ∆n
i X

N,(c) + ∆n
i X

N,(θ), the first claim then follows from the

above and Markov’s inequality. Set ξ(c) = 1
N

∑N
j=1 |∆n

i X
(c),j |2 and ξ(θ) = 1

N

∑N
j=1 |∆n

i X
(θ),j |2. By

integration by parts we have (∆n
i X

(θ),j)2 = ζj + ζ ′j , where

ζj =

∫
I(n,i)×R

(
2X(θ),j(n, i)t θ

j(t, z) + θj(t, z)2
)
(µj − ν)(dt, dz), ζ ′j =

∫
I(n,i)×R

θj(t, z)2 dt dz.

Any two variables ζj and ζk are increments over I(n, i) of square-integrable martingales, which are

orthogonal when j 6= k. Moreover |ζ ′j | ≤ C(χj)2∆n is obvious, hence E(|ζ ′j |q) ≤ Cq∆q
n, and by (40)

we deduce E(|ζj |2) ≤ C∆n. Thus we have ξ(θ) = ζ + ζ ′ with the properties

E(|ζ|) ≤ C ∆n

N
, E(|ζ ′|q) ≤ Cq ∆q

n,

for any q ≥ 1, whereas E(|ξ(c)|q) ≤ Cq∆
q
n as well by (40). These bounds and (54), plus Markov’s

inequality, allow us to deduce the second claim from the following property, due to the definition

(39) and g(x) ≤ Cx2:

ã(g)n,Ni ≤ C
(
ξ(c) + |ζ|+ |ζ ′N |+ |∆n

i X
N,(c)|2 + |∆n

i X
N,(θ)|2

)
. �

Proof of Lemma 6. We focus on the first bound, the second one being proven in exactly the

same way. Set Uj = ∆n
i (X(λ),N,j +X(σ),N,j) and Vj = ∆n

i (X(θ),N,j +X(b),N,j), so X̂(A),T ,j = (Uj +

Vj)1{|Uj+Vj |≤ujn}. With the help of the properties |xy| ≤ x2 +y2 and |x| ≤ |x| 1{|x|≤2u}+2|y| 1{|y|>u}
if |x+ y| ≤ u (because then either |x| ≤ 2u or 2u < |x| < 2|y|), it is (relatively) simple to check that∣∣X̂(A),T ,j

i X̂
(A),T ,k
i − UjUk

∣∣ ≤ C∑4
l=1 Φl, where

Φ1 = (U2
j + |UjUk|) 1{|Uj |>ujn/2} + (U2

k + |UjUk|) 1{|Uk|>ukn/2}

Φ2 = |UjUk|
(
1{|Vj |>ujn/2} + 1{|Vk|>ukn/2}

)
, Φ3 = V 2

j 1{|Vj |≤2ujn} + V 2
k 1{|Vk|≤2ukn}

Φ4 = |UjVj | 1{|Vj |≤2ujn} + |UkVk| 1{|Vk|≤2ukn}.

By Markov’s inequality, C-S, (41) and (11) we get E(Φl) ≤ C∆
3/2−$
n for l = 1, 2. Since Φ3 ≤

(2unj )2−w|Vj |w + (2unk )2−w|Vk|w and Φ4 ≤ (2ujn)(2−w)/2 |Vj |w/2|Uk| + (2ukn)(2−w)/2 |Vk|w/2|Uj |, we

get in the same way E(Φl) ≤ C∆
1+(2−w)$/2
n for l = 3, 4. This completes the proof, upon taking

ε =
(

1
2 −$

)∧ (2−w)$
2 . �

Proof of Lemma 7. The properties of un,N in (10) and (44) used with q ≥ 1/ε yield

P
(

sup
i=1,...,n

|∆n
i X

N,(A)| > un,N
2

)
≤

n∑
i=1

P
(
|∆n

i X
N,(A)| > un,N

2

)
≤ C

( 1

nq−1u2q
n,N

+
1

Nu2
n,N

)
→ 0.

Next, (A2)-(i) implies that for P-almost all ω we have EJ ,ω
(
|δNI,p−δI,p|2

)
= 1

N

(
δI2,p(ω)−δI,p(ω)2

)
, so

(36) and P <∞ yield P
(
|δNI,p − δI,p| ≤ un,N/2 for p = 1, . . . , P

)
→ 1. Therefore, with a probability
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going to 1, we have |∆n
i X

N,(A)| ≤ un,N/2 for all i = 1, . . . , n and |∆n
in,p

XN,(A) + δNI,p − δI,p| ≤ un,N

for all p = 1, . . . , P . Moreover, in restriction to Ωn we have ∆n
i X

N = ∆n
i X

N,(A) when i ∈ Ĩn and

∆n
in,p

XN = ∆n
in,p

XN,(A) + δNI,p when p = 1, . . . , P . Since P(Ωn) → 1 and un,N → 0 and δI,p 6= 0 if

and only if in,p ∈ I ′′n , we deduce the first claim, and also the second one because of (8). �

Proof of Lemma 8. 1) With the notation (39), write

1 < i < n ⇒ α̂(g)i = ãT(g)n,Ni − 1

2

(
ãT(g)n,Ni−1 + ãT(g)n,Ni+1

)
, VJn,Ng =

n−1∑
i=2

|α̂(g)i|.

When i ∈ Ĩn we have r̂T ji = X̂
(A),T ,j
i , hence âT(g)i = ãT(g)n,Ni . Since {1, . . . , n}\Ĩn contains

at most P + P points, the difference |V̂Jg − VJn,Ng | is thus smaller than the sum of the variables

ξi = ãT(g)n,Ni + âT(g)i for at most 2+3P+3P values of i. Since ξi ≤ C∆2$
n by (11) plus g(x) ≤ Cx2,

we have V̂Jg − VJn,Ng → 0 pointwise.

Moreover we have
∣∣g(x)− g′′(0)x2/2

∣∣ ≤ C|x|3 and |X̂(A),T ,j
i |3 ≤ C∆$

n (∆n
i X

(A),N,j)2, hence

E
(∣∣g(X̂

(A),T ,j
i )− g′′(0)

2
(X̂

(A),T ,j
i )2

∣∣) ≤ C∆1+$
n ,

by (41). Thus if h(x) = x2 we have E
(∣∣VJn,Ng − g′′(0)V n,Nh /2

∣∣) ≤ C∆$
n , implying VJn,Ng −

g′′(0)V n,Nh /2
P−→ 0, and it suffices to prove that V n,Nh

P−→ Ah.

Next, Lemma 6 readily implies (since h(x) = x2) that

E
(
|ãT (h)n,Ni − Ŷi|

)
≤ C∆1+ε

n , where Ŷi =
1

N

N∑
j=1

(Ŷ ji )2, Ŷ ji = ∆n
i X

(λ),N,j + ∆n
i X

(σ),N,j .

So indeed it is enough to prove that V̂ :=
∑n−1
i=2

∣∣Ŷi − 1
2 (Ŷi−1 + Ŷi+1)

∣∣ P−→ Ah.

2) In this step we use the following simple property of the processes X(λ),j +X(σ),j . Namely, by

the second and the last parts of (36) plus C-S we have for m = 0, 1, 2 and any i ≥ 1:

E
(
|∆n

i+mX
(λ),j + ∆n

i+mX
(σ),j − (λj(i−1)∆n

)>∆n
i+mW − σ

j
(i−1)∆n

∆n
i+mW̃

j |2 ≤ C∆1+ρ/2
n .

Thus if λN,jt = λjt −
ψ
N

∑N
k=1 λ

k
t (with components λN,j,lt ) and σN,jt = σjt −

ψ
N

∑N
k=1 σ

k
t , we have

E
(∣∣Ŷ ji+m − (λN,j(i−1)∆n

)>∆n
i+mW − σ

N,j
(i−1)∆n

∆n
i+mW̃

j
∣∣2) ≤ C∆1+ρ/2

n .

Since E
(
(Ŷ ji )q + ‖∆n

iW‖q + (∆n
i W̃

j)q
)
≤ C∆

q/2
n , we then deduce from C-S and (36) again that

E
(∣∣(Ŷ ji+m)2 −

(
(λN,j(i−1)∆n

)>∆n
i+mW + σN,j(i−1)∆n

∆n
i+mW̃

j
)2∣∣) ≤ C∆1+ρ/4

n .

As a consequence, with the simplifying notation U li = ∆n
iW

l/
√

∆n and Ũ ji = ∆n
i W̃

j/
√

∆n,
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implicitly depending on n and which are N (0, 1) variables, all independent as i, l, j vary, we have

E(|V̂ − V̂1 − V̂2 − V̂3|) ≤ C∆
ρ/4
n , where V̂m =

n−1∑
i=2

|ζ̂i,m|, ζ̂i,m = 1
N

N∑
j=1

µ̂ji,m

µ̂ji,1 =
K∑

l,l′=1

λN,j,l(i−2)∆n
λN,j,l

′

(i−2)∆n
νn,l,l

′

i,1 , νn,l,l
′

i,1 =
(
U liU

l′

i − 1
2 U

l
i−1U

l′

i−1 − 1
2 U

l
i+1U

l′

i+1

)
∆n

µ̂ji,2 =
K∑
l=1

λN,j,l(i−2)∆n
σN,j(i−2)∆n

νn,l,ji,2 , νn,l,ji,2 =
(
2U li Ũ

j
i − U li−1Ũ

j
i−1 − U li+1Ũ

′j
i+1

)
∆n

µ̂ji,3 = (σN,j(i−2)∆n
)2 νn,ji,3 , νn,ji,3 =

(
(Ũ ji )2 − 1

2 (Ũ ji−1)2 − 1
2 (Ũ ji+1)2

)
∆n.

Moreover, E′ni−2(νn,l,ji,2 νn,l,ki,2 ) and E′ni−2(νn,ji,3 ν
n,k
i,3 ) are equal 6∆2

n and 9∆2
n/2, respectively, if j = k,

and both are 0 when k 6= j. Hence (36) and successive conditioning imply E(|ζ̂i,m|2) ≤ C∆2
n/N ,

yielding E(|V̂m|2) ≤ C/N and thus V̂m
P−→ 0, if m = 2, 3. and we are left to proving the claim for

V̂ ′. Therefore, it remains to prove that V̂1
P−→ Ah.

3) With λ
(1),N,l
t = 1

N

∑N
j=1 λ

j,l
t and λ

(2),N,l,l′

t = 1
N

∑N
j=1 λ

j,l
t λ

j,l′

t , a simple calculation yields

ζ̂i,1 = ζ̂1
i + ζ̂2

i , ζ̂mi =
K∑

l,l′=1

b̂m,l,l
′

(i−2)∆n
νn,l,l

′

i,1 , b̂1,l,l
′

t = λ
(2),l,l′

t + (ψ2 − 2ψ)λ
(1),l
t λ

(1),N,l′

t

b̂2,l,l
′

t = λ
(2),N,l,l′

t + (ψ2 − 2ψ)λ
(1),N,l
t λ

(1),N,l′

t − b̂1,l,l
′

t .

(A2)-(iii) with T1 =∞ implies |̂b2,l,l
′

t | ≤ αNt for all l, l′ for some Ft-measurable variables αNt satisfying

E
(

supt≤T αNt
)
→ 0 as N →∞. Since further Eni−2(|νn,l,l

′

i,1 |) ≤ 6∆n, we deduce

E
( n−1∑
i=2

|ζ̂2
i |
)
≤ 6K2∆n E

( n−1∑
i=2

αN(i−2)∆n

)
≤ 6nK2∆n E

(
sup
t≤T

αNt

)
→ 0.

We are thus left to proving that V ′n :=
∑n−1
i=2 |ζ̂1

i |
P−→ Ah.

Since λ
(1),l
t and λ

(2),l,l′

t are càdlàg, by a localization argument it is no restriction to assume that

they are bounded, so Yt = Fψ(λ
(2)
t , λ

(1)
t ) is also càdlàg and bounded. Then E(|ζ̂1

i |2) ≤ C∆2
n and,

in view of the definition (18), we have Eni−2(|ζ̂1
i |) = ∆nY(i−2)∆n

. By Riemann integration we get∑n−1
i=2 Eni−2(|ζ̂1

i |)
P−→ Ah. Since ζ̂1

i is F(i+1)∆n
-measurable, it remains to apply a classical martingale

convergence theorem for triangular arrays (upon singling out the sums of the |ζ̂1
i |’s for all i are equal

to m modulo 3, separately for m = 0, 1, 2), and we get V ′n
P−→ ANh . �

Proof of Lemma 9. 1) We first prove the following, already mentioned before Theorem 1:

ψ 6= 1, x ∈ RK\{0}, M − xx> is symmetric nonnegative ⇒ Fψ(M,x) > 0, (55)

Set M ′ = M−xx> and M ′′ = M+(ψ2−2ψ)xx> = M ′+(1−ψ)2xx>, so Fψ(M,x) can be rewritten

as follows, with Φl,Φ′l,Φ′′l as in (18):

Fψ(M,x) = E(|V |), with V =

K∑
l,l′=1

αl,l
′(

Φl1Φl
′

1 −
1

2
Φl2Φl

′

2 −
1

2
Φl3Φl

′

3

)
= 0.
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Let C = supl,l′ |M ′l,l
′ |. Under the conditions of (55) there is an l0 with xl0 6= 0, and M ′l0,l0 ≥ 0. If

|Φlm| ≤ 1 for all (l,m) 6= (l0, 1) we have
∣∣V −M ′′l0,l0(Φl01 )2

∣∣ ≤ 2K2C, hence V ≥ (1−ψ)2(xl0)2(Φl01 )2−

2K2C > 0 on the set on which |Φlm| ≤ 1 for all (l,m) 6= (l0, 1) and (Φl01 )2 > 2K2C/(1 − ψ)2(xl0)2.

This set has a positive probability, hence necessarily E(|V |) > 0, and (55) is proven. Thus, by the

very definition of Af and f ∈ C+ and the last part of (iii) of (A2) we have Af > 0 a.s., because the

matrix λ
(2
t − λ

(1)
t (λ

(1)
t )> is obviously symmetric nonnegative.

2) Next, we prove P(Î ′1 = I ′n) → 1. Since V̂Jf
P−→ Af by Lemma 8 and Af > 0 a.s. by Step 1

and P(Ωn)→ 1, it is enough to show that, for any y ∈ (0, 1) and with Ωn,Ny = Ωn ∩ {V̂Jf > y}:

P
(
I ′n ⊂/ Î ′1

)
→ 0, P

(
{Î ′1 ⊂/ In} ∩ Ωn,Ny

)
→ 0. (56)

Since ψδNI,p 1{δI,p=0}
P−→ 0 as N → ∞, (41) and P(Ωn) → 1 imply â(f)in,p

P−→ δf,p for p =

1, . . . , P . We also have â(f)in,p±1 = ã(f)n,Nin,p±1 on Ωn, hence P(Ωn)→ 1 and (40) yield â(f)in,p±1
P−→

0. Thus ă(f)in,p
P−→ δf,p, and γn,N → 0 and P <∞ and P(Ωn)→ 1 imply the first part of (56).

Next, on Ωn and for any i ∈ Ĩn we have â(f)′i ≤ â(f)i = ã(f)n,Ni , hence

P
(
{Î ′1 ⊂/ In} ∩ Ωn,Ny

)
≤ P(Î 6= In) +

n∑
i=1

P(ã(f)n,Ni > yγn,N ).

The first term of the right side above go to 0 by (8). The last term goes to 0 with our choice (16)

for γn,N , by (44) with the choice q = 1/ε. Hence the second part of (56) holds true.

3) It thus remains to show that P(Ω∗n) → 0, where Ω∗n is the set on which Î ′1 = I ′n and Î ′1

is not a subset of Î ′2. On this set Ω∗n there is necessarily some p between 1 and P such that

in,p ∈ I ′n and (â(f)in,p)2 ≤ γ′2n,N â(f2)in,p . However, as seen in Step 2 we have â(f)in,p
P−→ δf,p,

and we analogously have â(f2)in,p
P−→ δf2,p. Since δf,p > 0 and γ′n,N → 0, the probability that

(â(f)in,p)2 ≤ γ′2n,N â(f2)in,p goes to 0, and we deduce the claim. �

Proof of Lemma 10. Since w < 2, Lemma 4 implies for any J ′-measurable index i:

√
n ã(g)n,Ni

P−→ 0,
√
n ∧N Ŷ

P−→ 0, where Ŷ =

n∑
i=1

(
ã(g)n,Ni

)2
. (57)

We also observe that, in restriction to the set Ω′n and because 2xy ≤ x2 + y2:

|ŜJ ′g − ŜJ ′∗g |+ |ŜJ ′g − ŜJ ′′∗g | ≤
P∑
p=1

(zp + z′p), |ŜJ[g − ŜJ[[g | ≤ Ŷ + 2
P∑
p=1

z′p, |ŜJ[[g − ŜJ∗g| ≤ Ŷ

zp =
(
ã(g)n,Nin,p−1

)2
+
(
ã(g)n,Nin,p+1

)2
, z′p = â(g)in,p

(
ã(g)n,Nin,p−1 + ã(g)n,Nin,p+1

)
.

Since P(Ω′n) → 1 and P < ∞, all claims follow from (57) and the properties
√
n zp

P−→ 0 and
√
n z′p

P−→ 0 for each p. Those two properties again follows from (57), plus the fact (for z′p) that the

variables â(g)in,p are bounded in probability, as easily deduced from |δjp| ≤ χj , (36), (41) and (45).�.

38



Proof of Lemma 11. Since P <∞, it is enough to show that
√
nΦn,Nm,p

P−→ 0 for each fixed p, where

Φn,Nm,p denotes the pth summand in the definition of Φn,Nm . (41) yields E
(
(X̂

(A),j
p )q

)
≤ Cq∆n for any

q ≥ 2. Thus E
(
Ψn,N

1,p

)
≤ C∆n, implying

√
nΨn,N

1,p
P−→ 0. Since |δN,jp | ≤ CχN,j with χN,j = χj +χ

(1)
N ,

and supN,j E((χN,j)q) <∞ by (36), we obtain by Hölder’s inequality:

E(Ψn,N
3,p ) ≤ C

N2

N∑
j,k=1

(
E(χN,j)4)

) 1
4
(
E(|X̂(A),j

p |8/3
) 3

4 ≤ C∆
3
4
n .

This implies
√
nΨn,N

3,p
P−→ 0. For the case m = 2 we use the fact that the variables ξj,k =

g(δN,jp )g′(δN,kp ) are J ′-measurable and

(Ψn,N
2,p )2 =

1

N4

N∑
j,j′,k,k′=1

ξj,kξj
′,k′ X̂(I),k

p X̂(I),k′

p ,

implying

E
(
(Ψn,N

2,p )2
)
≤ 1

N4

N∑
j,j′,k,k′=1

ρj,j′,k,k′ , ρj,j′,k,k′ = E
(
|ξj,kp ξj

′,k′

p |
∣∣E′nin,p−1(X̂(I),k

p X̂(I),k′

p )
∣∣).

Since |ξj,kp | ≤ C(χN,j)2χN,k we deduce that ρj,j′,k,k′ is smaller than C∆n if k = k′ from (40) and

than C∆
3/2
n if k 6= k′ from (43). As a consequence, E((Ψn,N

2,p )2) ≤ C
(
1/n3/2 + 1/nN

)
, and thus

√
nΨn,N

2,p
P−→ 0. �

Proof of Lemma 12. Throughout we fix ω0 and argue under PJ ,ω0
, under which the (δjp)p≥1 are

i.i.d. as j varies, with finite moments of all order. In particular, the sets P ′,P ′ depend on ω0 only, so

under PJ ,ω0
they are non random. Since |g(x+ y)− g(x)− g′(x)y| ≤ Cy2 and recalling the notation

(3), we see that for p ∈ P ′:

∣∣g(δN,jp )− g(δjp) + ψg′(δjp)δ
N
I,p
∣∣ ≤ C(δNI,p)

2,
∣∣∣ 1

N

N∑
j=1

g(δN,jp )− δNg,p + ψδNg′,pδ
N
I,p

∣∣∣ ≤ C(δNI,p)
2. (58)

Then with the notation UNp =
√
N δNI,p and UNp =

√
N(δNg,p − δg,p) and U ′Np =

√
N(δNg′,p − δg′,p), a

calculation (simple for Y ′′N below because δN,jp = δjp when p ∈ P ′′, more involved for Y ′N ) yields

Y ′′N = Y ′′N + Ỹ ′′N , Y ′′N = 2
∑
p∈P′′

δg,p U
N
p , Ỹ ′′N = 1√

N

∑
p∈P′′

(UNp )2

Y ′N = Y ′N + Ỹ ′N , Y ′N = 2
∑
p∈P′

δg,p
(
UNp − ψδg′,pUnp

)
,

|Ỹ ′N | ≤ Cω0

1√
N

∑
p∈P′

(
|UNp |2 + |UNp |2 + |U ′Np |2 + |UNp |4 + |UNp |4 + |U ′Np |4

)
,

where Cω0
is a “constant” depending on the fixed ω0 through δg,p(ω0) and δg′,p(ω0). Observe that

Y ′N = 1√
N

N∑
j=1

δ̃′jp , δ̃′jg = 2
∑
p∈P′

δg,p
(
g(δjp)− δg,p − ψδg′,pδjp

)
Y ′′N = 1√

N

N∑
j=1

δ̃′′jp , δ̃′′jg = 2
∑
p∈P′′

δg,p
(
g(δjp)− δg,p

)
.
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Since g(δjp) − δg,p and g′(δjp) − δg′,p, and also δjp when p ∈ P ′, are i.i.d. centered under PJ ,ω0

with finite moments, by a classical result the variables UNp , U ′Np , and also UNp when p ∈ P ′, have

finite moments of all order, and it follows that Ỹ ′N
P−→ 0 and Ỹ ′′N

P−→ 0. Finally, under PJ ,ω0
the

2-dimensional variables (δ′jg , δ
′′j
g ) are i.i.d. centered, its two components being uncorrelated and with

respective variances V ′g(ω0) and V ′′g (ω0). Then, the claim follows from the usual CLT. �

Proof of Lemma 13. 1) For dealing with the two cases of P simultaneously, we set ψp = ψ if

p ∈ P ′ and ψp = 0 if p ∈ P ′′. With ∆n+
p W = Win,p∆n −Wτp and ∆n−

p W = Wτp −W(in,p−1)∆n
, and

recalling (45), the desired decompositions are obtained by setting

Yn,NP = 2
√
n
∑
p∈P

δg,pδg′,p(1− ψp)
(
λ

(1)>
τp− ∆n−

p W + λ
(1)>
τp ∆n+

p W
)
, Ỹ n,NP = 2

√
n
∑
p∈P

4∑
m=1

yn,Np,m

yn,Np,1 = δg,p
1
N

N∑
j=1

((
g′(δjp)(λ

j
τp− − ψpλ

(1)
τp−)− (1− ψp)δg′,pλ(1)

τp−
)>

∆n−
p W

+
(
g′(δjp)(λ

j
τp − ψpλ

(1)
τp )− (1− ψp)δg′,pλ(1)

τp

)>
∆n+
p W

)
yn,Np,2 = δg,p

1
N

N∑
j=1

g′(δjp)
(
X̂

(λ),j
p − (λjτp− − ψpλ

(1)
τp−)>∆n−

p W − (λjτp − ψpλ
(1)
τp )>∆n+

p W
)

yn,Np,3 = δg,p
1
N

N∑
j=1

(
g′(δN,jp )− g′(δjp)

)
X̂

(λ),j
p

yn,Np,4 = GNp H
n,N
p , GNp = 1

N

N∑
k=1

g(δN,kp )− δg,p, Hn,N
p = 1

N

N∑
j=1

g′(δN,jp ) X̂
(λ),j
p .

2) Since the τp’s are the jump times of a Poisson process independent of W , Proposition 4.4.10

in Jacod and Protter (2012) tells us that there are N (0, 1) variables Z−,lp and Z+,l
p and [0, 1]-uniform

variables κp defined on an extension of the space (Ω,F ,P), all mutually independent and also inde-

pendent of F , such that

1√
∆n

(
∆n−
p W, ∆n+

p W
)
p≥1

L−s−→
(√
κp(Z

−,l
p )1≤l≤K ,

√
1− κp(Z+,l

p )1≤l≤K
)
p≥1

,

and one easily checks that the variables

Z±p =


1

‖λ(1)
τp±‖

K∑
l=1

λ
(1),l
τp± Z±,lp if λ

(1)
τp± 6= 0

Z±,1p otherwise,

are again N (0, 1), mutually independent and independent of F and all κp. The joint stable conver-

gence (Yn,NP′ ,Y
n,N
P′′ )

L−s−→ (Z ′(g)T , Z
′′(g)T ) is then obvious, because n ∼ T/∆n.

3) The variables Ỹ n,NP′ , Ỹ n,NP′′ being clearly J -measurable, it remains to prove
√
n yn,Np,m

P−→ 0 for

each p = 1, . . . , P and m = 1, . . . , 4. First, by (38) the variables
∥∥ 1
N

∑N
j=1 g

′(δjp)(λ
j
τp± − ψpλ

(1)
τp±) −

(1 − ψp)δg′,pλ
(1)
τp±
∥∥ go to 0 in probability, and they are smaller than Cχ

(2)
N , whose moments are

bounded in N by (36). Hence, by C-S and E(‖∆n±
p W‖2) ≤ ∆n, we readily get

√
n yN,np,1

P−→ 0.
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Next, we have X̂
(λ),j
p = ∆n

in,p

(
X(λ),j − ψpXN,(λ)

)
. In view of the definition of XN,(λ), plus (36)

and (iii) of (A-2) (with T1 =∞), we have for some sequence εp,n going to 0 as n→∞:

E
(
|X̂(λ),j

p − (λjτp− − ψpλ
(1)
τp−)>∆n−

p W − (λjτp − ψpλ
(1)
τp )>∆n+

p W )|2
)

≤ 2|ψ|2E
( ∫ in,p∆n

(in,p−1)∆n

∣∣∣ 1
N

N∑
k=1

λkt − λ
(1)
t

∣∣∣2 dt)
+4 supk E

( ∫ τp
(τp−∆n)+

‖λkt − λkτp−‖
2 dt+

∫ τp+∆n

τp
‖λkt − λkτp‖

2 dt
)
≤ C∆nεn,p.

Since δg,p and g′(δjp) have fourth moments bounded in j, we deduce
√
n yn,Np,2

P−→ 0.

Finally, since δN,j = δjp − ψpδNI,p and also ψpδI,p = 0, we have δN,jp
P−→ δjp uniformly. Therefore

supj |g′(δN,j)−g′(δjp)|
a.s.−→ 0 and GNp

a.s.−→ 0 (use (3) for this). Since E(|Hn,N
p |)+E(|X̂(λ),j

p |) ≤ C
√

∆n

by (41) and C-S, we deduce
√
n yN,np,m

P−→ 0 for m = 3, 4. �

Proof of Lemma 14. For shorter notation we write Ui = h(∆n
i X

(A),N,j) and Vi = ã(g)n,Ni ,

and observe that since g, h ∈ C (40) implies that both E′ni−1(Ui) and E′ni−1(Vi) are smaller than

C∆n E′ni−1((χj)2 + χ
(2)
N ), for any J ′-measurable index i. Then successive conditioning and Hölder’s

inequality yield E(UiVi+1)+E(Ui+1Vi) ≤ C∆
7/4
n , and of course E(Ui+Vi) ≤ C∆n. This and Lemma

4 imply that

√
nUi +

√
nVi +

√
nUiVi+1 +

√
nUi+1Vi

P−→ 0,
√
n ∧N Ŷ

P−→ 0,

where Ŷ =
n∑
i=1

UiVi +
n∑
i=2

(Ui−1Vi + UiVi−1).
(59)

As in the proof of Lemma 10, in restriction to the set Ω′n we have

|ŜJ ′g − ŜJ ′∗g |+ |ŜJ ′g − ŜJ ′′∗g | ≤
P∑
p=1

(zp + z′p), |ŜJ[g − ŜJ[[g | ≤ Ŷ +
P∑
p=1

z′p, |ŜJ[[g − ŜJ∗g| ≤ Ŷ

zp =
(
Uin,p−1 + Uin,p+1

)(
Vin,p−1 + Vin,p+1

)
z′p =

(
Uin,p−1 + Uin,p+1

)
â(g)in,p + h(r̂jin,p)

(
Vin,p−1 + Vin,p+1

)
.

Observing that the variables â(g)in,p and h(r̂jin,p) are bounded in probability, and upon using (59),

we deduce all claims in exactly the same way as in Lemma 10. �

Proof of Lemma 15. The proof is exactly the same as for Lemma 11, up to replacing the weighted

sums 1
N2

∑N
j,k=1 ... by 1

N

∑N
k=1 .... �

Proof of Lemma 16. We follow the proof of Lemma 12, arguing now under PJ j ,ω0
for some fixed

ω0. With BN = {1, . . . , N}\{j}, we replace UN , UNp , Û
N
p of that lemma by

UNp =
1√
N

∑
k∈BN

δkp , UNp =
1√
N

∑
k∈BN

(
g(δkp )− δg,p

)
, ŨNp =

1√
N

∑
k∈BN

(
g′(δkp )− δg′,p

)
.
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Then (58) yields Y ′′N,j = Y ′′N,j + Ỹ ′′N,j , where

Y ′′N,j =
∑
p∈P′′

h(δjp)U
N
p , Ỹ ′′N,j =

1√
N

∑
p∈P′′

h(δjp)
(
g(δjp)− δg,p

)
,

and, after a more complicated calculation, Y ′N,j = Y ′N,j + Ỹ ′N,j , where

Y ′N,j =
∑
p∈P′

(
h(δjp)U

N
p − ψ

(
h(δjp)δg′,p + h′(δjp)δg,p

)
UNp
)

= 1√
N

∑
k∈BN

δ̃′j,kg,h

|Ỹ ′N,j | ≤ Cω0

1√
N

∑
p∈P′

(
|δjp|2 + |δjp|4 + |UNp |2 + |UNp |2 + |U ′Np |2 + |UNp |4 + |UNp |4 + |U ′Np |4

)
.

Furthermore, we can write

Y ′N,j = 1√
N

∑
k∈BN

δ̃′j,kg,h , δ̃′j,kg,h =
∑
p∈P′

(
h(δjp)

(
g(δkp )− δg,p

)
− ψh(δjp)δg′,pδ

k
p − ψh′(δjp)δg,pδkp

)
Y ′′N,j = 1√

N

∑
k∈BN

δ̃′′j,kg,h , δ̃′′j,kg,h =
∑
p∈P′′

h(δjp)
(
g(δkp )− δg,p

)
.

The same arguments as in Lemma 12 imply Ỹ ′N,j
P−→ 0 and Ỹ ′′N,j

P−→ 0. Moreover, under

PJ j ,ω0
the 2-dimensional variables (δ̃′j,kg,h , δ̃

′′j,k
g,h ) are i.i.d. centered as k varies in BN , and their two

components are uncorrelated and with respective variances V ′jg,h(ω0) and V ′′jg,h(ω0), so the claim follows

from the usual CLT. �

Proof of Lemma 17. 1) We use the notation ψp and ∆n±
p W of the proof of Lemma 13, and

define similarly the increments ∆n±
p W̃ j for the Brownian motion W̃ j . The desired decompositions

are obtained by setting the desired decompositions are obtained by setting

Yn,N,jP =
√
n
∑
p∈P

(
(1− ψp)h(δjp)δg′,p − ψph′(δjp)δg,p

)(
λ

(1)>
τp− ∆n−

p W + λ
(1)>
τp ∆n+

p W
)

+h′(δjp)δg,p
(
λj,>τp−∆n−

p W + λj,>τp ∆n+
p W + σjτp−∆n−

p W̃ j + σjτp∆n+
p W̃ j

))
Ỹ n,N,jP =

√
n
∑
p∈P

7∑
m=1

yn,N,jp,m , where

yn,N,jp,1 = h(δjp)
1
N

N∑
k=1

((
g′(δkp )(λkτp− − ψpλ

(1)
τp−)− (1− ψp)δg′,pλ(1)

τp−
)>

∆n−
p W

+
(
g′(δkp )(λkτp − ψpλ

(1)
τp )− (1− ψp)δg′,pλ(1)

τp

)>
∆n+
p W

)
yn,N,jp,2 = h′(δjp) δg,p

(
∆n
in,pX

(σ),j − σjτp−∆n−
p W̃ j − σjτp∆n+

p W̃ j
)

yn,N,jp,3 = h′(δjp) δg,p
(
X̂(λ),j
p − (λjτp− − ψpλ

(1)
τp−)>∆n−

p W − (λjτp − ψpλ
(1)
τp )>∆n+

p W
)

yn,N,jp,4 = h(δjp)
1

N

N∑
k=1

g′(δkp )
(
X̂(λ),k
p − (λkτp− − ψpλ

(1)
τp−)>∆n−

p W − (λkτp − ψpλ
(1)
τp )>∆n+

p W
)

yn,N,jp,5 = h′(δjp)δg,p
(
X̂(A),j
p − X̂(λ),j

p −∆n
in,pX

(σ),j
)

yn,N,jp,6 = h(δjp)
1

N

N∑
j=1

(
g′(δN,kp )− g′(δkp )

)
X̂(λ),k
p + h′(δjp) X̂

(A),j
p

( 1∑N

j=1

g(δN,kp )− δg,p
)
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yn,N,jp,7 =
(
h(δN,jp )− h(δjp)

) 1

N

N∑
k=1

g′(δN,kp )X̂(λ),k
p +

(
h′(δN,jp )− h′(δjp)

)
X̂(A),j
p

1

N

N∑
k=1

g(δN,kp ).

2) As in Lemma 13, there are N (0, 1) variables Z−,lp and Z+,l
p (for l = 1, . . . ,K + 1 here) and

[0, 1]-uniform variables κp defined on an extension of the space (Ω,F ,P), all mutually independent

and also independent of F , such that with the convention ∆n±
p WK+1 = ∆n±W̃ j , we have

1√
∆n

(
(∆n−

p W l)1≤l≤K+1, (∆
n+
p W l)1≤l≤K+1

)
p≥1

L−s−→
(√
κp(Z

−,l
p )1≤l≤K+1,

√
1− κp(Z+,l

p )1≤l≤K+1

)
p≥1

.

It easily follows that the pair (Yn,N,jP′ ,Yn,N,jP′′ ) converges stably in law to (
√
T Z ′,

√
T Z ′′), where

Z ′ =
∑
p∈P′

(√
κp Z

′−
p +

√
1− κp Z ′+p

)
, Z ′′ =

∑
p∈P′′

(√
κp Z

′′−
p +

√
1− κp Z ′′+p

)
Z ′±p = h′(δjp)δg,pσ

j
τp±Z

±,K+1
p +

K∑
l=1

(
h′(δjp)δg,pλ

j,l
τp± +

(
(1− ψ)h(δjp)δg′,p − ψh′(δjp)δg,p

)
λ

(1),l
τp±
)
Z±,lp

)
Z ′′±p = h′(δjp)δg,pσ

j
τp±Z

±,K+1
p +

K∑
l=1

(
h′(δjp)δg,pλ

j,l
τp± + h(δjp)δg′,pλ

(1),l
τp±
)
Z±,lp

)
.

As in Lemma 13 again, one can write Z ′±p and Z ′′±p as Γ′±,jg,h,pZ
±
p and Γ′′±,jg,h,pZ

±
p , where all Z+

p , Z
−
p

are standard normal variables mutually independent and also independent of F , Z, Z ′ and all κp.

We then deduce the claimed stable convergence in law of (Yn,N,jP′ ,Yn,N,jP′′ ).

3) The variables Ỹ n,N,jP′ , Ỹ n,N,jP′′ are clearly J -measurable, so it remains to prove
√
n yn,N,jp,m

P−→ 0

for each p = 1, . . . , P and m = 1, . . . , 7. By exactly the same arguments as in Lemma 13 (even

simpler in some cases), this holds for m = 1, 2, 3, 4, 6, 7.

Finally, for the case of m = 5 we use (41), which yields E
(
|X̂(A),j

p − X̂(λ),j
p − X̂(σ),j

p |w
)
≤ C∆n.

We also have E
(
|∆n

in,p
XN,(σ)|2

)
≤ C∆n/N because the processes W̃ j ’s are independent. Recalling

w < 2, we deduce E
(
|X̂(A),j

p − X̂(λ),j
p −∆n

in,p
X(σ),j |w

)
≤ C(∆n + (∆n/N)w/2). Since h′(δjp)δg,p has

finite moments of all orders and w > 1, by Hölder’s inequality we deduce
√
n yN,np,5

P−→ 0. �

Proof of (a) of (52). Below we let f be either one of g, g′, h, h′, I, with g, h as in (52). In

restriction to the set Ω′n of (46) and if p ∈ {1, . . . , P}, we have with the notation (45):

f̆ jin,p = f(δN,jp + X̂(A),j
p )− 1

2
f(∆n

in,p−1X
(A),N,j)− 1

2
f(∆n

in,p+1X
(A),N,j).

Since |f(x+y)−f(x)| ≤ C|y|(1+ |x|+ |y|), by (41) and ψδNI,p
a.s.−→ 0, plus the bound E(|δkp |q) ≤ Cq for

any q > 0, one easily deduces that supj E
(
|f̆ jin,p − f(δjp)|q

)
→ 0. Using further (3) and P(Ω′n) → 1,

plus ă(f)i = 1
N

∑N
j=1 f̆

j
i , it then follows that

E
(
|ă(f)in,p − δf,p|q

)
→ 0, sup

j≥1
E
(
|f̆ jin,p − f(δjp)|q

)
→ 0. (60)
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Thus, if

V̂ ′∗ = 1
N

N∑
j=1

c̃′j , c̃′j := 4
( ∑
p∈P′

δg,p
(
g(δjp)

)2

− δg,p − ψδg′,pδjp
)

V̂ ′′∗ = 1
N

N∑
j=1

c̃′′j , c̃′′j := 4
( ∑
p∈P′′

δg,p
(
g(δjp)− δg,p

))2

V̂ ′∗j = 1
N−1

∑
k∈LjN

c̃′jk , c̃′jk =
( ∑
p∈P′

(
h̆ji
(
g(δkp )− δg,p

)
− ψ

(
h̆ki δg′,p + h̆′

k

i δg,p
)
Ĭkp
))2

V̂ ′′∗j = 1
N−1

∑
k∈LjN

c̃′′jk , c̃′′jk =
( ∑
p∈P′′

(
h̆ji
(
g(δkp )− δg,p

))2

,

we deduce from (60) that

E
(
|V̂ ′g − V̂ ′∗|+ |V̂ ′′g − V̂ ′′∗|+ |V̂

′j
g,h − V̂

′∗j |+ |V̂ ′′jg,h − V̂
′′∗j |
)
→ 0.

The variables c̃′j and c̃′′j for j ≥ 1, resp. c̃′jk and c̃′′jk for k ∈ LjN , are i.i.d. under PJ with means V ′g

and V ′′g , resp. V ′jg,h and V ′′jg,h. So the law of large numbers implies the claim. �

Proof of (b) and (c) of (52). 1) We focus on Γ̂−g,in,p and Γ̂′−,jg,h,in,p
, the other cases being similar.

(60) implies ă(f)in,p
P−→ δf,p for f = g, g′ and f̆ jin,p

P−→ f(δjp) for f = h, h′. Thus, with U = δg,pδg′,p

and V = 0 in the case of Γ̂−g,in,p and with U = (1 − ψ)δg′,ph(δjp) and V = δg,ph̆′
j

p in the case of

Γ̂′−,jg,h,in,p
, upon comparing (23) and (28) with (31) and using T = n∆n it is clearly enough to show

that

1

mn∆n

∑
i′∈M−n,in,p

(
U

1

N

N∑
k=1

∆n,T
i′ Xk + V ∆n,T

i′ Xj
)2 P−→ ‖Uλ(1)

τp− + V λjτp−‖
2 + V 2(σjτp−)2.

In restriction to Ω′n and with the short-hand notation i = in,p, the left hand side above is

1
mn∆n

mn∑
l=1

(
U2 1

N2

N∑
k,k′=1

∆n
i−lX

(A),T ,k∆n
i−lX

(A),T ,k′

+2UV 1
N

N∑
k=1

∆n
i−lX

(A),T ,k∆n
i−lX

(A),T ,j + V 2(∆n
i−lX

(A),T ,j)2
)
.

Hence, since P(Ω′n)→ 1, it is enough to show that

1
mn∆n

mn∑
l=1

1
N2

N∑
k,k′=1

∆n
i−lX

(A),T ,k∆n
i−lX

(A),T ,k′ P−→ Φ1 := ‖λ(1)
τp−‖

2

1
mn∆n

mn∑
l=1

1
N

N∑
k=1

∆n
i−lX

(A),T ,k∆n
i−lX

(A),T ,j P−→ Φ2 := (λ
(1)
τp−)> λjτp−

1
mn∆n

mn∑
l=1

(∆n
i−lX

(A),T ,j)2 P−→ Φ3 := ‖λjτp−‖
2 + (σjτp−)2.

Then, an application of Lemma 6 shows us that this amounts to having

1
mn∆n

mn∑
l=1

Φ̂l,m
P−→ Φm for m = 1, 2, 3, where

Ψ̂k,k′

l = (∆n
i−lX

(λ),k + ∆n
i−lX

(σ),k) (∆n
i−lX

(λ),k′ + ∆n
i−lX

(σ),k′)

Φ̂l,1 = 1
N2

N∑
k,k′=1

Ψ̂k,k′

l , Φ̂l,2 = 1
N

N∑
k=1

Ψ̂j,k
l , Φ̂l,3 = Ψ̂j,j

l .

(61)
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2) By integration by parts Ψ̂k,k′

l is the sum of the increment over the interval I(n, i − l) of a

martingale, plus the integral over I(n, i− l) of (λkt )>λk
′

t + (σkt )2 1{k=k′}. Then (36) implies

E
(∣∣E′ni−l−1(Ψ̂k,k′

l )− (λkτp−)>λk
′

τp−∆n − (σkτp−)2∆n 1{k=k′}
∣∣) ≤ ∆nεn,

for some sequence εn going to 0 and independent of k, k′. In turns, this and (iii) of (A2) (with

T1 =∞)and (36) again yield, for another sequence ε′n going to 0 and m = 1, 2, 3:

E
(∣∣E′ni−l−1(Φ̂l,m)− Φm∆n

∣∣) ≤ ∆n

(
ε′n +

C

N

)
.

On the other hand, (41) implies E
(
|Ψ̂k,k′

l |2
)
≤ C∆2

n, hence E
(
|Φ̂l,m|2

)
≤ C∆2

n as well. Then (61)

follows from a classical result on triangular arrays of variables. �
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