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Abstract

This paper proposes a novel nonparametric method for estimating tail jump variation measures
from short-dated options, which can achieve rate-efficiency and works in a general infinite jump
activity setting, avoiding parametric or semiparametric assumptions for the jump measure. The
method is based on expressing the measures of interest as integrals of the Laplace transforms
of the jump compensator and developing methods for recovering nonparametrically the latter
from the available option data. The separation of volatility from jumps is done in a novel way
by making use of the second derivative of the Laplace transform of the returns, de-biased using
either the value of the Laplace transform or of its second derivative evaluated at high frequencies.
A Monte Carlo study shows the superiority of the newly-developed method over existing ones in
empirically realistic settings. In an empirical application to S&P 500 index options, we find risk-
neutral negative market tail jump variation that is on average smaller than previous estimates of
it, is generated by smaller-sized jumps, and has less dependence on the level of diffusive volatility.

Keywords: jump variation, Laplace transform, options, nonparametric estimation, tail risk.

JEL classification: C51, C52, G12.

∗Department of Finance, Kellogg School of Management, Northwestern University; e-mail: v-
todorov@kellogg.northwestern.edu.

1



1 Introduction

The availability of reliable data on deep out-of-the-money put options (i.e., puts with strikes that

are significantly below the current price of the underlying asset) written on various assets, and in

particular on market indices, allows for the nonparametric study of jump tail risk and its pricing.

Bollerslev and Todorov (2011b, 2014) develop such techniques. Bollerslev et al. (2015) and Andersen

et al. (2021), using the jump measures proposed in Bollerslev and Todorov (2011b, 2014), show that

the pricing of downside jump tail risk varies significantly over time and is a good predictor of

the equity risk premium.1 In fact, these papers show that the predictive ability of the variance

risk premium for future equity returns, documented in earlier work by Bollerslev et al. (2009)

and Drechsler and Yaron (2011), is mostly due to the compensation for tail risk reflected in the

option-based negative jump tail variation measures.

The existing option-based estimates of the jump variation measure, however, rely on strong

semiparametric assumptions for the latter. The goal of the current paper, therefore, is to develop

alternative fully nonparametric measures of jump variation from options which contain less approx-

imation error than the existing ones and work under much weaker assumptions for the dynamics of

the underlying asset than previously considered.

More specifically, the method of Bollerslev and Todorov (2011b, 2014) for measuring jump tail

risk from options relies on several approximations. First, the increment of an Itô semimartingale

over a short time interval is approximated with that of an Itô semimartingale whose characteristics

are “frozen” at their values at the beginning of the interval. The approximate Itô semimartingale is

thus conditionally a Lévy process, i.e., a process with i.i.d. increments. The second approximation

used in the method of Bollerslev and Todorov (2011b, 2014) is to associate an increment of the

process above a fixed threshold over a short time interval with the realization of a single jump

exceeding that threshold.2 These two approximations lead to the following asymptotic result for

the prices of short-dated puts and calls:

Pt,T (k)

TXt

P−→
∫
R

(
ek−log(Xt) − ex

)+
νt(x)dx, as T ↓ 0 and for fixed k < log(Xt), (1)

Ct,T (k)

TXt

P−→
∫
R

(
ex − ek−log(Xt)

)+
νt(x)dx, as T ↓ 0 and for fixed k > log(Xt), (2)

1Related nonparametric option-based measures include the asymmetry measure of Du and Kapadia (2012) that is
due to jumps, higher-order risk swaps of Schneider and Trojani (2015) and Orlowski et al. (2020) and option-based
estimates of the Lévy densities in Lévy settings (Belomestny and Reiß (2006, 2015), Söhl (2014), Trabs (2014, 2015))
and in general Itô semimartingale settings (Qin and Todorov (2019)). These measures complement nonparametric tail
measures extracted from high-frequency return data by Bollerslev and Todorov (2011a), from cross-section of returns
by Kelly and Jiang (2014), from assets’ bid-ask spreads by Weller (2019), and via a nonparametric bound on the
stochastic discount factor by Almeida et al. (2017).

2Similar approximation is used in the construction of the truncated variance introduced by Mancini (2001, 2009),
to separate jumps from diffusive volatility on the basis of high-frequency stock returns.
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where Pt,T (k) and Ct,T (k) are the put and call price, respectively, at time t written on an asset

whose value at that time is Xt, having a log-strike of k and expiring at t + T , and νt is the risk-

neutral density of the jump compensator of the process log(X) at time t. The above approximation

result is combined with a regular variation assumption (see e.g., Bingham et al. (1989)) for the tail

integrals of νt(− ln(y))
y and νt(ln(y))

y as y →∞ by Bollerslev and Todorov (2011b, 2014). This leads to

a simple (semiparametric) approximation of the tails of νt(x) by a function which is controlled by

two parameters labeled as level and slope. These parameters can, in turn, be estimated from the

prices of available deep out-of-the-money puts using the option approximations in (1)-(2) above.

While Bollerslev and Todorov (2011b, 2014) provide only consistency results for the above-

described jump tail estimation in a setting with finite activity jumps, we can illustrate with an

example the two approximation errors associated with the convergence result in (1)-(2). This is

done for the parametric model that is used in our Monte Carlo experiment and the result is displayed

in Figure 1. As seen from the figure, the approximation error due to “freezing” the semimartingale

characteristics at their value at the beginning of the interval leads to a very small approximation

error. In particular, the percentage error for the puts is very close to zero while that for the calls is

somewhat bigger, which is probably due to the fact that the right tail of νt is much thinner than the

left tail making the approximation error for the call bigger in relative terms. We also note that this

type of Lévy approximation underlies most existing results in high-frequency financial econometrics,

see e.g., Jacod and Protter (2012).

The second approximation in the method of Bollerslev and Todorov (2011b, 2014), which

amounts to assuming that big absolute returns in the underlying asset are due to the occurrence of

a single jump in the price, results in a much bigger approximation error as seen from Figure 1. Part

of this approximation error is due to ignoring the contribution of the diffusive price component.

Another is due to ignoring the possibility of multiple small jumps generating a large return over the

option’s horizon. This type of approximation error is going to be more severe for models with high

jump activity, i.e., for models having higher probability of generating small-sized jumps. This fact

can also explain, at least partially, why the approximation error for the calls is significantly larger

than for the puts. Indeed, the positive jump compensator has a significantly thinner tail than its

negative counterpart (the model jump specification used in the experiment is calibrated to match

real index option data). This means that a higher percentage of the positive jump variation is gener-

ated by smaller-sized (positive) jumps and therefore for such jump specification the approximation

based on the result in (2) regarding out-of-the-money calls is of limited practical value.

In this paper, we propose an alternative method for estimating jump variation measures, i.e.,

quantities of the type
∫
x<−ϑ x

2νt(x)dx and
∫
x>ϑ x

2νt(x)dx for some ϑ ≥ 0, from options which

does not rely on the approximation in (1)-(2) and instead uses only Lévy approximation for the
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Figure 1: Approximations of Short-Dated Options. Left panel displays true option
prices (in black), option prices based on a Lévy approximation (in blue) and option
prices based on the distribution of one jump, given in equation (1) (in red). Right
panel displays the differences in terms of log option prices between true model and the
Lévy-based approximation (in blue) and the true model and approximation assuming
one jump till expiration (in red). The options have 5 days till expiration and the model
used for generating them is given in (53)-(54) with λ− = 20 and λ+ = 50.

underlying asset dynamics and smoothness of νt(x).3 Unlike the method of Bollerslev and Todorov

(2011b, 2014), which uses only deep out-of-the-money options in order to minimize the impact from

the diffusion on the option prices, the method developed here takes advantage of the information

regarding the jump variation measures contained in the options across all available strikes.

The newly-proposed method is based on several results. First, one can express the jump vari-

ation measures as integrals of the complex-valued Laplace transform of x2νt(x), see e.g., Kawata

(2014) and Kolassa (2006). Second, the complex-valued Laplace transform of x2νt(x) can be re-

covered from ∇uu log(EQ
t (eu log(Xt+T /Xt))) for complex u up to the unknown diffusive coefficient at

time t and an (asymptotically negligible) approximation error due to the expected time variation

in the semimartingale characteristics over the interval [t, t + T ]. This is done using the Lévy-

Khinchine formula for the moment generating function of a Lévy process (Theorem 25.17 in Sato

(1999)). Third, the value of the unknown diffusion coefficient at t can be approximated using

either ∇uu log(EQ
t (eu log(Xt+T /Xt))) or 2 log(|EQ

t (eu log(Xt+T /Xt))|)/u2, for some u with large (asymp-

totically increasing) imaginary part. Finally, EQ
t (eu log(Xt+T /Xt)) can be recovered from the available

3Quantities like
∫
x<−ϑ x

2νt(x)dx and
∫
x>ϑ

x2νt(x)dx are of natural interest in applications as already discussed
in the first paragraph of the introduction. For example, these quantities with ϑ = 0 allow to study the dynamics of
the risk-neutral jump intensity of positive and negative jumps, the behavior of which is of major interest in reduced-
form and equilibrium asset pricing models, see e.g., Drechsler and Yaron (2011) and Wachter (2013), among others.
Further, the difference

∫
x<0

x2νt(x)dx−
∫
x>0

x2νt(x)dx is the spot risk-neutral semivariance which has also received
a lot of attention in recent applied work, see e.g., Kilic and Shaliastovich (2019).
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short-dated options using the option-spanning result in Carr and Madan (2001).

We derive the convergence of the above estimator under general conditions for the dynamics of

the underlying process. In particular, unlike Bollerslev and Todorov (2011b, 2014), we allow for

infinite activity jumps (but of finite variation) that can generate a lot of small jumps in the path of

the underlying asset. The estimation error in recovering the jump variation measures depends on

the smoothness of νt(x), the option observation error, the mesh of the strike grid and the time to

maturity of the available options. The proposed jump variation estimator can achieve the optimal

rate of convergence in a minimax sense which is faster than that of the option-based estimate of the

Lévy density of Qin and Todorov (2019). This is not surprising as the jump variation measure is

an integral transform of the Lévy density. Importantly, our approach for separating volatility from

jumps is different from the one in Qin and Todorov (2019) and allows for more precise inference

regarding the Lévy density of moderately-sized and small jumps. In particular, Qin and Todorov

(2019) use the dominant role of jumps in the third derivative of log(EQ
t (eu log(Xt+T /Xt))) while here

we make use only of the second derivative of the latter and/or its level to achieve the separation.4

This means that the current approach puts more weight (in relative terms) to near-the-money

options, which are more liquid, than that of Qin and Todorov (2019). This also means that the

current approach achieves higher precision for the behavior of the Lévy measure near the origin

that that of Qin and Todorov (2019).

A Monte Carlo study shows significant bias reduction when using the new method for the

estimation of the jump tail variation measures, particularly in settings with many small jumps and

in periods of high volatility when the approximations in (1)-(2) do not work very well. Consistent

with our theoretical results and the Monte Carlo evidence, in the empirical implementation of

the newly-proposed techniques to S&P 500 index option data, we uncover left jump tail variation

measures that are smaller on average than currently reported. These differences are bigger in high

volatility periods and result in less correlation between the extracted left jump variation and the

diffusive volatility. In addition, by comparing the tail jump variation measures with estimates of

the total left jump variation, constructed using our method, we find that a significant part of the

jump variation is generated by jumps of relatively small size.

The rest of the paper is organized as follows. In Section 2 we present our setup and introduce the

option observation scheme. In Section 3 we develop the estimator and derive its rate of convergence

and in Section 4 we describe the choice of the tuning parameters needed for its implementation.

4In their supplementary appendix, Qin and Todorov (2019) consider also inference procedure for the Lévy density
based on the second derivative of log(EQ

t (eu log(Xt+T /Xt))) with debiasing via a generic estimator of the diffusion
coefficient. In its general form, as pointed out in Qin and Todorov (2019), this procedure does not lead to optimal
rate of convergence because of the role of the near-the-money options in the inference. By contrast, here we use
specifically designed debiasing methods that can suitably dampen the role of the near-the-money options in the
estimator of the second derivative of log(EQ

t (eu log(Xt+T /Xt))) and this leads to optimal rate of convergence of the
resulting jump variation estimators.
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Section 5 contains a Monte Carlo study and Section 6 an empirical application. Section 7 concludes.

The proofs of the theoretical results are given in Section 8.

2 Setup and Option Observation Scheme

We start with introducing the notation and the option observation scheme. The log-price of

the underlying asset, denoted with xt = log(Xt), is defined on the filtered probability space(
Ω,F , (Ft)t≥0,P

)
. We assume the existence of a risk-neutral probability measure, denoted with

Q, under which the discounted at the risk-free rate prices become local martingales. Under regu-

larity type conditions, see e.g., Duffie (2001), no-arbitrage implies the local equivalence of P and

Q, i.e., the equivalence of P and Q in restriction to Ft, for any t ≥ 0. We assume that xt is an Itô

semimartingale under Q with the following dynamics

xt =

∫ t

0
asds+

∫ t

0
σsdWs +

∫ t

0

∫
R
xµ̃(ds, dx), (3)

where W is a Brownian motion, µ is an integer-valued random measure on R+ × R, counting

the jumps in x, with compensator νt(x)dt ⊗ dx, for some predictable function νt(x) satisfying∫
R(x2∧1)νt(x)dx <∞, and µ̃(dt, dx) = µ(dt, dx)−νt(x)dt⊗dx is the martingale measure associated

with µ (W and νt are defined with respect to Q).5

Our interest in this paper is measuring the tail jump variation measures defined as

RVt(ϑ) =

∫
x>ϑ

x2νt(x)dx and LVt(ϑ) =

∫
x<−ϑ

x2νt(x)dx, for some ϑ ≥ 0. (4)

The estimation will be based on European-style options written on the value of the asset X in

the future, recorded at a fixed time point t and with the same time to maturity T . For each strike,

we rely on the so-called out-of-the-money (OTM) option price–the cheaper of the call and the put

for the given strike–which would be worth zero, if the option were to expire today. We denote OTM

option price observed at time t by

Ot,T (k) = min{Pt,T (k), Ct,T (k)} =

 Pt,T (k) = e−rTEQ
t

(
ek −Xt+T

)+
if k ≤ log(Ft,T ),

Ct,T (k) = e−rTEQ
t

(
Xt+T − ek

)+
if k > log(Ft,T ),

(5)

where Ft,T is the time-t futures price of the asset with expiration date t + T and r is the risk-free

interest rate, which for simplicity of notation is assumed to be constant. The second part of the above

equation follows from the definition of the option contracts and the risk-neutral probability measure.

5The jump compensator of µ is defined uniquely as the predictable random measure µQ such that integrals of
predictable functions with respect to µ−µQ are Q-local martingales, see Theorem II.1.8 in Jacod and Shiryaev (2003).
In defining the jump compensator, we have implicitly assumed that it is absolutely continuous in time, which is the
case for Itô semimartingales.
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The underlying asset price and true option prices are all defined on Ω(0), with the associated σ-

algebra F (0) and filtration (F (0)
t )t≥0. The statistical (true) probability measure is denoted with

P(0).

Our data consists of options observed on the following log-strike grid,

k ≡ k1 < k2 < · · · kN ≡ k, (6)

and we denote

K = ek and K = ek. (7)

Since in the estimation the option observation time t will be fixed, in order to keep notation simple,

we do not add “t” in the notation of the strike grid. The gap between the log-strikes is denoted

∆i = ki − ki−1, for i = 2, ...., N . The log-strike grid need not be equidistant, i.e., ∆i may differ

across i’s. The asymptotic theory developed below is of infill type, i.e., the mesh of the log-strike

grid, supi=2,...,N ∆i, shrinks towards zero.

Finally, we allow for observation error, i.e., instead of observing Ot,T (kj) directly, we observe,

Ôt,T (kj) = Ot,T (kj) + εt,T (kj), j = 1, ..., N, (8)

where {εt,T (kj)}Nj=1 is a sequence of observation errors. The probability space has the following

product form

Ω = Ω(0) × Ω(1), F = F (0) ×F (1), P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)) ,

where the underlying price process and the true option prices are defined on Ω(0) and the observation

errors are defined on the space Ω(1) = RR, which is equipped with the product Borel σ-field F (1).

Throughout the paper when expectations are under the true probability measure P, we will

denote them with E, i.e., without using superscript P in their notation. Henceforth, we will denote

with <(a) and =(a), the real and imaginary part, respectively, of a complex number a. We will also

use the notation a ∧ b = min{a, b} and a ∨ b = max{a, b}, for two real numbers a and b.

3 Jump Variation Estimators from Options

We now introduce our estimators of the jump variation measures, state the assumptions needed

for characterizing their asymptotic behavior, and derive bounds for the asymptotic order of the

estimation error in them.

3.1 Derivation of the Estimators

Our strategy for estimating LVt(ϑ) and RVt(ϑ) is to invert them from the Laplace transform of the

measure x2νt(x). More specifically, we fix c > 0, then for some ϑ ∈ [0,∞) using Fubini’s theorem,

7



see e.g., Section 5 in Kolassa (2006) (and Theorem 7.4.3 in Kawata (2014)), we have6

RVt(ϑ) =
1

2π

∫ +∞

−∞

e−ϑ(c+iz)

c+ iz
Fνt(c+ iz)dz, (9)

LVt(ϑ) =
1

2π

∫ +∞

−∞

e−ϑ(c+iz)

c+ iz
Fνt(−c− iz)dz, (10)

provided
∫
R e

cxνt(x)dx < ∞ for RVt(ϑ) and
∫
R e
−cxνt(x)dx < ∞ for LVt(ϑ) (these two conditions

are implied by assumption A3 below provided c < 3), where we define the complex-valued Laplace

transform of x2νt(x) as

Fνt(u) =

∫
R
x2euxνt(x)dx, u ∈ C. (11)

To get an estimate of Fνt(u), we will first recover from the option data the Laplace transform

of the price increment xt+T − xt. Using the “spanning” result of Carr and Madan (2001), we have

Lt,T (u) = EQ
t

(
eu(xt+T−xt)

)
= 1 + e−xt

∫
R
f(u, k − xt)Ot,T (k)dk, u ∈ C, (12)

where we denote

f(u, k) =
(
u2 − u

)
e(u−1)k, u ∈ C, k ∈ R, (13)

provided the dividend yield of the underlying asset and the risk-free interest rate are both zero,

an assumption that we will maintain here for simplicity given the fact that our asymptotics is for

T ↓ 0. Using this result, our estimate for the conditional Laplace transform of the price increment

from the available options is given by

L̂t,T (u) = 1 + e−xt
N∑
j=2

f(u, kj−1 − xt)Ôt,T (kj−1)∆j , u ∈ C. (14)

Next, to estimate Fνt(u) from L̂t,T (u), we make use of the following approximation for T small

L̂t,T (u) ≈ exp

(
Tuαt + T

u2

2
σ2t + T

∫
R

(eux − 1− ux) νt(x)dx

)
, (15)

and this approximation result is made formal in the proof. It follows from approximating xt+T −xt
with the increment of a Ft-conditional Lévy process with spot characteristics equal to those of x

“frozen” at their value at time t (the beginning of the interval) and making use of the expression

for the moment generating function of a Lévy process (Theorem 25.17(iii) in Sato (1999)).

The approximation in (15) suggests that

ĥt,T (u) =

 1

T

∇uuL̂t,T (u)

L̂t,T (u)
− 1

T

(
∇uL̂t,T (u)

L̂t,T (u)

)2
 1

(
|L̂t,T (u)| 6= 0

)
, (16)

6Alternatively, we can invert LVt(ϑ) using the formula LVt(ϑ) = 1
2
− 1

π

∫∞
0

1
z
=
(
Fνt(iz)e−izϑ

)
dz, see e.g., Gil-

Pelaez (1951) and more recently Shephard (1991). This inversion formula involves, however, the use of improper
integration near the origin, and for this reason we proceed with inversion based on Laplace transform evaluated at
complex numbers with strictly positive real part.
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is an estimator of

ht(u) = σ2t + Fνt(u). (17)

To proceed further, we need a jump-robust estimator of the spot diffusive variance σ2t . A natural

candidate is the option-based volatility estimator of Todorov (2019), which is defined as follows

σ̂2t,T (u) = − 2

u2
log
(
|L̂t,T (iu)|

)
, (18)

for some sequence u → ∞. As shown in Todorov (2019), to achieve optimal rate of convergence

for the estimation of diffusive volatility, we need to set u � 1/
√
T . It turns out, however, that this

choice will not yield in general a rate-efficient estimate of the tail variation measure. The reason

for this is that its use will not lead to suitable cancelation in the weights assigned to options with

strikes near the origin. The order of magnitude of the latter is bigger than that of the rest of the

options, and the same applies to the observation errors attached to them. Therefore, if the role of

the near-the-money options is not diminished in the estimation in a suitable way, this will result in

a slower rate of convergence than what is feasible. For this reason, here we will use σ̂2t,T (u) with

an arbitrary sequence u, and as seen later, its choice will have a nontrivial effect on the asymptotic

properties of the resulting jump tail variation estimator:

L̂V t,T (ϑ, z, u) =
1

2π

∫ +z

−z

e−ϑ(c+iz)

c+ iz

(
ĥt,T (−c− iz)− σ̂2t,T (u)

)
dz. (19)

As we will show later, the above estimator can achieve the optimal rate of convergence for recovering

the tail jump variation measure. However, for its use in practice, in addition to z, we need to set

optimally u, which is not easy as this parameter needs to grow asymptotically at a certain rate

that can depend on unknown features of the jump measure. For this reason, we consider also an

alternative de-biasing procedure here based solely on the second derivative estimator ĥt,T (u). By

the Riemann–Lebesgue lemma, Fνt(u)→ 0 as =(u)→ ±∞. Therefore, an alternative estimator of

σ2t from ĥt,T (u) is given by 1
2(κ−κ)z

∫
|z|∈[κz,κz] ĥt,T (−c− iz)dz, for some large z and some κ > κ ≥ 1.

Combining these results, our alternative estimator of the negative jump variation measure becomes:

L̂V t,T (ϑ, z, κ, κ) =
1

2π

∫ +z

−z

e−ϑ(c+iz)

c+ iz
ĥt,T (−c− iz)dz

− 1

4π(κ− κ)z

∫ +z

−z

e−ϑ(c+iz)

c+ iz
dz

∫
|z|∈[κz,κz]

ĥt,T (−c− iz)dz,
(20)

for some z > 0 and κ > κ ≥ 1.

We can similarly define estimators for the positive jump variation. The results that follow will

also apply to such estimators as well. For brevity and given the interest in the negative market

jumps, henceforth, we state only results for L̂V t,T (ϑ, z, u) and L̂V t,T (ϑ, z, κ, κ).
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We can compare our estimators L̂V t,T (ϑ, z, u) and L̂V t,T (ϑ, z, κ, κ) with the nonparametric one

for the Lévy density proposed by Qin and Todorov (2019). There are two fundamental differences

between the current estimators and the one of Qin and Todorov (2019). First, the interest here is

estimating integrals of the form
∫
x<−ϑ x

2νt(x)dx while Qin and Todorov (2019) is about estimating

the Lévy density νt(x). For the recovery of the former we need less smoothness of νt(x), i.e.,

slower tail decay of Fνt(u). That is, the rate of convergence of our estimator will be faster for

the same smoothness of νt(x) than that of the Lévy density estimator of Qin and Todorov (2019).

Intuitively, while the recovery of x2νt(x) can be done via standard Fourier inversion from Fνt(u),

in the integrands in (9)-(10), we have in addition division by c + iz, which helps reduce the bias

from truncating the higher frequencies in the estimation.

Second, for separating volatility from jumps, Qin and Todorov (2019) consider the third deriva-

tive of log(L̂t,T (u)) and estimate x3νt(x). In this paper, on the other hand, we work with the second

derivative of log(L̂t,T (u)) and debias it via its value for arguments with the highest absolute value

of their imaginary part or using directly the characteristic function of the returns for asymptotically

increasing values of the exponent.7 This method of debiasing is done in order to account for the

diffusion in the return dynamics. An advantage of the current approach is that it puts more weight

on options with closer to the money strikes which tend to be more liquid. Indeed, recovery of

risk-neutral return moments above two is known to be significantly more difficult than the recovery

of the risk-neutral variance. Moreover, the higher role of near-the-money options in the current

method relative to Qin and Todorov (2019) does not come at a cost of slower rate of convergence

even in the presence of higher activity jumps in X.

3.2 Assumptions

To derive the asymptotic behavior of our tail variation estimators, we will need assumptions for the

smoothness of νt(x), the risk-neutral dynamics of x, the option sampling scheme and the option

observation error. A smoothness assumption for x2νt(x) translates into a rate decay of Fνt(u) as

=(u) → ±∞. Such an assumption is necessary because in L̂V t,T (ϑ, z, u) and L̂V t,T (ϑ, z, κ, κ), we

integrate over the finite interval [−z, z] instead of (−∞,∞) used in LVt(ϑ). The associated approx-

imation thus relies on the tail decay of Fνt(u) for large in absolute value =(u). Our assumption for

this tail decay is given in the following:

A1. For some constant c > 0, the function x2e−cxνt(x) belongs to the class

Sr(Ct) =

{
f ∈ L1(R) ∩ L2(R) :

∫
R
|f∗(u)|2(1 + u2)rdu ≤ Ct

}
, (21)

7As already mentioned in footnote 4, in the supplementary appendix of Qin and Todorov (2019) estimation based

on the second derivative of log(L̂t,T (u)) is also considered. This estimator does not achieve the optimal rate of
convergence because Qin and Todorov (2019) use a generic estimate of the spot diffusive volatility for debiasing,

which in general does not reduce the role of near-the-money options in the second derivative of log(L̂t,T (u)).

10



for some positive constant r and some positive and Ft-adapted random variable Ct, and where

f∗(u) =
∫
R e

iuxf(x)dx.

In the above assumption, the function x2e−cxνt(x) is assumed to belong to a Sobolev class. A

slightly stronger assumption will be to assume that f∗(u) has a polynomial tail decay. A distribution

with characteristic function satisfying such a tail decay is referred to as ordinary smooth, see e.g.,

Fan (1991).8 An alternative stronger assumption is of super smooth distribution, like the normal

distribution, for which the tail decay of its Fourier transform is exponential. We note that in the case

of infinite activity jumps, the explosion of νt(x) around zero affects the smoothness of x2e−cxνt(x)

at the origin and hence the tail decay of the Fourier transform of x2e−cxνt(x). Explosion of νt(x)

near the origin will typically imply power law tail decay for the Fourier transform of x2e−cxνt(x).

As an example, we can consider the tempered stable process with Lévy density of the form

νts(x) = c−
e−λ−|x|

|x|β+1
1{x<0} + c+

e−λ+|x|

|x|β+1
1{x>0}, c± ≥ 0, λ± ≥ 0, β < 2. (22)

The parameter β in this model for the jump compensator determines the jump activity, with β < 0

corresponding to the case of finite activity jumps and β ≥ 0 to the case of infinite activity jumps.

For this parametric model, it can be shown that the Fourier transform of x2e−cxνts(x) decays at

the rate uβ−2 (for u being the argument of the Fourier transform), see e.g., Proposition 4.2 in Cont

and Tankov (2003). This means that assumption A1 is satisfied with r < 2− β − 1
2 . Therefore, the

higher jump activity implies less smoothness of x2νts(x) and hence slower associated tail decay of

its Fourier transform.

Apart from assumption A1 above, we will also need existence of certain conditional moments as

well as assumptions about the dynamics of x and the option observation error. These assumptions

are taken from Qin and Todorov (2019) with the exception of A6 which is slightly modified.

A2. The process σ has the following dynamics under Q:

σt = σ0 +

∫ t

0
bsds+

∫ t

0
ηsdWs +

∫ t

0
η̃sdW̃s +

∫ t

0

∫
R
δσ(s, u)µσ(ds, du), (23)

where W̃ is a Brownian motion independent of W ; µσ is a Poisson random measure on R+ × R

with compensator νσ(ds, du) = ds ⊗ du, having arbitrary dependence with the random measure µ;

b, η and η̃ are processes with càdlàg paths and δσ(s, u) : R+ × R → R is left-continuous in its first

argument.

A3. With the notation of A2, there exists an Ft-adapted random variable t > 0 such that for

s ∈ [t, t]:

EQ
t |as|4 + EQ

t |σs|6 + EQ
t (e4|xs|) + EQ

t

(∫
R

(e3|z| − 1)νs(z)dz

)4

< Ct, (24)

8We note that up to a finite-valued Ft−-adapted random variable, x2νt(x) is the density of a probability distribution.
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for some Ft-adapted random variable Ct, and in addition for some ι > 0

EQ
t

(∫
R

(|δσ(s, z)|4 ∨ |δσ(s, z)|)dz
)1+ι

≤ Ct. (25)

A4. With the notation of A2, there exists an Ft-adapted random variable t > 0 such that for

s, u ∈ [t, t]:

EQ
t |as − au|p + EQ

t |σs − σu|p + EQ
t |ηs − ηu|p + EQ

t |η̃s − η̃u|p

≤ Ct|s− u|, ∀p ∈ [2, 4],
(26)

and

EQ
t

(∫
R

(ez∨0|z| ∨ |z|2)|νs(z)− νu(z)|dz
)p
≤ Ct|s− u|, ∀p ∈ [2, 3], (27)

for some Ft-adapted random variable Ct.

A5. The log-strike grid {ki}Ni=1 is F (0)
t -adapted and on a set with probability approaching one, we

have

η∆ ≤ inf
i=2,...,N

∆i ≤ sup
i=2,...,N

∆i ≤ ∆, (28)

where η ∈ (0, 1) is some positive constant and ∆ is a deterministic sequence with ∆→ 0.

A6. We have εt,T (kj) = Ot,T (kj)ζt,T (kj)εj, for some ζt,T (kj) that is F (0)-adapted and is such that

we have supj=1,...,N |ζt,T (kj)| = Op(1) as N → ∞, and a sequence {εj}Nj=1 of F (1)-adapted random

variables that are independent of each other and of F (0), have mean zero and finite absolute moments

of all order.

Assumption A2 specifies the diffusive volatility as an Itô semimartingale, which is the case for

most parametric stochastic volatility models used in empirical work. Assumption A3 is a conditional

integrability restriction. Note that x is the log-price and ν is the jump compensator of the log-

jumps. Therefore, assumption A3 imposes, in particular, existence of conditional risk-neutral fourth

moment of the price and similar conditional moment requirement for the price jumps.9 Assumption

A4 is a smoothness in expectation condition for various processes that appear in the dynamics of x.

Such an assumption will be satisfied if these processes themselves are Itô semimartingales, which

is the case for most parametric stochastic volatility models. Assumption A5 is a weak assumption

regarding the strike grid and finally assumption A6 is about the observation errors. We note that

the assumption for the F (0)-conditional independence of the observation errors in A6 can be trivially

extended to allow for weak spatial dependence in the errors in the strike domain.

9For the existence of option prices, we need at least
∫
R e

zνt(z)dz < ∞. The requirement in assumption A3
concerning the jump compensator, in particular, can accommodate regular variation condition in the tails (i.e., power
law tail decay) for the jumps in “levels” that is given for example in assumption A2 of Bollerslev and Todorov (2011a)
or in Bollerslev and Todorov (2014). The transformation of log-jumps to jumps in “levels” is done by ex− 1 for x > 0
and by e−x − 1 for x < 0. Our empirical estimates of the regular variation tail decay parameter in the empirical
section are well above 3 required by our assumption A3 (in the case of regular variation in jump tails).
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3.3 Asymptotic Bounds for the Estimators

We proceed with deriving bounds for the integrated squared error of the estimators. The next

theorem contains the result for L̂V t,T (ϑ, zT , uT ).

Theorem 1. Suppose assumption A1, with some c > 0, and assumptions A2-A6 hold. In addition,∫
R

(|x| ∧ 1)r
′
νt(x)dx <∞, (29)

for some r′ ∈ [0, 1]. Assume ∆ � Tα, K � T β and K � T−β, for α > 1
2 and β > 0. Let 0 < c < ς,

for some ς ∈ (0, 2), and

zT →∞, z3T∆→ 0 and z3TT
1− 1

3
(ς+1)| log(T )|8 → 0, (30)

as well as

uT →∞ and u2TT → 0. (31)

We then have:∫ ∞
0

(
L̂V t,T (ϑ, zT , uT )− LVt(ϑ)

)2
dϑ = Op

(
z−2r−2T

∨
∆z3T

∨
| log(T )|8T 1− 1

3
(ς+1)z3T∨

| log(T )|4T 2(2−ς)βz3T
∨
u
−2(2−r′)
T

∨√
Tu2T∆

∨ ∆√
Tu2T

)
.

(32)

The convergence of L̂V t,T (ϑ, zT , uT ) is in a joint asymptotic setting in which the time to maturity

and the mesh of the strike grid shrink to zero, and the log-strike range increases to (−∞,+∞). The

third requirement for zT in (30) ensures that L̂t,T (u) is converging to 1 uniformly over the range of

u used in the computation of the jump variation measure.

There are several sources of estimation error involved in the recovery of LVt(ϑ) which determine

the rate of convergence of L̂V t,T (ϑ, zT , uT ) given in (32). First, in the estimation we evaluate ĥt,T (u)

over u with a finite range of its imaginary part. This generates bias in the estimation, the size of

which depends on the smoothness of the measure x2νt(x), and is controlled by the parameter r

in assumption A1. As noted above, the value of r will in general depend on the degree of jump

activity, with higher activity implying smaller value of r, and thus slower rate of convergence of the

estimator.

Second, the second term on the right-hand side of (32) is due to the option observation error.

In this regard we note that the option error in assumption A5 is assumed to be proportional to the

option price it is attached to. The option prices have different asymptotic order depending on their

strike. In particular, options with k − x0 in a range of zero that is of asymptotic size
√
T are of

asymptotic order Op(
√
T ) while options with k − x0 away from zero are of the smaller asymptotic

order Op(T ). L̂V t,T (ϑ, zT , uT ) involves options of all strikes but they receive different weights. Due
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to the debiasing of ĥt,T (−c − izT ) by σ̂2t,T (uT ), the weight of the near-the-money options in the

construction of L̂V t,T (ϑ, zT , uT ) can be minimized (provided that uT is chosen optimally) so that

they do not slow down the rate of convergence of the estimator. This is contrast to the estimation

of the diffusive volatility coefficient for which the error in the near-the-money options determines

its asymptotic distribution, see Todorov (2019).

The third term on the right-hand side of (32) is due to the time variation in the spot character-

istics of xt, i.e., due to the variation in its stochastic volatility, jump intensity and its drift term.

If these are constant, then this term will be zero. We also conjecture that this condition might

be possible to relax under some stronger conditions for the dynamics of x than those assumed in

assumption A4.

The fourth term on the right-hand side of (32) is due to the finite range of the available options

used in the estimation. Naturally, the size of this error depends on how fat are the tails of νt(x), with

thinner tails corresponding to a smaller bias in the estimation. In practice, this error is expected to

be small, at least for the case of index options, as the prices (mid-quotes) of the deepest available

out-of-the-money options are typically no higher than two ticks.

Finally, the last three terms on the right-hand side of (32) are all due to the approximation error

in the estimator σ̂2t,T (uT ) of σ2t . The first of them is a bias due to the jumps while the other two are

due to the measurement error in the options. The bias in σ̂2t,T (uT ) due to the jumps is controlled by

the parameter r′ which is a bound on the jump activity and controls the rate of explosion of νt(x)

near the origin. For the tempered stable example considered above, r′ < β and the two parameters

r and r′ are related via r′ = (2 − r − 1/2) ∨ 0. If uT is set optimally, the last three terms on the

right-hand side of (32) will be negligible in general. For example, if r′ < 2/3, this will always be

the case if we choose uT � T−1/4.
In the case when the first two terms on the right-hand side of (32) dominate, which recall are

due to the smoothness of the estimated density and the option observation error, then with zT set

to zT � ∆−
1

2r+5 , the convergence rate of the integrated squared error becomes of asymptotic order

Op

(
∆

2r+2
2r+5

)
. One can show that this is the optimal rate of convergence in a minimax sense of an es-

timator of LVt(ϑ) from noisy short-dated option data for Lévy densities satisfying assumption A1.10

This rate is faster than the rate of convergence of the option-based estimator of x3νt(x) developed

in Qin and Todorov (2019) whose integrated squared error is of size Op

(
∆

2r+1
2r+5

)
. The situation here

is analogous to comparing rates of convergence of estimators of the probability density (Fan (1991),

Butucea and Comte (2009)) to those of the cumulative distribution function (Dattner et al. (2011),

Butucea and Comte (2009) and Pensky (2017)) in nonparametric deconvolution problems.11

10This can be done by following the same steps as in the proof of Theorem 3 in the Appendix of Qin and Todorov
(2019), with the only change being that the rate in equation (A.47) of that paper becomes now 2−2jr−2j .

11The estimation of the Lévy measure in the current setting can be naturally related to the standard nonparametric
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We next state the counterpart of Theorem 1 for the alternative estimator L̂V t,T (ϑ, zT , κT , κT ).

Theorem 2. Suppose assumption A1, with some c > 0, and assumptions A2-A6 hold. Assume

∆ � Tα, K � T β and K � T−β, for α > 1
2 and β > 0. Let 0 < c < ς, for some ς ∈ (0, 2), and

zT →∞, z3T∆→ 0 and z3TT
1− 1

3
(ς+1)| log(T )|8 → 0, (33)

as well as

κT > κT ≥ 1, κT � κT , κ8T z
2
T

√
T | log(T )| → 0 and κ2T /zT → 0. (34)

We then have:∫ ∞
0

(
L̂V t,T (ϑ, zT , κT , κT )− LVt(ϑ)

)2
dϑ = Op

(
z−2r−2T

∨
∆z3T

∨
| log(T )|8T 1− 1

3
(ς+1)z3T∨

| log(T )|4T 2(2−ς)βz3T
∨
κ−2r−1T z−2r−1T

)
.

(35)

The difference between the results regarding the asymptotic orders of the approximation error

in L̂V t,T (ϑ, zT , uT ) and L̂V t,T (ϑ, zT , κT , κT ) is that the last three terms in (32) are now replaced

by the last term in (35). These differences reflect the different de-biasing terms used in the two

estimators. If κT is chosen to be constant and the first two terms on the right-hand side of (35)

are leading, then the best possible rate for the integrated squared error of L̂V t,T (ϑ, zT , κT , κT ) is

Op

(
∆

2r+1
2r+4

)
which is slightly bigger than the optimal one of Op

(
∆

2r+2
2r+5

)
that can be achieved by

L̂V t,T (ϑ, zT , uT ). Thus, with κT constant, L̂V t,T (ϑ, zT , κT , κT ) has a loss of efficiency but this loss

is rather small. Indeed, in the typical case of finite activity jumps with C1 Lévy density, which

implies r > 3/2, the rate efficiency loss is less than 5%. On the other hand, if we choose κT to be

increasing at the fastest rate such that condition (34) holds, then it is easy to show that the optimal

rate Op

(
∆

2r+2
2r+5

)
can be achieved, provided r > 3/2.12

The above results are for the integrated squared error of the estimators. As is known, see e.g.,

Cai (2003), pointwise convergence rates in Sobolev spaces can differ. This turns out to be the case

in our situation too, as we will now show. For simplicity, we will only consider L̂V t,T (ϑ, zT , uT )

and L̂V t,T (ϑ, zT , κT , κT ), for ϑ 6= 0. The bounds on the rate of convergence of these estimators are

provided in the following theorem.

Theorem 3. Under the conditions of Theorem 1, we have(
L̂V t,T (ϑ, zT , uT )− LVt(ϑ)

)2
= Op

(
z−2r−1T

∨
∆z3T

∨
| log(T )|8T 1− 1

3
(ς+1)z3T∨

| log(T )|4T 2(2−ς)βz3T
∨
u
−2(2−r′)
T

∨√
Tu2T∆

∨ ∆√
Tu2T

)
, for ϑ 6= 0,

(36)

deconvolution problem in which one is interested in estimating the unknown density or cumulative distribution function
of a random variable from its noisy observations. Indeed, like in the latter case, our estimation here is based on Fourier
(or Laplace) inversions of a quantity (ĥt,T (u)) constructed as a ratio of estimated from the data Laplace transforms.

12I am grateful to a referee for suggesting estimation with asymptotically increasing κT and κT .
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while under the conditions of Theorem 2, we have(
L̂V t,T (ϑ, zT , κT , κT )− LVt(ϑ)

)2
= Op

(
z−2r−1T

∨
∆z3T

∨
| log(T )|8T 1− 1

3
(ς+1)z3T∨

| log(T )|4T 2(2−ς)βz3T

)
, for ϑ 6= 0.

(37)

The above statements continue to hold if we replace ϑ with ϑ̂t that satisfies

ϑ̂t − ϑt = Op(υT ), for some deterministic sequence υT → 0, (38)

and where ϑt is F (0)
t -adapted random variable which is almost surely positive, provided ∆z3T on the

right-hand sides of (36) and (37) is replaced by ∆z3T (z3Tυ
2
T ∨ 1).

We can make several observations about the results of the theorem. First, the first term on

the right-hand side of (36) is bigger than its counterpart in (32). Recall that this term is due to

the truncation of the limits of integration in L̂V t,T (ϑ, zT , uT ) and the size of it depends on the

smoothness of LVt(ϑ). Second, the rest of the terms on the right-hand side of (36) are of the

same size as their counterparts in (32). Similar observations can be made when comparing the

results in (37) and (35). Here, it is also interesting to note that choosing κT increasing provides no

efficiency gains. If the first two terms on the right-hand sides of (36) and (37) are leading, then upon

choosing zT optimally, we get Op

(
∆

2r+1
2r+4
n

)
for the size of

(
L̂V t,T (ϑ, zT , uT , κT , κT )− LVt(ϑ)

)2
and(

L̂V t,T (ϑ, zT )− LVt(ϑ)
)2

. This bound on the pointwise squared error is slightly bigger than the

optimal one for the integrated squared error.

The last part of Theorem 3 deals with the case when the cutoff parameter ϑ is replaced with an

estimator ϑ̂t which converges asymptotically to an F (0)-adapted positive random variable. In this

case, if the rate of convergence υT of ϑ̂t is not fast enough so that z3Tυ
2
T is negligible, then the rate

of convergence of L̂V t,T (ϑ̂t, zT , κT , κT ) and L̂V t,T (ϑ̂t, zT , κT , κT ) will be slowed down compared to

the case when using non-random cutoff ϑ. The result in Theorem 3 is for an abstract estimator ϑ̂t.

This bound can be improved in more specific situations. For example, if ϑ̂t is F (0)-conditionally

independent from the option observation errors at time t, then (36) and (37) will continue to hold

with ϑ replaced by ϑ̂t. This will be the case for example, if ϑ̂t is formed from return data or from

option data prior to time t. In addition, in cases when ϑ̂t is formed from {ÔT (kj)}j≥1, one can

improve on the result of Theorem 3 with additional knowledge about ϑ̂t.

4 Choice of Tuning Parameters

We turn next to feasible implementation of the developed estimation method. Since implementing

L̂V t,T (ϑ, zT , κT , κT ) is easier than implementing L̂V t,T (ϑ, zT , uT ), in what follows we will discuss its
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implementation only. We start first with estimating the diffusive spot volatility from the available

option data using the estimator proposed in Todorov (2019). We will use this estimate to set the

tail cutoff parameter ϑ in L̂V t,T (ϑ, zT , κT , κT ). Since on a given day we have a number of short

maturities, in order to minimize the effect from the measurement error in the data, we integrate

all maturities in the estimation. Towards this end, denote a set of (ordered) maturities with T =

(T1, T2, ..., Tk). Then, we form the Laplace transform estimator from all available maturities as

L̂t,T (u) =
k∏
i=1

L̂t,Ti(u). (39)

We then set ût,T = û
(1)
t,T ∧ û

(2)
t,T with,

û
(1)
t,T = inf

{
u ≥ 0 : |L̂t,T (iu)| ≤ 0.1k

}
,

û
(2)
t,T = argminu∈[0,u] |L̂t,T (iu)|, with ut,T =

√√√√ 2∑k
i=1 Ti

log(1/0.1)

B̂SIV
2

t,T1

,

where B̂SIVt,T1 is the Black-Scholes Implied Volatility for the shortest available maturity at time

t and the strike closest to the forward level. The nearly rate-efficient spot volatility estimator

proposed by Todorov (2019) is then given by:13

σ̂2t,T = − 2∑k
i=1 Ti

1

û2t,T
log |L̂t,T (iût,T )|. (40)

Using the estimator of spot diffusive volatility, we follow Bollerslev et al. (2015) and Andersen et al.

(2021) and set the cutoff parameter ϑ proportional to the current level of spot diffusive volatility:

ϑ̂t = 5× σ̂t,T
√

5/252. (41)

We turn next to setting the tuning parameters for the jump variation estimation. As for the

estimation of the spot volatility, we will utilize all short dated options, i.e., we will use

L̂V t,T (ϑ, zT , κT , κT ) =
1

2π

∫ +zT

−zT

e−ϑ(c+iz)

c+ iz

(
ĥt,T (−c− iz)

− 1

2(κT − κT )zT

∫
|v|∈[κT zT ,κT zT ]

ĥt,T (−c− iv)dv

)
dz,

(42)

where

ĥt,T (u) =
1

k

k∑
i=1

ĥt,Ti(u). (43)

Throughout the estimation we set c to some very small value, which in all of our implementations

will be 0.01, κT = 1 and κT = 1.01. Henceforth, we use the following simplifying notation:

L̂V t,T (ϑ, zT ) = L̂V t,T (ϑ, zT , zT , 1.01× zT ). (44)

13Note that ût,T � 1/
√
T1.
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The choice of zT is in general difficult as it needs to balance several sources of error that are present

in the estimation. We therefore set zT to ẑT which we determine in the following way. We choose

ẑT from the elements of the following set

ẐT =
{
bû4/21t,T /0.5c0.5 : 0.5 : bû4/21t,T /0.5c0.5 + 100 log(1/T1)

}
, (45)

and we remind the reader that ût,T = Op(1/
√
T1). This choice of ẑT balances the asymptotic size of

the first and third error terms on the right-hand side of (37) when r = 2− 1
2 , which corresponds to

the the case of finite activity jumps with sufficiently smooth density of the jump distribution. If the

rest of the error terms in (37) are non-binding, this will mean that the squared error of L̂V t,T (ϑ, ẑT )

is of order Op

(
T

8∗0.99
21

1

)
.

Among the elements in ẐT , we select ẑT in a way that balances the bias in the estimation due to

using the finite interval [−ẑT , ẑT ] in the integration on one hand and the noisiness of the estimator

on the other hand (first and second terms on the right-hand side of (37)). For the latter, we use an

estimate of the asymptotic variance of L̂V t,T (ϑ, zT ) which we now describe. We denote

κ̂t,T (k, u) =
∇uuf(u, k − xt)
L̂t,T (u)

− 2
∇uL̂t,T (u)

L̂t,T (u)2
∇uf(u, k − xt)

+

2

(
∇uL̂t,T (u)

)2
L̂t,T (u)3

−
∇uL̂t,T (u)

L̂t,T (u)2

 f(u, k − xt),
(46)

and

ω̂nt,T (k, z) =
1

2πT

∫ z

−z

e−ϑ(c+iz)

c+ iz

(
κ̂t,T (k,−c− iz)− 1

0.02z

∫
|v|∈[z,1.01z]

κ̂t,T (k,−c− iv)dv

)
dz. (47)

With this notation, our estimator of the asymptotic variance is given by

V̂t,T (z) =
1

k

k∑
i=1

V̂t,Ti(z), (48)

where

V̂t,T (z) =
2

3
e−2xtω̂nt,T (k1, z)

2ÔT (k1)
2∆2

1

+
2

3
e−2xt

N−1∑
j=3

ω̂nt,T (kj−1, z)
2

(
ÔT (kj−1)−

1

2
ÔT (kj−2)−

1

2
ÔT (kj)

)2

∆2
j .

(49)

Given V̂t,T (z), we determine

zT = inf

{
z ∈ ẐT :

√
V̂t,T (z) ≥ 0.3× L̂V t,T (ϑ, z)

}
, ZT =

{
bû4/21t,T /0.5c0.5 : 0.5 : zT

}
. (50)
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The point zT can be viewed as an upper limit beyond which the estimation is deemed very noisy.

We then set

ẑT = inf
{
z ∈ ZT : ∩v∈ZT :v≥zÛ(v) 6= ∅

}
, (51)

where

Û(z) =

(
L̂V t,T (ϑ, z)− log(1/T1)

16

√
V̂t,T (z), L̂V t,T (ϑ, z) +

log(1/T1)

16

√
V̂t,T (z)

)
. (52)

The idea of this choice of ẑT is that we pick the smallest value of z such that the change in a

relatively small confidence interval around the estimate does not change by much when changing z

(when starting from zT ), with the latter change being associated with a big bias due to the tail of

Fνt(u) relative to the estimation uncertainty associated with recovering the jump variation.

Finally, if on a given day
√
V̂t,T (z) ≥ 0.2 × L̂V t,T (ϑ, z) for a very small fixed value of z = 0.5,

then we drop this day from the analysis as the data is deemed too noisy for reliable estimation.

Indeed, asymptotically for a fixed z, this should not happen. In the real data this happens very

rarely when there are occasional big strike gaps in the available options.

Remark 1. Provided the tuning parameters are chosen in a way that the various biases in the esti-

mation are negligible, one can derive a Central Limit Theorem for the left jump variation estimator

with V̂t,T (z), given above, being an estimate for the F-conditional limiting variance of L̂V t,T (ϑ, z).

The derivations are similar to those for the Central Limit Theorem result for the volatility estimator

in Todorov (2019), although the rate of convergence here will be very different than the one in that

paper.

5 Monte Carlo Study

We now evaluate the performance of our jump variation estimators in finite samples on simulated

data. We start with introducing the option model used in the Monte Carlo as well as our option

observation scheme, and we then present the simulation results.

5.1 Model Setup and Option Sampling Scheme

The dynamics of X under Q that we use in our Monte Carlo experiments is given by

dXt

Xt−
=
√
VtdWt +

∫
R

(ex − 1) µ̃(dt, dx), dVt = 4(0.02− Vt)dt+ 0.2
√
VtdBt, (53)

where (Wt, Bt) is a bivariate Brownian motion with cov(dWt, dBt) = −0.5dt, and µ̃ = µ− ν, for µ

being an integer-valued random measure on R+ × R with the following compensator ν:

ν(dt, dx) =

(
c−
e−λ−|x|

|x|
1{x<0} + c+

e−λ+|x|

|x|
1{x>0}

)
Vtdt⊗ dx, (54)
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c− = 0.9λ2− and c− = 0.1λ2+. (55)

We fix the value λ+ = 50 in all Monte Carlo scenarios and consider three cases for the parameter

λ−: λ− = 10, λ− = 20 and λ− = 30. The choice of these parameters matches key features of the

option data set used in our empirical application. In particular, the three considered values of λ−

correspond roughly to the 10-th, 50-th and 90-th quantiles of the left tail index estimates from the

data.

Turning next to the option sampling scheme, we set it in a way that mimics the one corresponding

to the real option data used in the empirical application. In particular, on each day we consider

options with four times to maturity, T1 = 3/252, T2 = 5/252, T3 = 7/252 and T4 = 9/252 (unit

of time is a business day). For each maturity, the strikes grids are equidistant with strike gap of

5 and deepest out-of-the-money put and call corresponding to the lowest and highest, respectively,

strikes on the grid for which the (true) option price exceeds in value 0.075. Finally, the observed

option prices are given by Ôt,Ti(kj) = Ot,Ti(kj)× (1 + 0.05zi,j), for {zi,j}i≥1,j≥1 being a sequence of

independent standard normal random variables. The initial value of the underlying asset is set to

Xt = 2500.

The steps for computing the jump variation estimator are summarized as follows:

1. On each day, we aggregate the option data into an estimate of the Laplace transform according

to (14) and (39).

2. We set the cutoff parameter ϑ to ϑ̂t given in (41).

3. We set zT to ẑT given in (51).

4. We compute L̂V t,T (ϑ̂t, ẑT ) according to (42) and (44).

5.2 Results

We compare the performance of the newly-proposed jump variation measure with the one based on

the asymptotic result in (1), coupled with extreme value distribution approximation in the tails,

developed in Bollerslev and Todorov (2011b, 2014). This approximation, in turn, leads to the

following asymptotic result for the price of deep out-of-the-money puts

Pt,T (k)

TXt

P−→ φt

∫
R

(ek−xt − eu)+eαtudu =
φt

αt(αt + 1)
× e(αt+1)(k−xt), as T ↓ 0 and k ↓ −∞, (56)

for some αt > 0 and φt > 0. We note that the extreme value distribution approximation in the

jump tails in the context of the parametric specification of the jump compensator in (54) boils down

to replacing it with (
c−e
−λ−|x|1{x<0} + c+e

−λ+|x|1{x>0}

)
Vtdt⊗ dx, (57)
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for large absolute value of the jump size x. The resulting jump variation estimator is given by

L̃V t,T (ϑ) =
1

k

k∑
i=1

L̃V t,Ti(ϑ), L̃V t,Ti(ϑ) = e−ϑα̂i φ̂i
α̂iϑ(α̂iϑ+ 2) + 2

α̂3
i

, (58)

where

α̂i = b̂1,i − 1 and φ̂i = eb̂0,iα̂i(α̂i + 1), (59)

and (̂b0,i, b̂1,i) are the nonlinear least squares coefficient estimates from the following nonlinear

regression:

Ôt,Ti(kj)

Xt
= exp (b0 + b1 × (kj − xt)) + ε

(i)
j , j : kj ∈ [xt − 8σ̂t,T

√
Ti, xt − 3σ̂t,T

√
Ti]. (60)

We note that the above estimation differs from the one proposed in Bollerslev and Todorov (2014)

which instead relies on an explicit estimate of αt based on the log-differences in options with

consecutive strikes. However, results which are not reported for brevity show that the current

implementation of the method in Bollerslev and Todorov (2014) leads to significantly more efficient

and less biased estimation.

The results from the Monte Carlo are summarized in Table 1 below. From the table we can see

that, consistent with our theoretical results, the newly-proposed estimator provides a more accurate

estimate of the risk-neutral jump variation. In all considered cases, L̂V t,T (ϑ̂t, ẑT ) has significantly

less bias than L̃V t,T (ϑ̂t). The bias reduction is biggest in relative terms for higher levels of the

diffusive volatility. The intuition for this is that the separation of diffusive volatility from jumps

is harder for higher levels of volatility when using only the prices of deep out-of-the-money puts.

Recall that the estimator L̃V t,T (ϑ̂t) is based on approximating out-of-the-money option prices as if

they are generated from a model without diffusive volatility. This type of approximation is worse in

high volatility regimes. The estimator L̂V t,T (ϑ̂t, ẑT ), which is based on the characteristic function

of returns, provides a far more efficient way of separating volatility from jumps in such scenarios.

From the results in Table 1 we can also see that L̂V t,T (ϑ̂t, ẑT ) provides significant bias reduction

over L̃V t,T (ϑ̂t) for higher levels of the parameter λ−. The reason for this is that the higher levels of

λ− correspond to thinner tails of the Lévy jump measure and most of the jump variation is generated

by more frequent jumps of smaller size. This means that for these types of jump specifications, an

approximation based on assuming that the time interval till the expiration of the option contains

at most one “big” jump, on which L̃V t,T (ϑ̂t) is based, does not work very well even when the

threshold ϑ̂t is chosen relatively big. Again, L̂V t,T (ϑ̂t, ẑT ) does not rely on such an approximation

and is therefore far less sensitive to the value of λ−.

Finally, L̂V t,T (ϑ̂t, ẑT ) is somewhat noisier than L̃V t,T (ϑ̂t). This is not surprising given the fact

that the latter estimator is semiparametric while the former is fully nonparametric. Nevertheless,
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Table 1: Monte Carlo Results

Estimator Median IQR Median IQR Median IQR

λ− = 10, λ+ = 50 Vt = 0.01, LVt(ϑt) = 0.0076 Vt = 0.02, LVt(ϑt) = 0.0133 Vt = 0.03, LVt(ϑt) = 0.0177

L̂V t,T (ϑ̂t, ẑT ) 0.0074 0.0003 0.0131 0.0003 0.0173 0.0004

L̃V t,T (ϑ̂t) 0.0078 0.0001 0.0140 0.0001 0.0192 0.0001

λ− = 20, λ+ = 50 Vt = 0.01, LVt(ϑt) = 0.0053 Vt = 0.02, LVt(ϑt) = 0.0073 Vt = 0.03, LVt(ϑt) = 0.0081

L̂V t,T (ϑ̂t, ẑT ) 0.0056 0.0001 0.0076 0.0002 0.0081 0.0002

L̃V t,T (ϑ̂t) 0.0065 0.0001 0.0098 0.0001 0.0120 0.0001

λ− = 30, λ+ = 50 Vt = 0.01, LVt(ϑt) = 0.0034 Vt = 0.02, LVt(ϑt) = 0.0036 Vt = 0.03, LVt(ϑt) = 0.0032

L̂V t,T (ϑ̂t, ẑT ) 0.0040 0.0001 0.0044 0.0002 0.0041 0.0002

L̃V t,T (ϑ̂t) 0.0050 0.0001 0.0067 0.0001 0.0078 0.0001

the need to use sufficiently deep out-of-the-money options in the construction of L̃V t,T (ϑ̂t) limits

the gains of L̃V t,T (ϑ̂t) in terms of reduction in noise in the estimation. This is particularly visible

for the higher values of λ−, which correspond to thinner jump tails and correspondingly fewer

available deep out-of-the-money puts (recall that as in the real data we restrict our option sample

by requiring that the true option prices exceed in value 0.075).

Overall, the results from the Monte Carlo show that L̂V t,T (ϑ̂t, ẑT ) provides significant bias

reduction in the estimation of the jump variation at the expense of a relatively small increase in

the variance of the estimator.

6 Empirical Application

We apply the developed estimation methods to study the risk-neutral jump variation of the S&P 500

market index. The data is obtained from OptionMetrics and covers the period from the beginning

of 2007 till the end of June of 2019. We apply standard filters to the data and exclude options with

zero bids. We further exclude cross-sections of options with the same maturity on a given day if the

cheapest out-of-the-money put exceeds 25 cents in value and/or if the gap between the strikes of the

closest to the money options is above 20 dollars. From the remaining cross-sections of options on

a given day with different tenors, we keep only those whose tenor is between three and twenty-two

business days. If on a given day, we have more than two tenors in that range, we preserve only

cross-sections of options with tenor not exceeding ten business days.

In Figure 2 we plot the two alternative tail variation measures L̂V t,T (ϑ̂t, ẑT ) and L̃V t,T (ϑ̂t),

and in Table 2, we report their time series quantiles. Consistent with the Monte Carlo results

reported in the previous section, we find that L̃V t,T (ϑ̂t) is systematically higher than L̂V t,T (ϑ̂t, ẑT )

throughout the sample. From Figure 2 we can see that the difference L̂V t,T (ϑ̂t, ẑT )− L̃V t,T (ϑ̂t) is
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highest during high volatility periods such as the financial crisis of 2008-2009, the sovereign debt

crises of 2010 and 2011, etc. On the other hand, the difference L̂V t,T (ϑ̂t, ẑT ) − L̃V t,T (ϑ̂t) is very

small in low volatility regimes. The correlation between the new tail measure L̂V t,T (ϑ̂t, ẑT ) and the

spot volatility is less than that between the latter and L̃V t,T (ϑ̂t). This is likely due to the fact that

L̂V t,T (ϑ̂t, ẑT ) is far less upward biased than L̃V t,T (ϑ̂t) in high volatility regimes, as observed in our

Monte Carlo experiment. Consistent with that evidence and the overall dynamics of the displayed

two alternative tail variation measures, we find that L̃V t,T (ϑ̂t) is significantly more persistent than

L̂V t,T (ϑ̂t, ẑT ).
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Figure 2: Alternative S&P 500 Left Tail Jump Variation Measures. Blue line corre-

sponds to

√
L̂V t,T (ϑ̂t, ẑT ) and red line to

√
L̃V t,T (ϑ̂t). The displayed series are 22-day

moving averages of the corresponding daily estimates.

Table 2: Quantiles of S&P 500 Left Tail Jump Variation Measures

Estimator Empirical Quantiles

25 50 75

L̂V t,T (ϑ̂t, ẑT ) 0.0037 0.0057 0.0104

L̃V t,T (ϑ̂t) 0.0043 0.0070 0.0129

Unlike the method based on the approximation in (1)-(2) for deep out-of-the-money options,

the current method allows us to study the variation of jumps of any size, and not only of the big

ones. Therefore, we next compute the estimate for the total negative jump variation, using the new

method, which we define formally as

N̂JV t,T ≡ L̂V t,T (0, ẑT ). (61)
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N̂JV t,T is an estimate of
∫
z<0 z

2νt(z)dz. In Figure 3, we display this series along with the tail

variation estimate L̂V t,T (ϑ̂t, ẑT ) and the spot volatility σt,T . All displayed series are reported in

annualized volatility units. Comparing the total negative jump variation with the spot diffusive

volatility, we can see that they have a similar level. We note that N̂JV t,T is a risk-neutral measure.

Its counterpart constructed from return data has a much lower level, with the difference reflecting

risk premium demanded by investors for bearing negative market jump risk. We see also from the

figure that the dynamics of N̂JV t,T and σt,T differ. This is particularly notable in crisis periods

where N̂JV t,T tends to increase by more from its pre-crisis level than the diffusive volatility does.

Examples of this behavior include the financial crisis in the Fall of 2008 and the two sovereign debt

crises from 2010 and 2011. The latter two episodes were also characterized with more persistent

elevation of N̂JV t,T , which is consistent with heightened fears in the aftermaths of these events.

Similarly, the Brexit and the 2016 US elections had much more pronounced (but short-lived) impact

on N̂JV t,T than on σt,T , which is again consistent with heightened fears during these episodes. On

the other hand, the increased geopolitical uncertainty from the beginning of 2016 had a much bigger

impact on the volatility than on the risk-neutral jump variation.

Comparing the total negative jump variation with its tail component, we can notice that there

is a sizable gap between the two. This reflects the fact that the jump variation has a significant

contribution that comes from smaller-sized market jumps. This type of dynamics cannot be gen-

erated by the traditional parametric jump-diffusion models used in prior empirical option pricing

work, see e.g., Singleton (2009), where negative jumps are rare events and the jump variation is

generated through jumps of large size (e.g., the estimate of the mean jump size in Pan (2002) is

nearly −20%).

7 Conclusion

In this paper we develop a novel nonparametric method for estimating the risk-neutral tail jump

variation from short-dated options, which works in general settings and utilizes all available option

data. The method is based on inversion of an estimate of the Laplace transform of the jump

variation measure. The latter is constructed using the second derivative of an option portfolio

that recovers nonparametrically the (risk-neutral) Laplace transform of the underlying asset return.

The separation of the volatility from jumps is achieved by making use of the leading role of the

diffusion coefficient in the Laplace transform of returns and its second derivative at high frequencies.

Simulation results show the superior performance of the new estimator over existing ones. In an

empirical application to S&P 500 option data, we find smaller than previously reported left jump

variation that has less correlation with diffusive volatility and is generated by smaller-sized jumps.
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Figure 3: S&P 500 Left Jump Variation Measures and Spot Volatility. Blue line corre-

sponds to

√
N̂JV t,T , red line to

√
L̂V t,T (ϑ̂t, ẑT ), and black line to σt,T . The displayed

series are 22-day moving averages of the corresponding daily estimates.

8 Proofs

In the proofs, without loss of generality, we will set t = 0 and x0 = 0. We will also drop the subscript

t in the notation of various quantities, e.g., we will use the shorthand LT (u) instead of Lt,T (u), etc.

8.1 Preliminary Estimates and Decompositions

We start with introducing an approximation for the process x in which its spot characteristics are

frozen at their values at time zero. For this, we represent the jump part of the process xt as an

integral with respect to a Poisson random measure. In particular, using the so-called Grigelionis

representation of the jump part of a semimartingale (Theorem 2.1.2 of Jacod and Protter (2012)),

upon suitably extending the probability space, we can write∫ t

0

∫
R
µ̃(ds, dx) ≡

∫ t

0

∫
E
δx(s, z)µ̃x(ds, dz), (62)

where µx(ds, dz) is a Poisson measure on R+ × E with compensator dt ⊗ λ(dz), for some σ-finite

measure on E, µ̃x is the martingale counterpart of µx, and δx is a predictable and R-valued function

on Ω×R+ ×E such that νt(z)dz is the image of the measure λ under the map z → δx(t, z) on the

set {z : δx(ω, t, z) 6= 0}.
With the above notation, we introduce the following approximation of xt:

x̃t = a0t+ σ0Wt +

∫ t

0

∫
E
δx(0, z)µ̃x(du, dz), t ≥ 0. (63)
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The conditional characteristic function of x̃t is given by:

L̃t(u) = EQ
0

(
eu(x̃t−x0)

)
= exp (tψ0(u)) , (64)

where the characteristic exponent is given by

ψ0(u) = a0u+
u2

2
σ20 +

∫
R

(eux − 1)ν0(x)dx. (65)

The above result holds provided the following exponential moment exist:∫
R
e<(u)xν0(x)dx <∞,

and this follows from Theorem 25.17(iii) of Sato (1999).

The out-of-the-money option price corresponding to payoff determined by x̃T is denoted by

ÕT (k). That is, ÕT (k) the counterpart of OT (k) in which the terminal price xT is replaced with

x̃T . In the next lemma, we provide bounds for the option prices OT (k) and ÕT (k).

Lemma 1. Suppose assumptions A2-A4 hold. For some F0-adapted positive random variables C0

and t, we have for T < t:

OT (k) ≤ C0T
(
e3k ∧ e−k

)
, ÕT (k) ≤ C0T

(
e4k ∧ e−2k

)
, |k| ≥ 1, (66)

ÕT (k) ≤ C0

(√
T
∧ T

|ek − 1|

)
, (67)∣∣∣OT (k)− ÕT (k)

∣∣∣ ≤ C0

(
| log(T )|1{|k|≥1} + 1

)
T 3/2

(
1

|k| ∨
√
T

∨
1

)
, k ∈ R, (68)∣∣∣ÕT (k1)− ÕT (k2)

∣∣∣ ≤ C0|ek1 − ek2 |e−(3−ε)|k2|
(

T

|k2|2 ∨ |k2|4
∧

1

)
, (69)

for k1 < k2 < 0 or k1 > k2 > 0 and some arbitrary small ε > 0.

Proof of Lemma 1. The results follow from Lemmas 1-7 in Qin and Todorov (2019). The result

of Lemma 7 in Qin and Todorov (2019) is strengthened by applying Lemma 1 of that paper. �

We next make the following decomposition:

L̂T (u)− L̃T (u) = Â
(a)
T (u) + Â

(b)
T (u) + Â

(c)
T (u) + Â

(d)
T (u), (70)

Â
(a)
T (u) =

N∑
j=2

f(u, kj−1)εT (kj−1)∆j , Â
(b)
T (u) =

N∑
j=2

f(u, kj−1)(OT (kj−1)− ÕT (kj−1))∆j , (71)

Â
(c)
T (u) =

N∑
j=2

∫ kj

kj−1

(
f(u, kj−1)ÕT (kj−1)− f(u, k)ÕT (k)

)
dk, (72)

Â
(d)
T (u) = −

∫ k

−∞
f(u, k)ÕT (k)dk −

∫ ∞
k

f(u, k)ÕT (k)dk. (73)

In the next lemma, we derive bounds for Â
(a)
T (u), Â

(b)
T (u), Â

(c)
T (u) and Â

(d)
T (u) and their first two

derivatives with respect to u.
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Lemma 2. Suppose assumptions A2-A6 hold. Assume ∆ � Tα, K � T β and K � T−β, for α > 1
2

and β > 0. Let −ς < <(u) < 0 for some ς ∈ (0, 2). For some F0-adapted positive random variables

C0 and t that do not depend on u, we have for T < t:

E
(
|Â(a)

T (u)|p
∣∣F (0)

)
≤ C0|u|2p(|k| ∨ |k|)

p
2
−1∆

p
2T

1+p
2 , p ≥ 2, (74)

E
(
|∇uÂ(a)

T (u)|p
∣∣F (0)

)
≤ C0|u|p(|k| ∨ |k|)

p
2
−1∆

p
2T

1+p
2

(
|u|pT

p−1
2 ∨ 1

)
, p ≥ 2, (75)

E
(
|∇uuÂ(a)

T (u)|p
∣∣F (0)

)
≤ C0(|k| ∨ |k|)

p
2
−1∆

p
2T

1+p
2

(
1 + (|u|p + |u|2p)T

p−1
2

)
, p ≥ 2, (76)

|Â(b)
T (u)|+ |∇uÂ(b)

T (u)|+ |∇uuÂ(b)
T (u)|

≤ C0|u|2T 3/2− 1
6
(ς+1)| log(T )|4 + 1{β≥1/6}C0|u|2T 1+(2−ς)β| log(T )|2,

(77)

|Â(c)
T (u)| ≤ C0|u|2∆

√
T (|u|

√
T ∨1), |∇uÂ(c)

T (u)| ≤ C0|u|∆
√
T (|u|

√
T ∨1)+C0|u|3∆T | log(T )|, (78)

|∇uuÂ(c)
T (u)| ≤ C0∆

√
T (|u|

√
T | log(T )| ∨ 1) + C0|u|2∆T (| log(T )| ∨ |u|), (79)

|Â(d)
T (u)|+ |∇uÂ(d)

T (u)|+ |∇uuÂ(d)
T (u)| ≤ C0|u|2T 1+(3−ς)β| log(T )|2. (80)

Proof of Lemma 2. For the first three inequalities, we make use of the following bound

E

∣∣∣∣∣
N∑
i=1

εi

∣∣∣∣∣
p

≤ CN
p
2
−1E

(
N∑
i=1

|εi|p
)
, (81)

where p ≥ 2, C is some positive constant, and {εi}Ni=1 is a sequence of independent random variables.

The above inequality, follows from Burkholder-Davis-Gundy inequality and inequality in means.

Applying this result and the bounds of Lemma 1 as well as our assumption for the observation

error, we have the first three bounds of the lemma. The rest of the bounds to be proved follow by

application of Lemma 1. �

We finish this section with decomposing ĥT (u). We will do so on the following set

ΩT =
{
ω : |L̂T (u)| > αT ∩ |LT (u)| > αT , for u = −c+ iz and |z| ≤ zT

}
, (82)

where c and zT are the parameters of the estimator L̂V T (ϑ, zT ), and αT is a deterministic sequence

satisfying the following condition

αT = Op(| log(T )|k), for some k > 0. (83)

Using second-order Taylor expansion, on the set ΩT , we have (recall notation in (17)):

ĥT (u)− h0(u) = Ẑ1(u) + Ẑ2(u) + Ẑ3(u) + R̂(u), for u = −c+ iz and |z| ≤ zT , (84)

where

Ẑ1(u) =
1

T

∇uuL̂T (u)−∇uuL̃T (u)

L̃T (u)
, Ẑ2(u) = − 2

T

∇uL̃T (u)

L̃T (u)2

(
∇uL̂T (u)−∇uL̃T (u)

)
, (85)
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Ẑ3(u) =
1

T

2

(
∇uL̃T (u)

)2
L̃T (u)3

− ∇uuL̃T (u)

L̃T (u)2

(L̂T (u)− L̃T (u)
)
, (86)

and for C denoting a positive constant that does not depend on u, we have

|R̂(u)| ≤ C

T
(R̂1(u) + R̂2(u) + R̂3(u)), (87)

with

R̂1(u) =
1

α2
T

|∇uuL̂T (u)−∇uuL̃T (u)||L̂T (u)− L̃T (u)|+ 1

α2
T

|∇uL̂T (u)−∇uL̃T (u)|2, (88)

R̂2(u) =
1

α3
T

|∇uL̂T (u)−∇uL̃T (u)||L̂T (u)− L̃T (u)|(|∇uL̂T (u)|+ |∇uL̃T (u)|), (89)

R̂3(u) =
1

α4
T

|L̂T (u)− L̃T (u)|2
(
|∇uL̂T (u)|2 + |∇uL̃T (u)|2 + |∇uuL̂T (u)|+ |∇uuL̃T (u)|

)
. (90)

We next set

ĈT (1) =
2

T

N∑
j=2

(ÔT (kj−1)− ÕT (kj−1))∆j , ĈT (2) =
2

T

N∑
j=2

∫ kj

kj−1

(ÕT (kj−1)− ÕT (k))dk, (91)

and denote

Z1(u) = Ẑ1(u)− ĈT (1)− ĈT (2), hT (u) = Z1(u) + Ẑ2(u) + Ẑ3(u) + R̂(u). (92)

We note that

ĥT (−c− iz)−Fν0(−c− iz)− σ̂2T (uT ) = hT (−c− iz)− σ̂2T (uT )

+ ĈT (1) + ĈT (2) + σ20, for |z| ≤ zT .
(93)

8.2 Proof of Theorem 1

In proving the theorem, we will make use of the following basic result:

Lemma 3. For a ≥ 0, b > 0 and c > 0, we have∣∣∣∣∫ +b

−b

e−iaz

c+ iz
dz

∣∣∣∣ ≤ C ((ab∧ 1

ab

)∨
1

)
, (94)

for some constant C > 0 that does not depend on a, b and c.

Proof of Lemma 3. For a ≥ 0, using the properties of the trigonometric functions, we have,∫ +b

−b

e−iaz

c+ iz
dz = 2

∫ b

0

c cos(az)− z sin(az)

c2 + z2
dz. (95)

Making use of
∫∞
0

1
c2+z2

dz ≤
∫ c
0

1
c2
dz +

∫∞
c

1
z2
dz = 2

c , we have∣∣∣∣∫ b

0

c cos(az)

c2 + z2
dz

∣∣∣∣ ≤ 2. (96)
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Using | sin(x)| ≤ |x|, we have ∣∣∣∣∫ b

0

z sin(az)

c2 + z2
dz

∣∣∣∣ ≤ ab. (97)

For a > 0, we have ∫ b

0

z sin(az)

c2 + z2
dz =

∫ b

0

cos(az)

a

c2 − z2

(c2 + z2)2
dz − b cos(ab)

a(c2 + b2)
. (98)

Therefore, altogether, we have ∣∣∣∣∫ b

0

z sin(az)

c2 + z2
dz

∣∣∣∣ ≤ C (ab∧ 1

ab

)
. (99)

Combining the above bounds, we get the result in (94). �

We proceed with proving the result of the theorem. First, we note that LV0(ϑ) is well defined due

to the integrability assumptions in A3 and the restriction of c < ς < 2 imposed in the statement of

the theorem. Next, using Lemma 2 (and the rate condition α > 1
2 imposed in the statement of the

theorem), we have

P (Ωc
T )→ 0. (100)

Therefore, it suffices to look at the difference L̂V T (ϑ, zT , uT )− LV0(ϑ) on the set ΩT . On this set,

using the algebraic inequality (x + y)2 ≤ 2x2 + 2y2, for x, y ∈ R, we have (note that ϑ ≥ 0 and

c > 0): ∫ ∞
0

(
L̂V T (ϑ, zT , uT )− LV0(ϑ)

)2
dϑ

≤ 1

2π2

∫ ∞
0

(∫ ∞
−∞

e−iϑzĜ(z)dz

)2

dϑ+
1

2π2

∫ ∞
0

Ĥ2(ϑ)dϑ,

(101)

where

Ĝ(z) =

 1
c+izhT (−c− iz), if |z| ≤ zT ,

−Fν0(−c−iz)c+iz , if |z| > zT ,
(102)

and

Ĥ(ϑ) =

∫ zT

−zT

e−ϑ(c+iv)

c+ iv
dv
(
σ̂2T (uT )− ĈT (1)− ĈT (2)− σ20

)
, (103)

and we note that
∫∞
−∞ e

−iϑzĜ(z)dz is real-valued, using the properties of holomorphic functions.

Using Lemma 3, we have∫ ∞
0

Ĥ2(ϑ)dϑ ≤ C0

(
σ̂2T (uT )− ĈT (1)− ĈT (2)− σ20

)2
, (104)

for some positive F0-adapted random variable C0. By application of Parseval’s equality, we have∫ ∞
0

(∫ ∞
−∞

e−iϑzĜ(z)dz

)2

dϑ ≤
∫ ∞
−∞

(∫ ∞
−∞

e−iϑzĜ(z)dz

)2

dϑ = 2π

∫ ∞
−∞
|Ĝ(z)|2dz. (105)
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From here, using the notation of the previous section and (17), we have∫ ∞
0

(
L̂V T (ϑ, zT , uT )− LV0(ϑ)

)2
dϑ ≤ C0

6∑
i=1

Wi, (106)

where

W1 =

∫
|z|>zT

1

|c+ iz|2
|Fν0(−c− iz)|2 dz, W2 =

(
σ̂2T (uT )− ĈT (1)− ĈT (2)− σ20

)2
, (107)

W3 =

∫ zT

−zT

1

|c+ iz|2
∣∣Z1(−c− iz)

∣∣2 dz, Wj =

∫ zT

−zT

1

|c+ iz|2
∣∣∣Ẑj−2(−c− iz)∣∣∣2 dz, j = 4, 5, (108)

W6 =

∫ zT

−zT

1

|c+ iz|2
∣∣∣R̂(−c− iz)

∣∣∣2 dz. (109)

From assumption A, we have

W1 = Op(z
−2r−2
T ). (110)

We proceed with a sequence of lemmas that provide bounds for the terms {Wj}j=2,3,4,5,6.

Lemma 4. Suppose assumptions A2-A6 hold. Assume ∆ � Tα, K � T β and K � T−β, for α > 1
2

and β > 0. Further, let the sequence zT satisfy

zT →∞, and z2TT | log(T )|2 → 0. (111)

We have

α8
TW6 = Op

(
z15T ∆4T

5
2 | log(T )|3 ∨ z7T∆2

√
T | log(T )| ∨ z7TT 4− 2

3
(ς+1)| log(T )|16

∨ z7TT 2+4(2−ς)β| log(T )|8
)
.

(112)

Proof of Lemma 4. Using the algebraic inequalities 2xy ≤ x2 + y2 and 3x2y ≤ 4(x3 + y3) for two

nonnegative real numbers x and y, we have

|R̂(u)| ≤ C

Tα4
T

[
h24(|L̂T (u)− L̃T (u)|) + h24(|∇uL̂T (u)−∇uL̃T (u)|)

+ h23(|∇uuL̂T (u)−∇uuL̃T (u)|)
]
, for |u|

√
T ≤ 1,

(113)

where we denote the functions h23(x) = x2 ∨ x3 and h24(x) = x2 ∨ x4, and the constant C > 0 does

not depend on u. From here, the result to be proved follows by an application of Lemma 2. �

Lemma 5. Suppose assumptions A2-A6 hold. Assume ∆ � Tα, K � T β and K � T−β, for α > 1
2

and β > 0. Further, let the sequence zT satisfy the rate condition in (30). We then have
W3 = Op

(
∆z3T + γ(T, zT )

)
,

W4 = Op
(
T 3/2∆z3T + T 2∆z5T + T∆2z3T + | log(T )|2T∆2z7T + T 2z2Tγ(T, zT )

)
,

W5 = Op
(
T 3/2∆z3T + T 2γ(T, zT )

)
,

(114)

where we denote

γ(T, zT ) = | log(T )|8T 1− 1
3
(ς+1)z3T + | log(T )|4T 2(2−ς)βz3T . (115)
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Proof of Lemma 5. For the first term, we can make the decomposition∣∣∣∣∣∇uuÂ
(c)
T (−c− iz)

L̃T (−c− iz)
− aT (−c− iz)− Â(1)

T (z)

∣∣∣∣∣ ≤ Â(2)
T (z), (116)

where

aT (u) =
N∑
j=2

[
∇uuf(u, kj−1)

∫ kj

kj−1

(ÕT (kj−1)− ÕT (k))dk

]
, (117)

and for T sufficiently small (so that |L̃T (−c− iz)| is bounded by a constant from below for |z| ≤ zT )

and C0 some F0-adapted random variable, we denote:

Â(1)
T (z) =

N∑
j=2

∫ kj

kj−1

(∇uuf(−c− iz, kj−1)−∇uuf(−c− iz, k))ÕT (k)dk, (118)

Â(2)
T (z) = C0z

2
TT |aT (−c− iz) + Â(1)

T (z)|. (119)

We have

∇uuf(u, k) = 2e(u−1)k + 2(2u− 1)ke(u−1)k + (u2 − u)k2e(u−1)k, (120)

and from here by Taylor expansion, for u = −c− iz, we have

|∇uuf(u, k2)−∇uuf(u, k1)| ≤ C|k2 − k1|e−(1+c)(k1∧k2)

×
(
|z| ∨ 1 + (z2 ∨ 1)(|k1| ∨ |k2|) + (|z|3 ∨ 1)(|k1| ∨ |k2|)2

)
,

(121)

for two real k1 and k2 and some positive constant C > 0 that depends on c only. Using this bound,

Lemma 1 and the fact that z2TT → 0, we have∫ zT

−zT

1

|c+ iz|2
∣∣∣Â(1)

T (z)
∣∣∣2 dz = Op(z

5
TT

2∆2), (122)

∫ zT

−zT

1

|c+ iz|2
∣∣∣Â(2)

T (z)
∣∣∣2 dz = Op

(
z3T∆2T 3 + z7T∆2T 3

)
. (123)

Using Taylor expansion and the fact that <(u) > −ς, we have∣∣∣∇uuf(u, k)− 2− 2k(2u− 1)e(u−1)k − (u2 − u)e(u−1)kk2
∣∣∣ ≤ C (e−(ς+1)k ∨ 1

)
(|k|+ |k||u|) , (124)

for some positive constant C that does not depend on k and u. This inequality and an application

of Lemma 1 yield (note the cancelation in the loading of options with k near zero in the difference

aT (−c− iz)− 2
∑N

j=2

∫ kj
kj−1

(ÕT (kj−1)− ÕT (k))dk):

∫ zT

−zT

∣∣∣aT (−c− iz)− 2
∑N

j=2(
∫ kj
kj−1

ÕT (kj−1)− ÕT (k))dk
∣∣∣2

|c+ iz|2
dz = Op

(
z3T∆2T 2

)
, (125)
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Similarly, we have ∣∣∣∣∣∇uuÂ
(a)
T (−c− iz)

L̃T (−c− iz)
− bT (−c− iz)

∣∣∣∣∣ ≤ B̂T (z), (126)

where

bT (u) =

N∑
j=2

∇uuf(u, kj−1)εj−1∆j , (127)

and

B̂T (z) = C0z
2
TT

∣∣∣∣∣∣
N∑
j=2

∇uuf(−c− iz, kj−1)εj−1∆j

∣∣∣∣∣∣ . (128)

Using Lemma 1 and z2TT → 0, we have∫ zT

−zT

1

|c+ iz|2
∣∣∣B̂T (z)

∣∣∣2 dz = Op(z
5
T∆T 3), (129)

Next, the bound in (124) and an application of Lemma 1 yield (note the cancelation in the loading

of options with k near zero in the difference bT (−c− iz)− 2
∑N

j=2 εj−1∆j):

∫ zT

−zT

1

|c+ iz|2

bT (−c− iz)− 2
N∑
j=2

εj−1∆j

2

dz = Op
(
z3T∆T 2

)
. (130)

From here, to derive the bound forW3, we can apply Lemma 2 for the bounds involving ∇uuÂ(b)
T (u)

and ∇uuÂ(d)
T (u), and also use the fact that from the rate condition in (30), we have z2TT

1/3 → 0

and since ∆/
√
T → 0 (assumed in the theorem), we have

z5T∆2| log(T )|2

z3T∆
= z2n∆| log(T )|2 = z2n

√
T | log(T )|2 × ∆√

T
= o(1). (131)

The proof of the results for W4 and W5 makes use of the following bounds

|∇uL̃T (u)| ≤ C0zTT, |∇uuL̃T (u)| ≤ C0T, (132)

for u = −c − iz and |z| ≤ zT , with z2TT ≤ C0, and some positive constant C0 > 0. From here, the

results for W4 and W5 can be shown by making use of Lemma 2. �

Lemma 6. Suppose assumptions A2-A6 hold. Assume ∆ � Tα, K � T β and K � T−β, for α > 1
2

and β > 0. Further, let the sequence uT satisfy the rate condition

uT →∞ and u2TT → 0. (133)

We then have

σ̂2T (uT )− ĈT (1)− ĈT (2)− σ20

= Op

(
u
−(2−r′)
T

∨
T 1/4uT

√
∆
∨ √

∆

T 1/4uT

∨
| log(T )|4T

1
2
− 1

6
(ς+1)

∨
| log(T )|2T (2−ς)β

)
,

(134)

where r′ is the jump activity index appearing in the condition stated in equation (29).
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Proof of Lemma 6. Using the bounds in Lemma 2, it is easy to check that L̂T (iuT ) converges in

probability to 1. Therefore, it suffices to work only on the set on which |L̂T (iuT )| > 1/2. On this

set, using Taylor expansion, we have∣∣∣σ̂2T (uT )− ĈT (1)− ĈT (2)− σ20
∣∣∣ ≤ Σ̂

(1)
T + Σ̂

(2)
T + R̂T , (135)

where

Σ̂
(1)
T = − 2

Tu2T
ψ0(iuT )− σ20, Σ̂

(2)
T = − 2

Tu2T
(L̂T (iuT )− L̃T (iuT ))− ĈT (1)− ĈT (2), (136)

R̂T =
C0

Tu2T

∣∣∣L̂T (iuT )− L̃T (iuT )
∣∣∣2 + C0

∣∣∣L̂T (iuT )− L̃T (iuT )
∣∣∣ , (137)

and C0 is F0-adapted random variable. Using the finite variation assumption for the jumps, we

have

Σ̂
(1)
T = Op(u

−(2−r′)
T ). (138)

Taking into account the fact that
√

∆/T → 0 and using Lemma 2, we have

R̂T = Op

(
u2T
√

∆T
3
4

∨
u2T | log(T )|4T

3
2
− 1

6
(ς+1)

∨
u2T | log(T )|2T 1+(2−ς)β

)
. (139)

Using Lemma 2, we have

Σ̂
(2)
T = A

(a)
T +A

(c)
T +Op

(
| log(T )|4T

1
2
− 1

6
(ς+1)

∨
| log(T )|2T (2−ς)β

)
, (140)

where we denote

A
(a)
T = − 2

Tu2T
Â

(a)
T (iuT )− 2

T

N∑
j=2

εT (kj−1)∆j , (141)

A
(c)
T = − 2

Tu2T
Â

(c)
T (iuT )− 2

T

N∑
j=2

∫ kj

kj−1

(ÕT (kj−1)− ÕT (k))dk. (142)

Using Lemma 1 and assumption A6 for the option observation error, we have

A
(a)
T = Op

(
T 1/4uT

√
∆
∨ √

∆

T 1/4uT

)
. (143)

Using Lemma 1 again, we have

A
(c)
T = Op

(
uT∆

∨ ∆√
TuT

)
. (144)

Note that A
(c)
T is of smaller order of magnitude than A

(a)
T . Combining the above bounds, and using

√
∆/T → 0, we get the result of the lemma. �

The proof the theorem now readily follows by combining the bound for W1 derived above,

Lemmas 4, 5 and 6, and using the rate conditions on ∆, T , k and k.
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8.3 Proof of Theorem 2

In bounding
∫∞
0

(
L̂V T (ϑ, zT , κT , κT )− LV0(ϑ)

)2
dϑ, we replace W2 term with the following ones:

W ′2 =

∣∣∣∣∣ 1

κT zT

∫
|z|∈[κT zT ,κT zT ]

Fν0(−c− iz)dz

∣∣∣∣∣
2

, W ′3 =

∣∣∣∣∣ 1

κT zT

∫
|z|∈[κT zT ,κT zT ]

Z1(−c− iz)dz

∣∣∣∣∣
2

, (145)

W ′j =
1

κT zT

∫
|z|∈[κT zT ,κT zT ]

∣∣∣Ẑj−2(−c− iz)
∣∣∣2 dz and W ′6 =

1

κT zT

∫
|z|∈[κT zT ,κT zT ]

∣∣∣R̂(−c− iz)
∣∣∣2 dz, (146)

for j = 4, 5. Using Cauchy–Schwarz inequality and assumption A1, we have

W ′2 = Op(κ
−2r−1
T z−2r−1T ). (147)

For the term W ′3, using Lemma 2, we first have∣∣∣∣∣ 1

TκT zT

∫
|z|∈[κT zT ,κT zT ]

(∇uuL̂(−c− iz)−∇uuL̃(−c− iz))

(
1

L̃(−c− iz)
− 1

)
dz

∣∣∣∣∣
2

= Op

(
∆T 3/2(κT zT )4 + ∆T 2(κT zT )8 + ∆2T (κT zT )4

+ (κT zT )8
(
T 3− 1

3
(ς+1)| log(T )|8 + T 2+2(2−ς)β| log(T )|4

))
.

(148)

From here, it is easy to check that this term is of smaller order than
∑6

j=3 |Wj | when z3T∆ → 0,

κ8T z
2
T

√
T | log(T )| → 0 and z3TT

1− 1
3
(ς+1)| log(T )|8 → 0. Therefore, to bound W ′3, it suffices to derive

bounds for∣∣∣∣∣∣ 1

TκT zT

∫
|z|∈[κT zT ,κT zT ]

 N∑
j=2

(∇uuf(−c− iz, kj−1)− 2)(ÔT (kj−1)− ÕT (kj−1))∆j

 dz

∣∣∣∣∣∣
2

, (149)

and ∣∣∣∣∣∣ 1

TκT zT

∫
|z|∈[κT zT ,κT zT ]

 ∑
j=b,c,d

∇uuÂ(j)
T (−c− iz)− ĈT (2)

 dz

∣∣∣∣∣∣
2

. (150)

For deriving bounds for these terms, we make use of the following result which can be shown using

integration by parts:∫ u2

u1

u2eiukdu =
u22e

iu2k − u21eiu1k

ik
− 2

∫ u2

u1

u
eiuk

k
du, u1, u2 ∈ R, k 6= 0. (151)

Using this result, we also have∣∣∣∣∣
∫
|z|∈[κT zT ,κT zT ]

(
z2k22e

(−iz−c−1)k2 − z2k21e(−iz−c−1)k1
)
dz

∣∣∣∣∣
≤ C|k2 − k1|e−(1+c)(k1∨k2)(κ2T z2T + (|k2| ∨ |k1|)κ3T z3T ), k1, k2 ∈ R,

(152)
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for some constant C that does not depend on zT , κT , κT and c. From here, to derive bounds for the

terms in (149) and (150), we follow similar steps as for the analysis of W3 in the proof of Lemma 5.

Upon using z3T∆ → 0, κ8T z
2
T

√
T | log(T )| → 0 and z3TT

1− 1
3
(ς+1)| log(T )|8 → 0, we then have the

following bound:

W ′3 = Op

(
(κ2T z

2
T ∨ z3T )

(
∆ + | log(T )|8T 1− 1

3
(ς+1) + | log(T )|4T 2(2−ς)β

))
. (153)

Next, exactly as Lemma 4, we have

α8
TW ′6 = Op

(
κ16T z

16
T ∆4T

5
2 | log(T )|3 ∨ κ8T z8T∆2

√
T | log(T )| ∨ κ8T z8TT 4− 2

3
(ς+1)| log(T )|16

∨ κ8T z8TT 2+4(2−ς)β| log(T )|8
)
.

(154)

Upon using the fact that z3T∆→ 0, κ8T z
2
T

√
T | log(T )| → 0 and z3TT

1− 1
3
(ς+1)| log(T )|8 → 0, we have

κ16T z
16
T ∆4T

5
2 | log(T )|3

z3T∆
= O

(
κ8T z

2
T

√
T
)
,
κ8T z

8
T∆2
√
T | log(T )|

z3T∆
= O

(
κ8T z

2
T

√
T | log(T )|

)
, (155)

κ8T z
8
TT

4− 2
3
(ς+1)| log(T )|16

z3TT
1− 1

3
(ς+1)| log(T )|8

= O
(
κ8T z

2
T

√
T
)
,
κ8T z

8
TT

2+4(2−ς)β| log(T )|8

z3TT
2(2−ς)β| log(T )|4

= O
(
κ8T z

2
T

√
T
)
. (156)

Therefore, given the definition of αT , W ′6 is dominated asymptotically by
∑6

j=3 |Wj |. Next, exactly

as in the proof of Lemma 5, we have W ′4 = Op
(
T 3/2∆κ4T z

4
T + T 2∆κ6T z

6
T + T∆2κ4T z

4
T + | log(T )|2T∆2κ8T z

8
T + T 2κ2T z

2
T γ̃(T, κT zT )

)
,

W ′5 = Op
(
T 3/2∆κ4T z

4
T + T 2γ̃(T, κT zT )

)
,

(157)

where we now denote

γ̃(T, z) = | log(T )|8T 1− 1
3
(ς+1)z4 + | log(T )|4T 2(2−ς)βz4. (158)

Using again z3T∆→ 0, κ8T z
2
T

√
T | log(T )| → 0 and z3TT

1− 1
3
(ς+1)| log(T )|8 → 0, we have

T 3/2∆κ4T z
4
T + T 2∆κ6T z

6
T + T∆2κ4T z

4
T + | log(T )|2T∆2κ8T z

8
T

z3T∆
= O

(
(κ8T z

2
T

√
T )ι
)
, (159)

for some ι > 0 and we further have (T 2κ6T z
6
T )8/6 = o(κ8T z

2
T

√
T ). This shows that W ′4 + W ′5 is

dominated asymptotically by
∑6

j=3 |Wj |.
Combining the above bounds for {W ′j}j=2,...,6 with those for W1 and {Wj}j=3,...,6, we get the

result of the theorem.
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8.4 Proof of Theorem 3

Using Lemma 3, we have

|L̂V T (ϑ, zT , uT )− LV0(ϑ)| ≤ C0

∫
|z|>zT

1

|c+ iz|
|Fν0(−c− iz)|dz

+ C0

∣∣∣σ̂2T (uT )− ĈT (1)− ĈT (2)− σ20
∣∣∣+ C0

∣∣∣∣∫ zT

−zT

e−iϑz

c+ iz
hT (−c− iz)dz

∣∣∣∣ . (160)

Using assumption A1, we have(∫
|z|>zT

1

|c+ iz|
|Fν0(−c− iz)|dz

)2

= Op(z
−2r−1
T ). (161)

Next, the bound for σ̂2T (uT ) − ĈT (1) − ĈT (2) − σ20 follows from Lemma 6. We proceed with∫
|z|≤zT

e−iϑz

c+iz Z1(−c− iz)dz. First, as in the proof of Theorem 2, we have∣∣∣∣∣ 1

T

∫ zT

−zT

e−iϑz

c+ iz
(∇uuL̂(−c− iz)−∇uuL̃(−c− iz))

(
1

L̃(−c− iz)
− 1

)
dz

∣∣∣∣∣
2

= Op

(
∆T 3/2z4T + ∆T 2z8T + ∆2Tz4T + z8T

(
T 3− 1

3
(ς+1)| log(T )|8 + T 2+2(2−ς)β| log(T )|4

))
= op

(
∆z2T + z2T

(
T 1− 1

3
(ς+1)| log(T )|8 + T 2(2−ς)β| log(T )|4

))
.

(162)

To proceed further, we make use of the following algebraic inequality, which can be shown using

integration by parts and elementary trigonometric function inequalities:∣∣∣∣∫ b

−b
e−iazzdz

∣∣∣∣ ≤ 8b

(
|a|b2

∧ 1

|a|

)
, for b > 0 and a ∈ R. (163)

Using this result, the bounds in Lemma 1 as well as the F (0)-conditional independence of the

observation errors and the fact that ϑ 6= 0 (note that zT∆→ 0 and also that |k+ϑ| ≤ 1/zT implies

k < −ϑ/2 for ∆ sufficiently small), we have:∣∣∣∣∣∣ 1

T

∫ zT

−zT

e−iϑz

c+ iz

N∑
j=2

(
∇uuf(−c− iz, kj−1)− 2

)
εj−1∆jdz

∣∣∣∣∣∣
2

= Op(z
3
T∆). (164)

Using inequality in means and the proof of Lemma 5 as well as (163) for ∇uuÂ(b)
T (−c − iz) and

∇uuÂ(d)
T (−c− iz) and the fact that ϑ 6= 0, we have∣∣∣∣∣∣ 1

T

∫ zT

−zT

e−iϑz

c+ iz

 ∑
j=b,c,d

∇uuÂ(j)
T (−c− iz)− ĈT (2)

 dz

∣∣∣∣∣∣
2

= Op(z
6
T∆2 + z4T∆2T + z8T∆2T + z4T∆2 + z3T

(
T 1− 1

3
(ς+1)| log(T )|8 + T 2(2−ς)β| log(T )|4

)
= op

(
z3T∆ + z3T

(
T 1− 1

3
(ς+1)| log(T )|8 + T 2(2−ς)β| log(T )|4

))
,

(165)
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where for the last equality we made use of the fact that z3T∆→ 0. Altogether, we have∣∣∣∣∫ zT

−zT

e−iϑz

c+ iz
Z1(−c− iz)dz

∣∣∣∣2 = Op

(
z3T

(
∆ + | log(T )|8T 1− 1

3
(ς+1) + | log(T )|4T 2(2−ς)β

))
. (166)

Inequality in means also implies∣∣∣∣∫ zT

−zT

e−iϑz

c+ iz
(hT (−c− iz)− Z1(−c− iz))dz

∣∣∣∣2 ≤ C0zT

6∑
j=4

|Wj |. (167)

Combining the above bounds, the result for L̂V T (ϑ, zT , uT ) follows. These bounds as well as the

bounds for {W ′j}j=2,...,6 derived in the proof of Theorem 2 imply the result for L̂V T (ϑ, zT , κT , κT ).

We are left with showing the results in the case when ϑ is replaced with ϑ̂0. First note that all

of the above results hold trivially if we replace ϑ with ϑ0, for ϑ0 being almost surely positive and

F (0)-adapted. This is because of the structure of the option observation errors. Next, we note that

from Lemma 3, we have∣∣∣∣∣
∫ zT

−zT

e−ϑ̂0(c+iz) − e−ϑ0(c+iz)

c+ iz
(σ̂2T (uT )− ĈT (1)− ĈT (2)− σ20)dz

∣∣∣∣∣ ≤ C|σ̂2T (uT )− ĈT (1)− ĈT (2)− σ20|.

(168)

Next, by Cauchy–Schwarz inequality and the rate conditions for zT , ∆ and T , we have∣∣∣∣∣
∫ zT

−zT

e−ϑ̂0(c+iz) − e−ϑ0(c+iz)

c+ iz
(Ẑ2(−c− iz) + Ẑ3(−c− iz) + R̂(−c− z))dz

∣∣∣∣∣
2

≤
∫ zT

−zT
|e−ϑ̂0(c+iz) − e−ϑ0(c+iz)|2dz ×

6∑
j=4

Wj = Op
(
z3T∆ + γ(T, zT )

)
,

(169)

and similarly∣∣∣∣∣
∫ zT

−zT

e−ϑ̂0(c+iz) − e−ϑ0(c+iz)

c+ iz

(
∇uuÂ(a)

T (−c− iz)
T L̃T (−c− iz)

− ĈT (1)

)
dz

∣∣∣∣∣
2

= Op
(
z3T∆× z3Tυ2T

)
. (170)

On the other hand, the term∫ zT

−zT

e−ϑ̂0(c+iz) − e−ϑ0(c+iz)

c+ iz

 1

T L̃T (−c− iz)

∑
j=b,c,d

∇uuÂ(j)
T (−c− iz)− ĈT (2)

 dz,

can be analyzed exactly in the deterministic case for ϑ above as the stochasticity here plays no role

(note that because of the consistency of ϑ̂t for ϑt and the strict positivity of the latter, on a set of

probability approaching one ϑ̂t is above ϑt/2 > 0).

Altogether, we have∣∣∣∣∣
∫ zT

−zT

e−ϑ̂0(c+iz) − e−ϑ0(c+iz)

c+ iz

(
ĥT (−c− iz)− h0(−c− iz)− σ̂2T (uT ) + σ20

)
dz

∣∣∣∣∣
= Op

(
z3T∆(z3Tυ

2
T ∨ 1) + γ(T, zT )

)
.

(171)
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Finally,∫ zT

−zT

e−ϑ̂0(c+iz)

c+ iz
(h0(−c− iz)− σ20)dz = LV0(ϑ̂0)−

∫
|z|>zT

e−ϑ̂0(c+iz)

c+ iz
Fν0(−c− iz)dz, (172)

and similar expression holds with ϑ̂0 replaced with ϑ0. From assumption A1, we have∣∣∣∣∣
∫
|z|>zT

e−ϑ̂0(c+iz)

c+ iz
Fν0(−c− iz)dz

∣∣∣∣∣+

∣∣∣∣∣
∫
|z|>zT

e−ϑ0(c+iz)

c+ iz
Fν0(−c− iz)dz

∣∣∣∣∣ = Op

(
z
−r−1/2
T

)
. (173)

Combining the above bounds, we have the result of the theorem.
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