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1 Introduction

The availability of reliable financial high-frequency data over the last two decades

has allowed a closer analysis of the finer movements of financial asset prices. Nu-

merous non-parametric tests have been proposed for the presence of jumps on the

“observed” path of increasingly finer-sampled processes, see Ait-Sahalia and Jacod

(2008b), Barndorff-Nielsen and Shephard (2004, 2006a), Huang and Tauchen (2005),

Jiang and Oomen (2005), Lee and Mykland (2007), Mancini (2001). These stud-

ies have documented non-trivial jump component in asset prices. Moreover, recent

results in Ait-Sahalia and Jacod (2008a) and Todorov and Tauchen (2008) suggest

that the jumps in asset prices are more “active” than the compound Poisson jumps

typically used in parametric specifications.

This non-parametric evidence reinforces the importance of estimating stochastic

volatility models with general jump specification, which is the goal of the current

paper. Our estimation is based on high-frequency data. The idea of our method

is quite simple. We aggregate the high-frequency data (on daily level) into so-called

realized measures (also known as realized multipower variations), which measure con-

tinuous and discontinuous price variation, and treat them as their unobservable fill-in

asymptotic limits in estimation. This provides a general way of estimating stochastic

volatility models since the realized measures are model-free. The convenience of our

method stems from the fact that the inference is done directly on latent quantities

of the price process, i.e. the integrated volatility and the sum of squared jumps.

This simplifies the estimation process significantly, as it circumvents the need to inte-

grate out unobservable quantities. For example, we can make inference for the jumps

regardless of how complicated the model for the stochastic volatility is.

The use of realized measures in the estimation induces error, the size of which

depends on how frequently we sample during the day. We analyze this error for three

particular statistics: Realized Variance, Realized Bipower Variation and Realized

Tripower Variation. The first of these statistics converges to the Quadratic Variation

of the price process, as we sample more frequently. The (fill-in) asymptotic limit of
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the other two statistics is the continuous part of the Quadratic Variation, which we

call Integrated Variance. We derive conditions under which the error in the estimation

resulting from treating Realized Variation, Realized Bipower Variation and Realized

Tripower Variation as their fill-in asymptotic limits converges in probability to zero.

We provide also stronger conditions under which this error is op(1/
√

T ), where T is

the number of days in the sample. In this last case the inference based on realized

multipower variation statistics is asymptotically equivalent to the infeasible inference

based on their asymptotic limits. Our analysis in this paper is done in the context of a

general GMM estimator, but it can be trivially extended to the case of M-estimators.

We apply our estimation strategy both on simulated and real high-frequency data.

Our Monte Carlo study shows that the Realized Tripower Variation does a better job

in measuring the Integrated Variance than the Realized Bipower Variation. Also, for

sampling frequencies of 5 minutes, the Monte Carlo results indicate that the feasible

and infeasible inference can be made equivalent when certain asymptotic corrections

are included. In an empirical application, based on 5-minute S&P 500 futures data,

we find strong (semiparametric) evidence for presence of jumps in the stochastic

volatility, which are related with the price jumps.

There are several examples in the literature of estimating stochastic volatility mod-

els where certain realized measures are treated as their asymptotic limits. Bollerslev

and Zhou (2002) estimate affine jump-diffusion stochastic volatility models treating

the Realized Variance as the unobserved Quadratic Variation. Corradi and Distaso

(2006) provide theoretical justification for the GMM estimator, used in Bollerslev and

Zhou (2002), in the case of no price jumps. They also robustify the results to the

case when price jumps are present, but only jumps of finite activity are considered.

In such a case Corradi and Distaso (2006) use the Realized Bipower Variation as

a proxy for the unobservable Integrated Variance. Also, if jumps are present, Cor-

radi and Distaso (2006) are interested in the inference of parameters controlling the

Integrated Variance only.

To compare our results with the results in the related literature we outline the

main features of this paper. They are: (i) estimation of parameters controlling both

3



the continuous and the discontinuous component of the price is considered, (ii) the

joint behavior of the Realized Variance and the Realized Tripower Variation (Realized

Bipower Variation respectively) is analyzed, (iii) price jumps can be infinitely active

and can exhibit arbitrary time-variation (e.g. time-varying intensity), (iv) general

GMM estimator is considered.

Finally, the results in this paper are related with the literature on testing for jumps

using high-frequency data, cited at the beginning of the introduction. The main differ-

ence between those studies and the current work is that the non-parametric tests for

jumps are about properties of the observed path, while the current paper relies on long-

span (in addition to fill-in) asymptotics to make inference about (semi)parametric

models containing jumps.

The rest of the paper is organized as follows. Section 2 contains the theoretical

part. In Section 3 we conduct an extensive Monte Carlo analysis of the estimation

technique proposed in the paper. Section 4 contains an application to S&P 500 futures

data. Section 5 points out how the results in the paper can be extended to situations

where microstructure noise is present and concludes. The proof of all results are

contained in an Appendix.

2 Theoretical Results

This section contains the theoretical part of the paper. We start with specifying

the class of stochastic volatility models for which our analysis apply and then we

define the model-free realized measures that we use in the estimation. We finish with

deriving the asymptotic properties of the estimation based on the realized measures.

2.1 Data Generating Process and Realized Measures

Our analysis in this paper applies to models for the logarithmic asset price p(t) given

by

p(t) = p(0) +

∫ t

0

b(s)ds +

∫ t

0

σ1(s)dW (s) +

∫ t

0

∫

E

φ(s, x)µ̃(ds, dx), (1)
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where W (t) is a standard Brownian motion; µ is a Poisson random measure with

compensator ν(ds, dx) = dsG(dx), where G : E → R+ and E is some measurable

space; µ̃ := µ − ν; φ : R+ × E → R; the processes b(t) and σ1(t) and the stochastic

function φ(s, x) are arbitrary1. This specification of the price process nests most of

the models used in the literature. In particular, the price jumps are allowed to have

time-variation of arbitrary form (including time-varying intensity, see e.g. Theorem

14.80 in Jacod (1979)).

In this paper our unit of measurement will be one day. In the (unrealistic) case

of continuous price record, we can directly “observe” the quadratic variation and

its continuous and discontinuous components. The Quadratic Variation (hereafter

abbreviated as QV) over day t is given by

[p, p](t,t+1] =

∫ t+1

t

σ2
1(s)ds +

∫ t+1

t

∫

E

φ2(s, x)µ(ds, dx), (2)

while its continuous part, which we refer to as Integrated Variance (hereafter abbre-

viated as IV), is

IV(t,t+1] :=

∫ t+1

t

σ2
1(s)ds. (3)

In the continuous record case, we can easily estimate the parameters controlling σ2
1(t)

and the price jumps by making direct inference on QV and IV. In practice, we observe

the price only at discrete times and therefore such estimation is infeasible. However,

if we have high-frequency observations of the price during the day, we can make the

estimation feasible by substituting QV and IV with realized measures that proxy

them, which in turn are computed from the high-frequency data.

Formally our setting is as follows. On each day t we observe the price at times

t, t + δ, t + 2δ, ... for a total of M := b1/δc high-frequency returns. If ra(t) := p(t +

a)− p(t) for some a > 0 denotes the return over (t, t + a], then our feasible estimate

of QV is the Realized Variance (hereafter RV) defined as

RVδ(t) :=
M∑
i=1

r2
δ(t + (i− 1)δ). (4)

1We (implicitly) assume that the integrals in (1) are well defined. Assumptions A1-A3 of the
next subsection guarantee that.
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For estimating IV we construct (and later compare) two alternative estimators -

Realized Bipower Variation (hereafter BV) and Realized Tripower Variation (hereafter

TV). We define them as

TVδ(t) := µ−3
2/3

M∑
i=3

|rδ(t + (i− 3)δ)|2/3|rδ(t + (i− 2)δ)|2/3|rδ(t + (i− 1)δ)|2/3, (5)

BVδ(t) := µ−1
1

M∑
i=2

|rδ(t + (i− 2)δ)||rδ(t + (i− 1)δ)|, (6)

where µa = E(|u|a) for u ∼ N (0, 1). RV, BV and TV are also called realized

multipower variations (see e.g. Barndorff-Nielsen et al. (2005)). The usefulness of

these realized measures comes from the fact that, as we sample more frequently, RV is

consistent for QV, while BV and TV are consistent for IV, and the rate of convergence

for the three realized measures is
√

δ. Importantly, this result is model-free, i.e. it

does not depend on the particular parametric specification of (1).

2.2 Inference Based on Realized Measures

We proceed with the inference which is based on the realized measures introduced

in the previous subsection. The idea is to estimate the parameters controlling the

stochastic volatility and the price jumps by matching moments of QV and IV. To make

the estimation feasible, we substitute QV and IV in the GMM estimation with the

model-free measures RV, TV and BV, constructed from the high-frequency data on

each day. In this subsection we derive conditions under which the error in measuring

QV and IV does not influence asymptotically our results.

The statistical setup is as follows. The data generating process for the price p is

given by (1) and we have high-frequency observations of the price for a total of T days

with M high-frequency observations each day. We proceed with defining formally the

parameters, the data and the moments used in the estimation.

Definitions: (1) θ is a vector of parameters that controls σ2
1(t) and the price jumps

in (1).

(2) For an arbitrary day t, z(t) is a vector consisting of IV (t), QV (t) and a finite

number of their lags, while ẑ(t) is constructed from z(t) by substituting QV with RV
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and IV with TV or BV.

(3) m(z, θ) is a “moment function” vector; mT (θ) := 1
T

∑T
t=1 m(z(t), θ) and m̂T (θ) :=

1
T

∑T
t=1 m(ẑ(t), θ); WT is a weighting matrix constructed using {z(t)}t=1,..,T , which

converges in probability to some positive definite matrix; ŴT is constructed from WT

by replacing {z(t)}t=1,..,T with {ẑ(t)}t=1,..,T .

Since our goal is to be as general as possible, and therefore we did not specify

a parametric model for σ2
1(t) and the price jumps, here we define θ as some set of

parameters which control these processes. The only (obvious) requirement we (will)

impose is that the set of moments used in the estimation identify θ. We refer to

the empirical part of the paper for examples of θ and the moment function m(·, ·) in

(semi)parametric applications of our theoretical results. We proceed with the assump-

tions. In what follows for an arbitrary matrix A we denote ||A|| :=
√

Trace(A′A).

A1. (a) The process ξ(t) :=
(∫ t+1

t
σ2

1(s)ds,
∫ t+1

t

∫
E

φ2(s, x)µ(ds, dx)
)

is stationary,

ergodic and such that CLT holds for the sequence 1√
T

∑T
t=1(ξ(t)−E(ξ(t))) as T →∞.

(b) ∃ unique θ0 inside the compact parameter set Θ that solves m0(θ) = 0 for m0(θ) :=

E(m(z(t), θ)). mT (θ) converges to m0(θ) in probability uniformly on Θ.

(c) ∇θm(·, θ) exists and is continuous in θ. ∇θmT (θ) converges in probability uni-

formly on Θ. E (∇θm(z(t), θ0)) is of full column rank.

A2. There exist some real-valued processes σ2(s) and h(x) such that for every s ∈ R
and x ∈ E we have |φ(s, x)| ≤ |σ2(s)||h(x)| and

α := inf

{
γ ≥ 0 :

∫

E

1{|h(x)|≤1}|h(x)|γG(dx) < ∞
}

< 4/5. (7)

A3. b(t) is stationary and E |b(t)|p < ∞ for every p > 0; σ1(t) is stationary and

E |σ1(t)|p < ∞ for every p > 0; for σ2(t) of A2 assume that it is stationary and

E |σ2(t)|p < ∞ for every p > 0; for h(x) of A2 assume
∫

(−ε,ε)c eλ|h(x)|G(dx) < ∞ for

some ε > 0 and λ > 0.

A4. ||m(z + y, θ)−m(z, θ)|| ≤ ||C(θ)||||P (z + y)−P (z)|| for every z and y and some

matrix valued functions C(·) and P (·) such that P (z) has polynomial growth.

A5. ||∇θm(z + y, θ)−∇θm(z, θ)|| ≤ ||C(θ)||||P (z + y)−P (z)|| for every z and y and
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some matrix valued functions C(·) and P (·) such that P (z) has polynomial growth.

A6. ∇zm(z, θ0) exists for every z, is continuous in z, and has polynomial growth in

z.

Assumption A1 provides standard conditions, which guarantee that a GMM es-

timator based on the sample moment conditions, mT (θ), is consistent and asymp-

totically normal (see e.g. Newey and McFadden (1994) and Wooldridge (1994)). In

a particular parametric application, part (a) of A1 can be directly verified using for

example Theorem VIII.3.79 in Jacod and Shiryaev (2003) or using mixing conditions

(e.g. the ones in Masuda (2004) for the Lévy-driven CARMA processes that we esti-

mate in the empirical part2). Assumptions A2-A6 are additional assumptions which

guarantee that the measurement error ẑ(t) − z(t) does not influence asymptotically

the parameter estimation. A2 puts a constraint on the “activity” of the jumps in the

price, which is measured by the (generalized) Blumenthal and Getoor (1961) index3.

This assumption guarantees that TV (and BV) can disentangle the discontinuous part

of the quadratic variation “sufficiently” fast (as δ → 0). Assumption A3 contains the

integrability conditions. Some of these conditions could be further relaxed for special

cases of (1). We will make use of A3 in proving a uniform integrability result for the

centered (and scaled) TV and BV in Lemma 2 in the Appendix. Finally, assumptions

A4-A6 concern the moment function m(·, ·). They are satisfied if for example m(·, ·)
is polynomial in z.

Now we are ready to state our main result about the inference based on the realized

multipower variation statistics RV, TV and BV. It is given in the following Theorem.

Theorem 1 Set θ̂nf := argmin
θ∈Θ

mT (θ)′WT mT (θ) and θ̂f := argmin
θ∈Θ

m̂T (θ)′ŴT m̂T (θ).

(a) Suppose A1-A4 hold. Then for T →∞ and δ → 0 we have

θ̂f
p→ θ0. (8)

(b) Suppose A1-A6 hold. Then if T → ∞, δ → 0 and Tδ1−ε → 0 for some ε > 0

2See also Masuda (2007) (and references therein) for bounds of mixing coefficients of general
jump-diffusion processes.

3This assumption allows for jumps of infinite activity, but restricts them to be of finite variation.
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we have
√

T
(
θ̂f − θ0

)
d→ N (0, Avar(θ̂nf )). (9)

The estimator θ̂nf , defined in Theorem 1, is not feasible because it is based on (the un-

observable) QV and IV. Instead, the econometrician can plug in the GMM the feasible

but noisy measures of QV and IV, RV and BV (or TV), and estimate θ̂f . Theorem 1

provides conditions under which we do as good as θ̂nf in estimation (asymptotically),

by using the feasible θ̂f . For the consistency of θ̂f we do not need a condition for the

relative speed at which T → ∞ and δ → 0. However, for the asymptotic normality

result in part (b) of the Theorem we need to know the relative speed at which T →∞
and δ → 0. Intuitively, we need the number of high-frequency observations in each

of the days in the sample to go to zero slightly faster than the time span T goes to

infinity. We can slightly strengthen the result in part (b) of Theorem 1 by requiring

the weaker assumption Tδ → 0 for the following special case of (1)

dp(t) = b(t)dt +
√

V ⊥(t) + V ‖(t)dW (t) +
∫

Rn
0

h(x)µ̃(dt, dx), (10)

V ‖(t) =
∫ t

−∞

∫

Rn
0

g(t− s)k(x)µ(ds, dx) and V ⊥ ⊥ µ (V ⊥ is independent from µ), (11)

where µ is a n-dimensional Poisson random measure with compensator ν(ds, dx) =

dsG(dx), G : Rn
0 → R+; h : Rn

0 → R0, k : Rn
0 → R+; g : R+ → R+. This specification

is still quite general and can nest many popular models in the literature. For this

model, A3 can be given in slightly more primitive form stated as assumption A3
′
.

A3
′
. For the model (10)-(11) assume b(t) is stationary and E |b(t)|p < ∞;

∫∞
0
|g(s)|pds <

∞ for every p > 0;
∫
Rn

0
1|h(x)|>εe

λ|h(x)|G(dx) < ∞ and
∫
Rn

0
1k(x)>εe

λk(x)G(dx) < ∞
for some ε > 0 and λ > 0; g(·) is bounded around zero; V ⊥(t) is stationary and

E
∣∣V ⊥(t)

∣∣p < ∞ for every p > 0.

The next Corollary strengthens the result about the asymptotic equivalence of θ̂f and

θ̂nf of Theorem 1 when the data generating process for p(t) is given by (10)-(11).

Corollary 1 Suppose the data generating process for p is the model (10)-(11) and

assume that A1-A2, A3
′
and A4-A6 hold. In addition, suppose that z(t) does not
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include BV (t) or its lags. Then, if T → ∞, δ → 0 and Tδ → 0, we have the result

(9) in Theorem 1.

Note that even in this special case we need to exclude BV, however TV is present.

This suggests that TV will perform better in estimating IV, a fact that will be later

confirmed in the Monte Carlo. We mention that even the condition Tδ → 0 can be

weakened but under some restrictive assumptions, e.g. when we use only RV and a

specific set of moment conditions (see for example Corradi and Distaso (2006)).

Remark. In the analysis here, we (implicitly) assumed that the moment conditions

can be computed directly. However, in some applications this might not be the case,

because moments of QV and IV are not known in closed-form. In such scenarios we

will need to compute mT (θ), and hence m̂T (θ), via simulation. All of our preceding

results can be extended to such situations as in Corradi and Distaso (2006)4.

3 Monte Carlo Study

For empirical applications it is important to know whether, for feasible sampling

frequencies, QV and IV are reasonably approximated by their realized counterparts.

Our goal in this section is to compare the finite sample performance of a GMM

estimator based on RV and BV or TV with the infeasible one based on QV and IV.

3.1 Monte Carlo Setup

We work with the following stochastic volatility model

dp(t) = σ1(t)dW (t) +

∫

R0

k1xµ̃1(dt, dx), σ2
1(t) =

∫ t

−∞

∫

R0

e−ρ(t−s)k2xµ2(ds, dx), (12)

where k1 and k2 are constants and µ1 and µ2 are independent Poisson random

measures. This is the Non-Gaussian OU model of Barndorff-Nielsen and Shep-

4Corradi and Distaso (2006) analyze only the case when IV is used in the estimation. However,
note that QV-IV is just a sum of squared jumps, i.e. a finite variation jump process whose moments
we are interested in evaluating at a fixed point. Hence, for example, the case of Lévy price jumps
is absolutely trivial, since in this case the daily jumps are i.i.d. For certain time-nonhomogeneous
jump specifications, where Euler discretisation is needed, the results in Protter and Talay (1997),
Jacod (2004) and Bruti-Liberati and Platen (2007) can be applied to prove the convergence of the
simulated moment conditions to the true ones exactly as the proof of Theorem 2 of Corradi and
Distaso (2006).
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hard (2001). The compensators for the price and variance jumps are respectively

ν1(dt, dx) = dtG1(dx) and ν2(dt, dx) = dtG2(dx) where

G1(dx) = cp
e
− x2

2σ2
p

√
2πσp

dx or G1(dx) = cp
e−λp|x|

|x|1+αp
dx, cp > 0, λp > 0, αp ∈ [0, 2), (13)

G2(dx) = cv
e−λvx

x1+αv
I(x > 0)dx, cv > 0, λv > 0, αv ∈ [0, 1). (14)

The first compensator in (13) is of compound Poisson process with normally dis-

tributed mean-zero jumps, while the second one is of a symmetric tempered stable

process (Rosiński (2007)). G2 is the compensator of a tempered stable subordinator.

We note that the compound Poisson process has Blumenthal-Getoor index of

zero, while the Blumenthal-Getoor index of the tempered stable process is equal to

the parameter αp. In the Monte Carlo study we look at the following values for

αp: 0, 0.1 and 0.5. Previous work (e.g. Bollerslev and Zhou (2002), Corradi and

Distaso (2006)) has considered only the case of compound Poisson price jumps, thus

we use this simulation scenario as a benchmark to compare with the more general

(and active) jump specifications that our estimation technique encompasses.

In all cases we set ρ = 0.07, corresponding to half-life of a shock to the stochastic

variance of approximately 10 days. The parameters of the jumps in the price and

in the variance are chosen so that the variance of the continuous price component is

always 1.0, while that of the price jumps is always 0.1. The resulting contribution

of the price jumps in the total price variation is within the range of values found in

high-frequency financial data. The parameter values in all simulation scenarios are

given in Appendix F.

Finally, we work with numbers of intraday observations which are practically fea-

sible: M = 100 and M = 300. The two choices correspond to sampling approximately

every 5 minutes in a 6.5 and 24 hour trading days. The number of days in each Monte

Carlo draw is set to 3000 days which corresponds to approximately 12 years of daily

data and the number of Monte Carlo replications is 1000.
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3.2 Details on the Estimators

The jumps in the price and the variance of the simulated model (12) are quite richly

parameterized. This is important for the Monte Carlo as it gives us the flexibility to

investigate different scenarios. Estimation of all the parameters of the price and vari-

ance jumps will require an efficient estimator which takes into account the particular

parametric specification of the jumps. Here we adopt a simpler approach. Instead

of estimating all the parameters of the price and variance jumps we estimate only

cumulants of these processes. Such an approach is used also in Barndorff-Nielsen

and Shephard (2006b) in the context of quasi-maximum likelihood. This estimator

is convenient for comparing different semiparametric classes of stochastic volatility

models with minimal distributional assumptions, as illustrated later in the empirical

part. The parameters which are estimated are

ρ,
1

ρ

∫

R0

k2xG2(dx),

∫

R0

k2
1x

2G1(dx),

√∫

R0

k2
2x

2G2(dx),

√∫

R0

k4
1x

4G1(dx).

The second and the third parameters correspond to the means of the stochastic vari-

ance, σ2
1(t), and the squared price jumps respectively. The last two parameters are

the standard deviations of the variance jumps and the squared price jumps respec-

tively. Altogether we have 5 parameters. We use the following moments for their

estimation: (1) mean and variance of IV, (2) mean and variance of QV and (3) auto-

correlation of IV for lags 1, 3 and 6. Thus, we have 7 moment conditions resulting in

2 overidentifying restrictions. We use optimal weighting matrix in the GMM. For its

calculation we compute a HAC estimator with Parzen kernel and lag-length of 80.

We compare the performance of 5 different estimators. The first one is the infea-

sible one, based on QV and IV. For the other estimators QV is replaced with RV and

IV with BV or TV, for the two different cases of number of intraday observations

M = 100 and M = 300. We note that the case of using RV and BV is similar to the

estimation in Corradi and Distaso (2006)5.

5However, Corradi and Distaso (2006) consider only estimation of parameters controlling σ2
1(t)

and only in the context of finite activity price jumps (as in the first simulation scenario here).
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3.3 Monte Carlo Results

The results from the Monte Carlo are reported in Tables 1-8 and Figures 1-4. We

summarize them as follows.

Estimation based on QV and IV. The results for this case are reported in Panels

A in Tables 1-8. As expected, the hardest parameters to estimate are the persistence

parameter ρ and the standard deviations of the variance and squared price jumps.

For the standard deviation parameters the mean and the median are slightly different

indicating departure from normality. These two parameter estimates are also slightly

downward biased.

Estimation based on RV and BV. We start with the case when the number of

intraday observations is M = 100. Panels B in Tables 1-8 report the Monte Carlo

results for this estimator. The first thing to note is that almost all parameter estimates

have systematic biases. The only exception is the estimate of ρ. The parameter

estimate of the mean of σ2
1(t) is significantly upward biased, while the estimate of the

variance of the price jumps is substantially downward biased. Thus, the contribution

of the price jumps in the total price variation is underestimated. Also, the estimate

of the standard deviation of the variance jumps is significantly upward biased. On

the other hand, the estimate of the standard deviation of the squared price jumps is

downward biased. The RMSE of the parameter estimates are significantly higher than

the corresponding ones for the infeasible estimator. The J test indicates significant

misspecification. The situation improves when the number of intraday observations

increases from M = 100 to M = 300. The Monte Carlo results when M = 300 are

reported in Panels C of Tables 1-8. In the case of M = 300 the bias in the estimates is

reduced, the only exception being the estimate of ρ where a downward bias appears6.

Also, the RMSE-s of the estimates are substantially reduced, though still higher (in

most cases) than the corresponding ones for the infeasible estimator. Finally, the

values of the J test are significantly smaller (as compared with the case M = 100),

but the test still signals model misspecificarion.

Estimation based on RV and TV. Panels D and E in Tables 1-8 report the results

6However, the RMSE of ρ for M = 300 is still lower than for the case M = 100.
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from the Monte Carlo when RV and TV are used in the estimation for M = 100 and

M = 300 respectively. Comparing the estimator based on RV and BV with the

estimator based on RV and TV we see that, for all different cases, the estimator

based on RV and TV does a much better job. First, when RV and TV are used

in the GMM, the estimate of the mean of σ2
1(t) is still upward biased but the bias

is smaller. Second, the estimate of the variance of the price jumps when RV and

TV are used is practically unbiased, while when RV and BV are used this estimate

is significantly downward biased. Third, the downward bias in the estimate of the

standard deviation of the squared price jumps is reduced when BV is replaced with

TV (and even disappears in the compound Poisson case). Finally, the estimates of

these three parameters have smaller RMSE-s. The other two parameters (ρ and the

standard deviation of the variance jumps) have comparable performance in the cases

when either TV or BV is used to substitute for the unobservable IV. Interestingly,

TV has superior performance over BV in estimation even when the price jumps are

finitely active with low frequency of arrival, see Tables 1-2 7. Increasing the sampling

frequency has a similar effect on the properties of the estimates as when RV and BV

are used. Finally in both cases, M = 100 and M = 300, when RV and TV are used

in the GMM the J test signals model misspecification. The values of the J test in the

case of M = 300 are smaller than in the case M = 100, but still relatively high.

Overall, we conclude that among the feasible estimators the best performing are

the ones in which TV is used as an estimate of the infeasible IV. Therefore, in the

further analysis we focus only on estimators based on RV and TV 8. To improve the

performance of the feasible estimators we use the following CLT result for TV and

RV (which holds for the general model (1) under the assumptions of the previous

section), see Barndorff-Nielsen et al. (2006) and Jacod (2006)

7When no price jumps on a given day, BV is more efficient (asymptotically) than TV. In the
Monte Carlo scenario with compound Poisson jumps, we have on average only 300 out of the 3000
days in the sample with jumps.

8Another reason not to consider BV is that the presence of price jumps affects a CLT for it
derived in the continuous price case; see Barndorff-Nielsen et al. (2006).
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δ−1/2

(
TVδ(t)−

∫ t+1

t
σ2

1(u)du

)
law−→

√
2

∫ t+1

t
σ2

1(u)dW 1(u) +
√

1.0613
∫ t+1

t
σ2

1(u)dW 2(u),

δ−1/2

(
RVδ(t)−

∫ t+1

t
σ2

1(s)ds−
∫ t+1

t

∫

E
φ(s, x)µ(ds, dx)

)
law−→ L1(t) + L2(t), (15)

L1(t) =
∫ t+1

t

√
2σ2

1(u)dW 1(u) and L2(t) =
∑

t<s≤t+1

2∆ps

(√
κsusσ1(s−) +

√
1− κsu

′
sσ1(s)

)
,

where W = (W 1, W 2) is a standard Wiener process, κs ∼ U [0, 1], us ∼ N (0, 1),

u′s ∼ N (0, 1). Furthermore the process W and the sequences (κs), (us), (u′s) are

independent of each other, are defined on an extension of the original probability

space and are independent from the process p. The above CLT results suggest using

the following approximations for the variance of TV and RV in the estimation of (12)

Var (TVδ(t)) ≈ Var (IV (t)) +
3.0613

M
E

(∫ t+1

t

σ4
1(u)du

)
, (16)

Var (RVδ(t)) ≈ Var (QV (t))+
2
M
E

(∫ t+1

t
σ4

1(u)du

)
+

1
M

∫

R0

k2
1x

2G1(dx)E
(∫ t+1

t
σ2

1(s)ds

)
.

(17)

That is, in addition to the variance of IV and RV respectively, we add correction terms

of order O(δ) in approximating the variance of TV and RV. These correction terms

will have no asymptotic effect in the estimation (provided the condition Tδ1−ε → 0

in Theorem 1 holds), but can lead to finite sample improvements. We note that

the CLT results suggest no correction terms for the mean and autocovariance of TV

and RV, i.e. we still use the corresponding moments of their infeasible limits. The

estimation results with the corrections in the variance of RV and TV are reported in

Panels F and G of Tables 1-8. We can see that all biases in the parameter estimates

are practically eliminated. Moreover, the RMSE-s for all parameter estimates are

comparable with the ones of the infeasible estimation. Importantly, this holds true

both for M = 100 and M = 300. Turning to the J tests, we see that they do not signal

model misspecification anymore. When M = 100 there is very slight overrejection,

but it disappears for M = 300.
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4 Empirical Application

This section applies the general result of Section 2 to the estimation of two semi-

parametric stochastic volatility models. We first describe the data used in the study

and specify the set of moments used in the estimation. Following that we define the

models that are estimated and briefly discuss the estimation results.

4.1 Data and Moments used in the Estimation

For the empirical application we use continuously-compounded five-minute returns

on the S&P 500 futures contract. The data spans the period from January 2, 1990,

till November 29, 2002. The total number of days in the data set is 3256, each of

which consists of 80 five-minute continuously compounded returns covering the day

trading session from 9:30am till 4:15am. For each day we calculate RV and TV, using

the high-frequency returns over that day, as given in equations (4) and (5).

We estimate the models using the technique of Section 2. In addition to RV

and TV, we compute from the high-frequency data on each day the Realized Forth

Variation (hereafter abbreviated as FV), which we define as

FVδ(t) =
M∑
i=1

r4
δ(t + (i− 1)δ).

This statistic is useful since, for δ close to zero, it is capturing the sum of the price

jumps raised to the power four. The moment conditions used in the estimation of the

models are: mean and variance of IV; autocorrelation of IV; mean and variance of

QV; mean of FV. The infeasible QV and IV are replaced with RV and TV. For the

autocorrelation in IV, we use lags 1, 3 and 6 as well as the average autocorrrelation

for lags 11− 20, 21− 30 and 31− 40. Altogether we end up with 11 moment condi-

tions. To improve the performance, as discussed in Section 3, we use the asymptotic

approximations in (16) and (17)9. For the two models we are going to estimate, the

moments used in the estimation are available in closed-form and can be found in

Todorov (2008).

9For the approximation of RV we have an additional term reflecting the dependence of the price
and variance jumps. This term is easy to derive for the different models estimated here using the
CLT result in (15).
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4.2 Model Specification

In this subsection we define the two models that we estimate in the paper. Both of

the models are nested in the general stochastic volatility model defined in (1) as well

as in its special case given in (10)-(11). Common feature for the estimated models

is that the jumps in the price are time-homogeneous. The two models differ in their

specification of σ2
1(t).

Two-factor Affine Jump-Diffusion Model. This model falls in the widely-used

affine jump-diffusion models of Duffie et al. (2000). Distinctive feature of the model

is that the stochastic variance of the continuous martingale is diffusive, i.e. it has no

jumps. The model dynamics is given with the following equations

dp(t) = bdt +
√

V1(t) + V2(t)dW (t) +

∫

Rn
0

h(x)µ̃(dt, dx), (18)

dVi(t) = κi(V i − Vi(t))dt + σiv

√
Vi(t)dBi(t), i = 1, 2, (19)

where b is some constant and B1(t) and B2(t) are two independent standard Brow-

nian motions (they might be correlated with W (t)). h : Rn
0 → R0 and µ is homo-

geneous Poisson measure with compensator ν(ds,x) = dsG(dx), where G : Rn
0 →

R+. To avoid identification problems in the estimation, we make the following re-

parametrization. We set ζ := V 1 + V 2 and σi := σiv

√
V i

2κi
for i = 1, 2. σ2

i is the

variance of Vi(t). Therefore, the stochastic volatility parameters we estimate are ζ

and κi, σi for i = 1, 2.

The jumps in the price are Lévy and for the estimation we do not specify them

parametrically. Instead, as in the Monte Carlo study, we model the second and

the forth cumulants which are needed for the GMM-type estimator used here (with

moments specified in the previous subsection), i.e. we estimate as free the nonnegative

parameters
∫
Rn

0
h2(x)G(dx) ≥ 0 and

∫
Rn

0
h4(x)G(dx) ≥ 0.

CARMA(2,1)-Jump-Driven SV Model10. This model was analyzed in Brockwell

(2001a) and Todorov and Tauchen (2006) among others. It has the distinctive feature

that the stochastic variance, σ2
1(t), is solely driven by jumps. The CARMA(2,1) kernel

10CARMA stands for continuous autoregressive moving-average.
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(for definition and properties of CARMA models see Brockwell (2001b)) implies the

same autocorrelation of IV as in the two-factor affine jump-diffusion model. The

model dynamics is given by

dp(t) = bdt + σ1(t)dW (t) +
∫

Rn
0

h(x)µ̃(dt, dx), (20)

σ2
1(t) =

∫ t

−∞

∫

Rn
0

g(t− s)k(x)µ(ds, dx), g(u) =
b0 + ρ1

ρ1 − ρ2
eρ1u +

b0 + ρ2

ρ2 − ρ1
eρ2u, u ≥ 0, (21)

where b is some constant; h : Rn
0 → R0, k : Rn

0 → R+, µ is a homogeneous Pois-

son measure with compensator ν(ds, dx) = dsG(dx). g(·) in equation (21) is the

CARMA(2,1) kernel and hence the name of the model.

The jumps in the price and the variance in the stochastic volatility model are Lévy

jumps. In the estimation of the CARMA(2,1)-jump-driven stochastic volatility model

we do not parametrize the Poisson measure µ, neither we specify the functions h(·)
and k(·) which determine the jump size. Instead, we estimate only the cumulants as-

sociated with the jumps in the price and the variance which are needed for the estima-

tion of the model by the GMM estimator outlined in the previous subsection. These

cumulants are
∫
Rn

0
h2(x)G(dx),

∫
Rn

0
h4(x)G(dx),

∫
Rn

0
k(x)G(dx),

∫
Rn

0
k2(x)G(dx) and

∫
Rn

0
h2(x)k(x)G(dx). The cumulants are treated as free (nonnegative) parameters in

the estimation. However, to guarantee that there exists a Poisson measure µ and func-

tions h(·) and k(·) such that the corresponding cumulants are equal to the estimated

parameters, we restrict
∫
Rn

0
h2(x)k(x)G(dx) ≤

√∫
Rn

0
k2(x)G(dx)

∫
Rn

0
h4(x)G(dx).

4.3 Estimation Results

The results from the estimation of the two models are reported in Table 9. Here we

provide discussion of these results. First, one-factor restrictions of the current models

are strongly rejected. Second, when σ2
1(t) is modelled with a square-root process,

the fit is relatively bad. The reason for this is that the square-root process cannot

generate enough volatility in IV to match the observed one. While this fact does

not necessarily imply that σ2
1(t) contains jumps (since our conclusion is solely based

on distributional properties of IV), it does indicate that models with jumps in the
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stochastic variance are more plausible and will provide a better fit. This is exactly

the case here as we can see comparing Panel A and Panel B of Table 9.

We analyze closer the best performing model, i.e. the CARMA(2,1)-jump-driven

SV model. First, one of the estimated autoregressive roots corresponds to a persis-

tent factor in the volatility (with half-life of 18 days) while the other one corresponds

to a quickly mean-reverting factor (with half-life of half day). These results are in

line with many other studies estimating two-factor type stochastic volatility models.

Second, the results show that the price has a non-trivial jump component. The price

jumps contribute around 15% in the total price variation, which is in line with the

non-parametric results of Barndorff-Nielsen and Shephard (2006a), Andersen et al.

(2007) and Huang and Tauchen (2005). We proceed with analysis of the depen-

dence structure of the jumps. The value of
∫
Rn

0
h2(x)k(x)G(dx) indicates whether

there is a relationship between the jumps in the stochastic variance, σ2
1(t), and the

price jumps. If the value of the last integral is equal to zero this will imply inde-

pendence, while positive value corresponds to dependence. The t-statistic associated

with
∫
Rn

0
h2(x)k(x)G(dx) is 3.87, which is well above the critical value of 1.65. This

indicates dependence between price and variance jumps.

The simplest way of modeling the dependence between the jumps is to set the

jumps in the variance proportional to the jumps in the price, i.e. to set the jump

functions as k(x) ∝ h(x). However, such modeling of the dependence is too restrictive

since it implies that price jumps are of the same sign. Another way to model the jump

dependence is to set the jumps in the variance proportional to the jumps in the price,

i.e. to set k(x) ∝ h2(x). Such modeling has analogy with the GARCH models in

discrete time and was analyzed in Todorov (2008). This dependence structure does

not restrict the sign of the price jumps. The hypothesis that the variance jumps are

proportional to the squared price jumps has a testable implication. Mainly,

√∫

Rn
0

k2(x)G(dx)

∫

Rn
0

h4(x)G(dx) ≡
∫

Rn
0

h2(x)k(x)G(dx).

The three integrals in the above equality are estimated as free parameters and there-

fore we can test whether they satisfy the above restriction. We note that this equality
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implies perfect correlation between the squared price jumps and the variance jumps.

The t-statistic associated with the restriction is 2.45 with corresponding p-value of

0.0071. This implies that the hypothesis that the variance jumps are proportional

to the squared price jumps can be rejected. Thus, we can conclude that neither of

the two extreme cases of dependence hold. That is, the squared price jumps and the

variance jumps seem to be dependent, but this dependence is not perfect. Therefore

we need richer parametrization of the dependence between the jumps.

5 Concluding Remarks and Extension to the Case

of Noisy Observations

This paper proposes and implements inference for continuous-time stochastic volatil-

ity models, based on matching moments of realized measures of continuous and dis-

continuous QV, constructed from high-frequency data. We derive conditions under

which the substitution of QV with RV and IV with BV or TV does not influence

asymptotically the GMM estimation. We conclude with a brief discussion on how to

extend the results in this paper to situations where the data is observed with noise.

This is well-known to be the case for financial data sampled at very high fre-

quencies. The so-called microstructure noise at such frequencies renders our realized

measures RV, BV and TV, and hence the estimation based on them, inconsistent.

One way to “deal” with microstructure noise is to ignore it and sample not so fre-

quently, e.g. at 5 minutes, the idea being that at such frequencies the impact of the

microstructure noise is negligible. This approach has been followed in most studies

that deal with jumps using high-frequency data and we also adopted it in our empir-

ical application. However, this leads to discarding a lot of (potentially) useful data.

If we want to apply our results to very high-frequencies we need realized measures of

QV and IV that are robust to microstructure noise. Formally, instead of observing

the “efficient” log-price p(t) we now assume that we observe p̃(t) = p(t) + ε(t), where

ε(t) is i.i.d. noise with finite moments11. When p(t) contains no jumps, estimators

11For p(t) we continue to assume that A1-A6 hold. Also, some of the results in this section can
be further generalized to non-i.i.d. noise specifications, see Jacod et al. (2007).
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of QV robust to noise have been derived already, see Barndorff-Nielsen et al. (2006),

Zhang et al. (2005) and Zhang (2006). These estimators can be used in estimation of

models containing no jumps, see e.g. Corradi and Distaso (2006). The challenge lies

in the case when we (can) have jumps in the price and further the price is contami-

nated by microstructure noise. In this case, we propose to substitute RV (t), BV (t)

and TV (t) with the following robust to noise realized measures

R̃V δ(t) :=

√
δ

ψ2τ

M−kM+1∑
i=0

|r̄δ(t + iδ)|2 − ψ1δRVδ(t)

2τ 2ψ2

, (22)

T̃ V δ(t) :=

√
δ

ψ2τµ3
2/3

M−3kM+1∑
i=0

|r̄δ(t+iδ)|2/3|r̄δ(t+(i+kM)δ)|2/3|r̄δ(t+(i+2kM)δ)|2/3−ψ1δRVδ(t)

2τ 2ψ2µ3
2/3

,

(23)

B̃V δ(t) :=

√
δ

ψ2τµ2
1

M−2kM+1∑
i=0

|r̄δ(t + iδ)||r̄δ(t + (i + kM)δ)| − ψ1δRVδ(t)

2τ 2ψ2µ2
1

, (24)

r̄δ(t + iδ) :=

kM−1∑
j=1

η

(
j

kM

)
rδ(t + (i + j)δ), kM := bτ/

√
δc, for some τ > 0, (25)

ψ1 =

∫ 1

0

(η′(s))2ds, ψ2 =

∫ 1

0

(η(s))2ds, (26)

where η : [0, 1] → R is C1 with piecewise Lipschitz derivative and further η(0) =

η(1) = 0 and
∫ 1

0
η2(u) > 0 12. R̃V (t) has been proposed in Jacod et al. (2007) as an

estimator of QV (t) (but in the continuous case), building on work by Podolskij and

Vetter (2007). The estimators B̃V (t) and T̃ V (t) follow from a generalization, as in

Jacod et al. (2007), of the pre-averaged multipower variation estimators of Podolskij

and Vetter (2007) 13. The intuition behind these estimators is very simple. We

substitute the high-frequency increments in computing RV, TV and BV with local

averages constructed from the adjacent future high-frequency increments. The length

of the local averaging is determined by kM which increases at a certain rate as we

sample more frequently. The second terms in (22)-(24) correct for the bias created

by the averaging of the noise.

12An example of η used in Jacod et al. (2007) is η(s) = s ∧ (1− s).
13The generalization is in the weighting of the increments in (25), which leads to efficiency gains.
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These estimators are consistent for QV and IV in the simultaneous presence of

jumps and noise, and therefore estimation based on them will be consistent (i.e.

Theorem 1, part (a) will hold). By extending the analysis of Podolskij and Vetter

(2007)14, it should be possible to prove also that B̃V δ(t) and T̃ V δ(t) converge to

IV (t) at rate δ1/4. The rate of convergence of R̃V δ(t) (in the case of jumps) has not

been established yet. Thus, the asymptotic equivalence result of Theorem 1, part (b)

should remain valid, at least when only T̃ V δ(t) (or B̃V δ(t)) is used in the estimation,

provided the rate condition Tδ1−ε is replaced by the stronger one Tδ1/4−ε for some

ε > 0. We leave for future work the complete analysis of the estimation based on the

robust measures in (22)-(24).

Appendices

A Notation and some preliminary estimates

First, we introduce some notation to be used later in the proofs. The return over

the interval (t, t + δ] can be broken into rδ(t) = rd
δ (t) + rc

δ(t) + rj
δ(t), where rd

δ (t) :=
∫ t+δ

t
b(s)ds, rc

δ(t) :=
∫ t+δ

t
σ1(s)dW (s) and rj

δ(t) :=
∫ t+δ

t

∫
E

φ(s, x)µ̃(ds, dx). Denote

with X(t) the continuous martingale X(t) :=
∫ t

0
σ1(s)dW (s) and with Y (t) the dis-

continuous martingale Y (t) :=
∫ t

0

∫
E

φ(u, x)µ̃(du, dx). In all proofs we will denote

with K constant that does not depend on δ and which can change from line to line.

The following bounds are easy to derive using our assumptions for arbitrary p ≥ 0.

E|rd
δ (t)|p ≤ Kδp, E|rc

δ(t)|p ≤ Kδ
p
2 , E|rj

δ(t)|p ≤ Kδmin{p,1},E|rδ(t)|p ≤ Kδmin{ p
2
,1}.

(A.1)

We can obtain stronger bounds for the jump part if we remove the compensator (recall

(7)), i.e. if we make the decomposition c(t) := rd
δ (t) + rc

δ(t)−
∫ t+δ

t

∫
E

φ(s, x)dsG(dx)

and d(t) := rj
δ(t) +

∫ t+δ

t

∫
E

φ(s, x)dsG(dx). Then we have

E (|d(t)|p) ≤ Kδmin{ p
α+ε

,1}, for ∀ε > 0 (A.2)

14Their proof is for the continuous case, but generalization to the case of price jumps can be done
easily using the same approach as for the proof of Lemma 1 and 2 of this paper.
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where α is the index defined in (7) and we set p
0

= ∞. Using similar arguments as for

the proof of (A.1)-(A.2) and Hölder’s inequality we can extend (A.1)-(A.2) as follows.

Suppose that the intervals (t1, t1+δ], ..., (tn, tn+δ] are arbitrary, but non-overlapping.

Let p = max{i : ki ≤ 2}, then we have

E
(|rδ(t1)|k1 ...|rδ(tn)|kn

) ≤ Kδτ , τ =
k1 + k2 + ...kp

2
+ n− p− ε, for ∀ε > 0.

(A.3)

and the constant K does not depend on t1, ..., tn. Further, if for ∀i ki ≤ 2, then the

above holds with ε = 0. Similar to the result in (A.3) we have

E (c(t1)
p1 ...c(tk)

pkd(s1)
q1 ...d(sn)qn) ≤ Kδτ , (A.4)

where τ = p1+...+pk

2
+ min{ q1

α
, 1}+ ... + min{ qn

α
, 1} − ε, for ∀ε > 0.

B Lemma 1

Lemma 1 In the stochastic volatility model (1) assume A2 and A3 hold. Then for

every t ≥ 0 and every p > 0 we have

sup
δ
E (RVδ(t))

p < ∞, sup
δ
E (TVδ(t))

p < ∞, sup
δ
E (BVδ(t))

p < ∞. (B.1)

Proof. It is sufficient to establish the result for p ≥ 1 and integer. So we assume

from now on that this is the case. We start with the Realized Variance. We have

(RVδ(t))
p ≤ K

(
RV d

δ (t)
)p

+ K (RV c
δ (t))p + K

(
RV j

δ (t)
)p

, (B.2)

where RV d
δ (t) :=

∑M
i=1 |rd

δ (t + (i − 1)δ)|2, RV c
δ (t) :=

∑M
i=1 |rc

δ(t + (i − 1)δ)|2 and

RV j
δ (t) :=

∑M
i=1 |rj

δ(t + (i− 1)δ)|2.
We prove the uniform integrability of each of the three terms on the right hand

side of the above inequality. For the first two terms this is straightforward and follows

directly from the preliminary results. We show uniform integrability of
(
RV j

δ (t)
)p

,

for which it suffices to show that
(
RV j

δ (t)− ∫ t+1

t

∫
E

φ2(s, x)µ(ds, dx)
)p

is uniformly

integrable. Using Ito’s formula we have

RV j
δ (t)−

∫ t+1

t

∫

E

φ2(u, x)µ(du, dx) =
M∑
i=1

yδ(t + (i− 1)δ),
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where yδ(t) = 2
∫ t+δ

t

∫
E
(Y (u−) − Y (t))φ(u, x)µ̃(du, dx). We start with providing a

bound for the p-th absolute moment of yδ(0). Using the integrability assumption for

the process σ2(u) and with a successive application of the Burkholder-Davis-Gundy

inequality for p ≥ 1 we get

E
∣∣∣∣
∫ δ

0

∫

E

2Y (u−)φ(u, x)µ̃(du, dx)

∣∣∣∣
p

≤ K

∫ δ

0

E (|Y (u)|p|σ2(u)|p) du

∫

E

|h(x)|pG(dx).

Applying Hölder’s inequality we have E (|Y (u)|p|σ2(u)|p) ≤ Ku
1

1+ε , and therefore

E (yδ(0))p ≤ Kδ2−ε for ∀p ≥ 1 and ∀ε > 0. This can be further generalized. First, as

above for p ≥ 1 using Burholder-Davis-Gundy inequality, we can write

Et |yδ(t)|p ≤ KEt

(∫ t+δ

t

|Y (u−)− Y (t)|p|σ2(u−)|pdu

) ∫

E

|h(x)|pG(dx),

where Et is a shorthand for E (·|Ft). Therefore, using law of iterated expectations

and Hölder’s inequality, we have

E (|yδ(t1)|p1 ...|yδ(tk)|pk) ≤ Kδk+1−ε, for ∀ε > 0, (B.3)

where pi ≥ 1 and ti > ti−1 + δ for i = 1, ..., k. With this we are ready to prove the

uniform integrability of (RV j
δ (t))p. For a positive integer p,

(∑M
i=1 yδ(t + (i− 1)δ)

)p

has a typical term of the form yδ(t1)
p1 ...yδ(tk)

pk , where 1 ≤ k ≤ p; p1, p2, ..., pk are

positive distinct integers such that p1 + p2 + ... + pk = p; t1, ..., tk are distinct and

all in the interval (t, t + 1]. For given p1, p2, ..., pk there are
(

M
k

)
of these elements.

Therefore it is sufficient to show that E (yδ(t1)
p1 ...yδ(tk)

pk) = O(δk). But this is an

easy consequence of the result in (B.3). Hence we proved that for ∀p ≥ 1 we have

sup
δ
E

(
RV j

δ (t)−
∫ t+1

t

∫

E

φ2(u, x)µ(du, dx)

)p

< ∞,

and from here we get the uniform integrability result in (B.1).

We continue with proving the uniform integrability of (TVδ)
p. It has a typical

term of the form Kap1

i1
ap2

i2
...apk

ik
, where 1 ≤ k ≤ p; p1, p2, ..., pk are positive distinct

integers such that p1 +p2 + ...+pk = p; i1,...,ik are distinct integers between 1 and M ;

ai = |rδ(t+(i−2)δ)| 23 |rδ(t+(i−1)δ)| 23 |rδ(t+iδ)| 23 for i ≥ 2 (a1 and a2 are set to zero).

To prove the uniform integrability of (TVδ)
p it suffices to show that E

(
ap1

i1
ap2

i2
...apk

ik

)
=
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O(δk) in the case when there is no overlapping of returns in the terms ai and that

E
(
ap1

i1
ap2

i2
...apk

ik

)
= O(δk−ε) for some ε > 0 when there is some overlapping of the

returns in the terms ai. First, when there is no overlapping of returns in the terms ai

we have E
(
ap1

i1
ap2

i2
...apk

ik

)
= O(δd), where d = 3 min{p1

3
, 1 − ε} + ... + 3 min{pk

3
, 1 − ε}

for some ε > 0. It is clear that d ≥ p ≥ k.

We establish the result when there is overlapping of returns in the ai terms. It is

sufficient to show this when there is maximum overlapping of returns, i.e. ti1 , ..., tik

being consecutive. Without loss of generality we set i1 = 3. In this case we can write

ap1

i1
ap2

i2
...apk

ik
= |rδ(t + δ)| 23p1|rδ(t + 2δ)| 23 (p1+p2)|rδ(t + 3δ)| 23 (p1+p2+p3)|rδ(t + 4δ)| 23 (p2+p3+p4)...

|rδ(t + kδ)| 23 (pk−2+pk−1+pk)|rδ(t + (k + 1)δ)| 23 (pk−1+pk)|rδ(t + (k + 2)δ)| 23pk ,

and since pi ≥ 1 we have 2
3
(pi−2 + pi−1 + pi) ≥ 2 for i ≥ 2. Therefore using the result

in (A.3) we have E
(
ap1

i1
ap2

i2
...apk

ik

)
= O(δd), where d = min{p1

3
, 1} + min{p1+p2

3
, 1} +

k − 2 + min{pk−1+pk

3
, 1}+ min{pk

3
, 1} − ε for every ε > 0 and therefore d ≥ k − ε and

this proves the second claim in (B.1).

We prove the uniform integrability result for (BVδ(t))
p in the same way. The

typical term of (BVδ(t))
p is Kap1

i1
ap2

i2
...apk

ik
, where 1 ≤ k ≤ p; p1, p2, ..., pk are positive

distinct integers such that p1 + p2 + ... + pk = p; i1,...,ik are distinct integers between

1 and M ; ai = |rδ(t + (i − 1)δ)||rδ(t + iδ)| for i ≥ 1 (a1 is set to zero). When

there is no overlapping in the returns of the terms ai (i.e. no consecutive ij) we have

E
(
ap1

i1
ap2

i2
...apk

ik

)
= O(δd), where d = 2 min{p1

2
, 1− ε}+ ... + 2 min{pk

2
, 1− ε} for some

ε > 0. It is clear that d ≥ p ≥ k.

In the case of overlapping returns in the ai terms we look at the worst case when

ti1 , ..., tik are consecutive. Without loss of generality we set i1 = 2. In this case we

can write

ap1

i1
ap2

i2
...apk

ik
= |rδ(t+δ)|p1|rδ(t+2δ)|(p1+p2)|rδ(t+3δ)|(p2+p3)...|rδ(t+kδ)|(pk−1+pk)|rδ(t+(k+1)δ)|pk ,

and since pi ≥ 1 we have pi−1 + pi ≥ 2 for i ≥ 1. Therefore using the result in (A.3)

we have E
(
ap1

i1
ap2

i2
...apk

ik

)
= O(δd), where d = min{p1

2
, 1} + k − 1 + min{pk

2
, 1} − ε for

every ε > 0 and therefore d ≥ k − ε. This proves the last claim in (B.1). ¤
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C Lemma 2

Lemma 2 In the stochastic volatility model (1) assume A2 and A3 hold. Then for

every t ≥ 0 and ε > 0 we have

sup
δ

δ−1+εE
(

RVδ(t)−
∫ t+1

t

σ2
1(s)ds−

∫ t+1

t

∫

E

φ2(s, x)µ(ds, dx)

)2

< ∞, (C.1)

sup
δ

δ−1E
(

TVδ(t)−
∫ t+1

t

σ2
1(s)ds

)2

< ∞, sup
δ

δ−1+εE
(

BVδ(t)−
∫ t+1

t

σ2
1(s)ds

)2

< ∞.

(C.2)

Proof. We start with the result for RV. We provide an upper bound for the

expression in (C.1). We use the following inequality

E
(

RVδ(t)−
∫ t+1

t

σ2
1(s)ds−

∫ t+1

t

∫

E

φ2(s, x)µ(ds, dx)

)2

≤ 6E
(

RV c
δ (t)−

∫ t+1

t

σ2
1(s)ds

)2

+ 6E
(

RV j
δ (t)−

∫ t+1

t

∫

E

φ2(s, x)µ(ds, dx)

)2

+24E

(
M∑
i=1

|rc
δ(t + (i− 1)δ)||rj

δ(t + (i− 1)δ)|
)2

+ 24E

(
M∑
i=1

|rj
δ(t + (i− 1)δ)||rd

δ (t + (i− 1)δ)|
)2

+6E
(
RV d

δ (t)
)2

+ 24E

(
M∑
i=1

|rc
δ(t + (i− 1)δ)||rd

δ (t + (i− 1)δ)|
)2

. (C.3)

We proceed with bounding each of the terms on the right hand side of (C.3).

Using our preliminary estimates, it is easy to show that the last four terms on the

right hand side of the above inequality are bounded by Kδ1−ε for ∀ε > 0. For the

first term on the right hand side of (C.3) easy transformations give

E
(

RV c
δ (t)−

∫ t+1

t

σ2
1(s)ds

)2

= ME
(
|rc

δ(0)|2 −
∫ δ

0

σ2
1(s)ds

)2

= 4M

∫ δ

0

E(X2(s)σ2
1(s))ds ≤ Kδ.

Similarly, for the second term on the right hand side of (C.3) we have

E
(

RV j
δ (t)−

∫ t+1

t

∫

E

φ2(s, x)µ(ds, dx)

)2

= ME (yδ(0))2 ≤ Kδ1−ε, for ∀ε > 0,

and from here the uniform integrability result in (C.1) follows.
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We continue with showing the first uniform integrability result in (C.2). We make

use of the following inequality. For arbitrary real numbers a1, a2, ...an, b1, b2, ..., bn

and p1, p2, ..., pn such that 0 < pi < 1 for i = 1, ..., n we have

∣∣∣∣|a1 + b1|p1 ...|an + bn|pn − |a1|p1 ...|an|pn

∣∣∣∣ ≤
∑

|x1|p1 ...|xn|pn − |a1|p1 ...|an|pn , where xi = {ai, bi},

and the summation in the first term on right hand side of the above inequality is over

xi = {ai, bi} for i = 1, ..., n. Using this inequality we can write

δ−1E
(

TVδ(t)−
∫ t+1

t

σ2
1(s)ds

)2

≤ Kδ−1E

(
M−1∑
i=3

|c(t + (i− 2)δ)| 23 |c(t + (i− 1)δ)| 23 |c(t + iδ)| 23 −
∫ t+1

t

σ2
1(s)ds

)2

+ A,

where A is a sum of (expectation of) terms similar to the summation inside the

expectation on the right hand side of the above inequality, but where at least one of

the terms in the products is d(·). From the results in Barndorff-Nielsen et al. (2005)

follows that the first term on the right hand side of the above inequality is bounded

by a constant. For A we can use the inequalities in the preliminary section to show

that A ≤ Kδ
4−5α
3α

∧ 1
3
−ε. This proves the first uniform integrability result in (C.2). The

proof of the second result in (C.2) is exactly the same and is therefore skipped. ¤

D Proof of Theorem 1

(a) For the consistency of θ̂f we need to show that supθ∈Θ ||m̂T (θ) − m0(θ)|| p→ 0.

Using the triangle inequality we have

||m̂T (θ)−m0(θ)|| ≤ ||mT (θ)−m0(θ)||+ ||m̂T (θ)−mT (θ)||.

In view of A1, we obviously need to show only that the second term on the right hand

side of the above inequality converges uniformly in probability to 0. Using A4, we

have

||m̂T (θ)−mT (θ)|| ≤ 1

T

T∑
t=1

||m(ẑ(t), θ)−m(z(t), θ)|| ≤ ||C(θ)|| 1
T

T∑
t=1

||P (ẑ(t))− P (z(t))||.
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To proceed we use the fact that ẑ(t)
p→ z(t) for every t (Jacod and Shiryaev (2003),

Barndorff-Nielsen et al. (2006)). Then using the uniform integrability result of Lemma 1

we can conclude that for every t and r > 0: E (||ẑ(t)− z(t)||r) → 0. Since P (z) has at

most polynomial growth in z, the uniform integrability of ||ẑ(t)||r for arbitrary r > 0

and t > 0 implies the uniform integrability of ||P (ẑ(t))|| and its powers for arbitrary

t > 0. Also, since P (z) is continuous in z, by continuous mapping P (ẑ(t))
p→ P (z(t)).

These two facts combined yield

E (||P (ẑ(t))− P (z(t))||) → 0, for ∀t > 0.

Therefore, using the stationarity of z(t) and ẑ(t) we have

E
(

sup
θ∈Θ

||m̂T (θ)−mT (θ)||
)

≤ sup
θ∈Θ

||C(θ)||E (||P (ẑ(t))− P (z(t))||) .

Therefore, m̂T (θ) converges uniformly to m0(θ) in a neighborhood of θ0, and from

here the result in part (a) of Theorem 1 follows.

(b) Using A1

√
T

(
θ̂f − θ0

)
=

(
∇θm̂T (θ̂f )

′ŴT∇θm̂T (θ̃)
)−1

∇θm̂T (θ̂f )
′ŴT

(√
Tm̂T (θ0)

)
,

where θ̃ is between θ0 and θ̂f . Now, from A1 we know that a CLT for mT (θ0) holds

and that ∇θmT (θ) converges in probability uniformly around θ0. Therefore, part (b)

of the Theorem will follow if we show

sup
θ∈Θ

||∇θm̂T (θ)−∇θmT (θ)|| p→ 0 and
√

T ||m̂T (θ0)−mT (θ0)|| p→ 0. (D.1)

For the first result in (D.1) we use A5 and we have

||∇θm̂T (θ)−∇θmT (θ)|| ≤ 1

T

T∑
t=1

∣∣∣∣
∣∣∣∣∇θm(ẑ(t), θ)−∇θm(z(t), θ)

∣∣∣∣
∣∣∣∣

≤ ||C(θ)|| 1
T

T∑
t=1

||P (ẑ(t))− P (z(t))||.

As in part (a), we use Lemma 1 and we have E (||P (ẑ(t))− P (z(t))||) → 0 for ∀t > 0.

Therefore, using the stationarity of z(t) and ẑ(t)

E
(

sup
θ∈Θ

||∇θm̂T (θ)−∇θmT (θ)||
)

≤ sup
θ∈Θ

||C(θ)||E (||P (ẑ(t))− P (z(t))||) ,
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and from here the first result in (D.1) follows. We prove the second convergence in

probability result in (D.1) by showing again convergence in L1.

√
TE (||m̂T (θ0)−mT (θ0)||) ≤

√
T

T
E

(
T∑

t=1

∣∣∣∣
∣∣∣∣m(ẑ(t), θ0)−m(z(t), θ0)

∣∣∣∣
∣∣∣∣
)

≤
√

Tδ1−εE
(

δ−1/2+ε/2

∣∣∣∣
∣∣∣∣m(ẑ(t), θ0)−m(z(t), θ0)

∣∣∣∣
∣∣∣∣
)

,

where ε > 0 is such that Tδ1−ε → 0. Expanding m(ẑ(t), θ0) around z(t) and using

Cauchy-Schwartz inequalities

E
(
δ−1/2+ε/2

∣∣∣∣m(ẑ(t), θ0)−m(z(t), θ0)
∣∣∣∣) ≤

√
E (||∇zm(z̃(t), θ0)||2)

√
E (δ−1+ε||ẑ(t)− z(t)||2),

where z̃(t) is between ẑ(t) and z(t). Since ẑ(t)
p→ z(t) and ||z̃(t) − z(t)||r ≤ ||ẑ(t) −

z(t)||r for r > 0, the uniform integrability of ||ẑ(t)||r implies uniform integrabil-

ity of ||z̃(t)||r. In addition, using A6, ∇zm(z, θ) has polynomial growth in z and

therefore ||∇zm(z̃(t), θ0)||2 is uniformly integrable. From continuous mapping also

||∇zm(z̃(t), θ0)||2 p→ ||∇zm(z(t), θ0)||2. Therefore E (||∇zm(z̃(t), θ0)||2) → E (||∇zm(z(t), θ0)||2).
Using the uniform integrability result of Lemma 2, we have supδ E (δ−1+ε||ẑ(t)− z(t)||2) <

K, for some constant K. Therefore, since Tδ1−ε → 0, we finally have
√

TE||m̂T (θ0)−
mT (θ0)|| → 0, and hence the second convergence result in (D.1). ¤

E Proof of Corollary 1

Under A3
′

we have
∫
Rn

0
1(k(x)>1)|k(x)|pG(dx) < ∞ and

∫ t

−∞ |g(t − s)|pds < ∞ for

any p > 0. Therefore, using Theorem 3.3 in Rajput and Rosiński (1989), we have

E|V ‖(t)|p < ∞. This implies that, under the conditions in A3
′
, we have integrability

of all powers of σ2
1(t). The proof of the Corollary is exactly the same as the proof

of Theorem 1, part(b). We need only to establish the following uniform integrability

result for RV, which strengthens the result (C.1) in Lema 2

sup
δ

δ−1E

(
RVδ(t)−

∫ t+1

t

σ2
1(s)ds−

∫ t+1

t

∫

Rn
0

h2(x)µ(ds, dx)

)2

< ∞ (E.1)

From the proof of (C.1) in Lemma 2, it is clear that we will be done if we can show

δ−1E

(
RV j

δ (t)−
∫ t+1

t

∫

Rn
0

h2(x)µ(ds, dx)

)2

≤ K (E.2)
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δ−1E

(
M∑
i=1

|rj
δ(t + (i− 1)δ)||rc

δ(t + (i− 1)δ)|
)2

≤ K. (E.3)

(E.2) follows from

δ−1E

(
M∑
i=1

|rj
δ(t + (i− 1)δ)|2 −

∫ t+1

t

∫

Rn
0

h2(x)µ(ds, dx)

)2

= 2

(∫

Rn
0

h2(x)G(dx)

)2

.

Therefore we are left with showing (E.3). First, note that V ‖(t) is adapted to the

filtration generated by the homogeneous Poisson measure µ, while the Brownian mo-

tion in the price, W (t), as well as V ⊥(t) are independent from it. To show the result

(E.3) we need to verify for t 6= s

E
(
rc
δ(t)r

j
δ(t)

)2
= O(δ2) and E

(|rc
δ(s)||rj

δ(s)||rc
δ(t)||rj

δ(t)|
)

= O(δ3). (E.4)

In what follows for any t > 0, u and a we set

Ha(t, u) =

{ ∫ t+a

t
g(z − u)dz if u < t∫ t+a

u
g(z − u)dz if t ≤ u < t + a.

Then, the first result in (E.4) follows from

E
(
rc
δ(t)r

j
δ(t)

)2 ≤ K

∫ t+δ

t

Hδ(t, u)du

∫

Rn
0

h2(x)k(x)G(dx) ≤ Kδ2.

We proceed with showing the second result in (E.4). For t > s, by conditioning on

the filtration generated by µ up to time t + δ we can write

E
∣∣rc

δ(s)r
j
δ(s)r

c
δ(t)r

j
δ(t)

∣∣ ≤ E
∣∣∣∣

√
K1δ +

∫ s+δ

−∞

∫

Rn
0

Hδ(s, u)k(x)µ(du, dx)

∫ s+δ

s

∫

Rn
0

h(x)µ̃(du, dx)

×
√

K2δ +

∫ t+δ

−∞

∫

Rn
0

Hδ(t, u)k(x)µ(du, dx)

∫ t+δ

t

∫

Rn
0

h(x)µ̃(du, dx)

∣∣∣∣,

where K1 and K2 are some constants. To proceed further we can split each of

the integrals on the right hand side of the above inequality into integrals over the

disjoint intervals (−∞, s], (s, s + δ], (s + δ, t] and (t, t + δ]. Thus we can bound

E
∣∣rc

δ(s)r
j
δ(s)r

c
δ(t)r

j
δ(t)

∣∣ by a sum of terms, each of which is a product of deterministic

integrals with respect to µ (or square root of them) over either exactly the same inter-

val or non-overlapping interval. Using the time-homogeneity property of the Poisson
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measure µ, the expectation of these products will be equal to the product of the

expectations of the terms defined over the same interval. Therefore, we need to check

the order of magnitude only of the terms in the products with overlapping interval.

Applying Cauchy-Schwartz inequality we have

E

∣∣∣∣∣

√∫ t+δ

t

∫

Rn
0

Hδ(t, u)µ(du, dx)

∫ t+δ

t

∫

Rn
0

h(x)µ̃(du, dx)

∣∣∣∣∣ ≤ Kδ3/2,

E

∣∣∣∣∣

√∫ s+δ

s

∫

Rn
0

Hδ(t, u)µ(du, dx)

∫ s+δ

s

∫

Rn
0

h(x)µ̃(du, dx)

∣∣∣∣∣ ≤ Kδ3/2,

E

∣∣∣∣∣

√∫ s+δ

s

∫

Rn
0

Hδ(t, u)µ(du, dx)

√∫ s+δ

s

∫

Rn
0

Hδ(s, u)µ(du, dx)

∫ s+δ

s

∫

Rn
0

h(x)µ̃(du, dx)

∣∣∣∣∣ ≤ Kδ2,

E

(√∫ s

−∞

∫

Rn
0

Hδ(t, u)k(x)µ(du, dx)

∫ s

−∞

∫

Rn
0

Hδ(s, u)k(x)µ(du, dx)

)
≤ Kδ,

E

(√∫ t

s+δ

∫

Rn
0

Hδ(t, u)k(x)µ(du, dx)

)
≤ Kδ1/2.

Combining these results we verify (E.4) and from here we readily have (E.3). ¤

F Parameter Settings for the Monte Carlo Study

In all cases the parameters governing σ2
1(t) are kept the same with values: ρ = 0.07,

k2 = 0.0520, cv = 0.1, λv = 0.0173 and αv = 0.5. The price jump parameters were

specified as follows

• compound Poisson case: k1 = 1.0, cp = 0.1 and σp = 1.0,

• case αp = 0.0: k1 = 0.0106, cp = 0.1 and λp = 0.015,

• case αp = 0.1: k1 = 0.0119, cp = 0.125 and λp = 0.015,

• case αp = 0.5: k1 = 0.0161, cp = 0.4 and λp = 0.015.

For the simulation of the jumps in the price and in the variance we use the series

representation method (see Rosiński (2001)).
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Table 1: Monte Carlo Results for the case of compound Poisson price jumps

Parameter True Mean Median RMSE Asy./Small
value sample s.e.

Panel A. GMM with QV and IV

ρ 0.0700 0.0726 0.0729 0.0124 0.8693∫
R0

k2xG2(dx)/ρ 1.0000 0.9828 0.9803 0.0885 0.9304∫
R0

k2
1x

2G1(dx) 0.1000 0.0996 0.0992 0.0099 1.0205√∫
R0

k2
2x

2G2(dx) 0.3240 0.3093 0.3032 0.0578 0.9375√∫
R0

k4
1x

4G1(dx) 0.5477 0.5429 0.5430 0.0552 1.0145

Panel B. GMM with RV and BV from high-frequency data for M = 100

ρ 0.0700 0.0662 0.0614 0.0413 0.2553∫
R0

k2xG2(dx)/ρ 1.0000 1.1244 1.1215 0.1814 0.6118∫
R0

k2
1x

2G1(dx) 0.1000 0.0883 0.0882 0.0174 0.7752√∫
R0

k2
2x

2G2(dx) 0.3240 0.4046 0.3918 0.1796 0.3265√∫
R0

k4
1x

4G1(dx) 0.5477 0.4955 0.5005 0.1176 0.5294

Panel C. GMM with RV and BV from high-frequency data for M = 300

ρ 0.0700 0.0492 0.0472 0.0329 0.4125∫
R0

k2xG2(dx)/ρ 1.0000 1.0654 1.0640 0.1230 0.7758∫
R0

k2
1x

2G1(dx) 0.1000 0.0903 0.0899 0.0144 0.9435√∫
R0

k2
2x

2G2(dx) 0.3240 0.2972 0.2944 0.1092 0.4953√∫
R0

k4
1x

4G1(dx) 0.5477 0.5200 0.5174 0.0748 0.8029

Panel D. GMM with RV and TV from high-frequency data for M = 100

ρ 0.0700 0.0685 0.0630 0.0463 0.2272∫
R0

k2xG2(dx)/ρ 1.0000 1.0848 1.0812 0.1615 0.5873∫
R0

k2
1x

2G1(dx) 0.1000 0.1098 0.1101 0.0175 0.6897√∫
R0

k2
2x

2G2(dx) 0.3240 0.3973 0.3865 0.1849 0.3086√∫
R0

k4
1x

4G1(dx) 0.5477 0.5463 0.5472 0.1072 0.5210

N ote: For the last column, the theoretical standard errors were computed using the
true parameter values and sample averages from simulated series of IV and QV with
length 600, 000 days.
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Table 2: Monte Carlo Results for the case of compound Poisson price jumps

Parameter True Mean Median RMSE Asy./Small
value sample s.e.

Panel E. GMM with RV and TV from high-frequency data for M = 300

ρ 0.0700 0.0485 0.0467 0.0344 0.3910∫
R0

k2xG2(dx)/ρ 1.0000 1.0469 1.0474 0.1158 0.7626∫
R0

k2
1x

2G1(dx) 0.1000 0.1009 0.1003 0.0114 0.8850√∫
R0

k2
2x

2G2(dx) 0.3240 0.2902 0.2866 0.1148 0.4777√∫
R0

k4
1x

4G1(dx) 0.5477 0.5410 0.5378 0.0721 0.7771

Panel F. GMM with RV and TV from high-frequency data for M = 100
and asymptotic refinement

ρ 0.0700 0.0699 0.0695 0.0121 0.8693∫
R0

k2xG2(dx)/ρ 1.0000 0.9636 0.9602 0.0949 0.9219∫
R0

k2
1x

2G1(dx) 0.1000 0.1091 0.1085 0.0134 1.0205√∫
R0

k2
2x

2G2(dx) 0.3240 0.2900 0.2859 0.0689 0.8749√∫
R0

k4
1x

4G1(dx) 0.5477 0.5581 0.5544 0.0573 0.9911

Panel G. GMM with RV and TV from high-frequency data for M = 300
and asymptotic refinement

ρ 0.0700 0.0710 0.0704 0.0129 0.8218∫
R0

k2xG2(dx)/ρ 1.0000 0.9788 0.9761 0.0891 0.9326∫
R0

k2
1x

2G1(dx) 0.1000 0.1010 0.1008 0.0098 1.0310√∫
R0

k2
2x

2G2(dx) 0.3240 0.3024 0.2985 0.0623 0.8974√∫
R0

k4
1x

4G1(dx) 0.5477 0.5478 0.5466 0.0555 1.0054
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Table 3: Monte Carlo Results for the case αp = 0.0

Parameter True Mean Median RMSE Asy./Small
value sample s.e.

Panel A. GMM with QV and IV

ρ 0.0700 0.0730 0.0730 0.0127 0.8552∫
R0

k2xG2(dx)/ρ 1.0000 0.9890 0.9817 0.0885 0.9198∫
R0

k2
1x

2G1(dx) 0.1000 0.1004 0.1000 0.0101 1.0272√∫
R0

k2
2x

2G2(dx) 0.3240 0.3112 0.3030 0.0580 0.9259√∫
R0

k4
1x

4G1(dx) 0.5477 0.5385 0.5196 0.1150 1.2744

Panel B. GMM with RV and BV from high-frequency data for M = 100

ρ 0.0700 0.0687 0.0638 0.0441 0.2385∫
R0

k2xG2(dx)/ρ 1.0000 1.1393 1.1369 0.1918 0.6123∫
R0

k2
1x

2G1(dx) 0.1000 0.0817 0.0809 0.0223 0.8169√∫
R0

k2
2x

2G2(dx) 0.3240 0.4074 0.3975 0.1817 0.3245√∫
R0

k4
1x

4G1(dx) 0.5477 0.4548 0.4484 0.1926 0.8657

Panel C. GMM with RV and BV from high-frequency data for M = 300

ρ 0.0700 0.0477 0.0469 0.0331 0.4311∫
R0

k2xG2(dx)/ρ 1.0000 1.0777 1.0724 0.1328 0.7492∫
R0

k2
1x

2G1(dx) 0.1000 0.0853 0.0852 0.0179 1.0073√∫
R0

k2
2x

2G2(dx) 0.3240 0.2932 0.2946 0.1075 0.5088√∫
R0

k4
1x

4G1(dx) 0.5477 0.4951 0.4862 0.1340 1.1843

Panel D. GMM with RV and TV from high-frequency data for M = 100

ρ 0.0700 0.0732 0.0645 0.0514 0.2050∫
R0

k2xG2(dx)/ρ 1.0000 1.1011 1.0968 0.1687 0.5982∫
R0

k2
1x

2G1(dx) 0.1000 0.1036 0.1027 0.0150 0.7106√∫
R0

k2
2x

2G2(dx) 0.3240 0.4118 0.4013 0.1980 0.2952√∫
R0

k4
1x

4G1(dx) 0.5477 0.5243 0.5079 0.1671 0.8830
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Table 4: Monte Carlo Results for the case αp = 0.0

Parameter True Mean Median RMSE Asy./Small
value sample s.e.

Panel E. GMM with RV and TV from high-frequency data for M = 300

ρ 0.0700 0.0474 0.0460 0.349 0.3954∫
R0

k2xG2(dx)/ρ 1.0000 1.0604 1.0562 0.1249 0.7382∫
R0

k2
1x

2G1(dx) 0.1000 0.0970 0.0969 0.0120 0.8944√∫
R0

k2
2x

2G2(dx) 0.3240 0.2892 0.2871 0.1163 0.4721√∫
R0

k4
1x

4G1(dx) 0.5477 0.5280 0.5106 0.1325 1.1148

Panel F. GMM with RV and TV from high-frequency data for M = 100
and asymptotic refinement

ρ 0.0700 0.0713 0.0707 0.0106 0.8283∫
R0

k2xG2(dx)/ρ 1.0000 0.9771 0.9727 0.0943 0.8836∫
R0

k2
1x

2G1(dx) 0.1000 0.1033 0.1029 0.0106 1.0272√∫
R0

k2
2x

2G2(dx) 0.3240 0.2956 0.2910 0.0680 0.8480√∫
R0

k4
1x

4G1(dx) 0.5477 0.5527 0.5349 0.1131 1.2924

Panel G. GMM with RV and TV from high-frequency data for M = 300
and asymptotic refinement

ρ 0.0700 0.0716 0.0713 0.0134 0.7909∫
R0

k2xG2(dx)/ρ 1.0000 0.9879 0.9836 0.0894 0.9115∫
R0

k2
1x

2G1(dx) 0.1000 0.0974 0.0969 0.0103 1.0375√∫
R0

k2
2x

2G2(dx) 0.3240 0.3043 0.2982 0.0645 0.8521√∫
R0

k4
1x

4G1(dx) 0.5477 0.5410 0.5275 0.1139 1.2844
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Table 5: Monte Carlo Results for the case αp = 0.1

Parameter True Mean Median RMSE Asy./Small
value sample s.e.

Panel A. GMM with QV and IV

ρ 0.0700 0.0722 0.0727 0.0124 0.8622∫
R0

k2xG2(dx)/ρ 1.0000 0.9879 0.9869 0.0866 0.9413∫
R0

k2
1x

2G1(dx) 0.1000 0.1003 0.0994 0.0108 0.9446√∫
R0

k2
2x

2G2(dx) 0.3240 0.3108 0.3050 0.0591 0.9098√∫
R0

k4
1x

4G1(dx) 0.5906 0.5753 0.5517 0.1287 0.8293

Panel B. GMM with RV and BV from high-frequency data for M = 100

ρ 0.0700 0.0707 0.0632 0.0446 0.2358∫
R0

k2xG2(dx)/ρ 1.0000 1.1461 1.1379 0.1992 0.5960∫
R0

k2
1x

2G1(dx) 0.1000 0.0815 0.0803 0.0226 0.7788√∫
R0

k2
2x

2G2(dx) 0.3240 0.4182 0.4052 0.1888 0.3203√∫
R0

k4
1x

4G1(dx) 0.5906 0.4836 0.4780 0.2086 0.5918

Panel C. GMM with RV and BV from high-frequency data for M = 300

ρ 0.0700 0.0476 0.0461 0.0339 0.4141∫
R0

k2xG2(dx)/ρ 1.0000 1.0764 1.0714 0.1304 0.7640∫
R0

k2
1x

2G1(dx) 0.1000 0.0854 0.0847 0.0182 0.9274√∫
R0

k2
2x

2G2(dx) 0.3240 0.2927 0.2935 0.1098 0.4982√∫
R0

k4
1x

4G1(dx) 0.5906 0.5264 0.5142 0.1563 0.7438

Panel D. GMM with RV and TV from high-frequency data for M = 100

ρ 0.0700 0.0743 0.0653 0.0508 0.2079∫
R0

k2xG2(dx)/ρ 1.0000 1.1111 1.1059 0.1783 0.5793∫
R0

k2
1x

2G1(dx) 0.1000 0.1041 0.1022 0.0159 0.6668√∫
R0

k2
2x

2G2(dx) 0.3240 0.4221 0.4088 0.2048 0.2915√∫
R0

k4
1x

4G1(dx) 0.5906 0.5620 0.5409 0.1838 0.5836
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Table 6: Monte Carlo Results for the case αp = 0.1

Parameter True Mean Median RMSE Asy./Small
value sample s.e.

Panel E. GMM with RV and TV from high-frequency data for M = 300

ρ 0.0700 0.0469 0.0436 0.0360 0.3811∫
R0

k2xG2(dx)/ρ 1.0000 1.0582 1.0568 0.1224 0.7499∫
R0

k2
1x

2G1(dx) 0.1000 0.0971 0.0963 0.0122 0.8573√∫
R0

k2
2x

2G2(dx) 0.3240 0.2861 0.2840 0.1190 0.4646√∫
R0

k4
1x

4G1(dx) 0.5906 0.5650 0.5392 0.1474 0.7299

Panel F. GMM with RV and TV from high-frequency data for M = 100
and asymptotic refinement

ρ 0.0700 0.0702 0.0698 0.0119 0.8839∫
R0

k2xG2(dx)/ρ 1.0000 0.9738 0.9732 0.0929 0.9064∫
R0

k2
1x

2G1(dx) 0.1000 0.1035 0.1025 0.0115 0.9359√∫
R0

k2
2x

2G2(dx) 0.3240 0.2920 0.2901 0.0673 0.8852√∫
R0

k4
1x

4G1(dx) 0.5906 0.5889 0.5664 0.1283 0.8261

Panel G. GMM with RV and TV from high-frequency data for M = 300
and asymptotic refinement

ρ 0.0700 0.0707 0.0702 0.0124 0.8483∫
R0

k2xG2(dx)/ρ 1.0000 0.9860 0.9838 0.0884 0.9251∫
R0

k2
1x

2G1(dx) 0.1000 0.0975 0.0966 0.0124 0.9624√∫
R0

k2
2x

2G2(dx) 0.3240 0.3021 0.2977 0.0617 0.9082√∫
R0

k4
1x

4G1(dx) 0.5906 0.5775 0.5534 0.1286 0.8287
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Table 7: Monte Carlo Results for the case αp = 0.5

Parameter True Mean Median RMSE Asy./Small
value sample s.e.

Panel A. GMM with QV and IV

ρ 0.0700 0.0735 0.0735 0.0127 0.8622∫
R0

k2xG2(dx)/ρ 1.0000 0.9925 0.9913 0.0866 0.9358∫
R0

k2
1x

2G1(dx) 0.1000 0.0999 0.0992 0.0119 0.9825√∫
R0

k2
2x

2G2(dx) 0.3240 0.3129 0.3068 0.0571 0.9358√∫
R0

k4
1x

4G1(dx) 0.6572 0.6292 0.5972 0.1840 1.2780

Panel B. GMM with RV and BV from high-frequency data for M = 100

ρ 0.0700 0.0674 0.0616 0.0423 0.2493∫
R0

k2xG2(dx)/ρ 1.0000 1.1443 1.1361 0.1928 0.6324∫
R0

k2
1x

2G1(dx) 0.1000 0.0797 0.0783 0.0249 0.8063√∫
R0

k2
2x

2G2(dx) 0.3240 0.4076 0.3971 0.1823 0.3235√∫
R0

k4
1x

4G1(dx) 0.6572 0.5120 0.4979 0.2707 1.0168

Panel C. GMM with RV and BV from high-frequency data for M = 300

ρ 0.0700 0.0488 0.0469 0.0326 0.4241∫
R0

k2xG2(dx)/ρ 1.0000 1.0818 1.0764 0.1295 0.8044∫
R0

k2
1x

2G1(dx) 0.1000 0.0834 0.0824 0.0206 0.9583√∫
R0

k2
2x

2G2(dx) 0.3240 0.2975 0.2931 0.1092 0.4949√∫
R0

k4
1x

4G1(dx) 0.6572 0.5720 0.5467 0.2015 1.2717

Panel D. GMM with RV and TV from high-frequency data for M = 100

ρ 0.0700 0.0715 0.0637 0.0489 0.2151∫
R0

k2xG2(dx)/ρ 1.0000 1.1099 1.1064 0.1716 0.6132∫
R0

k2
1x

2G1(dx) 0.1000 0.1032 0.1014 0.0174 0.6837√∫
R0

k2
2x

2G2(dx) 0.3240 0.4137 0.4009 0.1982 0.2964√∫
R0

k4
1x

4G1(dx) 0.6572 0.6161 0.5911 0.2362 0.9989
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Table 8: Monte Carlo Results for the case αp = 0.5

Parameter True Mean Median RMSE Asy./Small
value sample s.e.

Panel E. GMM with RV and TV from high-frequency data for M = 300

ρ 0.0700 0.0488 0.0464 0.0346 0.3853∫
R0

k2xG2(dx)/ρ 1.0000 1.0641 1.0616 0.1222 0.7765∫
R0

k2
1x

2G1(dx) 0.1000 0.0955 0.0943 0.0143 0.8661√∫
R0

k2
2x

2G2(dx) 0.3240 0.2936 0.2889 0.1197 0.4529√∫
R0

k4
1x

4G1(dx) 0.6572 0.6168 0.5857 0.2043 1.1605

Panel F. GMM with RV and TV from high-frequency data for M = 100
and asymptotic refinement

ρ 0.0700 0.0706 0.0695 0.0124 0.8483∫
R0

k2xG2(dx)/ρ 1.0000 0.9821 0.9773 0.0891 0.9261∫
R0

k2
1x

2G1(dx) 0.1000 0.1022 0.1014 0.0124 0.9825√∫
R0

k2
2x

2G2(dx) 0.3240 0.2953 0.2922 0.0660 0.8822√∫
R0

k4
1x

4G1(dx) 0.6572 0.6434 0.6112 0.1810 1.2872

Panel G. GMM with RV and TV from high-frequency data for M = 300
and asymptotic refinement

ρ 0.0700 0.0715 0.0711 0.0129 0.8218∫
R0

k2xG2(dx)/ρ 1.0000 0.9940 0.9920 0.0854 0.9479∫
R0

k2
1x

2G1(dx) 0.1000 0.0959 0.0951 0.0125 0.9908√∫
R0

k2
2x

2G2(dx) 0.3240 0.3047 0.2996 0.0615 0.8974√∫
R0

k4
1x

4G1(dx) 0.6572 0.6324 0.6004 0.1852 1.2662
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Table 9: Estimation Results

Parameter Estimate Parameter Estimate

Panel A. Affine Jump-Diffusion SV Model

κ1 1.5961
(0.4654)

ζ 0.6058
(0.0507)

σ1 0.3399
(0.2894)

∫
R2

0
h2(x)G(dx) 0.1135

(0.0085)

κ2 0.0021
(0.0093)

∫
R2

0
h4(x)G(dx) 0.0001

(0.0054)

σ2 0.2647
(0.2040)

GMM test of overidentifying restrictions 40.5980
d.o.f (4)
p-value 0.0000

Panel B. CARMA Jump-Driven SV Model

ζ 0.7990
(0.0512)

∫
R2

0
k2(x)G(dx) 2.3925

(0.4780)

b0 0.2350
(0.0458)

∫
R2

0
h2(x)G(dx) 0.1513

(0.0159)

−ρ1 0.0397
(0.0097)

∫
R2

0
h4(x)G(dx) 0.2718

(0.1297)

−ρ2 1.5476
(0.2301)

∫
R2

0
h2(x)k(x)G(dx) 0.5386

(0.1392)

GMM test of overidentifying restrictions 0.9732
d.o.f (3)
p-value 0.8077

Note: In the estimation: (1) we set ζ := V 1 + V 2 and σi := σiv

√
V i

2κi
for i = 1, 2 and

impose the stationarity conditions σ1 + σ2 < ζ and κi > 0 for i = 1, 2 for the Affine
Jump-Diffusion Model and (2) we set ζ := b0

ρ1ρ2

∫
R2

0
h(x)G(dx) and impose the station-

arity conditions (see Todorov and Tauchen (2006)) b0 > −max{ρ1, ρ2} and ρi < 0
for i = 1, 2 for the CARMA Jump-Driven SV model. The model is estimated using
GMM-type estimator with moment conditions specified in Section 4. The asymp-
totic variance-covariance matrix, used for calculating the optimal weighting matrix,
is estimated using Parzen weights with a lag length of 80. Standard errors for the
parameter estimates are reported in parentheses.
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Figure 1: Percentage of Rejection versus Nominal Level of GMM Test of overiden-
tifying restriction for the Monte Carlo study, case compound Poisson price jumps.
First row - estimation with QV and IV; second row - estimation with RV and BV;
third row - estimation with RV and TV; forth row - estimation with RV and TV and
asymptotic refinement. For the second, third and forth row the left side corresponds
to the case M = 100 and the right side to the case M = 300.
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Figure 2: Percentage of Rejection versus Nominal Level of GMM Test of overidentify-
ing restriction for the Monte Carlo study, case αp = 0.0. First row - estimation with
QV and IV; second row - estimation with RV and BV; third row - estimation with
RV and TV; forth row - estimation with RV and TV and asymptotic refinement. For
the second, third and forth row the left side corresponds to the case M = 100 and
the right side to the case M = 300.
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Figure 3: Percentage of Rejection versus Nominal Level of GMM Test of overidentify-
ing restriction for the Monte Carlo study, case αp = 0.1. First row - estimation with
QV and IV; second row - estimation with RV and BV; third row - estimation with
RV and TV; forth row - estimation with RV and TV and asymptotic refinement. For
the second, third and forth row the left side corresponds to the case M = 100 and
the right side to the case M = 300.
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Figure 4: Percentage of Rejection versus Nominal Level of GMM Test of overidentify-
ing restriction for the Monte Carlo study, case αp = 0.5. First row - estimation with
QV and IV; second row - estimation with RV and BV; third row - estimation with
RV and TV; forth row - estimation with RV and TV and asymptotic refinement. For
the second, third and forth row the left side corresponds to the case M = 100 and
the right side to the case M = 300.
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