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Abstract
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is due to time-variation in volatility and presence of jumps. Further asymptotic improvement
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1 Introduction

Two well-documented salient features of financial data are stochastic volatility and jumps. Their

presence in asset returns complicates significantly inference for asset pricing models when the

inference is based on low frequency return data. The main reason for this is that stochastic volatility

and jumps are hidden in asset returns, i.e., they cannot be estimated consistently from the low

frequency returns and have to be treated as latent instead. One way to solve this latency problem

is to use return data sampled at high frequency. The high frequency price record facilitates the

construction of nonparametric volatility and jump estimators, which in turn can allow for inference

for asset pricing models as if stochastic volatility and jumps are directly observable. Examples

of jump-robust variance estimators1 include the multipower variation of Barndorff-Nielsen and

Shephard (2004, 2006) and their extensions proposed by Corsi et al. (2010) and Andersen et al.

(2012), the truncated variance of Mancini (2001, 2009) and the empirical characteristic function

based variance estimators of Jacod and Todorov (2014, 2018).2

The above jump-robust variance estimators have been designed with the goal of estimating the

integrated diffusive variance over a fixed time interval. They can be readily extended to estimating

the spot volatility at a given point in time by considering an asymptotically shrinking time window

in the estimation as in Foster and Nelson (1996).3 This, of course, leads to a drop in the rate of

convergence of the estimators and makes spot volatility estimation from available high-frequency

return data very imprecise. Options written on the asset provide an alternative source of informa-

tion which can significantly reduce the noise in measuring spot volatility. The main challenge in

option-based nonparametric estimation, however, is the bias in the volatility estimators due to the

time-variation in volatility over the life of the option and the presence of jumps in the underlying

asset dynamics. The goal of the current paper is to develop bias-reduction techniques for option-

based volatility estimation. This can make the latter practically feasible in more general settings

(in terms of option tenors) than previously considered.

Options provide a natural source of information for the volatility of the underlying process. In

the classical option pricing model of Black and Scholes (1973), in which the asset price follows a

geometric Brownian motion, the option price, normalized by the current value of the underlying

1In this paper, spot (diffusive) volatility refers to the instantaneous standard deviation of the continuous component
of the (log) asset price while spot variance is the square of the spot volatility. Formal definitions are given in Section 2
below.

2A number of papers have extended the results of Barndorff-Nielsen and Shephard (2004, 2006) and Mancini
(2001, 2009) in various directions, both by allowing for more general dynamics of the discretely observed process as
well as by allowing for observation error (microstructure noise) and more general sampling schemes.

3Alternative spot volatility estimators in various settings have been considered by Bandi and Phillips (2003), Fan
and Wang (2008), Kristensen (2010), Liu et al. (2018) and Bibinger et al. (2019), among others.
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asset, is a known and nonlinear function of the volatility parameter (volatility is constant in the

Black-Scholes model). Therefore, one can invert the observed option prices and recover the un-

observable (from the point of the econometrician) volatility parameter. The resulting estimate is

referred to as Black-Scholes Implied Volatility (BSIV) and is commonly used by market partici-

pants to quote option prices. In the context of the Black-Scholes model, BSIV provides, up to the

measurement error in observed option prices, an exact estimate of the true volatility.

Unfortunately, the assumptions behind the Black-Scholes model are too strong and do not hold

empirically. Mainly, volatility changes over time and assets are exposed to jump risk. This makes

nonparametric identification of spot volatility from options rather challenging. However, if the time

to maturity of the options is shrinking asymptotically to zero, then such spot volatility inference

is possible. The asymptotic setting of observing options with shrinking time to maturity can be

viewed as the counterpart of the asymptotic setup of high frequency sampling of the asset price in

a fixed time interval. Importantly, there is a recent trend in options markets of exchanges offering

options with very short times to maturity and there is an increase in the trading and liquidity of

these contracts, see e.g., Andersen et al. (2017), making such an asymptotic setup of options with

shrinking time to maturity of direct practical interest.

The main challenge of the option-based inference for the spot volatility is to design a suitable

transformation of the options that can be a consistent estimator for it as the options’ time to

maturity shrinks. Options are conditional expectations of their terminal payoff, discounted at the

risk-free rate, under the so-called risk-neutral probability measure. The latter is locally equivalent to

the true probability measure and the difference between the two probability measures is due to the

pricing of risk by investors. Importantly for the analysis here, the local equivalence of the statistical

and risk-neutral probability measures implies that the diffusive volatility (the object of interest in

this paper) is the same under the two measures. To design an option-based volatility estimator,

therefore, we need to establish an asymptotic one-to-one map between conditional expectations of

suitably chosen transforms of future returns and the current level of diffusive volatility, as the time

interval of the return shrinks. Thus, the major challenge of using options to infer spot volatility is

the bias contained in such estimators.

A natural candidate for spot volatility estimator is the BSIV of a short-dated at-the-money

option, i.e., an option with strike equal to the current value of the asset price. Indeed, Medvedev

and Scaillet (2007) (see also Medvedev and Scaillet (2010)) and Durrleman (2008), among others,

show that this is a consistent estimator of spot volatility under weak conditions for the dynamics

of the underlying process, and in particular in presence of jumps, when the option’s tenor shrinks.
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Unfortunately, as shown in Medvedev and Scaillet (2007), BSIV viewed as an estimator of spot

volatility has nontrivial bias due to the time-variation in volatility and the presence of jumps in

the asset price for times to maturities that are practically feasible.

Alternative nonparametric estimators of spot volatility from the short-dated options can be

constructed by making use of the fact that options on a continuum set of strikes can uniquely iden-

tify the risk-neutral return distribution, see e.g., Breeden and Litzenberger (1978). In particular,

following Carr and Madan (2001), portfolios of options can be used to infer conditional expectations

under the risk-neutral probability measure of smooth transforms of the return over the life of the

option. Todorov (2019) uses this result to propose a nonparametric estimator of spot volatility

by constructing an estimator of the conditional characteristic function of the asset return over the

life of the options and using the dominant role played by the diffusive volatility at asymptotically

increasing values of the characteristic exponent.

As shown in Todorov (2019), the characteristic function based approach for volatility inference

leads to a bias of much smaller asymptotic order of magnitude than that in the BSIV. In this

paper, we improve on the estimator of Todorov (2019) by designing bias-reduction techniques

for volatility inference. More specifically, we use a higher-order expansion of the characteristic

function of the price increments to develop a volatility estimator that has significantly less bias

due to time-varying volatility and presence of jumps in the asset dynamics. In particular, we

utilize the fact that the leading term in the asymptotic expansion of the characteristic exponent

of the price increment is linear in the length of the increment while the leading term from the

volatility dynamics is proportional to the square of the increment’s length. Therefore, by suitably

differencing characteristic-function based volatility estimates formed from two different short option

tenors, which is reminiscent to Jacknife bias-correction in statistics, we can minimize the impact

of the time-varying volatility on the estimation. An additional benefit of this approach is that it

leads asymptotically to a smaller bias due to jumps in the recovery of spot volatility.4

To further minimize the impact of jumps on the volatility estimation, we expand asymptotically

the bias in the above volatility estimator due to the jumps. The leading term in this expansion

is a power function of the characteristic exponent. This suggests an easy way to annihilate this

bias. Mainly, by performing a nonlinear least squares estimation in characteristic exponent space

4Similar to the analysis here, one can consider bias-correction methods for BSIV, following higher-order expansions
of BSIV, as in Medvedev and Scaillet (2007) and Figueroa-Lopez and Olafsson (2016). However, such expansions seem
difficult to derive under general volatility dynamics and/or general specification for the jump part of the process (e.g.,
under presence of multiple volatility factors, general types of jumps in terms of jump activity and jump dynamics,
etc). Moreover, the higher-order terms in such expansions (up to the order considered here) are more, which would
imply more tenors needed for de-biasing, and de-biasing for the jumps does not appear easy (or even possible) to
achieve up to the precision considered here.
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in which the intercept is the square of the spot volatility estimator. The resulting estimator has a

bias of significantly smaller asymptotic order than existing nonparametric option-based volatility

estimates. This, in particular, implies better performance of the estimator for longer option tenors

than previously feasible.

We evaluate the finite sample behavior of the developed inference methods on simulated data.

The results from the Monte Carlo are in line with our theoretical findings. Mainly, our de-biasing

procedures work well in accounting for the time-varying volatility and the presence of jumps in

the underlying asset price on the spot volatility recovery from options in a wide range of Monte

Carlo settings. Upon implementing the volatility estimators on S&P 500 index option data, we

find that the bias-correction accounting for the volatility dynamics yields less downward-biased

volatility estimator in high volatility regimes and the opposite in low volatility regimes. The bias-

correction for the price jumps, on the other hand, results in a slightly lower level of estimated

diffusive volatility, signifying the importance of small jumps in volatility inference. The de-biased

option-based volatility estimator matches on average the level of return-based estimates of spot

volatility in various volatility regimes but is significantly less noisy than them.

The rest of the paper is organized as follows. In Section 2, we introduce nonparametric estima-

tion of spot volatility via characteristic functions. In Section 3 we propose bias-reduction techniques

in volatility estimation using higher-order asymptotic expansion of the characteristic function of

the price increment. Additional bias-reduction techniques, using inference for the small jumps, are

developed in Section 4. These bias-reduction results are made feasible using option data in Sec-

tion 5. Section 6 contains a Monte Carlo study and Section 7 an empirical application. Section 8

concludes. Technical assumptions and the proofs are given in Section 9.

2 Volatility Estimation via Characteristic Functions

The asset price process is denoted with X and the logarithm of it with x. The price process is

defined on the sample space Ω, with the associated σ-algebra F , and (Ft)t∈R+ being the filtration.

We will consider two probability measures, one being the true (statistical) one, denoted with P, and

the other one being the risk-neutral one, denoted with Q. The latter, under the weak condition of

arbitrage-free asset prices, is locally equivalent to the true one. The significance of Q stems from

the fact that the discounted at the risk-free rate payoff process of any asset is a local martingale

under Q. We will use this result to connect the value of derivatives written on the the asset with

the asset’s dynamics (under Q). More specifically, the dynamics of x under Q is given by

dxt = αtdt+ σtdWt +

∫
R
xµ(dt, dx), (1)
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where W is a Q Brownian motion and µ is an integer-valued random measure on R+ × R with

Q jump compensator dt ⊗ νt(x)dx, for some measure νt satisfying
∫
R |x|νt(x)dx < ∞. We note

that local equivalence of P and Q implies that x obeys the same dynamics under P but with a

different drift coefficient αP
t and a different jump compensator dt⊗ νPt (x)dx. Importantly, however,

the diffusion coefficient σt, which is the object of interest of this paper, is the same under the two

probability measures. Therefore, whether expectation is taken under P or Q will make no difference

as far as nonparametric inference about σt, from small-time increments of x, is concerned. For this

reason, in the development of our inference procedures in this section and Sections 3 and 4, we will

not specify whether expectation is taken under P or Q, as the results henceforth will apply under

both measures.

We refer to σt as spot volatility and to σ2
t as spot variance. Our spot volatility inference will

be based on estimates of the conditional characteristic function of xt+T − xt for asymptotically

shrinking T ↓ 0. Lets denote

Lt,T (u) = Et
(
eiu(xt+T−xt)/

√
T
)
, u ∈ R. (2)

In Section 5 we will show how to estimate Lt,T (u) from options observed at time t. Our goal in this

and the following two sections is to design efficient way of recovering σt from Lt,T (u). We begin

with an asymptotic expansion of Lt,T (u) shown in Jacod and Todorov (2014) and Todorov (2019).

In particular, under weak regularity conditions for x in (1), we have

Lt,T (u) = exp

(
−u

2

2
σ2
t

)
+Op

(
T 1−r/2

)
, as T ↓ 0, (3)

where the constant r is a bound on the jump activity. More specifically, r is such that the jump

compensator satisfies∫
R

(|x|r ∨ |x|2)νs(x)dx <∞, for s in a neighborhood of t. (4)

In the most general semimartingale case, r can take values in [0, 2]. In our dynamics for x above, as

is common in most applications, we assume that jumps are of finite variation which implies r ≤ 1.

We note also that r = 0 corresponds to the most common case of finite activity jumps, whereas on

each finite interval, x contains at most a finite number of jumps, almost surely.

Jacod and Todorov (2014) and Todorov (2019) used this result to propose the following estimate

of the spot variance:5

Vt,T (u) = − 2

u2
log |Lt,T (u)|. (5)

5Another application of this result is to test against pure-jump dynamics, see Kong et al. (2015).
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In Jacod and Todorov (2014), Lt,T (u) is replaced with its empirical counterpart from high-frequency

return observations while Todorov (2019) uses estimate for it from the options data. In the latter

case, the conditional characteristic function is computed under the risk-neutral probability measure

while in the former case the empirical characteristic function is an estimate of the P-conditional

characteristic function of returns. Therefore, since the local equivalence of P and Q implies that the

diffusion coefficient σt is the same under the two probability measures, the estimators of Jacod and

Todorov (2014) and Todorov (2019) have the same estimand but use different sources of information.

Using the asymptotic expansion of Lt,T (u) in (3), we have

Vt,T (u) = σ2
t +Op(T

1−r/2), as T ↓ 0. (6)

The expansion in (3) and the corresponding result in (6) are based on “freezing” the spot charac-

teristics of x (mainly, αt, σt and νt(x)) at their values at the beginning of the time interval and

further ignoring the contribution of the jumps in x to the value of Lt,T (u). The latter is possible

because of the asymptotically negligible role played by the jumps in the characteristic function of

the increment of x for asymptotically increasing values of the characteristic exponent. In the next

two sections, we will explicitly account for the effect of the time variation in the characteristics of

x and the jumps in x on Lt,T (u). This, in turn, will allow us to improve on Vt,T (u) as an estimator

of σ2
t .

3 Bias-Reduction in Volatility Estimation

To achieve improvements in the estimation of σt from the conditional characteristic function Lt,T (u),

we will make use of a higher-order asymptotic expansion of Lt,T (u) stated in the next theorem.6

In the statement of the theorem, for a random function Z(u) and a positive-valued function f ,

Z(u) = Olup (f(T )) means supu∈U |Z(u)| = Op(f(T )) for any compact set U ∈ R.

Theorem 1. If assumptions B1-r, B2-r and B3-r hold, then we have

− 2

u2
log |Lt,T (u)| = σ2

t +Bt,T (u) + ψt(u)T +Olup (T 3/2−r/2 ∨ T 3/2| log(T )|), for T ↓ 0, (7)

6Bandi et al. (2021) also develop higher-order expansion for characteristic functions of returns over short-time
intervals in a semiparametric setting, and use this expansion to estimate spot volatility from options. Their expan-
sion result is derived under the assumption of diffusive volatility dynamics and constant jump intensity, and these
restrictions on the return dynamics are utilized by Bandi et al. (2021) when constructing a spot volatility estima-
tor (Bandi et al. (2021) do not provide the asymptotic order of the error term in the asymptotic expansion of the
characteristic function and they do not show consistency and rate of convergence of their volatility estimator). In
addition, the estimator of Bandi et al. (2021) relies on a parametric model for the jump component of the price. The
results presented here, by contrast, work under general conditions for the underlying asset dynamics, allowing for
volatility jumps, time-varying jump intensity and price-volatility cojumps, and they do not need one to model the
jump distribution.
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where ψt(u) is some Ft-adapted function of u, and

Bt,T (u) =
2T

u2

∫
R

(
1− cos

(
ux/
√
T
))

νt(x)dx. (8)

The term ψt(u) in equation (7) is due to the time-variation in the drift coefficient, the stochastic

volatility as well as some of its components over the interval [t, t+ T ]. On the other hand, Bt,T (u)

is the leading component in log |Lt,T (u)| that is due to the jumps. It equals the real part of the

characteristic exponent of the increment of the jumps in x when the intensity/jump compensator

of the latter has been “frozen” at its value at the beginning of the interval.

From the higher-order asymptotic expansion result in (7), it is clear that

Vt,T (u) = σ2
t +Bt,T (u) + ψt(u)T +Op(T

3/2−r/2 ∨ T 3/2| log(T )|). (9)

The bias term ψt(u)T that is due to the time-variation in the spot characteristics of x is linear in

T . This suggests an easy way to eliminate it from Vt,T (u) by using characteristic functions over

two different short time intervals [t+ T1] and [t+ T2], with

τ = T2/T1 > 1. (10)

More specifically, we introduce the following estimator

Vt,T1,T2(u) =
1

T2 − T1
(T2Vt,T1(u)− T1Vt,T2(u)) . (11)

The construction of Vt,T1,T2(u) is reminiscent of the classical Jacknife bias correction in statistics,

see e.g., Efron and Tibshirani (1994). Using the asymptotic expansion result in (9), we have

Vt,T1,T2(u) = σ2
t +Bt,T1,T2(u) +Op(T

3/2−r/2
1 ∨ T 3/2

1 | log(T1)|), as T1 ↓ 0, (12)

where we use the shorthand notation

Bt,T1,T2(u) =
T2Bt,T1(u)− T1Bt,T2(u)

T2 − T1
. (13)

In the most general case, Bt,T1,T2(u) is of the same order of magnitude as Bt,T (u). However,

under mild regularity type condition for the jump compensator νt, we can show that Bt,T1,T2(u) is

asymptotically smaller in magnitude than Bt,T (u). This is done in the following theorem.

Theorem 2. (a) Suppose that 0 <
∫
R νt(x)dx <∞. Then, for τ > 1 and u 6= 0, we have

Bt,T1,T2(u)/Bt,T1(u)
P−→ 0, as T1 ↓ 0 and T2 = τT1. (14)
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If in addition ∫
R
|ν ′t(x)|dx <∞, (15)

where ν ′t denotes the first derivative of νt, then we have

Bt,T1,T2(u) = Op

(
T

3/2
1

)
and Bt,T1(u) = Op (T1) , as T1 ↓ 0 and T2 = τT1. (16)

(b) Suppose

νt(x) =
c−t 1(x < 0) + c+

t 1(x > 0)

|x|1+βt
+ νt(x), c±t ≥ 0, c−t + c+

t > 0, βt ∈ (0, 2), (17)

and ∫
R
|x|β̃t |ν̃t(x)|dx <∞, for some 0 ≤ β̃t < βt. (18)

Then, for τ > 1 and u 6= 0, we have

Bt,T1,T2(u)/Bt,T1(u)
P−→ τ − τ1−βt/2

τ − 1
∈ (0, 1), as T1 ↓ 0 and T2 = τT1. (19)

Part (a) of the above theorem shows that, in the case of finite activity jumps, Bt,T1,T2(u) is of

strictly smaller asymptotic order of magnitude than Bt,T1(u). That is, we have reduction in the

asymptotic order of the bias due to the jumps in Vt,T1,T2(u) relative to that in Vt,T (u). The extent of

the bias-reduction depends on the smoothness of νt. For example, under the additional smoothness

assumption for νt(x) in (15), satisfied in most parametric specifications considered in prior work,

we have

Vt,T1,T2(u) = σ2
t +Op(T

3/2
1 | log(T1)|) and Vt,T1(u) = σ2

t +Op(T1). (20)

That is, the bias in Vt,T1,T2(u) due to the jumps becomes of smaller asymptotic order while that in

Vt,T1(u) remains unchanged.

Part (b) of Theorem 2 considers the case of infinite activity jumps under the assumption that

their jump compensator is “locally stable”, i.e., that the jump intensity around zero behaves like

that of a time-changed stable process, see e.g., Barndorff-Nielsen and Shiryaev (2010), but is oth-

erwise unrestricted. Most parametric applications that consider jumps of infinite activity satisfy

such a “local stable” assumption, e.g., the CGMY process of Carr et al. (2002) and time-changes

of it considered in Carr et al. (2003). In the case of “locally stable” jumps, Bt,T1,T2(u) and Bt,T1(u)

are of the same asymptotic order of magnitude. Nevertheless, in this case, as in case (a) of the

theorem, we also have that asymptotically Bt,T1,T2(u) is strictly smaller in magnitude than Bt,T1(u).

The bias reduction becomes bigger for smaller values of βt.

In Figure 1, we illustrate the reduction in bias due to the jumps in volatility estimation for the

parametric models used in our Monte Carlo experiment in Section 6. The jump specification J1
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corresponds to finite activity jumps satisfying the smoothness condition in (15). Consequently, the

bias Bt,T1,T2(u) is much smaller than Bt,T1(u) and the ratio of the two converges to zero for large

values of u. As a result, the bias-reduction in volatility estimation offered by Vt,T1,T2(u) is large.

Next, specification J2 is again that of finite activity jumps but now the jump intensity is less smooth

and does not satisfy the condition in (15). The bias-reduction for this case, therefore, is smaller

than for case J1 and Bt,T1,T2(u)/Bt,T1(u) converges to zero as u→∞ at a slower rate. Specification

J3 corresponds to infinite activity jumps which are not locally stable. Although Theorem 2 does

not cover this specification (this specification will be covered by our analysis in the next section

however), one can show in this case that Bt,T1,T2(u)/Bt,T1(u) should converge to zero but at a slower

rate than a power of T1. The evidence from Figure 1 is consistent with that. Finally, specification

J4 corresponds to part (b) of Theorem 2 with βt = 0.5. Here, we see reduction in the bias in the

volatility estimation, but as implied by Theorem 2, Bt,T1,T2(u)/Bt,T1(u) converges to a constant

(that is less than one in absolute value) for large values of u, i.e., there is a limit in the bias

reduction offered by Vt,T1,T2(u) in this case for the effect of price jumps on the volatility estimation.

4 Further Bias-Reduction in Volatility Estimation

Without additional structure on the jumps, it seems impossible to reduce further the bias in the spot

volatility estimation. However, an assumption for local power behavior of the jump compensator

around the origin can allow us to expand the bias term Bt,T1,T2(u) and find an estimator for it.

More specifically, we will consider the following additional assumption for the jumps:

A. Suppose that the density of the jump compensator satisfies

νt(x) = c+
t

1

|x|β+1
1{x>0} + c+

t

1

|x|β
1{x>0, β>0}

+ c−t
1

|x|β+1
1{x<0} + c−t

1

|x|β
1{x<0, β>0} + νt(x),

(21)

for some β ∈ (−1, 1), c±t ≥ 0 with c−t + c+
t > 0, c±t ∈ R, and where limx→±∞ νt(x) = 0 and the

following holds ∫
R

(|νt(x)|+ |ν ′t(x)|)dx <∞, (22)

for ν ′t(x) denoting the derivative of νt(x) with respect to x.

Assumption A can be viewed as a semiparametric model for the jump compensator because it

imposes parametric structure for the leading term of νt(x) near the origin. The parameter β in

(21) determines the value of the so-called (spot) Blumenthal-Getoor index of the jumps defined as

inf{p ≥ 0 :

∫
R

(|x|p ∧ 1)νt(x)dx <∞}, (23)
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Figure 1: The ratio Bt,T1,T2(u)/Bt,T1(u) in Parametric Models. The model specifications J1-J4
are given in Section 6. The value of σ2

t is set to its unconditional mean of 0.02. The maximum
value of u on each of the plots is the minimum value of u for which Bt,T1(u) falls below 0.01× σ2

t .

with the spot Blumenthal-Getoor index of the jumps in x being equal to β ∨ 0 under assumption

A. This assumption is quite general and many parametric models such as the time-changed CGMY

processes of Carr et al. (2003), satisfy it. Essentially all past work on inference for the behavior

of “small” jumps from high-frequency data assumes a structure for the jumps similar to that in

assumption A, see e.g., Jacod and Protter (2012) and references therein.

In the case β > 0, assumption A implies “local stability” of the jumps that we considered in

part (b) of Theorem 2. In this case, the “small” jumps of x behave like those of a time-changed

stable process and assumption A further imposes restriction on the deviation of νt from that of

a time-changed stable process. Assumption A will hold, for example, when xβ+1νt(x) is analytic

in a neighborhood of zero. The case β = 0 corresponds to the case of infinite activity jumps

with Blumenthal-Getoor index of zero and can be considered as the borderline case between jumps

of finite and infinite activity. In this case the jump compensator around zero behaves like the
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difference of two time-changed Gamma processes. Finally, the case β < 0 corresponds to jumps of

finite activity but for which the jump compensator is still exploding near the origin. In this regard,

we note that jumps satisfying assumption A for some β ∈ (−1, 0) will not satisfy the smoothness

condition in (15). The explosion of the jump compensator around zero will make Bt,T1,T2(u) of

bigger asymptotic order than T
3/2
1 in that case.

With the help of assumption A, we can make an asymptotic expansion of Bt,T1,T2(u) for T1 ↓ 0.

The formal result is given in the following theorem.

Theorem 3. If assumption A holds, then we have

Bt,T1,T2(u) = Bt,T1,T2(u) +Olu
p

(
T

1+( 1
2
−β

2 )
∧ 1

2
1

)
, (24)

Bt,T1,T2(u) =
2τ1−β/2

τ − 1
(c+
t + c−t )T

1−β/2
1 uβ−2Γ(1− β) cos

(
πβ

2

)
g(
√
τ , β), (25)

as T1 ↓ 0 and T2 = τT1, for some τ > 1, and where for β ∈ (−1, 1) and ζ > 1, we denote

g(ζ, β) =


(ζ)β−1
β , if β ∈ (−1, 1) \ {0},

log(ζ), if β = 0.
(26)

In Figure 2, we compare the bias Bt,T1,T2(u) with its leading term Bt,T1,T2(u) for the parametric

models used in our Monte Carlo experiment in Section 6. We omit case J1 as the jumps in that

specification do not satisfy assumption A. In all remaining three cases, Bt,T1,T2(u) and Bt,T1,T2(u)

differ significantly for small values of u. This is not surprising because for these values of u, the

“big” jumps play a role and the expansion in Theorem 3 is driven by small jumps. For large values

of u, Bt,T1,T2(u) and Bt,T1,T2(u) become much closer, consistent with the asymptotic expansion

result of Theorem 3. We can see differences in the quality of the approximation across the different

specifications: it is worst for case J2 and it is best for case J4. Case J2 corresponds to β = −0.5

and case J4 to β = 0.5, for β being the parameter in assumption A. The reason for this difference

is that the size of Bt,T1,T2(u) relative to the residual term in (24) is smallest (asymptotically) for

smaller values of β. As we will see later, however, the worse performance of the approximation for

case J2 will not have an adverse effect on our ability to purge the effect of jumps on the volatility

estimation because for lower values of β, Bt,T1,T2(u) is also smaller.

We can use the result of Theorem 3 to estimate the leading term of Bt,T1,T2(u) and remove

it from the variance estimator Vt,T1,T2(u). This will lead to reduction in the asymptotic order of

the bias in the latter even in the case when jumps in x are of infinite activity. More specifically,
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Figure 2: Bt,T1,T2(u) and Bt,T1,T2(u) in Parametric Models. The model specifications J2-J4 are
given in Section 6. The value of σ2

t is set to its unconditional mean of 0.02. The maximum value
of u on each of the plots is the minimum value of u for which Bt,T1(u) falls below 0.01× σ2

t .

from the higher-order asymptotic expansion of the conditional characteristic function in (7) and

Theorem 3, we have for arbitrary small ι > 0:

Vt,T1,T2(u) = σ2
t + ψt,T1u

β−2 +Op

(
T

( 3
2
−β

2
−ι)∧ 3

2
1 | log(T1)|

)
, as T1 ↓ 0 and T2 = τT1, (27)

with ψt,T1 being an Ft-adapted random variable which does not depend u but depends on T1, β

and τ . We can use this expansion to estimate jointly σ2
t and the “nuisance parameters” β and ψt,T1

by nonlinear least squares estimation which we now describe.

Since the estimation of the activity parameter β can be rather difficult and because it is typically

assumed constant over time, we will consider estimation of this parameter from data on multiple

days. Towards this end, we define with T a finite set of numbers taking values in R>0 and we use

the shorthand notation VT(u) =
∑

t∈T Vt,T1,T2(u). We next introduce the following vector

u = (u1, ..., uK) ∈ RK>0, K ≥ 3 and ui = κui−1, for i = 2, ...,K and some κ > 1. (28)

Our estimator of β is given by

βT(u) = argmin
x∈[−1,1]

K∑
i=1

(
VT(ui)− VT(u;x)− ψT(u;x)ux−2

i

)2

, (29)

where

VT(u;x) =

∑K
i=1 u

2x−4
i

∑K
i=1 VT(ui)−

∑K
i=1 u

x−2
i

∑K
i=1 VT(ui)u

x−2
i

K
∑K

i=1 u
2x−4
i −

(∑K
i=1 u

x−2
i

)2 , (30)

ψT(u;x) =
K
∑K

i=1 VT(ui)u
x−2
i −

∑K
i=1 u

x−2
i

∑K
i=1 VT(ui)

K
∑K

i=1 u
2x−4
i −

(∑K
i=1 u

x−2
i

)2 . (31)
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Since the function that is minimized is continuously differentiable in x for x ∈ [−1, 1], the minimum

exists. If this minimum is achieved by several values of x, then βT(u) denotes the smallest of them.

The bias-corrected estimate of σ2
t is given by Vt(u, βT(u)) while βT(u) is an estimate of β. We

note that ψT(u;βT(u)) is a drifting parameter estimate of ψt,T1 in (27), which recall is asymptotically

shrinking. This complicates the analysis of Vt(u, βT(u)) and makes it quite different from standard

nonlinear least squares estimators. We start with establishing the properties of βT(u).

Theorem 4. If assumptions A, B1-r, B2-r and B3-r hold, for some τ > 1 and u given in (28), we

have

βT(u)− β = Op

(
T

1
2

∧
(β+1

2 )
1

)
, as T1 ↓ 0 and T2 = τT1. (32)

We note that the rate of convergence of the estimator βT(u) is slow, particularly for lower values

of β. This is natural as separation of diffusion from small jumps, which determine the jump activity

index, is particularly difficult for lower values of the latter. However, we are not interested in βT(u)

per se but rather in the estimator of the spot diffusive volatility. In the case when the recovery of

βT(u) is poor in relative terms, i.e., for lower values of β, the bias term in Vt,T1,T2(u) due to the

jumps is also asymptotically small. As a result, Vt(u, βT(u)) improves on Vt,T1,T2(u), regardless of

the value of β, as we show in the following theorem.

Theorem 5. If assumptions A, B1-r, B2-r and B3-r hold, then for some arbitrary small ι > 0,

τ > 1 and u given in (28), we have

Vt(u, βT(u)) = σ2
t +Op

(
T

( 3
2
−β

2
−ι)∧ 3

2
1 | log(T1)|

)
, as T1 ↓ 0 and T2 = τT1. (33)

In addition, if
∫
R νt(x)dx <∞ and

∫
R |ν

′
t(x)|dx <∞, we have

Vt(u, βT(u)) = σ2
t +Op

(
T

3
2

1 | log(T1)|
)
, as T1 ↓ 0 and T2 = τT1. (34)

The first result of the theorem, shows that when assumption A holds, then Vt(u, βT(u)) improves

on Vt,T1,T2(u) by removing the leading term in it that is due to the jumps in x. This leads to a

much smaller approximation error of Vt(u, βT(u)) as an estimator of σ2
t . Importantly, however, this

improvement does not come at the cost of bad behavior (at least asymptotically) of Vt(u, βT(u))

when assumption A does not hold. More specifically, the result in (34) shows that if jumps are of

finite activity and assumption A does not hold, the de-biasing of the jumps in Vt(u, βT(u)) has no

asymptoticaly detrimental effect.
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5 Feasible Volatility Estimation from Short-Dated Options

In the previous two sections, we considered estimation of σ2
t assuming Lt,T (u) is known. In practice,

this is not the case, of course, and hence the above variance estimators are not feasible. In this

section, we will make the inference procedures feasible by replacing Lt,T (u) with an estimate for it

from options written on the asset. More specifically, following Carr and Madan (2001), we have

Lt,T (u) = 1−
(
u2

T
+ i

u√
T

)
e−xt

∫
R
e(iu/

√
T−1)(k−xt)Ot,T (k)dk, (35)

where Ot,T (k) denotes the price at time t of a European-style out-of-the-money option price, ex-

piring at time t+ T with strike ek, and whose underlying asset price at time t is xt. We recall that

Ot,T (k) is the minimum of the put and call option prices with strike ek. In practice, we do not

observe options on a continuum of (log)-strikes but rather on a discrete grid, which we denote with

kt,T (1) < ... < kt,T (Nt,T ), (36)

and the gap between log-strikes is ∆t,T (j) = kt,T (j)− kt,T (j − 1). Option prices are observed with

error, i.e., we observe

Ôt,T (kt,T (j)) = Ot,T (kt,T (j)) + εt,T (kt,T (j)), (37)

where the errors εt,T (kt,T (j)) are defined on a space Ω(1) = RR × RR which is equipped with the

product Borel σ-field F (1), and transition probability P(1)(ω(0), dω(1)) from the probability space

Ω(0), on which X is defined, to Ω(1). We further define,

Ω = Ω(0) × Ω(1), F = F (0) ×F (1),

and

P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)) .

Using the available options, a Riemann sum approximation of the integral in (35) leads to the

following feasible counterpart of Lt,T (u):

L̂t,T (u) = 1−
(
u2

T
+ i

u√
T

)
e−xt

Nt,T∑
j=2

e(iu/
√
T−1)(kt,T (j−1)−xt)Ôt,T (kt,T (j − 1))∆t,T (j), u ∈ R. (38)

We denote the real and imaginary parts of Lt,T (u) with Rt,T (u) and It,T (u), and those of L̂t,T (u)

with R̂t,T (u) and Ît,T (u).

The convergence in distribution of the centered L̂t,T (u) that we present next holds F (0)-

conditionally. This is denoted by
L|F(0)

−−−−→ and formally means convergence in probability of the
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conditional probability laws when the latter are considered as random variables taking values in

the space of probability measures equipped with the weak topology, see e.g., VIII.5.26 of Jacod and

Shiryaev (2003).

For stating the next theorem, we introduce the following additional notation

Φ̃(k) = f(k) + |k|Φ(−|k|), k ∈ R, (39)

where f and Φ are the pdf and cdf, respectively, of a standard normal random variable. We also

use the shorthand notation K = maxt∈T, l=1,2 e
kt,Tl (1) and K = mint∈T, l=1,2 e

kt,Tl (Nt,Tl ). Finally, ∆

is a reference “average” log-strike gap, formally defined in assumption C2.

Theorem 6. Suppose assumptions C1-C3 hold for t ∈ T, with T being a finite set whose elements

are in R>0. Let T1 ↓ 0, T2 = τT1 for some τ > 1, ∆ � Tα1 , K � T β1 , K � T γ1 , for β, γ > 0 and

α > 1
2 . Then, for any compact U ∈ R, we have

T
1/4
l√
∆

 Ît,Tl(u)− It,Tl(u)

R̂t,Tl(u)−Rt,Tl(u)

 L|F(0)

−−−−→

 Zt,l,I(u)

Zt,l,R(u)

 , l = 1, 2, (40)

uniformly in u ∈ U , and where F (0)-conditionally (Zt,1,I(u) Zt,1,R(u)) and (Zt,2,l(u) Zt,2,R(u)) are

independent of each other, and across t ∈ T, and are centered Gaussian processes with E
(
Zt,l,I(u)Zt,l,I(v)

∣∣F (0)
)

E
(
Zt,l,I(u)Zt,l,R(v)

∣∣F (0)
)

E
(
Zt,l,R(u)Zt,l,I(v)

∣∣F (0)
)

E
(
Zt,l,R(u)Zt,l,R(v)

∣∣F (0)
)


= Σt,l(u, v) :=

 Σt,l,I(u, v) 0

0 Σt,l,R(u, v)

 ,

(41)

and

Σt,l,I(u, v) = σ3
tψt,l(0)ζ2

t,l(0)

∫
R

sin(σ2
t uk) sin(σ2

t vk)Φ̃2(k)dk, (42)

Σt,l,R(u, v) = σ3
tψt,l(0)ζ2

t,l(0)

∫
R

cos(σ2
t uk) cos(σ2

t vk)Φ̃2(k)dk, (43)

where the functions ψt,l and ζt,l appear in assumption C3.

We define next the variance estimators formed on the basis of L̂t,T (u). The feasible counterparts

of Vt,T (u) and Vt,T1,T2(u) are given by

V̂t,T (u) = − 2

u2
log |L̂t,T (u)| and V̂t,T1,T2(u) =

1

T2 − T1

(
T2V̂t,T1(u)− T1V̂t,T2(u)

)
, u ∈ R. (44)

We further define V̂T(u) =
∑

t∈T V̂t,T1,T2(u), and from here β̂T(u) and V̂T(u, x) are the counterparts

of βT(u) and VT(u, x) in which VT(u) is replaced by V̂T(u). In the next corollary we derive the rate

of convergence of the feasible variance estimators.
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Corollary 1. Suppose assumptions B1-r, B2-r, B3-r and C1-C3 hold for t ∈ T, with T being a

finite set whose elements are in R>0. Let T1 ↓ 0, T2 = τT1 for some τ > 1, ∆ � Tα1 , K � T β1 ,

K � T γ1 , for β, γ > 0 and α > 1
2 . Fix u 6= 0 and define u as in (28).

(a) If 0 <
∫
R νt(x)dx <∞ and

∫
R |ν

′
t(x)|dx <∞, we have

V̂t,T1,T2(u) = σ2
t +Op

(
T

3
2

1 | log(T1)|
∨ √

∆

T
1/4
1

)
, (45)

V̂t(u, β̂T(u)) = σ2
t +Op

(
T

3
2

1 | log(T1)|
∨ √

∆

T
1/4
1

)
. (46)

(b) If assumption A holds, we have

V̂t,T1,T2(u) = σ2
t +Op

(
T

1−β
2

1

∨ √
∆

T
1/4
1

)
, (47)

V̂t(u, β̂T(u)) = σ2
t +Op

(
T

( 3
2
−β

2
−ι)

∧ 3
2

1

∨ √
∆

T
1/4
1

)
, (48)

for some arbitrary small ι > 0.

We note that from Theorem 6, we can also derive a CLT for the feasible variance estimators

but for brevity we do not state these results.

Remark 1. The CLT of Theorem 6 is derived under the assumption of F (0)-conditional indepen-

dence of the option observation errors, see assumption C3. This assumption can be weakened to

requiring only weak F (0)-conditional spatial dependence in the observation error. In this case, the

variance of the limiting distribution in (40) will contain a long-run variance component incorpo-

rating the effect from the spatial dependence in the observation error. We do not consider such an

extension here as the empirical evidence in Andersen et al. (2021) indicates that the spatial depen-

dence in the option observation error of S&P 500 index short-dated options, used in our empirical

analysis, is very small.

6 Monte Carlo Study

In this section, we evaluate the performance of the various feasible variance estimators introduced

above on simulated data.
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6.1 Setup

We use the following model for the underlying asset dynamics, under the risk-neutral probability,

to generate the true option prices:

dXt

Xt−
=
√
VtdWt +

∫
R

(ex − 1)µ(dt, dx), (49)

dVt = κv(θv − Vt)dt+ σv
√
VtdBt, (50)

where Wt and Bt are Q Brownian motions with corr(dWt, dBt) = ρdt, and µ is an integer-valued

random measure with Q compensator dt⊗ νt(dx), for νt given by

νt(dx) = Vt × νts(x)dx, νts(x) = c−
e−λ−|x|

|x|1+b
1{x<0} + c+

e−λ+|x|

|x|1+b
1{x>0}. (51)

In the above specification for X, the stochastic variance is modeled as a square-root diffusion process

like in the popular Heston model (Heston (1993)). The price jumps have intensity that is affine in

the level of diffusive variance like in Bates (2000) and Pan (2002), and subsequent empirical option

pricing work. Our jump specification is a time-changed CGMY process, see Barndorff-Nielsen and

Shiryaev (2010), with the time-change being the integrated diffusive variance. The CGMY process

is a general Lévy jump process, with separate parameters controlling the tails (λ− and λ+) and the

behavior of the small jumps (b).

We consider several parameter settings for the above model which can help us understand the

role of various biases involved in the option-based volatility estimation as well as the effectiveness

of the proposed bias-reduction techniques. The parameter values for all cases are given in Table 1.

In the first five model specifications, we exclude the price jumps and vary the parameters capturing

the volatility dynamics. In all considered cases, we set θv = 0.02, which is close to the average value

of market variance. In scenario D1, we set the mean reversion parameter κv so that the half-life of

a shock to variance is one month. For this case, we set the volatility of volatility parameter σv to a

relatively low value of 0.2 (recall the Feller condition σ2
v < 2κvθv that implies that zero is a reflecting

barrier for the square-root diffusion process) and the leverage coefficient to ρ = −0.5. In scenario

D2, we keep all parameters, except for ρ, the same as in scenario D1, and we decrease ρ to −0.9

(i.e., we consider stronger leverage effect). In Scenario D3, we increase the speed of mean reversion

in variance, with κv now implying half-life of a variance shock of only one week and we adjust σv

so that the coefficient of variation of V (which is given by σv/
√

2κvθv) remains approximately the

same as in case D1. Scenario D4 is the same as scenario D1 but with the volatility of volatility

parameter increased to 0.5. Finally, in scenario D5, we consider the combined effect of increasing

mean reversion in variance, higher leverage and higher volatility of volatility, relative to case D1. As
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such, this case is the most challenging for the asymptotic expansion of the conditional characteristic

function and the associated variance estimators.

Table 1: Parameter Setting for the Monte Carlo

Case Variance Parameters Jump Parameters

θv κv σv ρ b λ− λ+ c− c+

D-1 0.02 8.3 0.2 −0.5 − − − 0 0

D-2 0.02 8.3 0.2 −0.9 − − − 0 0

D-3 0.02 34.9 0.4 −0.5 − − − 0 0

D-4 0.02 8.3 0.5 −0.5 − − − 0 0

D-5 0.02 34.9 1.0 −0.9 − − − 0 0

J-1 0.02 8.3 0.2 −0.5 −1.5 20 100 9.69× 103 3.01× 105

J-2 0.02 8.3 0.2 −0.5 −0.5 20 100 1.21× 103 7.53× 103

J-3 0.02 8.3 0.2 −0.5 0.0 20 100 3.6× 102 10× 102

J-4 0.02 8.3 0.2 −0.5 0.5 20 100 0.91× 102 1.13× 102

Next, in order to study the bias in the variance estimation due to the price jumps, we consider

the model specifications J-1, J-2, J-3 and J-4. In all of them, we set the variance parameters to

their values in case D-1. We consider four cases for the parameter b that determines the jump

activity: −1.5, −0.5, 0.0 and 0.5. The first two correspond to jumps of finite activity, the third

to the variance gamma process of Madan and Seneta (1990), and the last one to a difference of

two inverse Gaussian processes. For case J-1, we have
∫
R |ν

′
t(x)|dx < ∞. Therefore, in this case

de-biasing for the jumps like in Section 4 is not needed but remember from Corollary 1 that such

de-biasing procedure should do no harm in this case. We will assess this in the Monte Carlo. Cases

J-3 and J-4 are ones with jumps of infinite activity (i.e., ones whose paths contain infinite number of

small jumps over finite time intervals). In all considered cases, we set λ− = 20 and λ+ = 100. This

choice implies tail decays of out-of-the-money puts and calls similar to those of observed options

written on the S&P 500 index, see e.g., Andersen et al. (2015). Finally, for a given b, λ±, we set

c± according to

c− = 0.9×
λ2−b
−

Γ(2− b)
and c+ = 0.1×

λ2−b
+

Γ(2− b)
,

which implies that spot jump variation is equal to spot diffusive variance, and further that 90%

of the jump variation is due to negative jumps. This separation of the risk-neutral variation into
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diffusive and one due to positive and negative jumps is similar to that implied from parametric

models fitted to observed S&P 500 index options, see e.g., Andersen et al. (2015).

We turn next to the option observation scheme. Observed options are given by

Ôt,T (kt,T (j)) = Ot,T (kt,T (j))(1 + 0.03× zt,T (j)), j = 1, ..., Nt,T , (52)

where {zt,T (j)}Nt,Tj=1 are sequences of i.i.d. standard normal variables which are independent of each

other. The size of the observation error is calibrated to match roughly bid-ask spreads of index

option data. The initial level of the underlying stock price is drawn from a uniform distribution on

the interval [1997.5, 2002.5], and for each pair (t, T ), the strike grid is equidistant with gaps between

strikes of 5. The strike closest to the money is set to 2000 and the strikes below and above 2000 are

extended in both directions by increments of 5 until the true out-of-the-money option price falls

below 0.075. This specification of the strike grid mimics that of available of S&P 500 index options.

The current value of variance is set to 10-th, 50-th or 90-th quantile of its marginal distribution,

and we also experiment with more extreme starting values of Vt in the case of the jump-diffusion

models. Finally, in all simulation scenarios, we consider three tenors: T1 = 3/252, T2 = 5/252 and

T3 = 10/252, which correspond to 3, 5 and 10 business days to expiration, respectively.

6.2 Bias-Reduction in Variance Estimation due to the Volatility Dynamics

We start with investigating the bias in option-based variance estimation due to the volatility dynam-

ics in the underlying asset. For this, we will compare the performance of the original characteristic

function based variance estimator V̂t,T (u) with the bias-corrected V̂t,T1,T2(u). The comparison will

be done for the scenarios D1-D5 in which the underlying asset does not contain jumps and any bias

in Vt,T (u) is due to the volatility dynamics. For implementing the variance estimators, we need to

set the value of the characteristic exponent. We do this in the following data-driven way:

ût,T = inf {u ≥ 0 : |L̂t,T (u)| ≤ 0.3} ∧ argminu∈[0,ut,T ]|L̂t,T (u)|, (53)

where ut,T =
√
−2 log(0.05)/σ̂t,ATM and σ̂t,ATM is the at-the-money Black-Scholes implied volatil-

ity at time t for the shortest available maturity on that day. The idea behind the above specification

of ût,T is the following. We want to pick the characteristic exponent as high as possible so that

the contribution of jumps in V̂t,T (u) and V̂t,T1,T2(u) is minimized. At the same, very high values of

u will lead to noisy variance estimators, and in addition, higher order terms in the expansion in

(7) (recall that the result in (7) is for bounded and fixed u) as well as higher order terms in the

Riemann sum approximation of the integral in Lt,T (u) will start playing a role. For this reason,

our data-driven ût,T is an estimate of the smallest positive u for which plim
T→0

L̂t,T (u) reaches some
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small value, which we take here to be 0.3. We note in this regard that argminu∈[0,ut,T ]|L̂t,T (u)| is

above inf {u ≥ 0 : |L̂t,T (u)| ≤ 0.3}, with probability approaching one, and is used only as a guard

against finite-sample distortions.

With the above choice of the characteristic exponent, we compare the performance of the feasible

estimators V̂t,T1(ût,T1) and V̂t,T1,T2(ût,T1). The results from the Monte Carlo are reported in Table 2.

We can draw several conclusions from the reported results. First, in the baseline scenario D1, the

original estimator V̂t,T1(ût,T1) performs very well and so does the two-tenor estimator V̂t,T1,T2(ût,T1).

The biases in all of these estimators are quite small in relative terms. The performance of the

estimators in scenario D2 looks very similar to that in scenario D1. That is, increasing the leverage

effect close to its maximum possible value seems not to affect adversely the estimators. On the other

hand, the results for scenario D3, in which the mean-reversion parameter κv is increased, indicate

that this feature of the model does affect the variance recovery. Due to the higher mean reversion

of variance, an upward/downward bias appears in V̂t,T1(ût,T1) when current variance is below/above

its mean. These biases are reduced when using the two-tenor variance estimator V̂t,T1,T2(ût,T1) in

the high and low volatility regimes when these effects are the strongest. The results for scenario D4,

in which the volatility of volatility parameter is increased, reveal that this feature of the volatility

dynamics tends to generate downward bias in V̂t,T1(ût,T1). This bias is offset by the variance mean

reversion effect in the low volatility regime. As a result, the use of V̂t,T1,T2(ût,T1) reduces the bias

in V̂t,T1(ût,T1) in the high and medium volatility regimes only.

Overall, the bias in the two-tenor variance estimators is small in relative terms in all scenarios

D1-D4. In the high volatility regime, where the bias in V̂t,T1(ût,T1) due to the volatility of volatility

and mean reversion in variance is of the same sign, the use of the two-tenor estimator V̂t,T1,T2(ût,T1)

always helps reduce this bias. In the low (and in some cases median) volatility regime, in which the

biases due to volatility of volatility and variance mean reversion can partially cancel out, V̂t,T1(ût,T1)

can have smaller bias than V̂t,T1,T2(ût,T1). That said, the relative bias in V̂t,T1,T2(ût,T1) in these cases

remains very small (less than 6.1% when T1 = 3/252 and T2 = 5/252).7

We turn next to the results for scenario D5 in which we increase leverage effect, mean reversion

in variance and volatility of volatility, relative to the baseline case D1. As such this scenario is

somewhat unrealistic but it is nevertheless useful to study the bias in volatility estimation. Now,

for all starting values of variance, V̂t,T1(ût,T1) has nontrivial downward bias. With the exception

of the lowest volatility regime, V̂t,T1,T2(ût,T1) reduces this bias, and in the high volatility regime

this reduction is by a factor of two. Nevertheless, V̂t,T1,T2(ût,T1) is also downward biased which

7Some of these small differences can be also due to the use of finite number of options on discrete strike grid as
well as the numerical error in computing the option prices from the model.
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means that higher order terms in the characteristic function expansion, beyond those considered

for constructing V̂t,T1,T2(ût,T1), seem to have some effect on the estimation.

Finally, comparing V̂t,T1,T2(ût,T1), V̂t,T1,T3(ût,T1) and V̂t,T2,T3(ût,T2), we can see that the three

estimators have similar biases (with the exception of scenarios D4 and D5 for medium and high

levels of current variance, for which V̂t,T1,T2(ût,T1) has the smallest bias). They differ, however, in

terms of their precision, with V̂t,T1,T3(ût,T1) being the least noisy of the three estimators. This is to

be expected as log(Lt,T (u)) is approximately constant in T , the option errors are proportional to

the true option prices, and T3/T1 is higher than T2/T1 and T3/T2.

6.3 Bias-Reduction in Variance Estimation due to the Price Jumps

We next study the bias in the variance estimation due to the presence of jumps as well as the

performance of the techniques of Section 4 aimed at removing this bias. The tuning parameters

of the variance estimator V̂t(u, β̂T(u)) are set as follows. First, T contains one element which is t,

i.e., the current point in time. For u, used in the computation of β̂T(u), we use the vector ûT,T1

which we define in the following way. It is of size K = 20, and the logarithms of its elements form

equidistant grid. The first and last element of ûT,T1 are given by

ûT,T1(1) = inf {u ≥ 0 : |L̂T,T1(u)| ≤ 0.8} ∧ argminu∈[0,uT,T1 ]|L̂T,T1(u)|, (54)

ûT,T1(K) = inf {u ≥ 0 : |L̂T,T1(u)| ≤ 0.3} ∧ argminu∈[0,uT,T1 ]|L̂T,T1(u)|, (55)

where uT,T1 =
√
−2 log(0.05)/σ̂T,ATM , and use the notation L̂T,T1(u) = 1

|T|
∑

t∈T L̂t,T1(u) as well as

σ̂2
T,ATM = 1

|T|
∑

t∈T σ̂
2
t,ATM .

With the above choice of tuning parameters, we compare the performance of the feasible esti-

mators V̂t,T1(ût,T1), V̂t,T1,T2(ût,T1) and V̂t(ût,T1 , β̂T(ûT,T1)). The results from the Monte Carlo are

reported in Table 3. Overall, once jumps are added in the underlying asset price dynamics, all

negative biases in V̂t,T1(ût,T1) reported in the previous section become positive. This is because

the presence of jumps always generates an upward bias in variance estimation. This positive bias

in the variance recovery tends to dominate any possible negative bias that is due to the volatility

dynamics. Not surprisingly, the upward bias in V̂t,T1(ût,T1) is smallest in scenario J1 and it grad-

ually increases when going from case J1 to case J4. The reason for this is that the b parameter,

controlling the jump activity, increases from −1.5 in case J1 to 0.5 in case J4.8 Higher jump activity

implies higher concentration of small jumps, which are harder to disentangle from a diffusion, and

this leads to higher bias in variance estimation. Consistent with our theoretical results, in all con-

sidered cases, V̂t,T1,T2(ût,T1) reduces the positive bias due to the jumps in the variance estimation.

8The parameters in J1-J4 are set so that
∫
R x

2νt(x)dx remains the same across the different jump scenarios.
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Table 2: Monte Carlo Results for the Diffusive Models

Estimator Bias STD RMSE Bias STD RMSE Bias STD RMSE

Panel A: Case D1

Vt = 0.0118 Vt = 0.0192 Vt = 0.0293

V̂t,T1 0.0002 0.0003 0.0004 -0.0002 0.0005 0.0005 -0.0004 0.0006 0.0008

V̂t,T2 0.0005 0.0003 0.0006 -0.0001 0.0004 0.0004 -0.0010 0.0005 0.0011

V̂t,T3 0.0008 0.0003 0.0009 -0.0003 0.0003 0.0005 -0.0018 0.0005 0.0019

V̂t,T1,T2 -0.0002 0.0009 0.0009 -0.0004 0.0013 0.0013 0.0004 0.0017 0.0018

V̂t,T1,T3 -0.0001 0.0005 0.0005 -0.0001 0.0007 0.0007 0.0002 0.0009 0.0009

V̂t,T2,T3 0.0001 0.0006 0.0006 0.0002 0.0009 0.0009 -0.0002 0.0012 0.0012

Panel B: Case D2

Vt = 0.0118 Vt = 0.0192 Vt = 0.0293

V̂t,T1 0.0001 0.0003 0.0003 -0.0004 0.0005 0.0006 -0.0004 0.0006 0.0007

V̂t,T2 0.0004 0.0003 0.0005 -0.0003 0.0004 0.0005 -0.0011 0.0005 0.0012

V̂t,T3 0.0006 0.0003 0.0006 -0.0006 0.0003 0.0007 -0.0021 0.0005 0.0021

V̂t,T1,T2 -0.0003 0.0009 0.0010 -0.0004 0.0013 0.0014 0.0006 0.0017 0.0018

V̂t,T1,T3 -0.0001 0.0005 0.0005 -0.0003 0.0007 0.0007 0.0003 0.0009 0.0009

V̂t,T2,T3 0.0002 0.0006 0.0006 -0.0001 0.0009 0.0009 -0.0002 0.0012 0.0012

Panel C: Case D3

Vt = 0.0120 Vt = 0.0192 Vt = 0.0290

V̂t,T1 0.0010 0.0004 0.0010 -0.0004 0.0005 0.0006 -0.0022 0.0006 0.0023

V̂t,T2 0.0018 0.0003 0.0018 -0.0003 0.0004 0.0005 -0.0032 0.0005 0.0032

V̂t,T3 0.0029 0.0003 0.0029 -0.0005 0.0003 0.0006 -0.0051 0.0004 0.0051

V̂t,T1,T2 -0.0003 0.0010 0.0010 -0.0006 0.0013 0.0014 -0.0008 0.0017 0.0019

V̂t,T1,T3 0.0002 0.0005 0.0005 -0.0004 0.0007 0.0008 -0.0010 0.0009 0.0014

V̂t,T2,T3 0.0007 0.0007 0.0010 -0.0001 0.0009 0.0009 -0.0014 0.0011 0.0018

Panel D: Case D4

Vt = 0.0033 Vt = 0.0153 Vt = 0.0429

V̂t,T1 0.0000 0.0002 0.0002 -0.0004 0.0004 0.0006 -0.0019 0.0008 0.0021

V̂t,T2 0.0002 0.0001 0.0002 -0.0008 0.0004 0.0009 -0.0032 0.0007 0.0033

V̂t,T3 0.0009 0.0001 0.0009 -0.0016 0.0003 0.0016 -0.0059 0.0006 0.0059

V̂t,T1,T2 -0.0002 0.0004 0.0004 0.0002 0.0011 0.0011 -0.0001 0.0023 0.0023

V̂t,T1,T3 -0.0003 0.0002 0.0004 0.0000 0.0006 0.0006 -0.0004 0.0012 0.0012

V̂t,T2,T3 -0.0004 0.0003 0.0005 -0.0002 0.0007 0.0007 -0.0008 0.0015 0.0017

Panel E: Case D5

Vt = 0.0036 Vt = 0.0155 Vt = 0.0424

V̂t,T1 0.0001 0.0003 0.0003 -0.0037 0.0004 0.0038 -0.0093 0.0008 0.0094

V̂t,T2 0.0005 0.0003 0.0006 -0.0047 0.0004 0.0047 -0.0133 0.0007 0.0133

V̂t,T3 0.0020 0.0003 0.0020 -0.0055 0.0004 0.0055 -0.0199 0.0006 0.0199

V̂t,T1,T2 -0.0003 0.0005 0.0006 -0.0027 0.0010 0.0029 -0.0043 0.0020 0.0047

V̂t,T1,T3 -0.0004 0.0003 0.0005 -0.0032 0.0006 0.0033 -0.0057 0.0011 0.0058

V̂t,T2,T3 -0.0004 0.0005 0.0006 -0.0042 0.0007 0.0043 -0.0082 0.0013 0.0083

Note: We use the shorthand notation V̂t,T for V̂t,T (ût,T ) and V̂t,T1,T2 for V̂t,T1,T2 (ût,T1 ). Reported results are based on 5, 000 Monte
Carlo replications. STD stands for standard deviation and RMSE for root mean squared error. The top row of each panel reports the
true value of spot variance.

As a result, the bias in V̂t,T1,T2(ût,T1) in the finite activity jump cases J1 and J2 become minimal

in relative terms (they are of relative size of up to 6.5% in the case T1 = 3/252 and T2 = 5/252).
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Table 3: Monte Carlo Results for the Jump-Diffusion Models, Part I

Vt = 0.0118 Vt = 0.0192 Vt = 0.0293

Estimator Bias STD RMSE Bias STD RMSE Bias STD RMSE

Panel A: Case J1

V̂t,T1 0.0006 0.0004 0.0007 0.0009 0.0007 0.0011 0.0014 0.0008 0.0016

V̂t,T2 0.0010 0.0004 0.0011 0.0014 0.0005 0.0015 0.0017 0.0008 0.0019

V̂t,T3 0.0018 0.0003 0.0019 0.0021 0.0005 0.0021 0.0029 0.0007 0.0030

V̂t,T1,T2 0.0001 0.0010 0.0010 0.0000 0.0019 0.0019 0.0011 0.0021 0.0024

V̂t,T1,T3 0.0001 0.0006 0.0006 0.0004 0.0010 0.0010 0.0009 0.0011 0.0014

V̂t,T2,T3 0.0002 0.0009 0.0009 0.0008 0.0010 0.0013 0.0006 0.0016 0.0017

V̂ βt,T1,T2
0.0000 0.0013 0.0013 -0.0005 0.0020 0.0021 -0.0010 0.0030 0.0031

V̂ βt,T1,T3
-0.0001 0.0007 0.0007 -0.0002 0.0013 0.0013 -0.0005 0.0020 0.0020

V̂ βt,T2,T3
-0.0001 0.0010 0.0010 0.0000 0.0016 0.0016 -0.0002 0.0025 0.0025

Panel B: Case J2

V̂t,T1 0.0012 0.0004 0.0012 0.0019 0.0006 0.0020 0.0039 0.0010 0.0040

V̂t,T2 0.0018 0.0004 0.0018 0.0029 0.0006 0.0030 0.0052 0.0008 0.0053

V̂t,T3 0.0034 0.0004 0.0034 0.0044 0.0005 0.0045 0.0067 0.0007 0.0067

V̂t,T1,T2 0.0003 0.0011 0.0012 0.0006 0.0016 0.0017 0.0019 0.0026 0.0033

V̂t,T1,T3 0.0004 0.0006 0.0007 0.0009 0.0009 0.0013 0.0028 0.0014 0.0031

V̂t,T2,T3 0.0004 0.0008 0.0009 0.0016 0.0013 0.0021 0.0040 0.0016 0.0043

V̂ βt,T1,T2
-0.0008 0.0015 0.0017 -0.0004 0.0025 0.0025 -0.0001 0.0037 0.0037

V̂ βt,T1,T3
-0.0005 0.0010 0.0011 -0.0002 0.0017 0.0017 -0.0009 0.0022 0.0024

V̂ βt,T2,T3
0.0000 0.0013 0.0013 -0.0003 0.0020 0.0020 -0.0019 0.0021 0.0028

Panel C: Case J3

V̂t,T1 0.0017 0.0005 0.0018 0.0034 0.0007 0.0035 0.0068 0.0009 0.0068

V̂t,T2 0.0027 0.0005 0.0028 0.0046 0.0006 0.0047 0.0078 0.0009 0.0078

V̂t,T3 0.0044 0.0004 0.0044 0.0063 0.0006 0.0064 0.0102 0.0008 0.0102

V̂t,T1,T2 0.0004 0.0012 0.0013 0.0017 0.0019 0.0026 0.0054 0.0024 0.0059

V̂t,T1,T3 0.0007 0.0007 0.0010 0.0023 0.0010 0.0025 0.0056 0.0013 0.0057

V̂t,T2,T3 0.0012 0.0010 0.0016 0.0032 0.0012 0.0034 0.0058 0.0017 0.0060

V̂ βt,T1,T2
-0.0001 0.0018 0.0018 -0.0002 0.0026 0.0026 0.0000 0.0031 0.0031

V̂ βt,T1,T3
-0.0001 0.0012 0.0012 -0.0007 0.0013 0.0014 -0.0003 0.0014 0.0014

V̂ βt,T2,T3
-0.0003 0.0013 0.0013 -0.0007 0.0014 0.0015 -0.0003 0.0020 0.0020

Panel D: Case J4

V̂t,T1 0.0033 0.0005 0.0033 0.0057 0.0007 0.0058 0.0101 0.0010 0.0102

V̂t,T2 0.0042 0.0004 0.0042 0.0069 0.0007 0.0070 0.0122 0.0009 0.0122

V̂t,T3 0.0062 0.0004 0.0062 0.0094 0.0006 0.0094 0.0146 0.0008 0.0146

V̂t,T1,T2 0.0020 0.0013 0.0024 0.0041 0.0018 0.0045 0.0076 0.0026 0.0080

V̂t,T1,T3 0.0022 0.0007 0.0023 0.0044 0.0009 0.0045 0.0085 0.0014 0.0086

V̂t,T2,T3 0.0024 0.0009 0.0026 0.0049 0.0013 0.0050 0.0101 0.0019 0.0102

V̂ βt,T1,T2
0.0001 0.0015 0.0015 0.0006 0.0021 0.0022 0.0026 0.0031 0.0040

V̂ βt,T1,T3
0.0001 0.0007 0.0008 0.0009 0.0011 0.0014 0.0033 0.0016 0.0037

V̂ βt,T2,T3
0.0002 0.0010 0.0011 0.0014 0.0015 0.0021 0.0047 0.0021 0.0051

Note: We use the shorthand notation of Table 2 as well as V̂ βt,T1,T2
for V̂t(ût,T1

, β̂T(ût,T1
)). Reported results are based on 5, 000 Monte

Carlo replications. STD stands for standard deviation and RMSE for root mean squared error. The top row reports the true value of
spot variance.

From the results in Table 3, we can see that the estimator V̂t(ût,T1 , β̂T(ûT,T1)), in which we bias-
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correct for the effect of jumps, tends to work very well. In particular, in case J1 for which the de-

biasing for the presence of jumps is not needed because of their low activity, V̂t(ût,T1 , β̂T(ûT,T1)) ex-

hibits only very small negative bias and its volatility is only slightly higher than that of V̂t,T1,T2(ût,T1).

On the other hand, V̂t(ût,T1 , β̂T(ûT,T1)) removes most of the positive bias in the variance estima-

tion when jumps are of infinite activity, i.e., in cases J3 and J4. Indeed, when T1 = 3/252 and

T2 = 5/252, the bias in V̂t(ût,T1 , β̂T(ûT,T1)) does not exceed 8.9% in relative terms. This is to be

contrasted with the relative bias up to 41.6% in V̂t,T (ût,T ) (for T = T1 or T = T2) in scenario J4

when current variance is at its highest level. Thus, the bias-correction for the jumps seems to work

well in finite samples.

Table 4: Monte Carlo Results for the Jump-Diffusion Models, Part II

Vt = 0.0025 Vt = 0.0750 Vt = 0.0025 Vt = 0.0750

Estimator Bias STD RMSE Bias STD RMSE Bias STD RMSE Bias STD RMSE

Case J1 Case J2

V̂t,T1 0.0009 0.0002 0.0009 0.0085 0.0019 0.0087 0.0006 0.0001 0.0006 0.0174 0.0020 0.0175

V̂t,T2 0.0011 0.0002 0.0011 0.0100 0.0016 0.0101 0.0012 0.0002 0.0012 0.0218 0.0018 0.0219

V̂t,T3 0.0024 0.0002 0.0024 0.0127 0.0015 0.0128 0.0027 0.0002 0.0027 0.0267 0.0015 0.0268

V̂t,T1,T2 0.0006 0.0004 0.0008 0.0065 0.0049 0.0081 -0.0002 0.0004 0.0005 0.0119 0.0050 0.0129

V̂t,T1,T3 0.0003 0.0002 0.0004 0.0070 0.0026 0.0075 -0.0001 0.0002 0.0003 0.0141 0.0027 0.0143

V̂t,T2,T3 -0.0001 0.0004 0.0004 0.0077 0.0032 0.0084 -0.0001 0.0004 0.0004 0.0177 0.0036 0.0181

V̂ βt,T1,T2
0.0005 0.0003 0.0006 0.0006 0.0073 0.0073 -0.0002 0.0005 0.0005 -0.0052 0.0060 0.0080

V̂ βt,T1,T3
0.0003 0.0002 0.0003 -0.0033 0.0049 0.0059 -0.0002 0.0003 0.0003 -0.0034 0.0031 0.0046

V̂ βt,T2,T3
-0.0002 0.0004 0.0004 -0.0103 0.0044 0.0112 -0.0001 0.0004 0.0004 0.0002 0.0039 0.0039

Case J3 Case J4

V̂t,T1 0.0010 0.0002 0.0010 0.0258 0.0021 0.0259 0.0012 0.0002 0.0012 0.0374 0.0021 0.0375

V̂t,T2 0.0015 0.0002 0.0015 0.0312 0.0019 0.0312 0.0016 0.0002 0.0016 0.0414 0.0018 0.0415

V̂t,T3 0.0029 0.0002 0.0030 0.0344 0.0016 0.0345 0.0036 0.0002 0.0036 0.0417 0.0015 0.0418

V̂t,T1,T2 0.0004 0.0005 0.0006 0.0190 0.0055 0.0198 0.0007 0.0005 0.0008 0.0320 0.0056 0.0325

V̂t,T1,T3 0.0003 0.0003 0.0004 0.0226 0.0030 0.0228 0.0005 0.0002 0.0005 0.0357 0.0030 0.0358

V̂t,T2,T3 0.0002 0.0004 0.0004 0.0283 0.0037 0.0285 0.0002 0.0004 0.0004 0.0411 0.0037 0.0413

V̂ βt,T1,T2
0.0003 0.0004 0.0005 0.0031 0.0063 0.0070 0.0006 0.0004 0.0008 0.0169 0.0067 0.0182

V̂ βt,T1,T3
0.0002 0.0002 0.0003 0.0067 0.0033 0.0074 0.0004 0.0003 0.0005 0.0211 0.0034 0.0214

V̂ βt,T2,T3
0.0000 0.0004 0.0004 0.0119 0.0042 0.0126 0.0000 0.0005 0.0005 0.0272 0.0043 0.0275

Note: We use the shorthand notation of Table 2 as well as V̂ βt,T1,T2
for V̂t(ût,T1

, β̂T(ût,T1
)). Reported results are based on 5, 000 Monte

Carlo replications. STD stands for standard deviation and RMSE for root mean squared error. The top row reports the true value of
spot variance.

We finish this section with presenting results for the case when the starting values of the variance

are very low and very high, mainly Vt = 0.0025 and Vt = 0.0750. These values match roughly the

10-th and 90-th quantiles of the spot variance estimated in our empirical application but they

correspond to more extreme quantiles for the unconditional distribution of Vt in our Monte Carlo

experiments. The results from this experiment are reported in Table 4. Now the biases in V̂t,T (ût,T )

due to mean reversion in volatility are much stronger because the starting values of Vt are further
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away from its unconditional mean. As a result, V̂t,T (ût,T ) is significantly upward biased in the low

volatility regime for all considered values of T . Overall, even in these more extreme settings, the

bias-correction techniques proposed in the paper appear to work well.

6.4 Sensitivity to Strike Range in Variance Recovery

In the experiments so far, the cheapest out-of-the-money puts and calls for any pair (t, T ) have

prices of around 0.075. This matches the S&P 500 Index option data set, used in our empirical

application, for most of the day-maturity pairs.9 Nevertheless, it is important to investigate the

sensitivity of the volatility option recovery to the width of the strike range of available options.

Before presenting the results from the experiments in this section, we make a few general

comments in this regard. First, as shown in Todorov (2019), V̂t,T (u) remains consistent even if the

log-strike range is asymptotically finite. This, of course, carries over to the other bias-corrected

variance estimators proposed in this paper. The reason for this is that the value of V̂t,T (u) is derived

from options with strikes in the vicinity of the current stock price, see e.g., Figure 1 in Todorov

and Zhang (2021) for an empirical illustration of this. Second, if there are a lot of missing option

observations for very small and/or very large strikes, then one can do a tail extension based on

extreme value theory to approximate the prices for the missing deep out-of-the-money option prices

as done in Todorov and Zhang (2021) for individual stock options. Third, the size of the error from

the truncation of the strike range in the computation of L̂t,T (u) naturally depends on how fat the

return distribution is, which in our short-tenor case is governed by how fat the jump tails are (if

jumps are present of course).

We will now illustrate the sensitivity of the variance recovery to the strike range using one of

our Monte Carlo cases, mainly case J3. For this experiment, we will assume no option observation

error in order to better highlight the role of truncation of the available strike range. In Figure 3,

we plot the bias in V̂t,T (ût,T ) as a function of the degree of truncation of the strike range, with

the latter measured as a percentage of the maximum of the deepest available out-of-the-money call

and put over the most expensive available option (i.e., the one closest-to-the-money). The range of

strike truncation is calibrated to the data of our empirical application. As seen from the figure, the

sensitivity V̂t,T (ût,T ) to strike truncation is not very big. For example, the relative bias in V̂t,T (ût,T )

for the strike cutoff corresponding to the 75-th empirical quantile of this quantity for our data is at

most around 3% and for the 90-th empirical quantile of the strike range cutoff, the biggest change

in the relative bias of V̂t,T (ût,T ) is up to 5%. For this reason, just like for the calculation of the

9The minimum tick for the S&P 500 option quotes is 0.05, and since we exclude zero bid quotes, the minimum
mid-quote for option prices in our empirical analysis is 0.075.
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VIX volatility index, we do not do tail adjustments to L̂t,T (u).10
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Figure 3: Sensitivity of V̂t,T (u) to Strike Range. The ratio on the x-axis is the maximum of
the deepest out-of-the-money put and call divided by the most expensive out-of-the-money option
for (t, T ). The vertical lines from left to right correspond to the 50-th, 75-th and 90-th empirical
quantiles of this quantity for the S&P 500 Index Option data used in the empirical application.
The y-axis is the relative bias V̂t,T (ût,T )/Vt − 1. The option data is generated from model J3 for
medium level of current variance.

7 Empirical Application

We apply the newly-developed variance estimators to options written on the S&P 500 market index.

Our sample period is from January 2, 2010 until December 31, 2020. The data is obtained from

OptionMetrics. It consists of closing best bid and best ask quotes. For each day in the sample,

we keep the two shortest available tenors with time-to-maturity of at least 2 business days and

T2/T1 ≥ 1.5. We consider only tenors for which there are at least 5 out-of-the-money options with

different strikes and non-zero bid quotes. The moneyness is determined by the forward rate, which

in turn is computed by using put-call parity for three distinct strikes with the smallest gap between

call and put mid-quotes. The gap between the strikes of observed options is typically five, and

when this is not the case, we conduct linear interpolation in BSIV space to create option prices

on equidistant strike grid. Finally, we remove from the analysis, the dates just before Brexit vote,

2016 US election and the 2017 April IMF conference, which were days with large pre-scheduled

10If we use the tail extension, discussed above, in computing L̂t,T (u), the biases reported in Figure 3 essentially
disappear. These results are available upon request.
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jump events.11 We further remove from the analysis May 6, 2010, which contained a flash-crash

event, and the following trading day. With these filters in place, the median days to maturity T1

and T2 in our sample are 3 and 7 business days, respectively. From the option data, we compute

the combined variance estimator V̂t = 1
2

(
V̂t,T1(ût,T1) + V̂t,T2(ût,T2)

)
as well as the bias-corrected

V̂t,T1,T2(ût,T1) and V̂t(ût,T1 , β̂T(ût,T1)). The tuning parameters of these estimators are set exactly as

in the Monte Carlo. We also report average at-the-money BSIV computed from the two tenors,

denoted with AIVt (and reported in annualized variance units).

We compliment the option data with one-minute price records of the SPY exchange traded

fund (ETF), which is the ETF on the S&P 500 index. We consider observations during the regular

trading hours from 9.30 am till 4.00 pm EST. In order to avoid potential adverse effects in the

opening minutes of trading, we start sampling at 9.35 am on each day. We also exclude from the

analysis days with more than 25% of zero returns (which occur typically around holidays). A unit

interval from market close on the previous day to market close on the current day, [t−1, t], consists

of overnight period [t − 1, t − 1 + κ] and a trading interval [t − 1 + κ, t], for some κ ∈ [0, 1]. The

number of increments over the trading interval are n, and are denoted with

∆n
t,ix = xt−1+κ+i(1−κ)/n − xt−1+κ+(i−1)(1−κ)/n, t = 1, 2, ..., i = 1, ..., n. (56)

From the return data, we construct two alternative estimates of the spot variance at market close.

The first is a local version of the truncated variance estimator of Mancini (2001), defined as

TVt =
n

kn

n∑
i=n−kn+1

(∆n
t,ix)21{|∆n

t,ix|≤3
√
RVt∧BVt/

√
n}, (57)

where kn is an integer in [1, n], which here we set to kn = 60 (corresponding to one hour window),

and

RVt =
n

n− kn

n−kn∑
i=1

(∆n
t,ix)2, BVt =

n

n− kn
π

2

n−kn∑
i=2

|∆n
t,i−1x||∆n

t,ix|, (58)

with the first quantity in (58) being the realized variance over the part of the trading day not

including the local window before market close and the second one being the jump-robust bipower

variation estimator over the same time window. The use of time-varying threshold in defining TVt

is done in order to account for the time-varying diffusive variance. Naturally, this estimator is going

to be sensitive to the choice of threshold level. We therefore compute an alternative to it based on

the empirical characteristic function of the returns, which has a built-in truncation for the jumps

11Jumps with known arrival times change the short-term asymptotics for the return process, see Todorov (2020).
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in the increments. It is defined as

LVt = − 2

û2
t

log

∣∣∣∣∣∣ 1

kn

n∑
i=n−kn+1

exp(iût
√
n∆n

t,ix)

∣∣∣∣∣∣ , ût =

√
−2 log(0.3)√
RVt ∧BVt

. (59)

LVt was introduced in Jacod and Todorov (2014) (its integrated over time version to be precise),

see also Liu et al. (2018), and is the return-counterpart of V̂t,T (ût,T ) in which we use the empirical

characteristic function of the high-frequency returns. Note also that our choice of the characteristic

exponent ût for LVt corresponds directly to the choice of ût,T for V̂t,T (ût,T ). We annualize TVt and

LVt by using an overnight adjustment factor, computed for each calendar year in the sample, by

simply comparing average realized variance over the trading day with the sample variance of the

overnight return.

Finally, we also extract from the high-frequency data a measure of the relative size of the infinite

activity jump component of the price. In particular, we estimate

IJAt = IVt(u/2)/IVt(u)− 1, IVt(u) = − 2

u2

bn/knc∑
j=1

log

∣∣∣∣∣∣ 1

kn

jkn∑
i=(j−1)kn+1

exp(iu
√
n∆n

t,ix)

∣∣∣∣∣∣ , (60)

where u =
√
−2 log(0.3)/

√
BV and BV is the sample average of the daily BV . Following Jacod

and Todorov (2014), IVt(u/2) − IVt(u) is, up to a constant, an estimate of the daily integrated

counterpart of Bt,T1,T2 with τ =
√

2 and T1 corresponding to the length of the high-frequency

increment (for β > 0). The leading component of IVt(u) is the daily integrated diffusive variance,

so IJAt can be viewed as an estimate of the importance of the infinite jump activity component

of the price in variance estimation. Higher value of IJAt corresponds to higher contribution of the

infinite jump activity component of the price to the total return variation. The estimate IJAt is

noisy but it is nevertheless useful in studying the effect of the infinite activity jumps on the variance

recovery.12

In Table 5, we report summary statistics for the various volatility estimators introduced above.

Panel A of the table contains unconditional moments of the estimators. We can see from the

reported results that

√
V̂t has a slightly lower mean than the bias-corrected

√
V̂t,T1,T2(ût,T1). Look-

ing at the quantiles of the two estimators, we can note that this is largely due to the higher level

of
√
V̂t,T1,T2(ût,T1) in high volatility regimes. Recall from our theoretical analysis and the Monte

Carlo experiment that V̂t,T1,T2(ût,T1) corrects for an upward or downward bias in variance esti-

mation due to the volatility dynamics (depending on whether current variance is below or above

12Estimating the jump activity index, on the other hand, is much harder because it requires separating the scale
from the shape of the jump measure near zero. As a result, reasonable precision for feasible frequencies (like the one
used here) can be achieved for estimation windows of at least several months, see e.g., the Monte Carlo evidence in
Jacod and Todorov (2014). Note, however, that for our purposes a proxy for Bt,T1,T2 is only needed.
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its unconditional level) as well as for an upward bias due to price jumps. Our empirical results

indicate that the former effect is negative and dominates in the high volatility regime when the

term structure of option implied volatility is downward sloping. Comparing
√
V̂t,T1,T2(ût,T1) with√

V̂t(ût,T1 , β̂T(ût,T1)), we see that the latter is smaller than the former, with the difference being

a bias-correction for the effect of small price jumps on the volatility recovery. Nevertheless, we

note that the difference between the two volatility estimators is relatively small. Finally, and not

surprisingly,
√
AIVt is significantly higher than all other option-based volatility measures. This is

primarily because of the bias in it that is due to price jumps.

Table 5: Summary Statistics for S&P 500 Index Volatility Measures

Panel A: Unconditional Moments

Volatility Estimator Mean STD Q25 Median Q75√
V̂t 0.1194 0.0722 0.0774 0.1027 0.1401√
V̂t,T1,T2 0.1239 0.0854 0.0765 0.1034 0.1441√
V̂ βt,T1,T2

0.1161 0.0811 0.0711 0.0961 0.1362
√
AIVt 0.1468 0.0868 0.0957 0.1266 0.1706

√
TVt 0.1120 0.0865 0.0633 0.0890 0.1322

√
LVt 0.1186 0.0991 0.0631 0.0910 0.1393

Panel B: Conditional Means (Level of Volatility)

Volatility Regime
√
V̂t

√
V̂t,T1,T2

√
V̂ βt,T1,T2

√
TVt

√
LVt

Low (AIVt < Q0.1(AIVt)) 0.0518 0.0491 0.0445 0.0455 0.0436

Medium (Q0.25(AIVt) < AIVt < Q0.75(AIVt)) 0.1041 0.1055 0.0988 0.0944 0.0978

High (AIVt > Q0.9(AIVt)) 0.2709 0.3003 0.2812 0.2834 0.3176

Panel C: Conditional Means (Jump Contribution)

Jump Contribution
√
V̂t

√
V̂t,T1,T2

√
V̂ βt,T1,T2

√
TVt

√
LVt

Low (IJAt < Q0.1(IJAt)) 0.1161 0.1207 0.1133 0.1068 0.1130

Medium (Q0.25(IJAt) < IJAt < Q0.75(IJAt)) 0.1032 0.1049 0.0984 0.0910 0.0948

High (IJAt > Q0.9(IJAt)) 0.2313 0.2563 0.2390 0.2608 0.2880

Note: Qα(X) stands for the α-quantile of the random variable X. Notation as in Table 3. All volatility numbers are
reported annualized.

Turning next to the two return-based volatility estimators, we see from Panel A of Table 5

that they have very similar unconditional quantiles, with
√
LVt having slightly higher mean than

√
TVt. Comparing the moments of the return-based volatility measures with those of the option-

based

√
V̂t,

√
V̂t,T1,T2(ût,T1) and

√
V̂t(ût,T1 , β̂T(ût,T1)), we can see that they are in general close.
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The closest option-based estimator in terms of unconditional median to the return-based ones is√
V̂t(ût,T1 , β̂T(ût,T1)).

To better assess the differences between the volatility estimators, in Panel B of Table 5, we

report their means in periods of high, low and medium volatility, where the volatility regimes are

determined on the basis of the value of AIV . In the low volatility regime, V̂t is highest of the three

compared option-based estimators because of the upward bias in it due to the price jumps and

the volatility dynamics (option implied volatility term structure in this case is upward sloping).

The opposite happens in the high volatility regime. Mainly, V̂t is the lowest of the three compared

option-based estimators. The reason for this is that the bias in V̂t due to the volatility dynamics is

now negative and this is corrected for in the other two option-based volatility estimates. Overall,

in all three regimes, V̂t(ût,T1 , β̂T(ût,T1)) appears closest to the return-based TVt and LVt. We note

some discrepancy in the high volatility regime between TVt and LVt, which is probably due to the

difficulty in disentangling volatility from jumps from asset returns in such environments.

The highest improvement of V̂t(ût,T1 , β̂T(ût,T1)) over V̂t, in relative terms, appears in the low and

medium volatility regimes while in the Monte Carlo scenarios J1-J4 we see that the improvement

across volatility regimes appears more uniform. The difference is likely due to partial cancelation

of biases in V̂t and the fact that the comparison here is with the return-based variance estimates

which can also contain biases.13

We next study the impact of the jump activity component of the price on the volatility recovery

using the indicator IJAt. From the results reported in Panel C of Table 5, we can see that for

small and moderate values of IJAt, the return-based variance estimates and the option-based ones

(with the exception of AIV ) are close, with V̂t(ût,T1 , β̂T(ût,T1)) performing best among the latter.14

Interestingly, high values of IJAt tend to occur when volatility level is high. In the high IJAt

regime, the gap between the option-based volatility proxies and the return-based ones is somewhat

bigger (in relative terms). This is consistent with higher bias in the option-based volatility recovery

in this case, as documented in the Monte Carlo. Note, however, that in the Monte Carlo we compare

our estimates with the true volatility while here we compare the option-based estimates with the

return-based ones. It is very likely, consistent with prior empirical evidence, that the return-based

13As discussed already, biases in V̂t depend on various features of the return process. Parametric models, such as
the ones in the exponentially affine class used in most empirical work (and in the Monte Carlo here), can restrict
the variation of these biases as a function of volatility. For example, the jump distribution is commonly assumed
constant in existing parametric models while nonparametric evidence in Bollerslev and Todorov (2014) suggests that
it can vary over time.

14We note that, when conditioning on the value of IJAt,
√
V̂t and

√
V̂t(ût,T1

, β̂T(ût,T1
)) have similar means. This

is likely due to biases of different direction in V̂t canceling out when averaging across the days in the different regimes
of IJAt.
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volatility estimates are also upward-biased when IJAt is very high.15 We leave comparisons of

jump activity estimation from asset returns and options for future work.

In Figure 4, we plot
√
V̂t(ût,T1 , β̂T(ût,T1)) and

√
LVt. Consistent with the evidence presented

in Table 5, we note that the two volatility measures are very close, with no apparent systematic

deviations between the two. This is true even during the very turbulent period of March 2020 at

the start of the pandemic crisis. Figure 4 also reveals that the return-based LVt is significantly

noisier than its option counterpart V̂t(ût,T1 , β̂T(ût,T1)). This highlights the gains offered by option

data for measuring spot volatility.
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Figure 4: S&P 500 Index Volatility Measures. Notation as in Table 3.

To further understand the properties of potential biases present in the option-based volatility

estimators, we next study the time series behavior of the difference between the option-based

volatility estimates and a return-based one, which we take to be LVt. If bias in volatility estimation

is negligible, we should have approximately log(ÔV t) = log(Vt) + εt and log(LVt) = log(Vt) + ζt,

where ÔV t is one of the option-based volatility estimates and the two errors satisfy Et−1(ζt) = 0

and E(εt) = 0. If option observation errors are F (0)-conditionally independent across time, then we

have also the stronger condition Et−1(εt) = 0. The above results follow from the CLT in Theorem 6

and a CLT for LVt derived in Jacod and Todorov (2014). Thus, time series dependence in the

difference between an option-based volatility estimate and a return-based one is evidence of either

non-negligible (time-varying) biases in the volatility proxies and/or option observation errors with

15For example, the threshold in TVt is automatically elevated when volatility is high allowing for a lot small of
jumps to “escape” truncation.
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time-series persistence. To study this, in Figure 5, we plot the difference in logs between the option-

based volatility estimates and LVt. The log-transformation of the volatility series is done in order

to minimize the impact of outliers and because the error term in log(LVt) is approximately i.i.d.

(this follows from the CLT for LVt). As seen from the figure, the differences are approximately

homoskedastic and neither of them exhibit long persistent shifts. Nevertheless, some short-term

deviations from the long-run means of the series do appear, e.g., in the beginning of 2010 or towards

the end of 2019.
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Figure 5: Daily Difference between Option and Return Based Volatility Measures. The
red horizontal line on each plot is at zero. Notation as in Table 3.

The autocorrelations of the daily residual series, displayed in Figure 6, confirm the above ob-

servations. Mainly, mild positive autocorrelations are present in all series. They are strongest

for the gap log(LVt) − log(AIVt), for which autocorrelations are statistically significant even at

lag 22 (time is measured in business days). Importantly, for the bias-corrected V̂t,T1,T2(ût,T1) and

V̂t(ût,T1 , β̂T(ût,T1)), the differences from LVt exhibit least time series dependence, with autocorrela-

tions past lag 10 being very small and in most cases insignificant. This is consistent with less bias

33



in these two option-based volatility estimates.
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Figure 6: Autocorrelation of Daily Gap between Option and Return Based Volatility
Measures. Blue horizontal lines on each plot correspond to standard errors under i.i.d. assumption
for the series. Notation as in Table 3.

Of course, the above evidence can be also explained with option observation errors which have

some time series dependence. To separate such an explanation for the autocorrelation patterns

observed in Figure 6 from the presence of bias in the volatility proxies, we next study the dependence

of the volatility gap on past volatility. More specifically, we run linear regressions of log(ÔV t) −
log(LVt) on a constant and past log(LVt), where ÔV t is one of the option-based volatility estimators.

The results are summarized in Figure 7. If bias in the volatility proxies is present and it depends on

volatility, then one would expect that past volatility should be able to predict future gaps between

the option and return based volatility proxies. On the other hand, since the return-based LVt is

adapted to F (0), F (0)-conditional time series dependence in the observation errors will typically

not generate predictability of that gap in the volatility proxies. To see this, suppose that the

option observation errors are of the form εt,Tl(kt,Tl(j)) = ζt,l(kt,Tl(j) − xt)εt,l,jOt,Tl(kt,Tl(j)), for
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j = 1, ..., Nt,Tl , l = 1, 2 and where ζt,l(kt,Tl(j) − xt) is F (0)-adapted, εt,l,j is F (1)-adapted and

independent from F (0). In this case, even if εt,l,j has time series dependence (which implies time

series dependence in the option observation errors), we still have E(εt,Tl(kt,Tl(j))|F
(0)
s ) = 0, for

s < t.

The reported results in Figure 7 reveal nontrivial differences between the volatility proxies

in terms of the predictive regressions. Mainly, for AIV , the gap to LV is strongly predictable

using past volatility. For all considered lags, the t-statistic for the coefficient in front of the past

log(LVt) is highly statistically significant and the R2 of the predictive regression is nontrivial.

Both these quantities, decrease monotonically when going from AIVt to V̂t, V̂t,T1,T2(ût,T1) and

V̂t(ût,T1 , β̂T(ût,T1)), in that order. In particular, for V̂t(ût,T1 , β̂T(ût,T1)), the highest R2 is slightly

above 2% only and past volatility has no statistical significance in the predictive regression past

lag 4.

Overall, the empirical analysis illustrates that the de-biasing procedures introduced in the paper

work well and the resulting option-based volatility estimator can accurately measure the spot

volatility. This should allow for a more precise and robust study of the properties of the volatility

process (e.g., roughness of the volatility path, presence of diffusion in its dynamics, etc), which

relies on accurate spot volatility measurement, than previously possible. We leave such analysis for

future work.

8 Conclusion

In this paper we consider methods for removing the bias in nonparametric spot volatility esti-

mation from short-dated options that is due to time-varying volatility and presence of jumps in

the underlying asset price. The bias-reduction techniques build on characteristic function based

volatility estimates formed from short-dated options with different tenors. We show that by suit-

ably differencing the volatility estimates from options with different times to maturity, we can

reduce asymptotically the bias in volatility estimation due to the time-variation in volatility and

the presence of jumps. Applying additional nonlinear least squares techniques in characteristic

exponent space leads to further reduction in bias in spot volatility estimation that is due to price

jumps. The theoretical results are illustrated on simulated and real data.
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Figure 7: Gap between Option and Return Based Volatility Measures and Past Volatil-
ity. The plots display t-statistics with ∗ (left axis) and R2 with o (right axis) from a regression

of log(LVt)− log(ÔV t) on a constant and lagged log(LVt), for ÔV t being one of the option-based
volatility proxies. Standard errors are based on Newey-West HAC long-run covariance estimator
with lag length of 22. Notation as in Table 3.

9 Assumptions and Proofs

9.1 Assumptions

The process x is defined on a filtered probability space
(
Ω,F , (Ft)t≥0,Q

)
. The volatility process

obeys the following dynamics

σt = σ0 +

∫ t

0
bsds+

∫ t

0
ηsdWs +

∫ t

0
η̃sdW̃s +

∑
s≤t

∆σs, (61)

where W̃ is a Brownian motion independent from W . The dynamics of x, given in (1) and (61), is

under the probability measure Q, and the jumps in x and σ are given by∑
s≤t

∆xs =

∫ t

0

∫
R
δx(s, z)µ(ds, dz),

∑
s≤t

∆σs =

∫ t

0

∫
R
δσ(s, z)µ(ds, dz), (62)
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where µ is a Poisson measure on R+×R with compensator λ(ds, dz) = ds⊗dz, and δx : R+×R→ R

and δy : R+ × R → R are two predictable functions. Just like x and σ, the processes α, η and η̃

will be general Itô semimartingales with the following dynamics

αt = α0 +

∫ t

0
bαs ds+

∫ t

0
σαs dWs +

∫ t

0
σ̃αs dW̃s +

∫ t

0
σαs dW s

+

∫ t

0

∫
R
δα(s, z)µ(ds, dz),

(63)

ηt = η0 +

∫ t

0
bηsds+

∫ t

0
σηsdWs +

∫ t

0
σ̃ηsdW̃s +

∫ t

0
σηsdW s

+

∫ t

0

∫
R
δη(s, z)µ(ds, dz),

(64)

η̃t = η̃0 +

∫ t

0
bη̃sds+

∫ t

0
ση̃sdWs +

∫ t

0
σ̃η̃sdW̃s +

∫ t

0
ση̃sdW s

+

∫ t

0

∫
R
δη̃(s, z)µ(ds, dz),

(65)

where bα, bη, bη̃, σα, σ̃α, σα, ση, σ̃η, ση, ση̃, σ̃η̃ and ση̃ are processes with càdlàg paths, σαt ,

σηt and ση̃t are 1 × 3 vectors and the rest of the above processes are one-dimensional, W is a 3-

dimensional Brownian motion orthogonal to W and W̃ , and δα : R+ × R → R, δη : R+ × R → R

and δη̃ : R+ × R→ R are predictable functions.

We now state our assumptions for the dynamics of x which we need for the asymptotic analysis.

Since later we will use different probability measures, to avoid confusion in the statements that

follow, we will denote with EQ the expectation under Q and similarly EQ
t will be the Ft-conditional

expectation under Q.

B1-r. There exist Ft-adapted random variables Ct > 0 and t > t such that for s ∈ [t, t]:

EQ
t |zs|

2 < Ct, (66)

for z being each one of the processes b, bα, bη, bη̃, σα, σ̃α, σα, ση, σ̃η, ση, ση̃, σ̃η̃ and ση̃. In

addition, for some r ∈ [0, 1], we have

EQ
t

(∫
R
|δx(s, z)|rdz

)
+ EQ

t

(∫
R

(|δσ(s, z)| ∨ |δσ(s, z)|4)dz

)2

< Ct, (67)

and further for some ι > 0

EQ
t

(∫
R

(|δη(s, z)| ∨ |δη(s, z)|1+ι)dz

)2

+ EQ
t

(∫
R

(|δη̃(s, z)| ∨ |δη̃(s, z)|1+ι)dz

)2

< Ct.

(68)
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B2-r. There exist Ft-adapted random variables Ct > 0 and t > t such that for u, s ∈ [t, t]:

EQ
t |zs − zu|2 ≤ Ct|s− u|, (69)

for z being each one of the processes: b, σα, σ̃α, σα, ση, σ̃η, ση, ση̃, σ̃η̃ and ση̃. Furthermore, for

some r ∈ [0, 1] and ι > 0, we have

EQ
t

(∫
R
|δx(s, z)− δx(u, z)|rdsdz

)
≤ Ct

√
|s− u|, (70)

EQ
t

(∫
R

(
|δσ(s, z)− δσ(u, z)| ∨ |δσ(s, z)− δσ(u, z)|1+ι

)
dsdz

)2

≤ Ct|s− u|. (71)

B3-r.We have

1{x 6=0}νt(dx, dy) = νt(x, y)dxdy + 1{y=g(x), x 6=0}ν̃t(x)dx, (72)

where νt is a predictable R+-valued function on R2, ν̃t(x) is a predictable R+-valued function on

R, and g is R-valued function on R. We have the following conditions∫
R

∫
R

(|y| |νt(x+ h, y)− νt(x, y)|) dxdy ≤ Ct|h|1−r, (73)

∫
R
|g(x+ h)ν̃t(x+ h)− g(x)ν̃t(x)| dx ≤ Ct|h|1−r, (74)

|g(x+ h)− g(x)| ≤ g(x)h1−r, for some g(x) with

∫
R
|g(x)g(x)ν̃t(x)|dx ≤ Ct, (75)

for some Ft-adapted random variable Ct and some r ∈ [0, 1].

C1. There exist F (0)
t -adapted random variables Ct and t > t such that for s ∈ [t, t]:

EQ
t |αs|4 + EQ

0 |σs|
6 + EQ

0 (e4|xs|) + EQ
t

(∫
R2

(e3|x| − 1)νs(dx, dy)

)4

< Ct. (76)

C2. The log-strike grids {kt,Tl(j)}
Nl
j=1, for l = 1, 2, are F (t)-adapted and we have

ct∆ ≤ kl,j − kl,j−1 ≤ Ct∆, l = 1, 2, as ∆ ↓ 0, (77)

where ∆ is a deterministic sequence, and ct > 0 and Ct < ∞ are F (0)-adapted random variables.

In addition, for some arbitrary small ζ > 0:

sup
j:|kt,Tl (j)−xt|<ζ

∣∣∣∣kt,Tl(j)− kt,Tl(j − 1)

∆
− ψt,l(kt,Tl(j − 1)− xt)

∣∣∣∣ P−→ 0, l = 1, 2, as ∆ ↓ 0, (78)

where ψt,Tl(k) are F (0)-adapted functions which are continuous in k at 0.
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C3. We have εt,Tl(kt,Tl(j)) = ζt,l(kt,Tl(j)−xt)εt,l,jOt,Tl(kt,Tl(j)) for l = 1, 2, where for k in a neigh-

borhood of zero, we have |ζt,l(k)−ξt,l(0)| ≤ Ct|k|ι, for some ι > 0 and Ct <∞ being an F (0)-adapted

random variable. The two sequences {εt,1,j}N1
j=1 and {εt,2,j}N2

j=1 are defined on F (1), are i.i.d. and

independent of each other and of F (0). We further have E(εt,l,j |F (0)) = 0, E((εt,l,j)
2|F (0)) = 1 and

E(|εt,l,j |κ|F (0)) <∞, for some κ ≥ 4 and l = 1, 2.

9.2 Proof of Theorem 1

The proof of the theorem follows from Theorem 1 in Todorov (2021), provided we can show that

under assumption we have∫ 1

0

∫
R2

e
iux√
T
(
e−u

2yσts−u
2

2
y2s − 1

)
1{x 6=0}νt(dx, dy)ds = Op

(
T

1−r
2

)
. (79)

We use the following notation for some σt 6= 0 and u 6= 0

ht(u, y) =

 2
∫ 1
0

(
e−u

2yσts−u
2

2 y2s−1
)
ds

u2σty
, if y 6= 0,

1, if y = 0.

(80)

It is easy to see that, for a given σt 6= 0 and u 6= 0, ht(u, y) is bounded and differentiable in y with

∇yht(u, y) bounded. The boundedness, together with (73), implies∫
R

∫
R

(|ht(u, y)||y| |νt(x+ h, y)− νt(x, y)|) dxdy ≤ Ct(u)|h|1−r. (81)

Next, using the differentiability of ht(u, y) in y and the fact that ∇yht(u, y) is bounded, for given

σt 6= 0 and u 6= 0, as well as (75), we have∫
R
|(ht(u, g(x+ h))− ht(u, g(x))g(x)ν̃t(x)| dx ≤ Ct(u)|h|1−r. (82)

Using the boundedness of ht(u, y) for given σt 6= 0 and u 6= 0 and (74), we have∫
R
|ht(u, g(x+ h))(g(x+ h)ν̃t(x+ h)− g(x)ν̃t(x))| dx ≤ Ct(u)|h|1−r. (83)

The above two bounds imply altogether∫
R
|ht(u, g(x+ h))g(x+ h)ν̃t(x+ h)− ht(u, g(x))g(x)ν̃t(x)| dx ≤ Ct(u)|h|1−r. (84)

The claim to be proved in (79) then follows from the fact that for an arbitrary function ζ : R2 → R,

we have for a fixed v ∈ R+∫
R
|ζ(x+ h, v)− ζ(x, v)|dx ≤ C(v)|h|1−r =⇒

∫
R
eiuvxζ(x, v)dx = O(|u|−(1−r)), as |u| → ∞, (85)
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for C(v) being some positive and finite-valued function of v. To establish the above result, we note

first that by a change of variable of integration, we have∫
R
eiuvxζ

(
x+

π

uv
, v
)
dx = e−iπ

∫
R
eiuvxζ(x, v)dx = −

∫
R
eiuvxζ(x, v)dx, for u, v 6= 0. (86)

Therefore, ∫
R
eiux

(
ζ
(
x+

π

uv
, v
)
− ζ(x, v)

)
dx = −2

∫
R
eiuvxζ(x, v)dx. (87)

Using the Hölder condition for the function ζ, we have∣∣∣∣∫
R
eiuvxζ(x, v)dx

∣∣∣∣ ≤ ∫
R

∣∣∣ζ (x+
π

uv
, v
)
− ζ(x, v)

∣∣∣ dx ≤ C(v)|u|−(1−r), (88)

and hence the result to be proved.

9.3 Proof of Theorem 2

Part (a) follows by application of Riemann-Lebesgue lemma, see e.g., Proposition 2.2.17 in Grafakos

(2008).

We now show part (b). First, if we denote

νst
t (x) =

c−t 1(x < 0) + c+
t 1(x > 0)

|x|1+βt
, (89)

then, by using Lemma 14.11 in Sato (1999), we have∫
R

(1− cos(ux))νst
t (x)dx = (c−t + c+

t )χ(βt)u
βt , (90)

where

χ(β) =


1
βΓ(1− β) cos

(
βπ
2

)
, if β 6= 1,

π
2 , if β = 1.

(91)

Second, using our assumption for the residual measure ν̃t, we have∫
R

(1− cos(ux))|ν̃t(x)|dx ≤ 21−β̃t |u|β̃t
∫
R
|x|β̃t |ν̃t(x)|dx. (92)

Combining these two results, we can write

Bt,T (u) = 2T 1−βt/2(c−t + c+
t )χ(βt)u

βt−2 + op(T
1−βt/2), as T ↓ 0. (93)

From here, part (b) of the theorem follows directly.
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9.4 Proof of Theorem 3

We begin with an auxiliary lemma.

Lemma 1. For ζ > 1, we have∫ ∞
0

eiux − eiuζx

xβ+1
dx = uβΓ(1− β)e−

iπβ
2 g(ζ, β), β ∈ (−1, 1) and u ∈ R+. (94)

Proof of Lemma 1. For the case β ∈ (−1, 0), direct calculation yields (note that the integral below

is not absolutely convergent in this case):∫ ∞
0

eiux

xβ+1
dx = −uβ Γ(1− β)

β
e−

iπβ
2 . (95)

For the case β ∈ (0, 1), we have from Lemma 14.11 in Sato (1999),∫ ∞
0

(eiux − 1)

xβ+1
dx = −uβ Γ(1− β)

β
e−

iπβ
2 . (96)

We are therefore left with the case β = 0. First, for the sine integral, we have
∫∞

0
sin(x)
x dx = π

2 ,

see e.g., Section 5.2 in Abramowitz and Stegun (1970). Therefore, we need to compute only∫∞
0

(
cos(x)−cos(ζx)

x

)
dx. For the cosine integral, we can write

∫ ∞
1

cos(z)

z
dz = −γ − log(1) +

∫ 1

0

1− cos(z)

z
dz,∫ ∞

1

cos(ζz)

z
dz = −γ − log(ζ) +

∫ 1

0

1− cos(ζz)

z
dz,

(97)

where γ is the Euler–Mascheroni constant, see e.g., Section 5.2 in Abramowitz and Stegun (1970).

Therefore, ∫ ∞
1

(
cos(z)− cos(ζz)

z

)
dz = log(ζ)−

∫ 1

0

cos(z)− cos(ζz)

z
dz. (98)

From here, the result in the case β = 0 follows. �

Integration by parts and assumption A yields∫
R
eiuxν(x)dx = −

∫
R

eiux

iu
ν ′(x)dx. (99)

Therefore ∫
R
eiux/

√
T ν(x)dx = Olu

p (
√
T ), (100)

for u taking values outside of zero. From here, the result of the theorem follows by application of

Lemma 1. �
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9.5 Proof of Theorem 4

In order to simplify notation, we present the proof in the case when the set T consists of t only.

We also use the following simplifying notation

ψt,T1 =
2τ1+β/2

τ − 1
(c+
t + c−t )T

1−β/2
1 Γ(1− β) cos

(
πβ

2

)
g(
√
τ , β), (101)

where g is the function appearing in the statement of Theorem 3.

We make the following decomposition

Vt(u;x) = Vt + ψt,T1

∑K
i=1 u

2x−4
i

∑K
i=1 u

β−2
i −

∑K
i=1 u

x−2
i

∑K
i=1 u

x−2
i uβ−2

i

K
∑K

i=1 u
2x−4
i −

(∑K
i=1 u

x−2
i

)2 + εt(x, V ), (102)

ψt(u;x) = ψt,T1
K
∑K

i=1 u
x−2
i uβ−2

i −
∑K

i=1 u
x−2
i

∑K
i=1 u

β−2
i

K
∑K

i=1 u
2x−4
i −

(∑K
i=1 u

x−2
i

)2 + εt(x, ψ), (103)

where εt(x, V ) and εt(x, ψ) satisfy

sup
x∈[−1,1]

(|εt(x, V )|+ |εt(x, ψ)|) = Op

(
T

( 3
2
−β

2
−ι)∧ 3

2
1 | log(T1)|

)
, (104)

which follows from Theorem 3 and the fact that infx∈[−1,1]

(
K
∑K

i=1 u
2x−4
i −

(∑K
i=1 u

x−2
i

)2
)
> 0

(using strict inequality in means and the fact that K
∑K

i=1 u
2x−4
i −

(∑K
i=1 u

x−2
i

)2
is a continuous

function of x). We next introduce the following notation:

Zi,t,T1(x) = −ψt,T1
∑K

i=1 u
2x−4
i

∑K
i=1 u

β−2
i −

∑K
i=1 u

x−2
i

∑K
i=1 u

x−2
i uβ−2

i

K
∑K

i=1 u
2x−4
i −

(∑K
i=1 u

x−2
i

)2

+ ψt,T1u
β−2
i − ψt,T1ux−2

i

K
∑K

i=1 u
x−2
i uβ−2

i −
∑K

i=1 u
x−2
i

∑K
i=1 u

β−2
i

K
∑K

i=1 u
2x−4
i −

(∑K
i=1 u

x−2
i

)2 ,

(105)

εi,t,T1(x) = Vt,T1,T2(ui)− Vt − ψt,T1u
β−2
i − εt(x, V )− εt(x, ψ)ux−2

i . (106)

With this notation, we have

βt(u) = argmin
x∈[−1,1]

K∑
i=1

[
Zi,t,T1(x)2 + 2Zi,t,T1(x)εi,t,T1(x) + εi,t,T1(x)2

]
. (107)

For
∑K

i=1 Zi,t,T1(x)2, we have

K∑
i=1

Zi,t,T1(x)2 ≥ ψ2
t,T1

K∑
i=1

(
uβ−2
i − f1(x)− f2(x)ux−2

i

)2
, (108)
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where f1(x) and f2(x) are the intercept and the slope coefficient in a linear regression of uβ−2
i on

a constant and ux−2
i , for i = 1, ...,K. It is easy to check that

Zi,t,T1(β) = 0, i = 1, ...,K. (109)

For x 6= β, using the properties of the vector u, we have

uβ−2
i − uβ−2

i+1

uβ−2
i+1 − u

β−2
i+2

6=
ux−2
i − ux−2

i+1

ux−2
i+1 − u

x−2
i+2

, i = 1, ...,K − 2. (110)

Therefore,
∑K

i=1

(
uβ−2
i − f1(x)− f2(x)ux−2

i

)2
is a strictly positive number for x 6= β,

x 6= β =⇒ 1

ψ2
t,T1

K∑
i=1

Zi,t,T1(x)2 > 0. (111)

From here, since
∑K

i=1 Zi,t,T1(x)2 is a continuous function of x, for every ε > 0, there exists arbitrary

small δ > 0, such that

|x− β| > ε =⇒
K∑
i=1

Zi,t,T1(x)2 > δψ2
t,T1 . (112)

Next, from Theorem 3 and the result above for εt(x, V ) and εt(x, ψ), we have

sup
x∈[−1,1]

|Zi,t,T1(x)εi,t,T1 | ≤Mψt,T1 sup
x∈[−1,1]

|εi,t,T1 |

= Op

(
T

( 3
2
−β

2
−ι)∧ 3

2
1 | log(T1)|

)
,

(113)

for some positive constant M > 0. Now, since β > −1, we have that T
( 3
2
−β

2
−ι)∧ 3

2
1 | log(T1)| → 0.

Finally, using the bound derived above for εt(x, V ) and εt(x, ψ), we have

K∑
i=1

εi,t,T1(x)2 = Op

(
T

(3−β−2ι)∧3
1 | log(T1)|2

)
. (114)

Combining the above three results, we have the consistency of βt(u).

We turn next to deriving the order of magnitude of βt(u). Due to the established consistency

and since β ∈ (−1, 1), with probability approaching 1, βt(u) solves the first-order condition of the

optimization problem. A first-order Taylor expansion then leads to

Ht,T1(x̃)(βt(u)− β) = St,T1(β), (115)

where Ht,T1(x) and St,T1(x) are some continuous functions of x, and x̃ is a number between x and

β. We have

Ht,T1(x̃)
P−→

K∑
i=1

R(ui, u, β)2, (116)
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where

R(u, u, β) =

∑K
i=1 u

2β−4
i log(ui)

∑K
i=1 u

β−2
i −

∑K
i=1 u

2β−4
i

∑K
i=1 u

β−2
i log(ui)

K
∑K

i=1 u
2β−4
i −

(∑K
i=1 u

β−2
i

)2

+ uβ−2 log(u)− uβ−2K
∑K

i=1 u
2β−4
i log(ui)−

∑K
i=1 u

β−2
i

∑K
i=1 u

β−2
i log(ui)

K
∑K

i=1 u
2β−4
i −

(∑K
i=1 u

β−2
i

)2 ,

(117)

and

St,T1(β) = Op

(
T

( 3
2
−β

2
−ι)∧ 3

2
1 | log(T1)|

)
. (118)

Now, we have
K∑
i=1

R(ui, u, β)2 ≥
K∑
i=1

(
uβ−2
i log(ui)− a0(u)− a1(u)uβ−2

i

)2
, (119)

where a0(u) and a1(u) are the intercept and slope, respectively, in a linear regression of uβ−2
i log(ui)

on a constant and uβ−2
i , for i = 1, ...,K. Given the properties of u, we have

uβ−2
i log(ui)− uβ−2

i+1 log(ui+1)

uβ−2
i − uβ−2

i+1

6=
uβ−2
i+1 log(ui+1)− uβ−2

i+2 log(ui+2)

uβ−2
i+1 − u

β−2
i+2

, i = 1, ...,K − 2. (120)

Therefore,

β ∈ [−1, 1] =⇒
K∑
i=1

R(ui, u, β)2 > 0. (121)

Combining the above two results, we have the claim in the theorem.

9.6 Proof of Theorem 5

In the case when assumption A holds, the result of the theorem follows by making use of the

decomposition of Vt(u;βT(u)) in (102), the bound in (104) as well as the result of Theorem 4.

In the case when
∫
R νt(x)dx < ∞ and

∫
R |ν

′
t(x)|dx < ∞, the result follows from part (a) of

Theorem 2.

9.7 Proof of Theorem 6

The theorem follows from Theorem 2 in Todorov (2021).

9.8 Proof of Corollary 1

The results in the corollary concerning V̂t,T1,T2(u) follow directly from Theorems 2 and 6. The proof

regarding V̂t(u; β̂T(u)) parallels the proof of Theorems 4 and 5. In particular, in the decompositions
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in (102) and (103), we have now additional terms due to the option observation error, denoted with

ε̂t(x, V ) and ε̂t(x, ψ), respectively. From Theorem 6, we have for them

sup
x∈[−1,1]

(|ε̂t(x, V )|+ |ε̂t(x, ψ)|) = Op

(√
∆

T
1/4
1

)
. (122)

Similar additional term appears in St,T1(β) (with the same error bound as above). From here,

the proof of the results in the corollary regarding V̂t(u; β̂T(u)) proceed exactly as the proof of

Theorems 2 and 6.
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