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Abstract

We explore the pricing of tail risk as manifest in index options across international equity mar-

kets. The risk premium associated with negative tail events displays persistent shifts, unrelated

to volatility. This tail risk premium is a potent predictor of future returns for all the indices,

while the option-implied volatility only forecasts the future return variation. Hence, compensa-

tion for negative jump risk is the primary driver of the equity premium, whereas the reward for

pure diffusive variance risk is unrelated to future equity returns. We also document pronounced

commonalities, suggesting a high degree of integration among the major global equity markets.
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1 Introduction

Over the last decade, global financial markets have been roiled by major shocks, including the

financial crisis originating in October 2008 and European debt crises in May 2010 and August

2011. These events represent a challenge to dynamic asset pricing models. Can they accommodate

the observed interdependencies between volatility and tail events, and their pricing? How do

volatility and tails differ across countries? How do the variance and tail risk premiums relate to

the compensation for exposure to equity risk, i.e., the equity premium? The increasing liquidity

of derivative markets worldwide provides an opportunity to shed light on these questions. In

particular, the trading of equity-index options has grown sharply, with both more strikes per

maturity and additional maturities on offer. Most importantly, there has been a dramatic increase

in the trading of options with short tenor. As a result, we now have access to active prices for

securities that embed rich information about the pricing of volatility and tail risk in many separate

countries. By combining the pricing of financial risks, embodied within the equity-index option

surfaces, with ex-post information on realized returns, volatilities and jumps, we can gauge the

relative size of the risk premiums and what factors drive the risk compensation.

In the current work, we draw on daily observations for option indices in the U.S. (S&P 500),

Euro-zone (ESTOXX), Germany (DAX), Switzerland (SMI), U.K. (FTSE), Italy (MIB), and Spain

(IBEX) over 2007-2014 to extract factors that are critical for the pricing of equity market risk across

North America and Europe. The performance of the individual equity indices varies drastically, with

the German market appreciating by an average of about 8% per year and the Italian depreciating

by 5% annually, as illustrated in Figure 1. This heterogeneity provides additional power in studying

the connection between market tail risk and the equity risk premium.

Most existing option pricing models capture the dynamics of the equity-index option surface

through the evolution of factors that determine the volatility of the underlying stock market, see,

e.g., Bates (1996, 2000, 2003), Pan (2002), Eraker (2004) and Broadie et al. (2007). However,

recent evidence suggests that the fluctuations in the left tail of the risk-neutral density, extracted

from equity-index options, can be spanned neither by regular volatility factors nor by realized

risk measures constructed from return data. Hence, a distinct factor is necessary to account for

the priced downside risk in the option surface, see Andersen et al. (2015b). We accommodate

such features by specifying a parametric risk-neutral return model, but imposing no structural
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Figure 1: Country-specific cumulative equity-index cum dividend log-returns. The source

of the data used in constructing the figure are detailed in Section ??.

assumptions on the underlying return generating process. Other models allowing for an element of

separation between jump and volatility factors include Santa-Clara and Yan (2010), Christoffersen

et al. (2012), Gruber et al. (2015), and Li and Zinna (2018).

We seek to fully exploit the available information by utilizing all option quotes that satisfy

our mild filtering criteria. This is important because the European samples are short and display

varying liquidity. Such features render day-by-day factor identification more challenging than for

the U.S. market. Consequently, we specify a parsimonious risk-neutral model with a single volatility

component along with the tail factor. The short-dated options are highly informative regarding

the current level of volatility and jump intensities, while the longer-dated options primarily speak

to the factor dynamics. In combination, this facilitates robust identification of the volatility and

jump components and reduces the number of parameters in the risk-neutral model, providing a

solid basis for out-of-sample exploration of the predictive power of the option-implied factors.

We briefly summarize our empirical findings. Most importantly, we find a substantial discrep-

ancy between the time series evolution of priced tail risk and volatility for every option market we

analyze. A common feature emerges in the aftermath of crises – the left tail factor is correlated

with volatility, yet it remains elevated long after volatility subsides to pre-crisis levels. This is

incompatible with the usual approach to the modeling of volatility and jump risk in the literature.

The stark separation of the tail and volatility factors has important implications for the pricing
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and dynamics of market risk. Even though volatility is a strong predictor of future market risk, it

provides no forecast power for the equity risk premium. In contrast, our left tail factor does not help

predict future market risks, yet it has highly significant explanatory power for future market returns.

The tail factor also constitutes the primary driver of the negative tail risk premium, suggesting this

is the operative channel through which it forecasts the equity premium. In particular, following

crises, equity prices are heavily discounted and the option-implied tail factor remains elevated, even

as market volatility resides. Throughout our sample, this combination serves a strong signal that

the market will outperform in the future.

These findings inspire a number of new, interrelated hypotheses regarding the relative forecast

power of option-implied and return variation measures for the equity risk premium, which we

validate for each of our equity indices. For example, the compensation for exposure to return

variation, i.e., the variance risk premium or VRP, has been intensely studied following the work

of Carr and Wu (2009) and Bollerslev et al. (2009). We find, most strikingly, that the VRP only

forecasts future equity returns because it embeds the left tail factor. Once the jump risk premium is

stripped from the VRP, it no longer provides a signal for the performance of the equity market. Since

the VRP constructed from different asset classes also have predictive power for the corresponding

excess returns, e.g., credit spreads (Wang et al. (2013)), currency returns (Londono and Zhou

(2017)), and bond returns (Mueller et al. (2017)), our results likely have broader implications for

risk pricing across diverse global security markets.

In terms of the volatility factor, we find the European and U.S. markets to evolve in near unison

through the financial crisis of 2008-2009. In contrast, we observe discrepancies during and after

the initial European sovereign debt crisis. Overall, the U.K., Swiss and, to some extent, German

volatilities remain close throughout the sample. The largest divergences in volatility dynamics

occur between the U.S., U.K. and Swiss (non euro-zone) indices on one side and the Spanish and

Italian on the other, with the latter representing the Southern euro-zone countries in our sample.

For the left tail factor, there are interesting commonalities and telling differences. Again, the

main discrepancies are associated with the Southern European indices. Specifically, the Spanish

tail factor reacts strongly to both phases of the sovereign debt crisis, while the Italian response is

more muted, especially for the first phase.

Exploiting the extracted factor realizations along with estimates for the risk-neutral and actual
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return dynamics, we further document very strong dependence between the negative jump risk

premiums for the equity indices throughout the sample. By contrast, the dependence between the

diffusive risk premiums across markets is strong only for the financial crisis period 2007-2009, while

for 2010-2014, associated with the European sovereign debt crises, the dependence between the

diffusive risk premiums weakens significantly. Given the critical role of the tail factor for future

equity returns, the coherence in the compensation for tail risk across indices rationalizes the strong

correlation of the drift component among the individual equity indices, evident in Figure 1, despite

the heterogeneity in the severity of the shocks affecting the individual countries.

Our work is related to an evolving literature on the ability of equity option and equity return

variation measures to capture the pricing of exposure to volatility and tail, jump or skew risk. By

extension, such measures should possess forecast power for future equity returns. First, there is old

literature studying empirically the mean variance tradeoff and the ability of stock market volatility

to predict future returns, see e.g., French et al. (1987) and Glosten et al. (1993) for early references.

More recently, Almeida et al. (2017), Bali et al. (2009) and Kelly and Jiang (2014) use different

approaches to construct tail measures from the cross-section of observed stock prices and show that

these measures can predict future market returns.

The above cited work does not use derivatives in the construction of the tail and volatility mea-

sures. Employing individual equity options, Bali and Hovakimian (2009) find that both the variance

risk premium and an alternative option spread measure—interpreted as a jump risk measure—

explain cross-sectional variation in expected returns. Later, Conrad et al. (2013) find that more

negative risk-neutral volatility and skew measures are associated with higher returns in the cross-

section. The latter is consistent with the evidence of preferences for positive skew equity assets

obtained in Bali and Murray (2013).

For the U.S. equity index, Bollerslev and Todorov (2011) document that a nonparametric-

based left tail premium measure explains a significant fraction of both the variance and equity

risk premium. Bollerslev et al. (2015) and Du and Kapadia (2012) show that nonparametric jump

tail measures constructed from options can predict returns in the future over horizons of several

months, while Atilgan et al. (2013) find evidence for short-term return predictability (daily and

weekly) by option-implied measures. Meanwhile, Kozhan et al. (2013) demonstrate that the skew

risk premium is substantial, but overlaps with the variance risk premium, and conclude that these
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risk factors have a common source. Finally, Li and Zinna (2018) find that both the level and slope

of the term structure for the variance risk premium provide significant predictors of future equity

returns.

On the international front, Bollerslev et al. (2014) show that local VRPs provide qualitatively

similar, yet decidedly weaker, predictive power for national equity-index returns than in the U.S.

However, a weighted average of the VRP measures provides a global proxy with significantly im-

proved explanatory power across the indices. Similarly, Londono (2016) find that foreign VRP

measures are insignificant predictors for the local equity returns, but the U.S. VRP provide much

superior performance, with only the Japanese index remaining unpredictable. Finally, Gao et al.

(2018) establish predictive power for the excess returns on a wide set of asset classes using a global

tail index, constructed in accordance with the “jump and tail” index of Du and Kapadia (2012).

Our findings are consistent with existing results in many respects. The VRP has predictive

power for equity returns, but negative tail measures perform even better; the pricing of equity risk

has a strong global component; and equity-index returns are highly correlated across countries.

Yet, our contribution deviates from the prior literature on numerous points. Most importantly,

we identify a component in the risk-neutral left jump intensity, orthogonal to spot volatility, which

we show is the main driver of the equity return predictability. Raw option-implied risk measures

(volatility or tail related) have weaker predictive ability, rationalizing some of the existing empirical

results in the literature. Our findings suggest the existence of an important wedge between risk

and risk premium dynamics for all the equity indices in our analysis.

Two, in contrast to most prior studies, we exploit the information across all option maturities

and strikes. Earlier work typically relies on one maturity only and aggregate many options into a

single measure, such as the volatility level or skew. Our use of short-dated options enhances our

ability to identify the current state of the volatility and jump factors. Moreover, the observations

for the longer tenors facilitate identification of the risk-neutral volatility and jump dynamics.

Three, we decompose the variance risk premium into a number of separate elements and provide

a strict rank ordering of their ability to forecast equity-index returns. In particular, the continuous

return variation and associated premium should have no predictive power. These new hypotheses

are corroborated for each of the equity indices.

Four, we obtain strong empirical results for return predictability based on the foreign option
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panels. The U.S. evidence remains highly significant, but not more so than for many of the other

countries. This finding is consistent with our approach affording an improved extraction of infor-

mation from the smaller sample of options available outside the U.S.

Finally, the only existing work we are aware of linking tail measures with equity return pre-

dictability internationally is Gao et al. (2018). Their tail index captures the variation in the higher

order risk-neutral moments induced by jumps, which is controlled by the variation in the jump in-

tensity. In contrast to our left tail factor, the tail index of Gao et al. (2018) covaries quite strongly

with volatility. Moreover, by construction, their index puts most of the weight on very deep out-

of-the-money option prices. This may render the tail measure somewhat unstable, as the active

strike coverage is subject to fluctuations in liquidity and the contracts are subject to relatively large

measurement errors. By contrast, we are less sensitive to liquidity and data availability issues, but

at the cost of imposing some parametric structure on the option dynamics.

The paper is organized as follows. Section 2 presents the model used to fit the option surfaces,

and Section 3 reviews the estimation method. Section 4 focuses on the option-implied factors and

their predictive ability. Section 5 explores the interaction among the factors and the risk premiums,

with emphasis on the role of the jump factor. We study the common features in the option-implied

factors and risk premiums in Section 6. Finally, Section 7 concludes. Additional details on data,

estimation method and results are provided in the online Appendix.

2 Model

This section introduces our model for the risk-neutral dynamics of a generic equity market index,

denoted X, and defines a set of related risk measures and premiums explored in the empirical work.

The model is designed to capture the dynamics of the option surface through a low-dimensional

state vector within a continuous-time no-arbitrage setting. We subsequently use the option-implied

state vector to predict future equity risks and risk premiums and relate these to sources of priced

risk in the economy. Because the European option samples are limited relative to the U.S., we seek

a robust and parsimonious specification that captures the salient features and facilitates a sharp

day-by-day separation of the volatility and jump factors. Towards that end, we are inspired by

prior successful representations, but limit ourselves to one volatility and one jump intensity factor.

6



2.1 The Risk-Neutral Equity-Index Dynamics

Our two-factor model for the risk-neutral index dynamics is given by the following restricted version

of the representation in Andersen et al. (2015b),

dXt

Xt−
= (rt − δt) dt +

√
Vt dW

Q
t +

∫
R

(ex − 1) µ̃Q(dt, dx) ,

dVt = κv (v − Vt) dt + σv
√
Vt dB

Q
t + µv

∫
R
x2 1{x<0} µ(dt, dx) ,

dUt = − κu Ut dt + µu

∫
R
x2 1{x<0} µ(dt, dx) ,

(1)

where (WQ
t , B

Q
t ) is a two-dimensional Brownian motion with corr

(
WQ
t , B

Q
t

)
= ρ, while µ denotes

an integer-valued measure counting the jumps in the index, X, as well as the state vector, (V,U),

representing the spot variance and negative jump intensity. We denote the corresponding jump

compensator by dt ⊗ νQt (dx), so the difference, µ̃Q(dt, dx) = µ(dt, dx) − dt νQt (dx), constitutes the

associated martingale jump measure. Finally, the drift term equals the risk-free interest rate minus

the (continuous) dividend payout ratio, ensuring that the expected instantaneous return (under

the risk-neutral measure) of the cum-dividend price process equals the risk-free rate.

The jump component, x, captures price jumps, but also scenarios involving co-jumps. Specifi-

cally, for negative price jumps of size x, the two state variables, V and U , display (positive) jumps

proportional to x2. Thus, the jumps in the spot variance and negative jump intensity are co-linear,

albeit with distinct proportionality factors, µv and µu. This specification involves a substantial

amplification from the negative price shocks to the risk factors. The compensator characterizes the

conditional jump distribution and takes the form,

νQt (dx)

dx
= Ut · 1{x<0} λ− e

−λ−|x| + c+0 · 1{x>0} λ+ e
−λ+x . (2)

Following Kou (2002), we assume that the price jumps are exponential, with separate tail

decay parameters, λ− and λ+, for negative and positive jumps. Finally, the left jump intensity

is governed by the factor Ut while the positive jump intensity is constant and equal to c+0 . The

latter assumption is innocuous. We verify that all qualitative empirical conclusions are robust to

standard specifications of time variation in the positive jump factor.

Our jump modeling includes novel features and deviates markedly from the standard parametric

specification in the empirical option pricing literature. First, the price jumps are exponentially

distributed, and consequently have fat tails, while most prior studies rely on Gaussian price jumps,

7



following Merton (1976). Second, the jumps in the factors V and U are linked deterministically

to the negative price jumps, with the squared jumps impacting the factor dynamics in a manner

reminiscent of discrete GARCH models. Third, and most importantly for the analysis here, the

jump intensity is time-varying, and with innovations that are linked directly to the volatility and

price jumps, yet its dynamics is largely decoupled from volatility. This is unlike most existing

models, with the notable exception of Christoffersen et al. (2012), Gruber et al. (2015) and Li and

Zinna (2018). Nonetheless, the representation (1) belongs to the affine class of models of Duffie

et al. (2000).1 For future reference, we label our two-factor affine model the 2FU model.

The model is motivated by recent evidence that the negative jump intensity represents a separate

risk factor which is essential in capturing the dynamics in the left side of the option surface.

Moreover, that study finds the left tail factor to be a critical driver of the variation in the equity and

variance risk premiums. At the same time, model (1) provides a more parsimonious representation

than the preferred specification in Andersen et al. (2015b), which features two separate volatility

factors. This choice reflects our desire to achieve precise identification of the relevant jump factor

from the shorter, less liquid option samples encountered in this study. As discussed in Section 4

below, the jump factor is robustly identified in the current more restricted model.

2.2 Risk Measures and Risk Premiums

We conclude the section by introducing a few risk measures and associated risk premiums that are

used throughout the paper. The quadratic variation of the log-price is given by,

∫ t+h

t
σ2sds+

∫ t+h

t

∫
R
x2µ(ds, dx). (3)

We denote its conditional risk-neutral expectation by QVt,t+h ,

QVt,t+h = CVt,t+h + JVt,t+h = EQ
t

[∫ t+h

t

Vtdt

]
+ EQ

t

[∫ t+h

t

∫
R
x2 νQt (dx)

]
, (4)

where CVt,t+h and JVt,t+h are the expected diffusive and jump variation under the risk-neutral

measure, respectively.2 The expected jump variation JVt,t+h, can be decomposed further into

1There is some option-based evidence, see, e.g., Jones (2003) and Christoffersen et al. (2010), that non-affine
models work better. The fact that our key findings are driven primarily by short-maturity options should mitigate
the importance of potential misspecification stemming from nonlinearities in the volatility dynamics.

2For notational simplicity, we often do not include a superscript Q to indicate that a specific quantity is obtained
under the risk-neutral measure. For example, the expected diffusive return variation under the risk-neutral measure
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terms stemming from negative and positive jumps,

JVt,t+h = NJVt,t+h + PJVt,t+h = EQ
t

[∫ t+h

t

∫
x<0

x2 νQt (dx)

]
+ EQ

t

[∫ t+h

t

∫
x>0

x2 νQt (dx)

]
.

Importantly, NJVt,t+h is proportional to Ut , while its level, of course, is tied also to the jump

size distribution. Specifically, for the 2FU model, the instantaneous risk-neutral negative jump

variation NJVt (i.e., with h = 0) equals,

NJVt =

∫
x<0

x2 νQt (dx) =
2

λ2−
Ut . (5)

In contrast, the (risk-neutral) expected positive jump variation, PJVt,t+h, is constant and equals

c+0
2
λ2+
h. Finally, due to the jumps in Vt, CVt,t+h is, in general, an affine function of both Vt and Ut.

However, we document later that, empirically, almost all variation in CVt,t+h stems from Vt.

The above measures can also be computed under the equivalent statistical measure (P), which

leads to the definition of the variance risk premium as,

V RPt,t+h = QVt,t+h − QV P
t,t+h,

and the negative jump risk premium as,

NJRPt,t+h = NJVt,t+h − NJV P
t,t+h.

Our computation of the expected return variation measures under the statistical (P) measure

follows standard high-frequency procedures for forecasting the volatility and jump risks. That is,

we do not specify a parametric model for X under P. Instead, we use a reduced-form model to

generate the necessary conditional P-expectations for the calculation of the requisite risk premiums,

exploiting the popular HAR model of Corsi (2009). Consistent with our empirical evidence in

Section 4.2.1 below, we find only lagged continuous return variation measures, and not lagged

jump variation measures, to be significant predictors of the future return variation. Appendix A.3

provides a detailed description of these procedures.

is denoted CVt,t+h rather than CV Q
t,t+h. This should not cause confusion as, whenever we refer to expectations under

the actual or statistical probability measure, the relevant quantities carry the superscript P.
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3 Estimation Procedure

We follow the inference procedures in Andersen et al. (2015a) for recovering the parameters and

latent factor realizations of model (1). The option prices are converted into Black-Scholes implied

volatilities (BSIV), i.e., any out-of-the-money (OTM) option price observed at time t with tenor τ

and log moneyness k = log (K/Ft,t+τ ) is represented by the BSIV, κt,k,τ . For a given state vector,

St = (Vt, Ut), and parameter vector θ, the model-implied BSIV is denoted κk,τ (St, θ). Estimation

now proceeds by minimizing the distance between observed and model-implied BSIV in a metric

that also penalizes for discrepancies between the inferred spot volatilities and those estimated (in

a model-free way) from high-frequency data on the underlying asset,

√
V̂ n
t , see Appendix A.3 for

further details. The imposition of (statistical) equality between the spot volatility estimated from

the actual and risk-neutral measure reflects a basic no-arbitrage condition implied by the underlying

option pricing paradigm.

To formally specify the estimation criterion, we introduce additional notation. Let t = 1, . . . , T ,

denote the dates for which we observe the option prices at the end of trading. We focus on OTM

options, with k ≤ 0 indicating OTM puts and k > 0 OTM calls. Due to put-call parity and the

lower liquidity of in-the-money options, there is little loss of information from using only OTM

options for estimation.

We obtain point estimates for the risk-neutral parameter vector θ and period-by-period state

vector St = (Vt , Ut ) from the following optimization problem, see Andersen et al. (2015a),

(
{Ŝt}Tt=1, θ̂

)
= argmin
{St}Tt=1,θ

T∑
t=1

{∑
τj ,kj

(
κt,kj ,τj − κkj ,τj (St, θ)

)2
Nt

+
0.05

Nt

(√
V̂ n
t −

√
Vt
)2

V̂ n
t /2

}
. (6)

To reduce the computational burden, we estimate the system for options only sampled on Wednes-

day or, if this date is missing, the following trading day. Credible identification of the system is

obtained by observing heterogeneous constellations of the option surface across time. We facilitate

this objective by exploiting all, including very short-dated, options that satisfy a mild filter, de-

signed to identify whether a given option observation is flawed. The surface varies dramatically for

the early and late years relative to the periods around the financial and European debt crises. Once

the parameter vector and the state variable realizations for all Wednesdays have been obtained,

it is straightforward to “filter” the state variables for the remaining trading days, exploiting the
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estimated parameters, option data, and the criterion (6). Thus, we obtain daily estimates for the

state realizations, even if full-fledged estimation is performed only for weekly data.

We emphasize that the estimation procedure is devoid of parametric assumptions concerning

the underlying equity-index returns. We only impose the no-arbitrage condition that implies equal-

ity between the spot volatility under the risk-neutral and objective measure, while allowing for

(statistical) deviations that reflect measurement errors for both the option pricing model implied

volatility estimator and the nonparametric high-frequency return based spot volatility estimator.

4 Option Factors

The data used for our empirical analysis of the U.S., Eurozone, German, British, Swiss, Italian,

and Spanish equity indices are described in Appendix A.1. As discussed in Section 2, our model

is restricted relative to Andersen et al. (2015b). We confirm, however, that the analysis is robust

to a more refined modeling of the volatility dynamics by documenting near identical jump factor

extraction from the alternative models in Appendix A.5. Additional details on our estimation

results are provided in Appendix A.6.

4.1 Country-by-Country Factor Realizations

This section explores the implied factor realizations obtained from model (1) and the estimation

procedure outlined in Section 3. We first compare the spot variance of the European indices,

benchmarking against the S&P 500 results.

Figure 2 plots the extracted volatilities from the ESTOXX (Eurozone), DAX (Germany), SMI

(Switzerland), FTSE 100 (U.K.), MIB (Italy), and IBEX 35 (Spain) markets. We note the extraor-

dinary close association between many of these factors and the S&P 500 spot volatility, not just

in terms of correlation, but also level. For example, the U.K. volatility is barely distinguishable

from the S&P 500 factor throughout, while the Swiss factor deviates visibly from the S&P 500 only

during a few episodes after the Swiss franc-euro exchange rate cap imposed in September 2011. In

the former case, the volatility correlation is about 98% and in the latter 95%.

In contrast, notable discrepancies between the S&P 500 and German DAX emerge during the

second phase of the European sovereign debt crisis, when the DAX volatility spikes more, and a

positive gap remains from that point onward, albeit to a varying degree. For the broader ESTOXX
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index, the same effect is clearly visible and originates with the initial phase of the debt crisis. Thus,

while the volatility patterns were similar for all the indices through the financial crisis, the response

to the sovereign debt crisis is heterogeneous, with the impact reflecting prior perceptions regarding

the sensitivity of the respective economies to the European crisis. This is especially striking for the

Italian and Spanish indices, as both react strongly to the crisis events, but with varying amplitudes

across the main episodes. These Southern European indices reach a volatility plateau well above

the others ever since the sovereign crises surfaced in early 2010. This systematic divergence lowers

the volatility correlations for MIB and IBEX with the S&P 500 to 0.75 and 0.77, respectively.
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Figure 2: Volatility Factor Comparison. For each option-implied spot variance factor, obtained

at the close of the trading day, we report the trailing five-day moving average of
√
Vt. The series

are given in decimals and refer to annualized values.

Next, Figure 3 depicts the option-implied negative jump variation, NJVt , for each index along

with the corresponding quantity for the S&P 500. As noted in Section 2, the risk-neutral negative

jump variation in the 2FU model, 2
λ2−
Ut , is proportional to U . Consequently, the relative variation

reflects the fluctuation in the jump intensity factor for the individual indices.

At first glance, the pattern is similar to the one observed for the volatility factors. This is

natural as the volatility and jump factors are highly correlated for all countries. Nevertheless, the
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Figure 3: U Factor Comparison. For each option-implied negative jump intensity factor, we re-

port the trailing five-day moving average of the implied risk-neutral jump variation
∫
x<0 x

2νQt (dx) =

NJVt ≡ 2
λ2−
Ut. The series are given in decimals and refer to annualized values.

spikes in the jump intensity differ substantially from those in volatility, with the sovereign debt

crisis inducing a stronger surge in the jump intensity than (diffusive) volatility. We also note that

the volatility factors in the U.K. and U.S. evolve in near unison, even if the British jump variation

is slightly lower throughout. Similarly, the jump intensity factor for the Swiss index correlates

strongly with the S&P 500 factor, although the Swiss factor tends to be above the one in the U.S.,

both before and during the financial crisis, and then below after the summer of 2009.

We also observe a strong coherence between the S&P 500, ESTOXX and DAX series through

the financial crisis and then an elevation in the latter two from the summer of 2009 onwards, with

the effect being more pronounced for ESTOXX than DAX, again suggesting a lower exposure of

Germany to this crisis. As before, however, the most striking contrast occurs for the Southern

European indices. The Italian jump variation rises to a level corresponding to the financial crisis in

late 2011, while the Spanish is exceptionally highly elevated during the entire sovereign debt crisis.

For these two countries, the jump intensities convey a very different impression of the severity of the

crisis. This is not surprising given the widespread speculation at the time that either country might

abandon the euro currency. In summary, our decomposition of the primary risk factors documents

a substantial increase in return volatility for the Southern European indices along with a further

amplification of the negative jump risk, especially for Spain.
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4.2 Option Factors as Predictors of Future Risk and Risk Premiums

In affine models, the state variables governing the risk-neutral dynamics are generally tied to the

underlying return dynamics and associated compensation for risk. Hence, we now explore the ability

of the option-implied factors, the spot variance and left jump intensity, to forecast the (realized)

return variation—defined as the sum of the squared high-frequency equity-index futures returns—

and the equity excess return. The former signifies whether the factors capture the market-wide

risk, while the latter speaks to their forecast power for the equity returns and equity risk premium.

A common concern with predictive regressions is the potential look-ahead bias embedded in the

regressors. Several features associated with our set-up effectively mitigate this issue. The option

factors are extracted daily, using only the option prices and the high-frequency volatility measure

for that given day, along with the parameter estimates, obtained strictly from the varying shape of

the option surface. As such, the index returns do not play a direct role in our estimation or factor

extraction procedures.3

4.2.1 Predicting Equity Risk

What do the option-implied factors tell us about the risk characteristics of the underlying equity-

index? To explore this issue, we regress the future realized return variation, RVt,t+h, on the

option-implied state variables. The RVt,t+h measure is constructed from intraday returns on the

equity-index futures augmented with the squared overnight returns. It provides a good proxy for

the risks associated with exposure to the market index, see, e.g., Andersen et al. (2003).

Since the two state variables are highly correlated, we supplement the spot variance factor, V ,

with the component of the negative jump factor that is orthogonal to the spot variance, denoted

NJV ⊥, as a second explanatory state variable. This approach ascribes all predictive power from

the joint variation in the state variables to the traditional spot variance factor, while the residual

variation in the tail factor captures only the explanatory power of the regressors unrelated to the

return variance, i.e., it reflects solely the incremental information in the tail factor.

We run the predictive regression on a weekly basis, forecasting from 1 to 28 weeks, or roughly 6

3In results, available upon request, we document that the option-implied factors are very similar, and provide
qualitatively identical forecast performance, whether the parameters are estimated across the full sample or from an
initial year of data only. In the latter case, the parameter vector is fixed at the point estimate based on the early parts
of the sample and then used for extracting factors and pricing options over the remaining (out-of-sample) period.
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months, into the future. Due to the short sample and varying liquidity, the results can be sensitive

to outliers. Extreme observations may be genuine, but may also arise due to measurement errors

stemming from periodic illiquidity in the option markets, large option bid-ask spreads during turbu-

lent events, data errors, non-synchronous observations, large standard errors for the nonparametric

volatility estimators on days with elevated volatility, and potential model misspecification on days

with unusual market stress. Such errors may induce poor identification of the factor realizations.

Hence, we winsorize all explanatory variables in the predictive regressions at the 98 percent level,

limiting the influence of the 1% extreme negative and positive observations. Importantly, we do

not modify the dependent variables, so the multi-horizon excess returns and variation measures

appearing as left-hand-side variables incorporate all extreme volatility and return realizations.

The regressions take the form,

RVt,t+h = k0,h + kv,h · Vt + ku,h ·NJV ⊥t + εt,h . (7)

We reiterate that the risk-neutral expected negative jump variation, NJV ⊥t , is proportional to the

component of Ut orthogonal to the spot variance, as implied by equation (5).

The left panels of Figure 4 reveal, for all our equity indices, that the part of the left jump

intensity factor orthogonal to spot volatility has no explanatory power for the ex-post realized

return variation. Instead, all predictor power is concentrated in the implied spot variance which,

of course, is well known to be a powerful predictor of short-term return volatility. The right

panels show that the explained variation is very high and qualitatively similar across all indices.

The absence of any auxiliary predictive power in the jump factor is striking. It signifies a stark

disconnect between the residual movements in the left side of the implied volatility surface (the

part not spanned by volatility) and the riskiness, or variation, of the future returns. The inference

in Figure 4, and throughout the paper, is based on Newey-West standard errors with lag length

1.3
√
T , as recommended by Lazarus et al. (2018). In Appendix A.2, we provide inference based

on two alternative ways to compute the long-run variance of the estimator, following procedures

proposed by Lazarus et al. (2018) and Wei and Wright (2011). In either case, the findings are

qualitatively identical, even if the standard errors increase slightly, rendering the overall evidence

marginally less significant.
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Figure 4: Predictive Regressions for Return Variation. Left Panel: t-statistics for the

regression slopes according to the Newey-West estimator of the long-run variance with number of

lags equal to 1.3
√
T ; Right Panel: Regression R2, where the full drawn line depicts the total degree

of explained variation and the dashed line represents the part explained by the spot variance alone.
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4.2.2 Predicting Equity Excess Returns

An important implication of the findings in Section 4.2.1 is that the orthogonal component of

the negative jump variation, NJV ⊥, will not be recognized as a factor driving any facet of the

risk dynamics in standard time series models estimated from the underlying asset prices. Hence,

traditional approaches, identifying the risk factors exclusively from the asset return dynamics, will

fail to recognize NJV ⊥ as an option pricing factor. In fact, given such findings, one may conjecture

that this tail factor is a purely idiosyncratic feature of OTM put option pricing, unrelated to both

risk and risk pricing across broader asset markets. It may represent market segmentation arising

from frictions and clientele effects in the derivatives markets.

The above hypothesis would imply that the tail factor should possess no auxiliary explanatory

power for the pricing of equity risk. We explore this conjecture by running predictive return

regressions analogous to those for the return risk in Section 4.2.1. Once again, we rely on mild

winsorizing of the regressors, and we continue to ascribe all explanatory power, stemming from

joint variation in the state variables, to the traditional spot variance factor.

Hence, as for equation (7), for each index and t = 1, . . . , T − h, our regressions take the form,

rt,t+h = log(Xt+h)− log(Xt) = c0,h + cv,h · Vt + cu,h ·NJV ⊥t + εt,h . (8)

Figure 5 conveys the results from the predictive regression (8). There is evidence of a substantial

degree of return predictability at the 4-6 month horizon. In addition, we observe a complete role

reversal relative to the forecast for the return variation: the significant explanatory variable for

future returns is the left tail factor, while the volatility factor is largely irrelevant.

For example, the left panel in the first and second row of Figure 5 plot the t-statistics for

the S&P 500 and ESTOXX regression slopes in equation (8), while the right panels display the

corresponding R2 statistics. For both indices the predictive power is low at high frequencies,

but rises steadily with the horizon until about five months.4 Within the four-month mark, the R2

surpasses 10%, and it exceeds 15% after six months. The increasing forecast power for longer return

horizons is consistent with the hypothesis of a time-varying and persistent equity risk premium,

combined with a second mildly persistent return component, that is correlated with the regressors,

4This qualitative pattern is familiar, as it is observed for other return predictor variables as well, including the
dividend-price ratio and moving averages of interest rates. Yet, there is an important distinction, as these predictors
are much more persistent, and they attain significance only at much longer multi-year horizons.
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Figure 5: Predictive Regressions for Excess Returns. Left Panel: t-statistics for the regression

slopes according to the Newey-West estimator of the long-run variance with number of lags equal to

1.3
√
T ; Right Panel: Regression R2, where the full drawn line depicts the total degree of explained

variation and the dashed line represents the part explained by the spot variance alone.
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see, e.g., the discussion in Stambaugh (1999) and Sizova (2016). The interpretation is that, at the

weekly horizon, the largely unpredictable and noisy short-term component dominates, whereas the

predictable return component emerges over longer holding periods.

The truly striking feature of Figure 5 is, however, as noted above, that the explanatory power

stems almost exclusively from the jump intensity factor, as the variance factor is insignificant across

all horizons for the S&P 500 and ESTOXX indices. Thus, the commonly employed volatility factor

has no discernible relationship with the equity risk premium, while unrelated variation in the left

side of the option surface is indicative of systematic shifts in the pricing of equity risk.

Turning to the remaining indices in Figure 5, we observe qualitatively similar features across

the board. The only noteworthy differences appear for the two Southern European indices MIB

and IBEX, which display a slightly lower degree of significance for the residual left tail factor at the

(one-sided) 5% level and some explanatory power for the volatility factor at the longest horizons.

Since the evidence for predictability beyond 5-6 months must be viewed somewhat skeptically given

the short sample, this is not a surprising finding for two countries subject to extreme dislocations

in the market during both the financial and subsequent sovereign debt crises.

Moreover, we note that the degree of explained variation consistently falls between 12-20% at

the longer horizons, excluding the Swiss index. For Switzerland, the sudden implementation of an

exchange rate cap of the Swiss franc versus the euro on September 6th, 2011, represented a major

shock to the equity market, rendering the explanatory power lower than for the other indices, even

if the results are not qualitatively different. Specifically, the sharp depreciation of the franc at the

introduction of the cap was accompanied by a large positive jump in the (franc denominated) index.

Since this intervention was unprecedented, and certainly unexpected, the sharp appreciation of the

local index was not reflected a priori in the option surface.5

We conclude that the variance factor, effectively, is bereft of explanatory power in these regres-

sions. In contrast, the orthogonalized tail factor provides robust predictive power for the excess

returns. This finding is remarkable given the huge discrepancy in the realized index returns over

the sample, and the diverse exposures they exhibit vis-a-vis the European debt crises. We also note

5Furthermore, since the appreciation of the index was smaller than the simultaneous devaluation of the Swiss franc,
the equity market performance, per se, is a poor guide to the return performance viewed from a global perspective.
These concerns are even more relevant for the discussion of return predictability associated with the variance risk
premium in the following section. The dismantling of the exchange rate cap in 2015 also took the markets by surprise,
but it occurred after the end of our sample period.
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that the insignificant volatility factor is in line with an extensive time series literature, which has

failed to generate consistent evidence that the equity-index return volatility predicts future equity

returns, see, e.g., French et al. (1987) and Glosten et al. (1993) for early references. Importantly,

our evidence suggests that the option surface does embed critical information for future market

returns, but it is contained within factors that are unspanned by volatility.

5 Option Factors and The Pricing of Risk

This section explores the pricing of the different sources of risk and their connection to the extracted

option factors more directly.

5.1 The Variance Risk Premium

We start with the variance risk premium, which has been the subject of much interest in the

recent literature. The risk-neutral expectation of the quadratic return variation is readily obtained

nonparametrically using a portfolio of close-to-maturity options, generating values closely matching

the VIX index at the corresponding maturity. Andersen et al. (2015) document that the VIX index

provides a close approximation to the risk-neutral expectation of the future return variation, even

in the presence of jumps in the return generating process. We follow the procedure of Carr and

Wu (2009) for computing the risk-neutral expected return variation for the 30-day horizon, but

note that we obtain qualitatively identical results by using our estimated (parametric) risk-neutral

model for the return dynamics and the extracted option factors to construct the VIX measure. For

the expected objective or statistical return variation, we rely on standard forecasting techniques.

The relevant procedures are detailed in Appendix A.3 and A.4.

The extant literature has consistently found large negative variance risk premiums for equity

indices. In our sample, the average estimate ranges from −1.6% to −3.9% in annualized volatility

terms, where the underlying realized volatility measure, used to compute VRP, corresponds the one

reported in Table ?? augmented with the overnight (close-to-open) squared returns to ensure com-

patibility with the option-implied volatilities. Given the relatively short time span, these estimates

are somewhat noisy, but they are entirely in line with prior evidence. Moreover, recent studies

document, across international equity indices, that the variance risk premium has predictive power
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for the future equity excess returns; e.g., Bollerslev et al. (2009) and Bollerslev et al. (2014).6 In

our setting, the state vector should determine the risk-neutral expected return variation and si-

multaneously, as noted above, it provides a good forecast for the future expected return variation

(under the statistical, or P, measure). Consequently, an affine mapping links the state vector to the

variance risk premium. Hence, the fact that we obtain significant predictive power for the future

equity excess returns from the bivariate regression involving the two (orthogonalized) factors, V

and NJV ⊥, for horizons between two to six months in Figure 5 is consistent with prior results.

Nonetheless, our findings raise critical questions regarding the association between the variance

and equity risk premiums. In particular, as detailed in Section 4.2.2, V has essentially no explana-

tory power for the equity risk premium. Instead, the predictive power resides squarely with the

pure (orthogonal) negative jump factor, NJV ⊥. This suggests that only certain components of

the variance risk premium have explanatory power for the future equity risk premium. This fact

has important implications for our understanding of the pricing of equity risk. Hence, below, we

explore the impact of the left tail factor, NJV ⊥, in determining the variance and left jump risk

premiums, and ultimately in providing information about the dynamics of the equity risk premium.

5.2 The Role of the Left Tail Option Factor

For clarity, we organize the exposition around a stark composite null hypothesis. Our findings

suggest—but do not conclusively document—that the pure tail factor, NJV ⊥, solely reflects the

investors attitude towards abrupt downside risk exposure, but carries no information regarding the

future expected negative jump risk. Hence, we conjecture that this factor constitutes a pure risk

premium with no direct relation to actual future equity risks. Moreover, we stipulate that this tail

factor provides a good proxy for the overall negative jump risk premium, and that it is the only

element of the variance risk premium with significant predictive power for the equity risk premium.

Exploiting the decomposition, NJV = NJV ‖+NJV ⊥, where NJV ‖ denotes the part of NJV

spanned (linearly) by V , we obtain the following decomposition of the variance risk premium,

V RPt,t+h = NJRPt,t+h + CV RPt,t+h + PJRPt,t+h

= NJV ⊥t,t+h +
(
NJV ‖t,t+h − E

P
t [NJVt,t+h]

)
+
(
CVt,t+h + PJVt,t+h − EP

t [CVt,t+h + PJVt,t+h]
)
,

(9)

6This issue also relates to the broader literature on predictability for international equity indices, e.g., Harvey
(1991), Bekaert and Hodrick (1992), Campbell and Hamao (1992), Ferson and Harvey (1993) and Hjalmarsson (2010).
In addition, see Bakshi et al. (2011) for the predictive ability of other option-based volatility measures.
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where CV RPt,t+h = EQ
t [
∫ t+h
t Vu du]−EP

t [
∫ t+h
t Vu du], while NJRPt,t+h is defined in Section 2, and

PJRPt,t+h denotes the analogous risk premium, but for the positive jump variation, and, finally,

the various risk-neutral return variation measures are introduced in Section 2.

Our null hypothesis imposes restrictions on the interaction among the terms in equation (9). In

particular, (A) if NJV ⊥ is a pure jump risk premium component, it should be uncorrelated with

the objective expectation terms in the second line, EP
t [NJVt,t+h] and EP

t [CVt,t+h + PJVt,t+h]. In

addition, (B) if the variation in NJV ⊥ provides a good approximation to the overall variation in the

negative jump risk premium, the second term must display a substantially lower degree of variation

than NJV ⊥. Finally, (C) NJV ⊥ should be uncorrelated with the third term, encompassing the

risk compensation for continuous and positive jump variation.

Our null hypothesis also induces a rank-ordering on the predictability of equity returns associ-

ated with alternative predictors. Specifically, in the standard predictive regression setting,

rt,t+h = d0,h + dv,h · Yt + εYt,h , (10)

where Yt signifies the predictor, we obtain the following empirical implications. First, the best

forecast variable across all option factors and risk premiums in equation (10), in terms of the

degree of explained variation, R2, and significance of the slope coefficient, dv,h, is the true source

of predictability, presumed to be the pure jump factor, (1) Yt = NJV ⊥t . The second best is the

negative jump risk premium, (2) Yt = NJRPt,t+h . It comprises the sum of the first two terms in the

bottom line of equation (9). Since the second component, per assumption, has no predictive power

for the equity premium, it merely adds noise, generating an errors-in-variable problem, thus lowering

the signal-to-noise ratio and weakening forecast performance. Third, adding the last term from the

second line of equation (9), we obtain the full variance risk premium, i.e., (3) Yt = V RPt,t+h . This

further aggravates the errors-in-variable problem, because the added term displays a great deal of

variation over the sample but, under the null hypothesis, possesses no predictive power. Fourth, (4)

Yt = V IXt, should perform even worse, as it includes the full risk-neutral return variation, adding

NJV ‖, CV , and PJV to NJV ⊥, yet it does not include the offsets provided by the corresponding

expected (objective) return variation. Therefore, the degree of variation in NJV ⊥ is only a small

fraction of that for VIX, and the signal-to-noise ratio is now very low. Yet, the VIX index does

embed the tail factor, and thus may retain marginal predictive power. Finally, the spot volatility
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factor, (5) Yt = Vt , does not encompass any element of the NJV ⊥ measure, so it must fail to

predict the future returns altogether. We already documented this fact empirically in Figure 5.

5.3 The Negative Jump Risk Premium

We now explore the assertions put forth in Section 5.2. First, although we found NJV ⊥ to have

no predictive power for the total return variation in equation (7), it may still be correlated with

individual components of the expected return variation, especially EP
t [NJVt,t+h].7 Consequently,

we run an additional set of predictive regressions analogous to equation (7), but with the realized

negative jump intensity as regressand. The results, reported in Figure ?? of Appendix A.7, confirm

that NJV ⊥ has no explanatory power for the future negative jump variation. Moreover, the same

holds true for corresponding regressions with the continuous (and positive jump) return variation

as regressand. These findings corroborate hypothesis (A), and support the notion that NJV ⊥ may

constitute a pure risk premium factor.

Second, one may wonder if NJV ⊥ is tied closely to the future risk-neutral continuous variation.

In theory, the jump intensity determines the expected number of negative jumps, which coincide

with those in volatility. However, empirically, this channel is weak. Across all indices, we find

that at least 98% of the variation of CVt,t+h is explained by Vt, which is orthogonal to NJV ⊥. In

conclusion, NJV ⊥ has no meaningful impact on the risk-neutral return variation, except through

the negative jump variation. Furthermore, we have established that it is, effectively, unrelated to

all expected future objective return variation components. This is fully consistent with hypothesis

(C). Hence, we may treat NJV ⊥ exclusively as a contributor to the negative jump risk premium.

Third, we gauge the importance of fluctuations in NJV ⊥ for the total variation in NJV , where

NJV = NJV ‖ + NJV ⊥. A direct assessment follows from the R2 statistic associated with our

original regression of Ut on Vt, where NJV ⊥ is proportional to the regression residual. We find that

the share of variation stemming from NJV ⊥ ranges from 32% for the S&P 500 index to 74% for

the Spanish IBEX index, with a mean value close to 50%.8 Thus, roughly half of the movement in

the option-implied tail factor, NJV , represents shifts in the jump risk premium, not related to the

7This may happen if NJV ⊥ is correlated with several components but the effects are of opposite sign, so they
cancel. Alternatively, the overall correlation may be dominated by the expected continuous variation (CV ), so we have
low power to detect correlation of NJV ⊥ with the remaining smaller contributors to the expected return variation.

8The variation shares for the remaining indices are: 59% for ESTOXX; 46% for DAX; 46% for DAX; 39% for
SMI; 38% for FTSE; and 53% for MIB.
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expectation regarding future return variation. We further note that, in the second line of equation

(9), the NJV ‖ term, to a large extent, will be offset by the expected negative jump variation,

EP
t [NJVt,t+h]. That is, time-variation in the overall premium, NJRP , is dominated by NJV ⊥.

This conclusion is confirmed by the direct evidence provided in Appendix A.8, and it serves to

corroborate hypothesis (B).

We conclude that our orthogonal left jump factor constitutes a genuine component of the neg-

ative jump risk premium and is unrelated to the future expected return variation. In other words,

variation in NJV ⊥ translates, one-for-one, into NJRP . Since this pure jump factor is the only

state variable with forecast power for the equity risk premium, it is now evident that the V RP

predicts future returns only because of the embedded negative jump risk premium. In other words,

in order to explore the compensation for equity risk manifest in the pricing of the future return

variation, we should focus strictly on the properties of the negative jump risk premium, NJRP .
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Figure 6: Negative Jump Risk Premium. For each index we report the negative jump risk

premium as the difference between the risk-neutral and physical expectation of the negative jump

variation over thirty calendar days. The series are given in decimals and refer to annualized values.

Figure 6 depicts the time series of estimated negative jump risk premiums for our indices. At

any point in time, the premium reflects the extracted jump and volatility factors, the estimates

for the risk-neutral return dynamics, and the estimation procedure for the expected negative jump

variation. As noted previously, the latter is fairly noisy or imprecise, as conditional jump intensities
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and sizes are notoriously difficult to forecast. Thus, there is some uncertainty associated with these

series, but the fact that NJV often is an order of magnitude larger than the objective expectation

of the negative jump variation renders the pronounced systematic variation in the series reliable

and significant.

As before, the U.S. index serves as a benchmark for the series in Figure 6. We observe that,

qualitatively, NJRP evolves similarly to the U factor in Figure 3. Nevertheless, the distinct

forecasts for the actual negative jump variation in each index generate interesting contrasts. The

premiums are closely aligned for the S&P 500 and ESTOXX indices while, relative to the S&P

500, they are generally lower in Germany and Britain from the financial crisis onward, lower in

Switzerland after the financial crisis, and higher in Italy and Spain ever since the financial crisis,

with the jump premiums in Spain becoming extraordinarily large late in the sample.

5.4 Risk Premiums as Predictors of Future Excess Returns

In this section, we directly explore the hypothesis that the variance risk premium possesses ex-

planatory power for future equity returns solely because it incorporates the negative jump risk

premium. We further relate our findings to the rank-ordering of the alternative predictors, labeled

(1)(5), for the equity risk premium outlined in Section 5.2.

In Table 1, we report on predictive regressions that contrast the forecast power of the variance

risk premium with that of the negative jump risk premium. The table refers to (constrained or

unconstrained) variants of the following regression,

rt,t+h = b0,h + bv,h · V RPt,t+30 + bj,h ·NJRPt,t+30 + εt,h . (11)

Our first regression seeks to verify whether the V RP has explanatory power, as asserted in the

literature, so it imposes the constraint bj,h = 0 in equation (11). Next, we check if the explana-

tory power diminishes, as we strip the NJRP from the V RP , i.e., second regression imposes the

constraint bv,h = −bj,h. The third variant is simply the unconstrained regression which speaks to

whether the inclusion of the NJRP adds auxiliary explanatory power beyond that of the V RP .

Finally, we impose bv,h = 0 to gauge the predictive power of the NJRP in isolation.

The results for forecast horizons of 1, 5, and 7 months are summarized in the separate panels of

Table 1. At the one-month horizon, the results are largely insignificant and the explained variation
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(R2) is uniformly low, as expected, given the prior evidence of predictability only at longer horizons.

Nonetheless, we note that t-statistics for V RP in column one are uniformly lower than those for

NJRP in column four. Likewise, in the bivariate regressions, the t-statistic for NJRP is always

larger than the one for V RP . The latter feature, indicating superiority of the NJRP relative to

VRP, is a robust feature observed across all indices and horizons.

At the five-month horizon, where we establish significant predictive power of our pure tail factor

across all indices in Figure 5, the V RP remains insignificant, but the regression coefficient is positive

for all indices except the Swiss. Most importantly, NJRP is now significant in the majority of

cases, and the reduction in explanatory power, as we move from the bivariate regression to the

univariate NJRP regression, is quite limited, except for the Swiss index. Moreover, the R2 values

are moderately high at 7%−12% for five of the indices. Finally, the evidence is, if anything, weaker

for the U.S. than for most of the other indices, implying that the type of results originally suggested

by work on the S&P 500 index also applies for the main European markets.

The above tendencies only strengthen at the seven-month horizon. Except for the Swiss index,

the R2 rise considerably, and the majority of the NJRP coefficients are significant. In addition,

excluding V RP from the bivariate regression has a negligible impact in terms of explanatory power.

This is consistent with the extremely low R2 statistics for the univariate V RP −NJRP regression,

where the negative jump risk premium is stripped from the variance risk premium. This effectively

annihilates the predictive power of the V RP measure. Again, to complement the Newey-West

standard errors, we provide corresponding evidence based on alternative estimates for the long-run

variance in Appendix A.2. The findings verify the relative performance of predictors (2) and (3).

In summary, the forecast power for the future equity risk premium resides with the negative

jump risk premium, while the variance risk premium has negligible explanatory power, once the

contribution from risk pricing of the left tail is netted out. These conclusions mirror our findings

regarding the relative predictive power of the tail factor NJV ⊥ and volatility factor V in Figure

5, although they appear somewhat less significant and consistent in Table 1. The poor forecast

performance for the Swiss index may be explained, in part, by the imposition of a cap on the Swiss

franc-euro exchange rate on September 6, 2011, which induced an unexpected large jump in the

equity index. This event is highly influential for the regression coefficients governing the forecasts of

the future objective return variation. This suggests that the option-implied factors should possess
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superior predictive power relative to the risk premiums due to the incremental noise associated

with the forecasts for the future return variation. This is consistent with the discrepancy between

the results for the SMI index in Figure 5 and Table 1.

We also confirm that our remaining hypotheses, rank-ordering the explanatory power of al-

ternative predictors vis-a-vis the equity premium, hold up. Comparing Table 1 and Figure 5, we

find that NJV ⊥ performs on par, and in some cases dramatically better, at the 5-month horizon

than the NJRP , so predictor (1) dominates predictor (2). At one month, the results are similar,

but both measures have negligible predictive power. Finally, for the 7-month horizon, where the

inference may be a bit less reliable, the two predictors perform essentially on par. In all cases, the

V RP produces substantially worse forecasts. Finally, we verify in Appendix A.9 that predictor

(4), the V IX index, has trivial explanatory power and only sporadically turns significant at the

longest horizons. Although the associated R2-statistics, as expected, do exceed those for predictor

(5), the V factor, both variables provide ineffective forecasts of the equity risk premium.

Overall, the qualitative results are remarkably robust, in spite of the large discrepancies in

cumulative returns highlighted in Figure 1. In other words, the predictive association between

option-implied factors and the future realized returns and return variation appears to be operative

almost uniformly for the U.S. and major European equity-index and derivatives markets.

6 On Commonality in Risk and Risk Pricing

Even though country-specific features are evident, our results generally suggest a substantial degree

of coherence across the markets, as is also evident in Figures 1–3. Inspired by these observations, we

now briefly explore the covariation between the risks and risk premiums across our equity markets.

Table 2 reports, for two subsamples, the pairwise correlation of the expected negative jump and

continuous return variation, with the latter approximated by the total variation net of the negative

jump variation. These objective risk measures display a high degree of coherence. The most notable

feature is a relatively weak association between the Italian NJV and the other indices in the first

subsample and a reduction in the correlation of the Spanish return variation with the remaining

indices in 2010-2014 relative to 2007-2009. In sum, the individual indices appear to confront similar

objective jump and volatility risk perceptions, with some indications that the Italian and Spanish

indices display different risk exposures.
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Table 3 speaks to the degree of commonality in the pricing of risk by reporting pairwise cor-

relations of the estimated premiums associated with the one-month left jump tail and continuous

return variation, respectively. The top panel shows that the compensation for negative jump risk is

highly correlated across the indices in both sub-periods, with only the IBEX deviating moderately

in the second period, reflecting the elevated downside risk pricing in Spain during the sovereign

debt crises. In contrast, the correlation of the premium associated with the continuous return

variation, proxied by the total variance risk premium minus the contribution of the negative jump

risk premium, changes substantially across the two subsamples. Initially, during 2007-2009, the

compensation for (diffusive) variance risk is near identical across indices, as indicated by the very

high correlations reported in the left side of the lower panel of Table 3. In contrast, many pairwise

correlations are almost negligible in the subsequent period. Hence, as the sovereign debt crisis un-

folds, the option surfaces display more distinct country-specific features, reflecting much stronger

heterogeneity in the pricing of (continuous) variance risk.

Given the divergence in the broader risk pricing over the last subsample, the coherence in the

left tail risk pricing is remarkable. It suggests a strong degree of commonality in the attitude

towards downside equity risk, generating a strong correlation in equity market performance. In

fact, it is evident from Figure 1 that the return correlation is very strong, i.e., the periods of

market appreciation and depreciation are highly synchronized. Hence, generally speaking, while

some indices are subject to larger and more frequent negative shocks than others, there is a striking

similarity in the response to such shocks across markets. In particular, they have roughly analogous

consequences for risk pricing, as manifest in their impact on option valuation across the moneyness-

maturity spectrum, and consequently also on their extracted factor realizations. Through this

channel, they induce a high degree of correlation in signals for the direction of the future index

appreciation and the associated return variation.

Our findings suggest that the equity markets are well integrated. Nonetheless, a formal analysis

of global pricing of left tail risk must involve an explicit consideration of foreign exchange exposures

and risk pricing as well, because this requires an assessment of the risk and risk exposures in a

common currency unit. For downside tail exposures, this issue is particularly pertinent, as key

currency values are known to fluctuate systematically in response to global economic shocks.
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7 Conclusion

This paper applies the option pricing approach of Andersen et al. (2015a) to a number of U.S.

and European equity-index derivatives. For all indices, there is a clean separation between a left

tail factor, with predictive power for the future equity risk premiums, and a spot variance factor

which is a potent predictor of the actual future return variation, but without explanatory power

for future equity returns. Standard approaches, exploiting only volatility factors, miss the equity

risk premium information in the option surface insofar as the volatility does not span the “pure

tail factor,” which is the one embedding the predictive content for the equity risk premium.

We further document that the variance risk premium only has predictive power for the future

equity returns due to the inclusion of the negative jump risk premium within the measure. We

also show that the left tail factor and negative jump risk premium remain highly correlated across

indices in the period following the financial crisis and through the European sovereign debt crises. In

contrast, the volatility factor and diffusive volatility risk premium display a sharp drop in correlation

across indices in the second part of the sample. This suggests a strong degree of commonality in

the pricing of equity risk internationally, linked to the relative strength of the risk-neutral left jump

intensity, whereas the underlying market risks at times vary markedly.
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