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1 Introduction

In this paper we are interested in the asymptotic behavior over small time scales of the following

Itô semimartingale

xt = x0 +

∫ t

0
αsds+

∫ t

0
σsdWs +

∑
s≤t

∆xs, (1.1)

defined on a filtered probability space
(
Ω,F , (Ft)t≥0,Q

)
, and where α and σ are processes with

càdlàg paths and W is a Brownian motion. The diffusion coefficient σt, which we henceforth refer

to as stochastic volatility, is another Itô semimartingale given by

σt = σ0 +

∫ t

0
bsds+

∫ t

0
ηsdWs +

∫ t

0
η̃sdW̃s +

∑
s≤t

∆σs, (1.2)

where b, η and η̃ are processes with càdlàg paths, and W̃ is a Brownian motion independent of

W . The general Itô semimartingale model given by (1.1)-(1.2) is used in many applications, and

in particular in finance for modeling financial asset prices. Indeed, most asset pricing models are

nested in the above general setup, e.g., models in the popular exponential-affine class of Duffie

et al. (2003) (a notable exception are models driven by fractional Brownian motion that have been

recently studied by Gatheral et al. (2018)). It is well known that over short time intervals, the

diffusion component of x determines its behavior. More specifically, under fairly weak conditions

for the processes in (1.1)-(1.2), we have the following convergence result (see e.g., Jacod and Protter

(2012))
xT − x0√
Tσ0

L−→ Z, as T ↓ 0, (1.3)

where Z is a standard normal variable and provided σ0 6= 0. This result has been used by Todorov

and Tauchen (2011) to study whether a discretely-observed Itô semimartingale contains a diffusion

coefficient. Related to this and denoting with EQ
0 (·) = EQ(·|F0), Jacod and Todorov (2014) and

Todorov (2019) show that

EQ
0 (eiuxT /

√
T ) = e−u

2σ2
0/2 +Op(

√
T ), locally uniformly in u, (1.4)

for T ↓ 0 and where the residual term on the right hand side of (1.4) is due to the jumps in x and

the variation in the characteristics of x over the time interval. Todorov and Tauchen (2012a,b), Bull

(2014), Kong et al. (2015), Jacod and Todorov (2014, 2018) and Todorov (2019), among others,

use the empirical characteristic function of high-frequency increments of a semimartingale process

in various applications. In particular, Jacod and Todorov (2014, 2018) show that the result in

(1.4) can be used to separate in an efficient way stochastic volatility from jumps from discrete
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observations of x and Todorov (2019) shows that this result can be used to do this separation from

short-dated options.

For many applications of interest, however, the variation in σ can be rather nontrivial and there-

fore the expansion in (1.4), which ignores this variation, can provide an inaccurate approximation

to EQ
0 (eiuxT /

√
T ) when applied with small but finite T . The goal of this paper, therefore, is to

generalize the result in (1.4) by expanding EQ
0 (eiuxT /

√
T ), for T ↓ 0, by explicitly accounting for the

variation in σ, in particular. This result is derived under the assumption of finite variation jumps

driving the dynamics of x (such an assumption is required also for deriving many of the existing

results that deal with separation of diffusions from jumps in high-frequency settings). More specif-

ically, we derive a higher-order expansion result with a residual term of asymptotic order of only

Op(T
3/2−r/2 ∨ T 3/2| log(T )|), where r ∈ [0, 1] captures the so-called degree of activity of the jumps

in x, see e.g., Section 3.2 of Jacod and Protter (2012) and our assumptions A1-r and A2-r below (in

particular, r = 0 corresponds to jumps of finite activity often used in applications). The additional

terms in this higher-order expansion are due to the jumps in x as well as the time-variation in the

characteristics of x, i.e., the time variation in the drift, volatility and jump compensator of x.

The higher-order asymptotic expansion of the conditional characteristic function implies for

T ↓ 0 and locally uniformly in u:

EQ
0 (eiuxT /

√
T ) = eiu

√
Tα0−u2σ2

0/2+Tφ0(u/
√
T )+i

√
Tη0f(u,σ0) +Op(T ), (1.5)

for some known smooth function f of u and σ0, and where φ0(u) is a quantity associated with the

jump compensator at time 0. The order of magnitude of Tφ0(u/
√
T ) is Op(T

1−r/2), where recall r

denotes the index of jump activity.

We apply the above asymptotic expansion result to propose a (nearly) rate-efficient estimator

of the coefficient η, entering the dynamics of σ, from short-dated options written on an asset price

x. This coefficient, together with σ, determines the continuous part of the quadratic covariation

between x and σ, which is referred to as leverage effect, following the influential work of Black (1976)

who provided economic rationale for it. Ait-Sahalia et al. (2013), Wang and Mykland (2014), Aı̈t-

Sahalia et al. (2017) and Curato (2019) propose estimation of leverage from high-frequency record

of x, see also Vetter (2015) for the related work on estimation of diffusive volatility of volatility,

but the rate of convergence is rather slow. This is to be expected as the signal about η in a discrete

record of x is rather weak. Kalnina and Xiu (2017), see also Andersen et al. (2015), propose instead

to use proxies for volatility from high-frequency option data, such as the volatility VIX index, when

estimating leverage. If volatility is treated as observable, then the rates of convergence improve

but the mapping between the latent spot volatility and the option-based VIX index is in general
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not one-to-one, and hence with this approach we do not recover η.

In this article, we develop an alternative method for making inference about η which uses the

option data alone for the inference. Our estimation strategy is based on the higher-order expansion

of the conditional characteristic function in (1.5). In particular, this expansion result suggests that

an easy estimator of η0 can be formed from the principal argument of EQ
0 (eiuxT /

√
T ) together with an

estimator of the spot volatility σ2
0 by ignoring the presence of Tφ0(u/

√
T ) in the above asymptotic

expansion. For the estimator of σ2
0, we can follow Todorov (2019) and use the absolute value of

EQ
0 (eiuxT /

√
T ). The resulting estimate of η0, however, will have a bias of order Op(T

1/2−r/2), which

is rather nontrivial when r approaches 1. The major source of this bias is due to the asymmetry

in the compensator of the jumps in x.

To improve on the above estimator, we can use EQ
0 (eiuxT1/

√
T1) as well as EQ

0 (eiuxT2/
√
T2), for two

different T1 and T2, which are both approaching asymptotically zero. An appropriate combination

of the two characteristic functions (for different values of u) can annihilate the leading terms in

them that is due to the jumps in x, i.e., the terms T1φ0(u/
√
T1) and T2φ0(u/

√
T2), and lead

to an estimate of η0 which has an asymptotic bias of order only Op(
√
T1). This bias is of even

smaller asymptotic order in cases when x and its volatility σ do not jump together or if the jump

compensator is smooth.

To make the above estimation of η0 feasible, we need an estimator for EQ
0 (eiuxT /

√
T ). For this,

we follow Qin and Todorov (2019) and Todorov (2019) and combine in an appropriate way available

noisy observations of options with different strikes written on the asset at time t = 0 and which

expire at time t = T . For related work regarding rate-efficient estimators of the Lévy density

from options with fixed time to maturity in exponential Lévy models, see e.g., Belomestny and

Reiß (2006, 2015), Cont and Tankov (2004), Söhl (2014), Söhl and Trabs (2014) and Trabs (2014,

2015). The error in recovering EQ
0 (eiuxT /

√
T ) from the options is Op(

√
∆/T 1/4), for ∆ denoting the

mesh of the log-strike grid and which is shrinking to zero simultaneously with T ↓ 0. We derive

an associated Central Limit Theorem (CLT) which in turn allows for quantifying the precision

in estimating η0 from the available options. We further show that our estimator of η0 is nearly

efficient in a minimax sense, i.e., the best possible rate of convergence for an estimator of η from

noisy option data at a fixed point in time is at most Op

(
T 3/4(log(1/T ))7/4√

∆

)
while that of our estimator

is Op

(
T 3/4
√

∆

)
. Finally, if high-frequency option data is available, then we can improve the efficiency

of our option-based estimator of η0 by combining estimates of it from options in a local window

around t = 0.

The rest of the paper is organized as follows. We start with our assumptions for the asset price
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dynamics in Section 2. The higher-order asymptotic expansion of the characteristic function of

increments of the process over short time is given in Section 3. This expansion is used in Section 4

to develop an option-based nonparametric estimator of the leverage coefficient. Section 4 contains

also a feasible CLT for the estimator. In Section 5 we derive a bound for the optimal rate of

convergence for recovering the leverage coefficient from noisy option data. Section 6 contains a

Monte Carlo study. Proofs are given in Section 7.

2 Assumptions for the Asset Price Dynamics

We start with stating the assumptions for the dynamics of x (the log-price) that we need for deriving

our higher-order expansion of the characteristic function of the increments of x. Without loss of

generality, throughout the analysis we will set x0 = 0. The dynamics of x is given in (1.1)-(1.2)

and the jumps in x and σ are specified by∑
s≤t

∆xs =

∫ t

0

∫
R
δx(s, z)µ(ds, dz),

∑
s≤t

∆σs =

∫ t

0

∫
R
δσ(s, z)µ(ds, dz), (2.1)

where µ is a Poisson measure on R+×R with compensator λ(ds, dz) = ds⊗dz, and δx : R+×R→ R

and δy : R+×R→ R are two predictable functions. We note that we do not impose any restriction

on the connection between δx and δσ, so that arbitrary dependence between price and volatility

jumps is allowed.

For the higher-order expansion of the conditional characteristic function of the increments of x,

we will need to impose further some structure on the dynamics of α, η and η̃ as this dynamics will

play a role in the asymptotic expansion as we will see in the next section. Just like x and σ, the

processes α, η and η̃ will be general Itô semimartingales with the following dynamics

αt = α0 +

∫ t

0
bαs ds+

∫ t

0
σαs dWs +

∫ t

0
σ̃αs dW̃s +

∫ t

0
σαs dW s

+

∫ t

0

∫
R
δα(s, z)µ(ds, dz),

(2.2)

ηt = η0 +

∫ t

0
bηsds+

∫ t

0
σηsdWs +

∫ t

0
σ̃ηsdW̃s +

∫ t

0
σηsdW s

+

∫ t

0

∫
R
δη(s, z)µ(ds, dz),

(2.3)

η̃t = η̃0 +

∫ t

0
bη̃sds+

∫ t

0
ση̃sdWs +

∫ t

0
σ̃η̃sdW̃s +

∫ t

0
ση̃sdW s

+

∫ t

0

∫
R
δη̃(s, z)µ(ds, dz),

(2.4)
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where bα, bη, bη̃, σα, σ̃α, σα, ση, σ̃η, ση, ση̃, σ̃η̃ and ση̃ are processes with càdlàg paths, σαt , σηt and

ση̃t are 1×3 vectors and the rest of the above processes are R-valued, W is a 3-dimensional Brownian

motion orthogonal to W and W̃ , and δα : R+ ×R→ R, δη : R+ ×R→ R and δη̃ : R+ ×R→ R are

predictable functions.

The dimension of W is sufficiently large to accommodate arbitrary continuous quadratic covari-

ation between x, σ, α, η and η̃. Similarly, since the functions δx, δσ, δη and δη̃ are left unrestricted,

the relationship between the jumps in x, σ, α, η and η̃ can be arbitrary. Most asset pricing models

used to date satisfy the above dynamics in (1.1)-(1.2) and (2.2)-(2.4). We now state our assump-

tions for the dynamics of x which we need for the asymptotic analysis. Since later we will use

different probability measures, to avoid confusion in the statements that follow, we will denote

with EQ the expectation under Q and similarly EQ
t will be the Ft-conditional expectation under Q.

A1-r. There exist F0-adapted random variables C0 > 0 and t > 0 such that for s ∈ [0, t]:

EQ
0 |zs|

2 < C0, (2.5)

for z being each one of the processes b, bα, bη, bη̃, σα, σ̃α, σα, ση, σ̃η, ση, ση̃, σ̃η̃ and ση̃. In

addition, for some r ∈ [0, 1], we have

EQ
0

(∫
R
|δx(s, z)|rdz

)
+ EQ

0

(∫
R

(|δσ(s, z)| ∨ |δσ(s, z)|4)dz

)2

< C0, (2.6)

and further for some ι > 0

EQ
0

(∫
R

(|δη(s, z)| ∨ |δη(s, z)|1+ι)dz

)2

+ EQ
0

(∫
R

(|δη̃(s, z)| ∨ |δη̃(s, z)|1+ι)dz

)2

< C0.

(2.7)

A2-r. There exist F0-adapted random variables C0 > 0 and t > 0 such that for u, s ∈ [0, t]:

EQ
0 |zs − zu|

2 ≤ C0|s− u|, (2.8)

for z being each one of the processes: b, σα, σ̃α, σα, ση, σ̃η, ση, ση̃, σ̃η̃ and ση̃. Furthermore, for

some r ∈ [0, 1] and ι > 0, we have

EQ
0

(∫
R
|δx(s, z)− δx(u, z)|rdsdz

)
≤ C0

√
|s− u|, (2.9)

EQ
0

(∫
R

(
|δσ(s, z)− δσ(u, z)| ∨ |δσ(s, z)− δσ(u, z)|1+ι

)
dsdz

)2

≤ C0|s− u|, (2.10)
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Assumption A1-r is a moment condition for the various processes appearing in the dynamics of

x. Assumption A2-r imposes smoothness in expectation. In particular, we note that the condition

in (2.8) will be satisfied as soon as the processes it applies to are Itô semimartingales themselves,

which is the case in most applications. Similarly, the conditions in (2.9) and (2.10) for the jumps

will be satisfied if they are generated by Lévy-driven SDE-s or if the jumps are time-changed

Lévy processes with absolutely continuous time-change process, whose time derivative is an Itô

semimartingale. Finally, the constant r in A1-r and A2-r captures the so-called degree of activity

of the jumps in x, with r = 0 corresponding to finitely active jumps (which are of finite number

on any finite time interval) and r = 1 to the most active jumps which are only summable, see e.g.,

Section 3.2 of Jacod and Protter (2012).

3 Higher-Order Asymptotic Expansion of Characteristic Func-
tions of Itô Semimartingale Increments

We continue with the asymptotic expansion of the characteristic function of xT , for small T . For

stating our result, we will need notation for the characteristic exponent of the jumps in x. To-

wards this end, we denote with νt(x, y) the image of the Lebesgue measure λ, restricted to the set

{z : ((δx(t, z), δσ(t, z)) 6= 0}, under the map z → (δx(t, z), δσ(t, z)). The measure νt(x, y) is the

compensator of the jumps in x and σ. We then set

φt(u) =

∫
R2

(eiux − 1)νt(dx, dy). (3.1)

Further, we denote the conditional characteristic function of the scaled increments of x with

LT (u) = EQ
0

(
eiuxT /

√
T
)
, u ∈ R. (3.2)

The reason for the scaling of xT by
√
T is easiest to see in the case when xt = Wt. In this case

xT /
√
T is Op(1) when T ↓ 0. This last result continuous to hold in the case of the general Itô

semimartingale model in (1.1), provided of course σ0 6= 0.

In what follows, for a generic process ξT (u) indexed by u ∈ R and a deterministic sequence αT ,

ξT (u) = Olu
p (αT ) means supu∈U |ξT (u)| = Op(αT ) as T ↓ 0, for any compact set U ∈ R. The short

time asymptotic expansion of LT (u) is given in the following theorem.

Theorem 1 Assume A1-r and A2-r hold for the process x with dynamics given in (1.1)-(1.2) and

(2.2)-(2.4) with σ0 6= 0. For T ↓ 0, we then have:

LT (u) = ΨT (u) +Olu
p (T 3/2−r/2 ∨ T 3/2| log(T )|), (3.3)
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where

ΨT (u) = exp

(
iu
√
Tα0 + Tφ0(u/

√
T )− u2σ2

0

2
− iu

3
√
T

2

σ2
0η0

1 + u2Tη2
0

)

− 1

2
e−

u2σ20
2 u2T

(
σ0σ

α
0 + σ0b0 +

1

2
η2

0 +
1

2
η̃2

0

)
+

1

2
e−

u2σ20
2 u4T

(
σ2

0η
2
0 +

1

3
σ2

0 η̃
2
0 +

1

3
ση0σ

3
0

)
+ Te−

u2σ20
2

∫ 1

0

∫
R2

e
i ux√

T

(
e−u

2yσ0s−u
2

2
y2s − 1

)
ν0(dx, dy)ds.

(3.4)

The result of this theorem generalizes in a nontrivial way the analysis of Jacod and Todorov (2014)

and Todorov (2019), where a bound for the difference LT (u) − e−
u2σ20

2 is only provided (for the

purposes of volatility estimation). The result in (3.3) is a higher-order expansion of the conditional

characteristic function of the price increment which allows us to study the effect of the variation

in the characteristics of the semimartingale x on LT (u). In particular, for the goal of this paper,

Theorem 1 allows us to estimate η0. We note, however, that there are other applications of the

above result, e.g., for less biased volatility estimation than what is derived in Todorov (2019), which

we leave for future work.

We note that ΨT (u) is an asymptotic expansion of EQ
0

(
eiuxT /

√
T
)

, for xT being an approxima-

tion of xT given by:

xt =

∫ t

0
(α0 + σα0Ws + σ̃α0 W̃s)ds+

∫ t

0
σsdWs +

∫ t

0

∫
R
δx(0, z)µ(ds, dz), (3.5)

where

σt = σ0 + b0t+ η0Wt +
1

2
ση0(W 2

t − t) + η̃0W̃t +

∫ t

0

∫
R
δσ(0, z)µ(ds, dz). (3.6)

The approximation xT of xT is one in which we take only the leading terms in the dynamics of α

and σ and “freeze” the jump size function δx(t, z) to its value at the beginning of the interval. Since

ΨT (u) is the leading term in an asymptotic expansion of EQ
0

(
eiuxT /

√
T
)

, it does not necessarily

correspond to a characteristic function of a random variable itself, but this does not matter for

developing consistent estimators of various quantities (such as σ0 and η0) on the basis of the result

in Theorem 1.

The first component of ΨT (u), given by

exp

(
iu
√
Tα0 + Tφ0(u/

√
T )− u2σ2

0

2

)
,

corresponds to the conditional characteristic function of the price increment, when the character-

istics of the process x are frozen at their value at the beginning of the interval. All other terms in
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ΨT (u) are due to the time-variation in the characteristics of x. In particular, the last term in the

exponential on the first line in (3.4) is due to the presence of leverage, i.e., due to the dependence of

the dynamics of σ on the Brownian motion W that drives x. This term affects the imaginary part

of LT (u) and is of order Op(
√
T ). The rest of the terms on the right-hand side of (3.4), appearing

in the second, third and fourth lines of (3.4), are all of order Op(T ) and they all affect the real

part of LT (u). Some of these terms reflect the first-order effect from different components of the

dynamics of the process σ: its drift, diffusion coefficients as well as the jumps in it. That is, these

terms reflect the effect on LT (u) from a process σ whose characteristics are frozen at their values

at the beginning of the interval. It is interesting to note, however, that terms that appear in the

dynamics of the drift α and the leverage coefficient η also appear in this expansion and are of the

same asymptotic order as those that are due to the first-order effect of the dynamics of σ described

above. For the terms that reflect the dynamics of α and η, however, only the first-order effect from

their dependence on W matters.

We further note that the jumps in x do not play a leading role neither in the real nor in

the imaginary part of LT (u), provided σ0 6= 0 and η0 6= 0. In particular, the asymptotic order of

Tφ0(u/
√
T ) is Op(T

1−r/2). The reason for this negligible role of the jumps is that the characteristic

function of xT is evaluated at u/
√
T and T ↓ 0, i.e., we are evaluating the conditional characteristic

function at asymptotically increasing values of the characteristic exponent. If we were to consider,

instead, the behavior of the conditional characteristic function EQ
0

(
eiuxT

)
, for u ∈ R, then it is easy

to show that the leading term in its behavior will also depend on the jumps in x (in this case the

effect of η0 6= 0 will be only of higher asymptotic order).

The size of the error LT (u)−ΨT (u) depends on the time variation in α, b, η, η̃ and ν. In the

case when the jumps in x are of Lévy type, then this error becomes only Op(T
3/2| log(T )|).

Example 1 As an example, we compute ΦT (u) for the special case when xt satisfies the following

Lévy-driven SDE:

dxt = f(xt−)(αdt+ σdWt +

∫
R
zµ(dt, dz)), (3.7)

where f is some twice continuously differentiable function, α and σ are some constants, W is a

Brownian motion and µ is a Poisson measure on R+ × R with compensator dt ⊗ ν(dx), for some
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Lévy measure ν. In this special case ΦT (u) equals

exp

(
iu
√
Tαf0 + T

∫
R

(eiuf0/
√
T − 1)ν(dz)− u2

2
σ2f2

0 −
iu3
√
T

2

σ4f3
0 f
′
0

1 + u2Tσ4f2
0 (f

′
0)2

)

− 1

2
e−

u2

2
σ2f20 u2Tf2

0

(
2ασ2f

′
0 +

σ4

2
f
′′
0 f0 +

σ4

2
(f
′
0)2

)
+

1

2
e−

u2

2
σ2f20 u4Tf4

0σ
6

(
4

3
(f
′
0)2 +

1

3
f
′′
0 f0

)
+ Te−

u2

2
σ2f20

∫ 1

0

∫
R
e
iuf0z√
T

(
e−

u2

2
σ2sf2(x0+f0z)+

u2

2
σ2sf20 − 1

)
ν(dz)ds,

(3.8)

where in the above we use the shorthand notation f0 = f(x0), f
′
0 = f

′
(x0) and f

′′
0 = f

′′
(x0).

We continue with showing how Theorem 1 can be used to make inference for η0. For the results

that follow, it is convenient to denote separately the imaginary and real parts of LT (u):

IT (u) = =(LT (u)), RT (u) = <(LT (u)), u ∈ R. (3.9)

Not surprisingly, given the fact that leverage generates asymmetry in the return distribution, η0

plays a leading role in the imaginary part of the characteristic function, IT (u), or equivalently in

Arg(LT (u)), where Arg(z) is the principal argument of the complex number z (i.e., the unique real

number θ ∈ (−π, π] that satisfies z = |z|(cos(θ) + i sin(θ))).

There are two additional terms in an asymptotic expansion of Arg(LT (u)) which complicate,

however, identification of η0. These terms are due to the drift term in the price as well as the jumps.

In addition, the unknown spot volatility, σ0, also shows up in the leading term of Arg(LT (u)). To

remove the term in Arg(LT (u)) due to the drift, we can difference (in u) appropriately Arg(LT (u)).

Second, the term due to the jumps in Arg(LT (u)) is of order Op(T
1− r

2 ) and hence it is dominated

by the terms involving η0 in IT (u), provided r in A1-r and A2-r is strictly less than 1. Finally,

we can estimate σ0 from |LT (u)| and use it to recover η0 from IT (u). We now provide the details.

First, our estimator of volatility is given by

σ2
0,T (u) = − 2

u2
log(|LT (u)| ∨ T ), u ∈ R+. (3.10)

Using the result of Theorem 1 (which implies IT (u) = Op(
√
T )), we can write

Arg(LT (u)) = u
√
Tα0 + Tφ0(u/

√
T )− u3

√
T

2

σ2
0η0

1 + u2Tη2
0

+Op(T ), for some fixed u ∈ R+. (3.11)

As a result, an estimator for η0 is given by

η0,T (u, v) =
8

3
√
T

2 Arg(LT (u/2))−Arg(LT (u))

u3σ2
0,T (v)

, u, v ∈ R+. (3.12)

10



Applying Theorem 1, we have

σ2
0,T (v)− σ2

0 = Op

(
T 1− r

2

)
and η0,T (u, v)− η0 = Op

(
T

1−r
2

)
, for some fixed u, v ∈ R+. (3.13)

The error in recovering η0 via η0,T (u, v) is of larger asymptotic order than the one in recovering σ2
0

using σ2
0,T (u). The error in η0,T (u, v) is rather nontrivial when r is close to 1, i.e., when the jumps

have rather high activity. In fact, η0,T (u, v) does not converge to η0 for r = 1. The reason for

this relatively poor performance of η0,T (u, v) is the term T=(φ0(u/
√
T )) in Arg(LT (u)). There is a

relatively easy way, however, to remove that term in the estimation of η0 if one can use conditional

characteristic functions over two different (short) intervals [0, T1] and [0, T2], with 0 < T1 < T2. We

denote τ = T2/T1 and consider asymptotics with T1 ↓ 0 and τ > 1 being fixed. Then, we can form

an estimator of η0 from the two characteristic functions via

η0,T1,T2(u, v) =
2√
T1

Arg(LT1(u))−Arg(LT2(
√
τu))/τ

(τ − 1)u3σ2
0,T1

(v)
, u, v ∈ R+. (3.14)

Note that now, we no longer need to take a difference of Arg(LT (u)) for two values of u to remove

the effect of α0, as the term due to it automatically cancels out in Arg(LT1(u))−Arg(LT2(
√
τu))/τ .

Using Theorem 1, which implies the expansion in (3.11) above, it is easy to show the following

η0,T1,T2(u, v)− η0 = Op

(√
T1

)
, for some fixed u, v ∈ R+. (3.15)

Comparing (3.13) and (3.15), we see that the error in recovering η0 is reduced nontrivially when

using the two characteristic functions in the estimation. Furthermore, if there are no price-volatility

co-jumps, (i.e., if ν0 is concentrated on the x and y axes in R2) or under some mild smoothness

conditions for ν0 (recall that smoothness of a function translates into decay of its Fourier transform,

see e.g., Theorem 3.2.9 in Grafakos (2008)), one can show that the last term in ΨT (u) is equal to

Te−
u2σ20

2

∫ 1
0

∫
R2 1{x=0}

(
e−u

2yσ0s−u
2

2
y2s − 1

)
ν0(dx, dy)ds + Olu

p (T 3/2−r/2). In this situation, it is

easy to show that the following slightly stronger result holds

η0,T1,T2(u, v)− η0 = Op

(
T

1− r
2

1

)
, for some fixed u, v ∈ R+. (3.16)

Note that the error term in estimating η0 in (3.16) is determined by LT (u)−ΨT (u) and LT (v)−
ΨT (v). Therefore, given the result in Theorem 1, further reductions in the order of magnitude

of the error in recovering η0 seem to be impossible in general settings if one is to use LT1(u)

and LT2(u) for two different and small T1 and T2. We note that a higher-order extension of the

result in Theorem 1, combined with using LT (u) for many distinct small T , might lead to further

improvements of η0,T1,T2(u, v) but such an extension seems highly nontrivial theoretically.
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4 Estimation of Leverage Effect from Options

Conditional characteristic functions of price increments are of course not directly observable. How-

ever, we can estimate them from observations of options written on the asset, following Qin and

Todorov (2019) and Todorov (2019). This will render the estimates of η0 given in the previous

section feasible.

4.1 Option Observation Scheme and Assumptions

We start with introducing the option observation scheme and stating the necessary assumptions

for the feasible estimation of η0. Our inference is based on European style call and put options

recorded at the fixed time t = 0. A call option gives the owner the right to buy the underlying

asset at a pre-specified strike price on the future maturity date of the option, while the put option,

similarly, gives the owner the right to sell at the strike price at maturity. For each strike and

maturity, we rely on the so-called out-of-the-money (OTM) option price–the cheaper of the call

and the put for the given strike–which would be worth zero, if the option were to expire today.

We denote OTM option price observed at time t = 0 by OT (k), where T is the time to expiration

and k is the log-strike of the option. The OTM option price, OT (k), is a call if k > log(FT ), and

a put, if k ≤ log(FT ), where FT is the time-0 futures price of the asset with expiration date T . As

known from finance theory, see e.g., Duffie (2001), the option prices are conditional expectations of

options’ terminal payoff under the so-called risk-neutral probability measure and discounted at the

risk-free interest rate back to time 0. We denote the risk-neutral probability measure with Q. The

dynamics of x in (1.1)-(1.2) and (2.2)-(2.4) are under this probability measure. The underlying

asset price and true option prices are all defined on Ω(0), with the associated σ-algebra F (0) and

filtration (F (0)
t )t≥0. The statistical (true) probability measure is denoted with P(0) and finance

theory implies the local equivalence of P(0) and Q (so that, in particular, all diffusion coefficients

in the dynamics in (1.1)-(1.2) and (2.2)-(2.4) are the same under the two probability measures).

Our data consists of options observed at time t = 0 and expiring at two different maturity dates

T1 and T2. For each maturity date, Tl, where l = 1, 2, we observe Nl options with log-strikes given

by,

kl ≡ kl,1 < kl,2 < · · · kl,Nl ≡ kl, l = 1, 2. (4.1)

We denote

k = k1 ∨ k2 and k = k1 ∧ k2, (4.2)

and we further use the notation K = ek and K = ek. The gap between the log-strikes is denoted

∆l,i = kl,i − kl,i−1, for i = 2, ...., Nl and l = 1, 2. The log-strike grids need not be equidistant, i.e.,

12



∆l,i may differ across i’s. The asymptotic theory developed below is of infill type, i.e., the mesh of

the log-strike grid, supi=2,...,Nl
∆l,i, shrinks towards zero.

Finally, we allow for observation error, i.e., instead of observing OTl(kl,j) directly, we observe,

ÔTl(kl,j) = OTl(kl,j) + εTl(kl,j), j = 1, ..., Nl, l = 1, 2. (4.3)

where the errors εTl(kl,j) are defined on a space Ω(1) = RR×RR which is equipped with the product

Borel σ-field F (1), and transition probability P(1)(ω(0), dω(1)) from the probability space Ω(0), on

which X is defined, to Ω(1). We further define,

Ω = Ω(0) × Ω(1), F = F (0) ×F (1),

and

P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)) .

For simplicity, when expectations are under the true probability measure P, we will simply denote

them with E, i.e., without using superscript P in their notation. For quantifying the error in

measuring the characteristic functions from the options, we will need the following assumptions:

A3. We have σ0 > 0 and there exist F (0)
0 -adapted random variables C0 and t > 0 such that for

s ∈ [0, t]:

EQ
0 |αs|

4 + EQ
0 |σs|

6 + EQ
0 (e4|xs|) + EQ

0

(∫
R2

(e3|x| − 1)νs(dx, dy)

)4

< C0. (4.4)

A4. The log-strike grids {kl,j}Nlj=1, for l = 1, 2, are F (0)-adapted and we have

c0∆ ≤ kl,j − kl,j−1 ≤ C0∆, l = 1, 2, as ∆ ↓ 0, (4.5)

where ∆ is a deterministic sequence, and c0 > 0 and C0 < ∞ are F (0)-adapted random variables.

In addition, for some arbitrary small ζ > 0:

sup
j:|kj |<ζ

∣∣∣∣kl,j − kl,j−1

∆
− ψl(kl,j−1)

∣∣∣∣ P−→ 0, l = 1, 2, as ∆ ↓ 0, (4.6)

where ψl(k) are F (0)-adapted functions which are continuous in k at 0.

A5. We have εTl(kl,j) = ζl(kl,j)εl,jOTl(kl,j) for l = 1, 2, where for k in a neighborhood of zero, we

have |ζl(k) − ξl(0)| ≤ C0|k|ι, for some ι > 0 and C0 < ∞ being an F (0)-adapted random variable.

The two sequences {ε1,j}N1
j=1 and {ε2,j}N2

j=1 are defined on F (1), are i.i.d and independent of each

13



other and of F (0). We further have E(εl,j |F (0)) = 0, E((εl,j)
2|F (0)) = 1 and E(|εl,j |κ|F (0)) < ∞,

for some κ ≥ 4 and l = 1, 2.

The above assumptions are adapted from Todorov (2019). Assumption A3 is a moment con-

dition on the increments of x and processes that show in its dynamics. It is stronger than A1-r

as we need stronger conditions for the option prices to be finite. Assumption A4 is about the

strike grid and A5 is about the option observation error. We note, in particular, that we allow

for heteroskedasticity in the observation error across strikes. In fact, since the option prices are of

different order of magnitude, depending on the distance of their log-strike from zero, this difference

in asymptotic order carries over to the corresponding option observation errors. Finally, we note

that in A4 and A5, we impose slightly more structure on ψl(k) and ζl(k) for k around zero. The

reason for that is that the asymptotic behavior of our statistics will be driven by the options with

strikes in vicinity of zero.

4.2 Option-Based Estimators of the Leverage Coefficient

As implied by the results in Carr and Madan (2001), the conditional characteristic function of the

price increment can be “spanned” by a portfolio of options in the following way:

LT (u) = 1−
(
u2

T
+ i

u√
T

)∫
R
e(iu/

√
T−1)kOT (k)dk, u ∈ R, (4.7)

provided the dividend yield of the underlying asset and the risk-free interest rate are both zero,

an assumption that we will maintain here for simplicity given the fact that our asymptotics is

for T ↓ 0. Using this result, our estimate for the conditional characteristic function of the price

increment from the available options is given by

L̂Tl(u) = 1−
(
u2

T
+ i

u√
T

) Nl∑
j=2

e(iu/
√
Tl−1)kl,j−1ÔTl(kl,j−1)∆l,j , u ∈ R, (4.8)

and we further denote

ÎTl(u) = =(L̂Tl(u)), R̂Tl(u) = <(L̂Tl(u)). (4.9)

Under assumptions A3-A5, we have L̂Tl(u)
P−→ LTl(u) locally uniformly in u, for l = 1, 2. This

means that the feasible counterpart of η0,T1,T2(u, v1, v2) based on L̂T1(u) and L̂T2(u) will consistently

estimate η0. To derive a CLT for such an estimator, we will first need to derive a CLT for the

estimator of the conditional characteristic function, L̂Tl(u). This is what we do next.

For stating the result, we introduce some notation needed for defining the estimate of the

F (0)-conditional asymptotic variance of the limiting distribution in the CLT. In particular, using
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the smoothness of OT (k) in k, we form the following estimates of the observation errors for j =

2, ..., Nl − 1 and l = 1, 2:

ε̂Tl(kl,j) =

√
2

3

(
ÔTl(kl,j)−

1

2

(
ÔTl(kl,j−1) + ÔTl(kl,j+1)

))
, (4.10)

and we further set ε̂Tl(kl,1) = ε̂Tl(kl,2) as well as ε̂Tl(kl,Nl) = ε̂Tl(kl,Nl−1). We denote next with J∗l ,

the smallest element of the set of integers (1, 2, ..., Nl) such that |kJ∗l | ≤ |kl,j | for j = 1, .., Nl and

l = 1, 2. That is, kJ∗l is the available log-strike that is closest to the current log-price (recall that

x0 = 0). We then modify the estimate of the error corresponding to kJ∗l by replacing it with

ε̂Tl(kl,J∗l ) =
1

2

(
|ε̂Tl(kl,J∗l −1)|+ |ε̂Tl(kl,J∗l +1)|

)
, l = 1, 2. (4.11)

Using these estimates, we define

ζTl(j, u) = −
(
u2

Tl
+ i

u√
Tl

)
e(iu/

√
Tl−1)kl,j−1 ε̂Tl(kl,j−1)∆l,j ,

ζTl(j, u) =
(
=(ζTl(j, u))<(ζTl(j, u))

)>
,

(4.12)

for j = 2, ..., Nl and l = 1, 2. The estimate of the F (0)-conditional asymptotic variance of L̂Tl(u) is

then given by

Σ̂Tl(u, v) =

Nl∑
j=2

ζTl(j, u)ζ>Tl(j, v), u, v ∈ R, l = 1, 2. (4.13)

Finally, the limiting distribution will depend on the following function

Φ̃(k) = f(k) + |k|Φ(−|k|), k ∈ R, (4.14)

where f and Φ denote the pdf and cdf of a standard normal random variable.

We are now ready to state our CLT result. The convergence in distribution of the centered L̂Tl(u)

holds F (0)-conditionally. This is denoted by
L|F(0)

−−−−→ and formally means convergence in probability

of the conditional probability laws when the latter are considered as random variables taking values

in the space of probability measures equipped with the weak topology, see e.g., VIII.5.26 of Jacod

and Shiryaev (2003).

Theorem 2 Suppose assumptions A3-A5 hold. Let T1 ↓ 0, T2 � T1, ∆ � Tα1 , K � T β1 , K � T−γ1 ,

for β, γ > 0 and α > 1
2 . Then, for any compact U ∈ R, we have

T
1/4
l√
∆

(
ÎTl(u)− ITl(u)

R̂Tl(u)−RTl(u)

)
L|F(0)

−−−−→
(
Zl,I(u)
Zl,R(u)

)
, l = 1, 2, (4.15)
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uniformly in u ∈ U , and where F (0)-conditionally (Z1,I(u) Z1,R(u)) and (Z2,l(u) Z2,R(u)) are

independent of each other and are centered Gaussian processes with(
E
(
Zl,I(u)Zl,I(v)

∣∣F (0)
)

E
(
Zl,I(u)Zl,R(v)

∣∣F (0)
)

E
(
Zl,R(u)Zl,I(v)

∣∣F (0)
)

E
(
Zl,R(u)Zl,R(v)

∣∣F (0)
) )

= Σl(u, v) :=

(
Σl,I(u, v) 0
0 Σl,R(u, v)

)
,

(4.16)

and

Σl,I(u, v) = σ3
0ψl(0)ζ2

l (0)

∫
R

sin(σ2
0uk) sin(σ2

0vk)Φ̃2(k)dk, (4.17)

Σl,R(u, v) = σ3
0ψl(0)ζ2

l (0)

∫
R

cos(σ2
0uk) cos(σ2

0vk)Φ̃2(k)dk, (4.18)

for l = 1, 2. Moreover, we have

√
Tl

∆
Σ̂Tl(u, v)

P−→ Σl(u, v), uniformly in u, v ∈ U , l = 1, 2. (4.19)

We make several observations regarding the above result. First, we note that the convergence in the

above theorem holds in a joint asymptotic setting in which the time horizons T1 and T2 shrink, the

mesh of the log-strike grids shrinks and the log-strike ranges increase. The asymptotic requirements

on the log-strike grid are needed for feasible implementation of the result of Carr and Madan (2001)

(as L̂Tl(u) involves Riemann sum approximation of the integral on the right-hand side of (4.7)) and

are commonly used in other applications involving option portfolios with different strikes (e.g., for

establishing the consistency of the popular VIX volatility index that is widely used in academic

work and in practice) as well as for consistent risk-neutral density estimation, following Breeden

and Litzenberger (1978). Second, the CLT holds locally uniformly in u. This is very convenient for

applications as one can choose u adaptively based on some estimates from the available data. This

is what we will do in our implementation. Third, since we look at the characteristic function for

asymptotically increasing values of its argument, the limiting distribution in Theorem 2 is governed

by the measurement error of the options with log-strikes in vicinity of zero. Therefore, since the

observation error is proportional to the option it is attached to, both the rate of convergence and

the limiting asymptotic variance are governed by the asymptotic behavior of these near-the-money

options. Their values, in turn, are dominated asymptotically by the diffusive component of the

underlying asset.

We note that in the CLT result in (4.15), the “reference” mesh of the log-strike grid, ∆, appears

(recall assumption A4). This “reference” ∆ is not necessarily an observable quantity and is used

to capture the order of magnitude of the mesh of the log-strike grid (see (4.5)). However, given
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the convergence result in (4.19), for feasible implementation of the CLT, e.g., for constructing

confidence intervals for ITl(u) and RTl(u), one does not need to know ∆.

We proceed with feasible estimation of the leverage coefficient. Using the estimate of the

conditional characteristic function from the data, we can define the feasible counterparts of σ0,Tl(u),

η0,Tl(u, v) and η0,T1,T2(u, v) as follows:

σ̂2
0,Tl

(u) = − 2

u2
log
(
|L̂Tl(u)| ∨N−1

l

)
, (4.20)

η̂0,Tl(u, v) =
8

3
√
Tl

2 Arg(L̂Tl(u/2))−Arg(L̂Tl(u))

u3σ̂2
0,Tl

(v)
, (4.21)

η̂0,T1,T2(u, v) =
2√
T1

Arg(L̂T1(u))−Arg(L̂T2(
√
τu))/τ

(τ − 1)u3σ̂2
0,T1

(v)
, (4.22)

for u, v ∈ R+ and l = 1, 2. Given the fact that η̂0,T1,T2(u, v) contains significantly less bias due to

the jumps in x, we will present a feasible CLT only for this estimator of η. To state this result, we

introduce some additional notation. In particular, for l = 1, 2, we set

Ĝ1(u, v) =
2

σ̂2
0,T1

(v)

(
R̂T1(u)

(τ − 1)
√
T1u3|L̂T1(u)|2

, − ÎT1(u)

(τ − 1)
√
T1u3|L̂T1(u)|2

,

η̂0,T1,T2(u, v)ÎT1(v)

v2|L̂T1(v)|2
,
η̂0,T1,T2(u, v)R̂T1(v)

v2|L̂T1(v)|2

)
,

(4.23)

Ĝ2(u, v) = − 2

τ σ̂2
0,T1

(v)|L̂T2(
√
τu)|2

(
R̂T2(

√
τu)

(τ − 1)
√
T1u3

, − ÎT2(
√
τu)

(τ − 1)
√
T1u3

)
, (4.24)

Ĥ1(u, v) =

(
Σ̂1(u, u) Σ̂1(u, v)

Σ̂1(u, v) Σ̂1(v, v)

)
. (4.25)

We then denote

̂Avar(η0) = Ĝ1(u, v)Ĥ1(u, v)Ĝ1(u, v)> + Ĝ2(u, v)Σ̂2(u
√
τ , u
√
τ)Ĝ2(u, v)>. (4.26)

The feasible CLT for η̂0,T1,T2(u, v) is given in the following corollary.

Corollary 1 Suppose assumptions A1-r, A2-r and A3-A5 hold and further σ0 6= 0. Let T1 ↓ 0,

T2 = τT1 for some τ > 1, ∆ � Tα1 , K � T β1 , K � T−γ1 , for β, γ > 0 and 1
2 < α < 5

2 . Then, we

have
η̂0,T1,T2(u, v)− η0√

̂Avar(η0)

L|F(0)

−−−−→ N(0, 1). (4.27)
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Corollary 1 follows by an application of the Delta method and Theorems 1 and 2. If α > 3
2 ,

the estimator is consistent and
T

3/4
1√
∆

(η̂0,T1,T2(u, v) − η0) is asymptotically mixed Gaussian. This

implies slower rate of convergence for recovering η0 than for estimating the conditional characteristic

function. The reason for this is that η0 appears in Arg(LT (u)) multiplied by
√
T . As we will show

in the next section, η̂0,T1,T2(u, v) achieves nearly the optimal rate for estimating η0 from noisy

short-dated options in a minimax sense. We also note, that the error in estimating σ0 plays an

asymptotically negligible role in η̂0,T1,T2(u, v)− η0.

In the case α ∈
(

1
2 ,

3
2

)
, ̂Avar(η0) is exploding asymptotically, and therefore η̂0,T1,T2(u, v) is not

consistent for η0. In practice, this will result in confidence intervals for η0 which are too big for

meaningful inference. That is, in this case, the measurement error in the observed options is big

relative to the signal contained in them regarding the leverage coefficient. In such a situation,

however, one can achieve consistency of the leverage coefficient estimator by simply adding more

data. This can be done by considering an asymptotically increasing number of option cross-sections

observed in a local window around time t = 0, i.e., in a high-frequency option panel setup (or

alternatively option cross-sections observed at disjoint times). We leave the formal analysis of such

an extension of the current setup for future work.

5 Minimax Risk for Estimation of Leverage from Options

We will now derive a lower bound for the minimax risk for estimating the leverage coefficient from

noisy short-dated option data. This result will show that our nonparametric estimator, developed

in the previous section, is nearly rate-efficient. For establishing this result, it will suffice to work in

the special setting where the underlying log-price dynamics under Q is given by

xt = at+

∫ t

0
(σ + ηWs)dWs + Jxt , t ≥ 0, (5.1)

where Jxt is a compound Poisson jump process with unit intensity and deterministic jump size of

J < 0. The risk-neutral law of x is uniquely identified by the three parameters (a, σ, η) (and of

course the jump size J). Our interest is in the estimation of η. We will denote with G(R) the

set of risk-neutral probability measures Q under which x has the dynamics in (5.1), with a < R,

σ ∈ (1/R,R) and η ∈ (1/R,R), for some finite constant R > 0. We note that the risk-neutrality of

Q implies a = rt− 1
2 (σ + ηWt)

2−(eJ−1), where rt denotes the spot risk-free rate at time t. We could

have alternatively considered the model in (5.1) in which a is replaced by r− 1
2 (σ + ηWt)

2−(eJ−1),

for some constant r, but for simplicity (although such an extension is certainly doable), we proceed

with the model in (5.1).
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For simplicity, as this has no impact on the derived result below, we will assume that we have

short-dated options with only one common expiration date. The option observations are given by

ÔT (ki) = OT (ki) + (OT (ki) ∨ T )εi, i = 1, ..., N, (5.2)

for the strike grid k1 < k2 < .... < kn, and where {εi}i≥1 is a sequence of i.i.d. random variables,

with standard normal distribution, defined on a product extension of (Ω(0),F (0), (F (0)
t )t≥0,P(0))

and independent of F (0). We further have c∆ ≤ ki − ki−1 ≤ ∆, for i = 1, ..., N and some ∆ > 0

going down to zero as well as a constant c ∈ (0, 1). Note that when x contains jumps, then in

general the (true) option price for every strike is of order Op(T ). Therefore, the truncation from

below in the term multiplying εi in (5.2) does not change in general the order of magnitude of the

observation error.

In what follows, we will denote with ET expectation under which the true option price OT (k) is

computed according to the risk-neutral probability measure T . We then have the following result.

Theorem 3 In the setting of (5.1)-(5.2), let ∆ � Tα, ek1 � T−β and ekN � T−γ, for 3
2 < α < 5

2

and β, γ ≥ 0 as T ↓ 0. We then have

inf
η̂

sup
T ∈G(R)

ET

(
T 3/2(log(1/T ))7/2

∆
|η̂ − η|2

)
≥ c, (5.3)

for some c > 0 and where η̂ is any estimator of σ based on the option data {ÔT (ki)}i=1,...,N .

We note that the same result holds if one is to use options with two different times to maturity

in the inference. The result of the theorem above, therefore, shows that the estimator of η0 we

constructed in the previous section, is nearly rate optimal (up to a log term).

6 Simulation Study

We now evaluate the performance of the leverage coefficient estimator η̂0,T1,T2(u, v) on simulated

data. The dynamics of X = ex under the risk-neutral measure in the simulation is given by

dXt

Xt−
=
√
VtdWt +

∫
R

(ex − 1)µ(dt, dx), (6.1)

where W is a Brownian motion and µ is an integer-valued random measure with compensator

ν(dt, dx) = Vtdt×

(
c−
e−20|x|

|x|1+β
1{x<0} + c+

e−100|x|

|x|1+β
1{x>0}

)
dx, (6.2)

while the process V has the following dynamics

dVt = 6(0.02− Vt)dt+ 2η
√
V tdWt +

√
0.09− 4η2

√
V tdW̃t, (6.3)
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for W̃ being a Brownian motion independent of W . The above model belongs to the exponentially-

affine jump-diffusion class of models of Duffie et al. (2000). In particular, V is a square-root diffusion

which is commonly used to model volatility in parametric option pricing. The jumps in X are with

time-varying jump intensity that is proportional to the level of stochastic volatility. They can be

represented as a time change (with the time change being the integrated variance
∫ t

0 Vsds) of the

flexible tempered stable Lévy process, see e.g., Carr et al. (2002). Part of the model parameters

are fixed while we will vary the rest in the Monte Carlo in order to check the sensitivity of our

estimator with respect to them.

We consider three cases for the parameter β capturing the jump activity (assumptions A1-r and

A2-r hold for the model in the Monte Carlo with β + ι, for any ι > 0): case A with β = −0.5, case

B with β = 0, and case C with β = 0.5. The first case corresponds to finite activity jumps and the

last two to jumps of infinite activity. For each of the three cases for β, we consider two cases for

the scale parameters c±: case L corresponding to conditional spot jump volatility (i.e.,
∫
R x

2νt(dx))

being half of Vt (diffusive volatility) and case H corresponding to conditional spot jump volatility

that equals Vt. In all considered cases, the ratio of the conditional volatility of negative jumps to

that of positive jumps is 9 to 1. This matches roughly earlier estimates of these quantities from

observed index option data, see e.g., Andersen et al. (2017) and references therein. The jump

parameters for the different considered cases are given in Table 1.

Table 1: Jump Parameter Settings used in the Monte Carlo

Model Case β c− c+

A-L −0.5 0.6177× 103 3.4194× 103

A-H −0.5 1.2354× 103 6.8388× 103

B-L 0.0 1.8182× 102 4.5454× 102

B-H 0.0 3.6364× 102 9.0908× 102

C-L 0.5 0.4587× 102 0.5129× 102

C-H 0.5 0.9174× 102 1.0258× 102

Finally, η in the volatility dynamics above corresponds to the leverage coefficient, which in this

model is a constant. This follows by an application of Itô’s lemma by taking into account the fact

that V remains strictly positive on any fixed time interval whenever started from a positive value,

see e.g., equation IV.8.12 in Ikeda and Watanabe (1981). We consider two cases for it: η = 0 and η =

−0.135. The first corresponds to zero covariation between X and V and the second one corresponds

to strong negative covariation between X and V (the correlation 〈xt, Vt〉/
√
〈xt, xt〉〈Vt, Vt〉 in this

case equals −0.9).
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We next describe the option observation setting. Options written on X are observed at time

t = 0 with maturities of 3 and 5 business days and we set X0 = 2500. The strike grid and

range of the options are calibrated to match roughly available data on market index options,

see e.g., Andersen et al. (2017). In particular, for each of the two maturities, the strike grid is

equidistant with increments of 5. The strike range is determined by the requirement that the

true option prices should be at least 0.05 in value. Finally, the option observation error is set to

εTl(kl,j) = 0.05×OTl(kl,j)Zl,j , for l = 1, 2 and where {Z1,j}j≥1 and {Z2,j}j≥1 are two independent

sequences of i.i.d. standard normal random variables.

For the implementation of the estimator η̂0,T1,T2(u, v), we need to set the values of u and v. We

will do this in a data-driven way. We set the value of v, needed in the estimation of the volatility,

to

v̂ =
(

inf {u ≥ 0 : |L̂T1(u)| ≤ 0.2}
)
∧ argminu∈[0,40]|L̂T1(u)|. (6.4)

This choice of v aims at evaluating L̂T1(u) at a sufficiently high value of u in order to minimize the

impact of the jumps in x on LT1(u) but such that estimation is still reliable. The second restriction

on the right-hand side of (6.4) is asymptotically non-binding but is aimed to guard against potential

finite sample distortions in the recovery of LT1(u). Our choice of u is given by

û =

(
4

(τ − 1)σ̂2
0,T1

(v̂)

)1/3∧(
inf {u ≥ 0 : Arg(L̂T2(

√
τu)) ≥ 0.5}

)
. (6.5)

First, note that the second restriction on the right-hand side of (6.5) is asymptotically non-binding

because =(L̂T2(
√
τu))

P−→ 0. This restriction is used as a guard against finite-sample distortions

and it ensures that we evaluate the principal argument of L̂T2(
√
τu) only when the latter is in a

neighborhood of zero (which is needed for our asymptotic expansions). The rationale behind the

leading term in û, i.e., the first term on the right-hand side of (6.5), is the following. Recall that

1√
T1

(
Arg(L̂T1(u))−Arg(L̂T2(

√
τu))/τ

)
P−→ τ − 1

2
u3σ2

0η0. (6.6)

Therefore, by setting u equal to û, we aim for an estimator of η0 with precision that is half that

of 1√
T1

(
Arg(L̂T1(u))−Arg(L̂T2(

√
τu))/τ

)
. Higher choices of u will make even small errors in

estimating the conditional characteristic function have rather big impact on the estimation of η0.

On the other hand, a smaller choice of u will make the role of jumps more prominent. Recall that

our asymptotics is local uniform in u and the error bounds we provide here are not optimal for u

approaching asymptotically zero, where the jumps will play the leading role.

The results from the Monte Carlo are reported in Table 2. In the case of no leverage effect, i.e.,

when η = 0, we see that our estimator has very small bias, which can be either positive or negative,
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depending on the particular case. The bias, however, is very small relative to the interquantile

range of the estimator. Similar observations can be also made for the case with leverage effect,

i.e., when η = −0.135. The bias of the estimator in this case is again very small relative to the

sampling variation in the estimator. Since the observation errors are proportional to the option

prices they are attached to and the latter are higher when the underlying process has bigger jump

component, the error in estimating η is higher for all cases in which the spot jump volatility is

equal to the diffusive volatility (cases H). Also, it is interesting to note that the performance of

our leverage coefficient estimator is not very sensitive to the value of the jump activity parameter

β, i.e., we do not see much difference in the performance of η̂0,T1,T2(u, v) across cases A, B and C.

Finally, the performance of our estimator does not differ much across the different starting values

for the diffusive volatility. Overall, the results reported in Table 2 suggest satisfactory performance

of η̂0,T1,T2(u, v) in finite samples.

Table 2: Monte Carlo Results for η̂0,T1,T2(û, v̂)

η = 0 η = −0.135
Model Case Volatility Median IQR Median IQR

A-L Low 0.0124 0.0389 −0.1255 0.0416
A-L Median 0.0171 0.0464 −0.1153 0.0468
A-L High 0.0198 0.0514 −0.1090 0.0558

A-H Low −0.0152 0.0513 −0.1543 0.0580
A-H Median −0.0014 0.0595 −0.1432 0.0665
A-H High 0.0099 0.0705 −0.1260 0.0778

B-L Low 0.0098 0.0380 −0.1206 0.0440
B-L Median 0.0121 0.0421 −0.1147 0.0447
B-L High 0.0067 0.0547 −0.1213 0.0570

B-H Low 0.0110 0.0520 −0.1435 0.0661
B-H Median 0.0201 0.0575 −0.1240 0.0670
B-H High 0.0276 0.0741 −0.1124 0.0714

C-L Low −0.0061 0.0384 −0.1416 0.0426
C-L Median −0.0044 0.0412 −0.1384 0.0478
C-L High −0.0006 0.0556 −0.1311 0.0616

C-H Low 0.0153 0.0521 −0.1235 0.0557
C-H Median 0.0128 0.0586 −0.1207 0.0657
C-H High 0.0138 0.0707 −0.1257 0.0696

IQR stands for inter-quantile range. Low, median and high volatility correspond to V0 set to the
25th, 50th and 75th quantile, respectively, of its marginal distribution. Results are based on 1,000
replications.
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7 Proofs

7.1 Proof of Theorem 1

In the proof of Theorem 1, we will drop the superscript Q when denoting expectations under Q as

all expectations will be under this probability. The proof of Theorem 1 consists of the following

two lemmas:

Lemma 1 Assume A1-r and A2-r hold. For T ↓ 0, we have:

E0

(
eiuxT /

√
T
)
− E0

(
eiuxT /

√
T
)

= Olu
p (T 3/2−r/2 ∨ T 3/2| log(T )|). (7.1)

Lemma 2 For T ↓ 0, we have:

E0

(
eiuxT /

√
T
)

= ΨT (u) +Olu
p (T 3/2). (7.2)

Throughout the proofs of the two lemmas, we will use the following shorthand notation

uT =
u√
T
, u ∈ R. (7.3)

Proof of Lemma 1. In the proof, we will denote with C0 a finite-valued F0-adapted random

variable that can change from one line to another.

Part I: Some Notation. Since we want to show order of magnitude locally uniformly in u, henceforth,

we will assume that |u| ≤ U for some arbitrary positive number U . We denote

αt = α0 + σα0Wt + σ̃α0 W̃t, ᾰt = αt + σα0W t. (7.4)

We split σt = σ
(1)
t + σ

(2)
t and σt = σ

(1)
t + σ

(2)
t , where

σ
(1)
t = σ0 +

∫ t

0
bsds+

∫ t

0
ηsdWs +

∫ t

0
η̃sdW̃s,

σ
(1)
t = σ0 + b0t+ η0Wt +

ση0
2

(W 2
t − t) + η̃0W̃t,

(7.5)

σ
(2)
t =

∫ t

0

∫
R
δσ(s, z)µ(ds, dz), σ

(2)
t =

∫ t

0

∫
R
δσ(0, z)µ(ds, dz). (7.6)

We further denote

σ
(1,r)
t = σ̃η0

∫ t

0
W̃sdWs + ση0

∫ t

0
W sdWs + ση̃0

∫ t

0
WsdW̃s

+ σ̃η̃0

∫ t

0
W̃sdW̃s + ση̃0

∫ t

0
W sdW̃s.

(7.7)
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We also split xt =
∑3

i=0 x
(i)
t and xt =

∑3
i=0 x

(i)
t , where

x
(0)
t =

∫ t

0
αsds, x̆

(0)
t =

∫ t

0
ᾰsds, x

(0)
t =

∫ t

0
αsds, (7.8)

x
(i)
t =

∫ t

0
σ(i)
s dWs, x

(i)
t =

∫ t

0
σ(i)
s dWs, i = 1, 2, (7.9)

x
(3)
t =

∫ t

0

∫
R
δx(s, z)µ(ds, dz), x

(3)
t =

∫ t

0

∫
R
δx(0, z)µ(ds, dz). (7.10)

Finally, we set

x̆t = x̆
(0)
t + x

(1)
t + x

(2)
t + x

(3)
t , σ̆t =

√
(σ

(1)
t )2 + (σ

(2)
t )2. (7.11)

Part II: Preliminary Estimates. We start with establishing several bounds that will be used in the

proof. First, direct calculation shows

E0(ᾰt − αt)2 + E0(σ
(1)
t − σ0)2 ≤ C0T, t ∈ [0, T ]. (7.12)

Using Burkholder-Davis-Gundy inequality and the smoothness in expectation assumption for η and

η̃ in A2-r, we get

E0(σ
(1)
t − σ

(1)
t )2 ≤ C0T

2, t ∈ [0, T ]. (7.13)

Inequality in means and the bound about ᾰt − αt in (7.12) implies

E0

(
x̆

(0)
t − x

(0)
t

)2
≤ C0T

∫ t

0
E0 (ᾰs − αs)2 ds ≤ C0T

3, t ∈ [0, T ]. (7.14)

By Itô isometry and the bound in (7.13), we have

E0(x
(1)
t − x

(1)
t )2 = E0

(∫ t

0
(σ(1)
s − σ(1)

s )2ds

)
≤ C0T

3, t ∈ [0, T ]. (7.15)

Combining the above two bounds, we get altogether

E0(x̆t − xt)2 ≤ C0T
3, t ∈ [0, T ]. (7.16)

Next, using the definition of σ
(1)
t , σ

(1)
t and σ

(1,r)
t , we have

σ
(1)
t − σ

(1)
t − σ

(1,r)
t =

∫ t

0
(bs − b0)ds+

∫ t

0
(ηs − η0 − ση0Ws − σ̃η0W̃s − ση0W s)dWs

+

∫ t

0
(η̃s − η̃0 − ση̃0Ws − σ̃η̃0W̃s − ση̃0W s)dW̃s.

(7.17)

Applying Itô isometry twice and using the smoothness in expectation assumption for the processes

ση, σ̃η, ση, ση̃, σ̃η̃ and ση̃ in A2-r, we have

E0

(∫ t

0
(ηs − η0 − η(j)

s − σ
η
0Ws − σ̃η0W̃s − ση0W s)dWs

)2

≤ C0T
3, (7.18)
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E0

(∫ t

0
(η̃s − η̃0 − η̃(j)

s − σ
η̃
0Ws − σ̃η̃0W̃s − ση̃0W s)dW̃s

)2

≤ C0T
3, (7.19)

where we denote η
(j)
t =

∑
s≤t ∆η

(j)
s and η̃

(j)
t =

∑
s≤t ∆η̃

(j)
s . Next, using integration by parts, we

can write ∫ t

0
η(j)
s dWs = η

(j)
t Wt −

∫ t

0
Wsdη

(j)
s ,

∫ t

0
η̃(j)
s dW̃s = η̃

(j)
t W̃t −

∫ t

0
W̃sdη̃

(j)
s . (7.20)

Using the integrability assumption for the jumps in A1-r, we have

E0(|η(j)
t Wt|1{|Wt|≤

√
T | log(T )|}) + E0(|η̃(j)

t W̃t|1{|W̃t|≤
√
T | log(T )|})

≤ C0T
3/2| log(T )|, t ∈ [0, T ].

(7.21)

Using the fact that
∫∞
k xpe−x

2/2dx ∼ kp−1e−k
2/2 as k →∞ and for any p > 1, we have (assuming

without loss of generality that T < 1):

E0||Wt|1{|Wt|>
√
T | log(T )|}|

p + E0||W̃t|1{|W̃t|>
√
T | log(T )|}|

p

≤ CpT p/2| log(T )|p−1T−
1
2

log(T ), p > 1.
(7.22)

Using this bound, Hölder inequality and Burkholder-Davis-Gundy inequality, we have

E0(|η(j)
t Wt|1{|Wt|>

√
T | log(T )|}) + E0(|η̃(j)

t W̃t|1{|W̃t|>
√
T | log(T )|})

≤ C0T
3/2| log(T )|, t ∈ [0, T ].

(7.23)

Next, we have

E0

∣∣∣∣∫ t

0
Wsdη

(j)
s

∣∣∣∣ ≤ E0

(∫ t

0
|Ws|

∫
R
|δη(s, z)|dzds

)
,

E0

∣∣∣∣∫ t

0
W̃sdη̃

(j)
s

∣∣∣∣ ≤ E0

(∫ t

0
|W̃s|

∫
R
|δη̃(s, z)|dzds

)
,

(7.24)

and therefore by Cauchy-Schwarz inequality and the integrability assumptions for δη and δη̃ in A1-r,

we have

E0

∣∣∣∣∫ t

0
Wsdη

(j)
s

∣∣∣∣+ E0

∣∣∣∣∫ t

0
W̃sdη̃

(j)
s

∣∣∣∣ ≤ C0T
3/2. (7.25)

Altogether, combining (7.21)-(7.25), we have

E0

∣∣∣∣∫ t

0
η(j)
s dWs

∣∣∣∣+ E0

∣∣∣∣∫ t

0
η̃(j)
s dW̃s

∣∣∣∣ ≤ C0T
3/2| log(T )|, t ∈ [0, T ]. (7.26)

Part III: The difference E0(eiuT xT − eiuT x̆T ). We have

E0|eiuT xT − eiuT x̆T | ≤ uTE0|x(0)
T − x̆

(0)
T |+ uTE0|x(2)

T − x
(2)
T |+ urTE0|x(3)

T − x
(3)
T |

r, (7.27)
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where r is the constant appearing in A1-r and A2-r. We analyze each of the terms on the right-

hand-side of the above inequality. For the first term, we have

αt − ᾰt =

∫ t

0
bαs ds+

∫ t

0
(σαs − σα0 )dWs +

∫ t

0
(σ̃αs − σ̃α0 )dW̃s

+

∫ t

0
(σαs − σα0 )dW s +

∑
s≤t

∆αs.
(7.28)

From here, using the smoothness in expectation assumption for the processes σα, σ̃α and σα in

A2-r as well as the integrability assumption for the jumps in α in A1-r, we have

E0|αt − ᾰt| ≤ C0T, t ∈ [0, T ], (7.29)

and therefore

E0|x(0)
T − x̆

(0)
T | ≤ C0T

2. (7.30)

We continue next with x
(2)
T − x

(2)
T . Using integration by parts, we have

x
(2)
t − x

(2)
t = Wt

∫ t

0

∫
R

(δσ(s, z)− δσ(0, z))µ(ds, dz)

−
∫ t

0

∫
R

[Ws(δσ(s, z)− δσ(0, z))]µ(ds, dz).

(7.31)

From here, using Hölder inequality, the smoothness in expectation assumption for the jumps in σ in

A2-r as well as Burkholder-Davis-Gundy inequality and by considering separately the first summand

on the sets |Wt| ≤
√
T | log(T )| and |Wt| >

√
T | log(T )| (exactly as in (7.21)-(7.23) above), we have

E0|x(2)
T − x

(2)
T | ≤ C0T

2| log(T )|. (7.32)

We are left with x
(3)
T − x

(3)
T . Using the algebraic inequality |

∑
i≥1 ai|p ≤

∑
i≥1 |ai|p, for a sequence

of real numbers {ai}i≥1 and p ∈ (0, 1], we have by application of A2-r

E0

∣∣∣∣∫ T

0

∫
R

(δx(s, z)− δx(0, z))µ(ds, dz)

∣∣∣∣r
≤ E0

(∫ T

0

∫
R
|δx(s, z)− δx(0, z)|rµ(ds, dz)

)
≤ C0T

3/2.

(7.33)

Altogether, combining (7.30), (7.32) and (7.33), we have

E0|eiuT xT − eiuT x̆T | ≤ C0(uTT
2| log(T )|+ urTT

3/2). (7.34)

Part IV: The difference E0(eiuT x̆T − eiuT xT ). Applying Itô’s lemma, we have

E0 (cos(uT x̆T ))− 1 = −E0

(∫ T

0
(uT sin(uT x̆s)ᾰs)ds+

1

2

∫ T

0
(u2
T cos(uT x̆s)σ̆

2
s)ds

)
+ E0

(∫ T

0

∫
R2

[cos(uT x̆s)(cos(uTx)− 1)− sin(uT x̆s) sin(uTx)] ν0(dx, dy)ds

)
,

(7.35)
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E0 (sin(uT x̆T )) = E0

(∫ T

0
(uT cos(uT x̆s)ᾰs)ds−

1

2

∫ T

0
(u2
T sin(uT x̆s)σ̆

2
s)ds

)
+ E0

(∫ T

0

∫
R2

[sin(uT x̆s)(cos(uTx)− 1) + cos(uT x̆s) sin(uTx)] ν0(dx, dy)ds

)
.

(7.36)

We have similar result for E0 (cos(uTxT )) − 1 and E0 (sin(uTxT )) after replacing x̆s with xs, ᾰs

with αs and σ̆2
s with σ2

s in the above two equalities. We denote for t ∈ [0, T ]:

αt,T (u) = E0 (cos(uT x̆t)− cos(uTxt)) ,

βt,T (u) = E0 (sin(uT x̆t)− sin(uTxt)) .
(7.37)

With this notation, we can write

|αT,T (u)| ≤ uT
∫ T

0
|E0 (sin(uT x̆s)ᾰs − sin(uTxs)αs) |ds

+
u2
T

2

∫ T

0
|E0

(
cos(uT x̆s)σ̆

2
s − cos(uTxs)σ

2
s

)
|ds

+ C0u
r
T

∫ T

0
(|αs,T (u)|+ (|βs,T (u)|)ds,

(7.38)

|βT,T (u)| ≤ uT
∫ T

0
|E0 (cos(uT x̆s)ᾰs − cos(uTxs)αs) |ds

+
u2
T

2

∫ T

0
|E0

(
sin(uT x̆s)σ̆

2
s − sin(uTxs)σ

2
s

)
|ds

+ C0u
r
T

∫ T

0
(|αs,T (u)|+ (|βs,T (u)|)ds.

(7.39)

We can decompose

sin(uT x̆s)ᾰs − sin(uTxs)αs = (sin(uT x̆s)− sin(uTxs))(ᾰs − αs)

+ (sin(uT x̆s)− sin(uTxs))(αs − α0)+

α0(sin(uT x̆s)− sin(uTxs)) + sin(uTxs)(ᾰs − αs).

(7.40)

We proceed with bounding the conditional expectations of each of the summands on the right-

hand-side of the above equality. Using Cauchy-Schwarz inequality as well as the results in (7.12)

and (7.16), we have

E0 |(sin(uT x̆s)− sin(uTxs))(ᾰs − αs)|

+ E0 |(sin(uT x̆s)− sin(uTxs))(αs − α0)| ≤ C0uTT
2, s ∈ [0, T ].

(7.41)

Further, since xs and ᾰs − αs are F0-conditionally independent, we have

E0[sin(uTxs)(ᾰs − αs)] = 0. (7.42)
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Altogether, we get

|E0[sin(uT x̆s)ᾰs − sin(uTxs)αs]| ≤ α0|βs,T (u)|+ C0uTT
2, s ∈ [0, T ]. (7.43)

We turn next to cos(uT x̆s)σ̆
2
s − cos(uTxs)σ

2
s. We have the following decomposition for s ∈ [0, T ]:

cos(uT x̆s)σ̆
2
s − cos(uTxs)σ

2
s = cos(uT x̆s)(σ

(1)
s − σ(1)

s )2

+ 2 cos(uT x̆s)(σ
(1)
s − σ(1)

s )(σ(1)
s − σ0)

+ 2σ0(cos(uT x̆s)− cos(uTxs))(σ
(1)
s − σ(1)

s )

+ 2σ0(cos(uTxs)− 1)(σ(1)
s − σ(1)

s ) + 2σ0(σ(1)
s − σ(1)

s )

+ σ2
0(cos(uT x̆s)− cos(uTxs)) + (cos(uT x̆s)− cos(uTxs))(σ

2
s − σ2

0).

(7.44)

We analyze the conditional expectations of each of the summands on the right-hand-side of the

above equality. Using Cauchy-Schwarz inequality and the bounds in (7.12), (7.13) and (7.15), we

have

|E0[cos(uT x̆s)(σ
(1)
s − σ(1)

s )2]|+ |E0[cos(uT x̆s)(σ
(1)
s − σ(1)

s )(σ(1)
s − σ0)]| ≤ C0T

3/2, (7.45)

|E0[(cos(uT x̆s)− cos(uTxs))(σ
(1)
s − σ(1)

s )]| ≤ C0uTT
5/2, (7.46)

|E0[(cos(uT x̆s)− cos(uTxs))(|σ(1)
s − σ0| ∨ |σ(1)

s − σ0|2)]| ≤ C0uTT
2, (7.47)

|E0[(cos(uT x̆s)− cos(uTxs))(|σ(2)
s | ∨ |σ(2)

s |2)]| ≤ C0uTT
2. (7.48)

Using the smoothness in expectation assumption for the process b in A2-r, we further have

|E0(σ(1)
s − σ(1)

s )| ≤ C0T
3/2. (7.49)

Next, using the bounds in (7.18), (7.19), (7.21), (7.23) and (7.26), we have

|E0[(cos(uTxs)− 1)(σ(1)
s − σ(1)

s − σ(1,r)
s )]| ≤ C0T

3/2| log(T )|, (7.50)

and applying Cauchy-Schwarz inequality, we have

|E0[(cos(uTxs)− cos(uT (σ0Ws + x(3)
s ))σ(1,r)

s )]| ≤ C0uTT
2. (7.51)

Finally, using successive conditioning, we have

E0[cos(uT (σ0Ws + x(3)
s ))σ(1,r)

s ] = 0. (7.52)

Combining the above results, we get altogether,

|E0(cos(uT x̆s)σ̆
2
s − cos(uTxs)σ

2
s)|

≤ σ2
0|αs,T (u)|+ C0(uTT

2 + T 3/2| log(T )|), s ∈ [0, T ].
(7.53)
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This result, together with (7.38) and (7.43), implies

|αT,T (u)| ≤ C0(uTT
2 + T 3/2| log(T )|) + C0(u2

T ∨ 1)

∫ T

0
(|αs,T (u)|+ |βs,T (u)|)ds. (7.54)

Exactly the same calculations as the ones above (and using (7.39)) yield

|βT,T (u)| ≤ C0(uTT
2 + T 3/2| log(T )|) + C0(u2

T ∨ 1)

∫ T

0
(|αs,T (u)|+ |βs,T (u)|)ds. (7.55)

We can apply Grownwall’s lemma, see e.g., Appendix 1 of Revuz and Yor (1999), for |αs,T (u)| +
|βs,T (u)|, when viewed as a function of s, to conclude

|αT,T (u)|+ |βT,T (u)| ≤ C0(U)(uTT
2 + T 3/2| log(T )|), (7.56)

for some F0-adapted random variable C0(U) that depends on U . �

Proof of Lemma 2. Using integration by parts and the independence of W and W̃ , we have∫ t

0
WsdWs =

1

2
(W 2

t − t),
∫ t

0
W̃sdWs = W̃tWt −

∫ t

0
WsdW̃s,

∫ t

0
W̃sds =

∫ t

0
(t− s)dW̃s, (7.57)

∫ t

0
(W 2

s − s)dWs =
W 3
t

3
− tWt,

∫ t

0
Wsds =

∫ t

0
(t− s)dWs, (7.58)

and ∫ t

0

∫ s

0

∫
R
δσ(0, z)µ(du, dz)dWs =

∫ t

0

∫
R

(Wt −Ws)δσ(0, z)µ(du, dz). (7.59)

Using Proposition 2.5 of Rajput and Rosinski (1989) and the independence of W and the Poisson

measure µ, we have

E
(
eiu

∫ t
0

∫
R((Wt−Ws)δσ(0,z)+δx(0,z))µ(ds,dz)

∣∣∣∣FW)
= exp

(∫ t

0

∫
R2

(eiux+iu(Wt−Ws)y − 1)ν0(dx, dy)

)
,

(7.60)

where FW denotes the sigma algebra generated by the Brownian motion W . Combining these

results and upon conditioning on FW , we get

E0

(
eiuT xT

)
= E0

[
exp

(
iuT

∫ T

0
(α0 + σα0Ws)ds+ iuT

∫ T

0
(σ0 + b0s)dWs

+
iuT
2
η0(W 2

T − T ) +
iuT
2
ση0

(
W 3
T

3
− TWT

)
−
u2
T

2
η̃2

0

∫ T

0
(WT −Ws)

2ds

−
u2
T

2

∫ T

0
((σ̃α0 )2(T − s)2 + 2σ̃α0 η̃0(T − s)(WT −Ws))ds

+

∫ T

0

∫
R2

(eiuT x+iuT (WT−Ws)y − 1)ν0(dx, dy)

)]
.

(7.61)
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Applying a second-order Taylor expansion and using the self-similarity of the Brownian motion and
integrability of power moments of its increments, we can further write

E0

(
eiuT xT

)
= eiuTα0T+Tφ0(uT )E0

(
eiuTσ

α
0

∫ T
0
Wsds+iuT

∫ T
0

(σ0+b0s)dWs+
iuT
2 η0(W 2

T−T )
)

+ eiuTα0T+Tφ0(uT )E0

[
eiuT

∫ T
0

(σ0+b0s)dWs+
iuT
2 η0(W 2

T−T )

×
(
− u2

T

2
η̃2

0

∫ T

0

(WT −Ws)
2ds+

iuT
2
ση0

(
W 3
T

3
− TWT

)
− u2

T σ̃
α
0 η̃0

∫ T

0

[(T − s)(WT −Ws)]ds

+

∫ T

0

∫
R2

(eiuT x+iuT (WT−Ws)y − eiuT x)ν0(dx, dy)

)]
+Olu

p

(
T 2
)
.

(7.62)

By another Taylor expansion and using the fact that jumps in price and volatility are of finite
variation, we can further simplify the above expression as follows:

E0

(
eiuT xT

)
= eiuTα0T+Tφ0(uT )E0

(
eiuTσ

α
0

∫ T
0
Wsds+iuT

∫ T
0

(σ0+b0s)dWs+
iuT
2 η0(W 2

T−T )
)

− E0

(
eiuTσ0WT

u2
T

2
η̃2

0

∫ T

0

(WT −Ws)
2ds

)

+ E0

(
eiuTσ0WT

∫ T

0

∫
R2

(eiuT x+iuT (WT−Ws)y − eiuT x)ν0(dx, dy)

)

+ E0

(
eiuTσ0WT

iuT
2
ση0

(
W 3
T

3
− TWT

))
+Olu

p

(
T 3/2

)
:=

4∑
j=1

A
(j)
T +Olu

p

(
T 3/2

)
.

(7.63)

We proceed with expanding the terms A
(1)
T , A

(2)
T , A

(3)
T and A

(4)
T .

Part I: Expansion of A
(1)
T . In what follows, it is convenient to use the shorthand notation

b̃t = bt + σαt and bt = σαt − bt. (7.64)

We can decompose

σα0

∫ T

0
Wsds+

∫ T

0
(σ0 + b0s)dWs

=

(
σ0 +

1

2
b̃0T

)
WT + b0

∫ T

0

(
T

2
− s
)
dWs,

(7.65)

and by direct calculation we have

E0

[
WT

∫ T

0

(
T

2
− s
)
dWs

]
=

∫ T

0

(
T

2
− s
)
ds = 0. (7.66)

This, combined with the fact that the pair
(
WT ,

∫ T
0

(
T
2 − s

)
dWs

)
is jointly normally distributed,

implies that WT is independent from
∫ T

0

(
T
2 − s

)
dWs. Therefore, we can write

A
(1)
T = eiuTα0T+Tφ0(uT )E0

(
eiuT (σ0+ 1

2
b̃0T )WT+

iuT
2
η0(W 2

T−T )
)

× E0

(
eiuT b0

∫ T
0 (T2 −s)dWs

)
.

(7.67)
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By direct calculation:

E0

(
eiuT b0

∫ T
0 (T2 −s)dWs

)
= e−

u2T b
2
0

2

∫ T
0 (T2 −s)

2
ds = 1 +Olu

p (T 2), (7.68)

and therefore

A
(1)
T = eiuTα0T+Tφ0(uT )E0

(
eiuT (σ0+ 1

2
b̃0T )WT+

iuT
2
η0(W 2

T−T )
)

+Olu
p (T 2). (7.69)

To proceed further, we use the fact that if Z ∼ N(µ, σ2), then by using
∫
R e
−z2/2dz =

√
2π, the

characteristic function of Z2 can be shown to be equal to

E(eiuZ
2
) = exp

(
iuµ2

1− 2iuσ2

)
1√

1− 2iuσ2
. (7.70)

Using this result, we have

E0

(
eiuT ((σ0+ 1

2
b̃0T )WT+

η0
2
W 2
T )
)

= E0

eiuT η02 (WT+
σ0+b̃0T/2

η0

)2

−iuT
η0
2

(σ0+b̃0T/2)
2

η20


=

1√
1− iuT η0T

exp

(
−iuT

(σ0 + b̃0T/2)2

2η0

(
1− 1

1− iuT η0T

))

=
1√

1− iuT η0T
exp

(
−
u2
TT

2

(σ0 + b̃0T/2)2

1− iuT η0T

)
.

(7.71)

By successive Taylor expansion, we can decompose

exp

(
−u

2
TT

2

(σ0 + b̃0T/2)2

1− iuT η0T

)
= exp

(
−u

2
TT

2

σ2
0 + b̃0σ0T

1 + u2
T η

2
0T

2
(1 + iuT η0T )

)
+Olu

p (T 2)

= exp

(
−u

2
TT

2

σ2
0 + b̃0σ0T

1 + u2
T η

2
0T

2
− iu

3
TT

2

2

σ2
0η0

1 + u2
T η

2
0T

2

)
+Olu

p (T 3/2)

= exp

(
−u

2
TTσ

2
0

2
− iu

3
TT

2

2

σ2
0η0

1 + u2
T η

2
0T

2

)(
1− u2

TT
2

2
b̃0σ0 +

u4
TT

3

2
σ2

0η
2
0

)
+Olu

p (T 3/2).

(7.72)

To continue further, we note that since the function arcsin is continuously differentiable in a neigh-

borhood of zero,

arcsin

 uT η0T√
1 + u2

T η
2
0T

2

− arcsin (uT η0T ) = Olu
p (T 3/2), (7.73)

and further using the algebraic inequality | sin(x)− x| ≤ |x|3 and the fact that the function arcsin

has a positive bounded first derivative in a neighborhood of zero:

arcsin (uT η0T )− uT η0T = Olu
p (T 3/2). (7.74)
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Using these inequalities and a Taylor expansion for the function (1 + x)−1/4, we have

1√
1− iuT η0T

=
1

(1 + u2
T η

2
0T

2)1/4
e
iuT Tη0

2 +Olu
p (T 3/2)

=

(
1−

u2
TT

2

4
η2

0

)
e
iuT Tη0

2 +Olu
p (T 3/2).

(7.75)

Combining the above results, we get altogether

A
(1)
T = exp

(
iuTα0T + Tφ0(uT )−

u2
TTσ

2
0

2
− i

u3
TT

2

2

σ2
0η0

1 + u2
T η

2
0T

2

)
×
(

1−
u2
TT

2

2
b̃0σ0 +

u4
TT

3

2
σ2

0η
2
0 −

u2
TT

2

4
η2

0

)
+Olu

p (T 3/2).

(7.76)

Part II: Expansion of A
(2)
T . Using successive conditioning and the fact that E(Z2eiuZ) = e−u

2σ2/2(σ2−
u2σ4) for Z ∼ N(0, σ2), we have

E0

(∫ T

0
eiuT σ0(WT−Ws)(WT −Ws)

2eiuT σ0Wsds

)
= E0

(∫ T

0
e−

u2T
2
σ2
0(T−s)(T − s)(1− u2

Tσ
2
0(T − s))eiuT σ0Wsds

)
=

∫ T

0
e−

u2T
2
σ2
0(T−s)(T − s)(1− u2

Tσ
2
0(T − s))e−

u2T
2
σ2
0sds.

(7.77)

From here,

A
(2)
T = −

u2
T

2
η̃2

0

(
1

2
e−

u2T
2
σ2
0TT 2 − 1

3
e−

u2T
2
σ2
0Tu2

Tσ
2
0T

3

)
. (7.78)

Part III: Expansion of A
(3)
T . By exchanging the order of integration and expectation (as the

integrand is always nonnegative), we have

A
(3)
T =

∫ T

0

∫
R2

E0

(
eiuT σ0WT

(
eiuT x+iuT (WT−Ws)y − eiuT x

))
ν0(dx, dy)ds

=

∫ T

0

∫
R2

eiuT x
(
e−

u2T
2
σ2
0s−

1
2

(uT σ0+uT y)2(T−s) − e−
u2T
2
σ2
0T

)
ν0(dx, dy)ds

= e−
u2T
2
σ2
0T

∫ T

0

∫
R2

eiuT x
(
e−u

2
T yσ0(T−s)−u

2
T
2
y2(T−s) − 1

)
ν0(dx, dy)ds.

(7.79)

From here, by a change of variable, we have

A
(3)
T = Te−

u2σ20
2

∫ 1

0

∫
R2

(
eiuT x

(
e−u

2yσ0s−u
2

2
y2s − 1

))
ν0(dx, dy)ds. (7.80)
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Part IV: Expansion of A
(4)
T . Using

E(ZeiuZ) = iuσ2e−
u2

2
σ2
, E(Z3eiuZ) = ie−

u2

2
σ2

(3uσ4 − u3σ6), Z ∼ N(0, σ2), (7.81)

we have

A
(4)
T =

1

6
u4
TT

3ση0σ
3
0e
−u

2
T Tσ

2
0

2 . (7.82)

Combining the expansion in (7.63) along with the ones in (7.76), (7.78), (7.80) and (7.82), we get

the result in (7.2) to be proved. �

7.2 Proof of Theorem 2

We will make use of the following lemma in the proof:

Lemma 3 Assume A3 holds. There exists F (0)
0 -adapted random variables C0 and t > 0 that do

not depend on T such that for T < t, we have

OT (k) ≤ C0

(
Te3k1{k<−1} + Te−k1{k>1} +

(√
T ∧ T

|k|

)
1{|k|<1}

)
, (7.83)

|OT (k1)−OT (k2)| ≤ C0

[
T

k4
2

∧ T

k2
2

∧
1

]
|ek1 − ek2 |, (7.84)

where k1 < k2 < 0 or k1 > k2 > 0. In addition, for |k| ≤
√
T | log(T )|:∣∣∣∣OT (k)−

√
Tσ0f

(
k√
Tσ0

)
− |k|Φ

(
− k√

Tσ0

)∣∣∣∣ ≤ C0T log2(T ). (7.85)

The first two results of the lemma follow from Lemma 1 of Todorov (2019) and the last one

from Lemma 2 of Todorov (2019). Using this lemma as well as the representation LT (u) = 1 −(
u2

T + i u√
T

) ∫
R e

(iu/
√
T−1)kOT (k)dk, we can decompose

L̂Tl(u)− LTl(u) = ẐTl(u) +Olup

(
∆√
Tl

∧
e−2(|k|∨|k|)

)
, l = 1, 2, (7.86)

where we denote

ẐTl(u) = −
(
u2

Tl
+ i

u√
Tl

) Nl∑
j=2

e(iu/
√
Tl−1)kl,j−1εTl(kl,j−1)∆l,j , l = 1, 2. (7.87)

Application again of Lemma 3, and the assumption for the observation error, yields for fixed u:

=(ẐTl(u)) = −u
2

Tl

Nl∑
j=2

sin

(
u√
Tl
kl,j−1

)
e−kl,j−1εTl(kl,j−1)∆l,j

+OP

(√
∆
)
, l = 1, 2,

(7.88)
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<(ẐTl(u)) = −u
2

Tl

Nl∑
j=2

cos

(
u√
Tl
kl,j−1

)
e−kl,j−1εTl(kl,j−1)∆l,j

+OP

(√
∆
)
, l = 1, 2.

(7.89)

Therefore, we will be done with establishing (4.15) if we can show

T
1/4
l√
∆

(
=(ẐTl(u))

<(ẐTl(u))

)
L|F(0)

−−−−→
(
Zl,I(u)
Zl,R(u)

)
, l = 1, 2, (7.90)

where (Zl,l(u) Zl,R(u)) is the limiting process in the statement of the theorem. The finite-dimensional

convergence follows by the same arguments as in the proof of Theorem 3 in Todorov (2019). For

showing local uniformity, we can use the following bounds

E


 Nl∑
j=2

(
sin

(
u√
Tl
kl,j−1

)
− sin

(
v√
Tl
kl,j−1

))
e−kl,j−1εTl(kl,j−1)∆l,j

4 ∣∣∣∣F (0)


≤ C0|u− v|1+ιT

3/2
l ∆, l = 1, 2,

(7.91)

E


 Nl∑
j=2

(
cos

(
u√
Tl
kl,j−1

)
− cos

(
v√
Tl
kl,j−1

))
e−kl,j−1εTl(kl,j−1)∆l,j

4 ∣∣∣∣F (0)


≤ C0|u− v|1+ιT

3/2
l ∆, l = 1, 2,

(7.92)

for some arbitrary small ι > 0, and a criterion for tightness given in Theorem 12.3 of Billingsley

(1968). The above two bounds follow from A3 and A4 and an application of Lemma 3. More specif-

ically, we make use of the fact that if {ζi}i=1,...,N is a sequence of independent random variables,

then E
(∑N

i=1 ζi

)4
≤
(∑N

i=1 E(ζ2
i )
)2

+
∑N

i=1 E(ζ4
i ).

We are thus left with showing (4.19). First, using the first two bounds of Lemma 3 as well as

assumptions A3 and A4 and similarly to the way of establishing tightness above, we have

Σ̂Tl(u, v)− E
(

Σ̂Tl(u, v)
∣∣F (0)

)
= op

(
∆√
Tl

)
, l = 1, 2, (7.93)

locally uniformly in u and v. Using Lemma 3 as well as assumptions A3 and A4, we can also show

√
Tl

∆
E
(

Σ̂Tl(u, v)
∣∣F (0)

)
P−→ Σl(u, v), l = 1, 2, (7.94)

locally uniformly in u and v. Combining the above two bounds, we get (4.19).
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7.3 Proof of Theorem 3

7.3.1 Case without jumps

We denote xT (η) = aT + σWT + 1
2ηW

2
T −

η
2T , for some constants a and σ > 0, and for some

η > 0. The OTM option price with log-strike k corresponding to terminal log-price of xT (η) will be

denoted with OT (k; η). In the proof, we denote with C(η) and c(η) continuous functions of η, and

with C(η1, η2) a continuous function of η1 and η2. We also use the notation an & bn and an . bn to

mean the respective inequality up to a constant independent of the parameter n, for two sequences

an and bn.

The idea of the proof is to perturb locally η and then derive the order of magnitude of the

Kullback-Leibler divergence of the resulting two probability distributions of the observed option

prices. Applying Theorem 2.2 and the bound in (2.9) (see also (2.5)) in Tsybakov (2009), we then

have

inf
η̂

sup
T ∈G(R)

ET

(
T 3/2

√
log(1/T )

∆
|η̂ − η|2

)
≥ V (ϕ), (7.95)

where ϕ is an upper bound on the Kullback-Leibler divergence of two probability distributions in

G(R) with leverage parameters η1 and η2 such that |η1 − η2| =
√

∆
T 3/4 log(1/T )1/4

, and V (ϕ) is some

strictly positive function of ϕ.

The KL divergence between the probability measures for the observed noisy option prices,

corresponding to T with η1 and η2 and the same a and σ, both of which belong to G(R), is given

by

KL(η1, η2) =

N∑
i=1

(OT (ki; η1)−OT (ki; η2))2

2(OT (ki; η2) ∨ T )2

+
1

2

N∑
i=1

((
OT (ki; η1) ∨ T
OT (ki; η2) ∨ T

)2

− 1− log

(
OT (ki; η1) ∨ T
OT (ki; η2) ∨ T

)2
)
,

(7.96)

Part I: Preliminary Estimates. We start with establishing some preliminary bounds for OT (k; η)

and the difference OT (k; η2)−OT (k; η1). First, for T sufficiently small (depending on the value of

η) and using the tail behavior of a Gaussian random variable, we have

OT (k; η) ≤ C(η)T p, for k < −T 1/2−ι, (7.97)

for some arbitrary big p > 0 and some arbitrary small ι > 0.

Next, using integration by parts, we have:

OT (k; η) =

∫ k

−∞
euQ0 (xT (η) < u) du, k ≤ 0. (7.98)
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Note further that we can write

OT (k1; η) =

∫ k1

k2

euQ0 (xT (η) < u) du+OT (k2; η), for k2 ≤ k1 ≤ 0. (7.99)

Therefore, by taking into account the bound in (7.97), we have∣∣∣∣OT (k; η)−
∫ k

−T 1/2−ι
euQ0 (xT (η) < u) du

∣∣∣∣ ≤ C(η)T 2, for k ∈ [−T 1/2−ι, 0]. (7.100)

Next, by denoting Z = WT /
√
T , we have that xT (η) < u is equivalent to(
Z +

σ

η
√
T

)2

<
2u

ηT
+

σ2

η2T
+

(
1− 2a

η

)
. (7.101)

Now, using Taylor expansion for the function
√

1 + x around x = 0, we have for |u| ≤ T 1/2−ι and

T sufficiently small (so that x in the function that is Taylor expanded is less than a half) which

depends on the value of η:

− σ

η
√
T
− ζ(u, T ; η)− T 2−ιC(η) < Z +

σ

η
√
T
<

σ

η
√
T

+ ζ(u, T ; η) + T 2−ιC(η), (7.102)

where

ζ(u, T ; η) =
u

σ
√
T

+ ζ̃(u, T ; η), (7.103)

and

ζ̃(u, T ; η) =

(
1− 2a

η

) √
Tη

2σ
− 1

8

σ

η
√
T

(
2uη

σ2
+

(
1− 2a

η

)
η2T

σ2

)2

+
1

16

σ

η
√
T

(
2uη

σ2
+

(
1− 2a

η

)
η2T

σ2

)3

− 5

128

σ

η
√
T

(
2uη

σ2
+

(
1− 2a

η

)
η2T

σ2

)4

.

(7.104)

Therefore, using the fact that |Φ(x)−Φ(y)| ≤ |x− y|/
√

2π, we have for T sufficiently small and for

k ∈ [−T 1/2−ι, 0]: ∣∣∣∣OT (k; η)−
∫ k

−T 1/2−ι
euΦ (ζ(u, T ; η)) du

∣∣∣∣ ≤ C(η)T 2−ι. (7.105)

Using first-order Taylor expansion for Φ(x), and for T sufficiently small such that |ζ̃(u, T ; η)| ≤
T 1/2−3ι, we have for k ∈ [−T 1/2−ι, 0]:∣∣∣∣OT (k; η)−

∫ k

−∞
euΦ

(
u

σ
√
T

)
du

∣∣∣∣
≤ C(η)T 2−ι + C(η)

∫ k

−∞
euf

(
u

σ
√
T

+ T 1/2−3ι

)
|ζ̃(u, T ; η)|du.

(7.106)
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Next, for p a nonnegative integer, we have∫ k

−∞
f(u)|u|pdu ∼ f(k)|k|p−1,

∫ k

−∞
Φ(u)du ∼ f(k)|k|−2,∫ k

−∞
|u|Φ(u)du ∼ f(k)|k|−1, as k ↓ −∞,

(7.107)

and therefore since f(k) and Φ(k) are continuous and bounded functions taking positive values, we

have

cf(k)(|k| ∨ 1)p−1 ≤
∫ k

−∞
f(u)|u|pdu ≤ Cf(k)(|k| ∨ 1)p−1, for k ≤ 0,

cf(k)(|k| ∨ 1)−2 ≤
∫ k

−∞
Φ(u)du ≤ Cf(k)(|k| ∨ 1)−2, for k ≤ 0,

cf(k)(|k| ∨ 1)−1 ≤
∫ k

−∞
|u|Φ(u)du ≤ Cf(k)(|k| ∨ 1)−1, for k ≤ 0,

(7.108)

for some 0 < c < C <∞ that depend on the value of the nonnegative integer p. Therefore, provided

ι is sufficiently small, we have for sufficiently small T , we have

k ∈ [−T 1/2−ι, 0] =⇒
∣∣∣∣∫ k

−∞
f

(
u

σ
√
T

+ T 1/2−3ι

)
|ζ̃(u, T ; η)|du

/∫ k

−∞
Φ

(
u

σ
√
T

)
du

∣∣∣∣ ≤ ε, (7.109)

k ∈ [−T 1/2−ι, 0] =⇒
∣∣∣∣∫ k

−∞
(1− eu)Φ

(
u

σ
√
T

)
du

/∫ k

−∞
Φ

(
u

σ
√
T

)
du

∣∣∣∣ ≤ ε, (7.110)

for some arbitrary small ε > 0. Altogether, we can write∣∣∣∣OT (k; η)−
∫ k

−∞
euΦ

(
u

σ
√
T

)
du

∣∣∣∣ ≤ C(η)T 2−ι +
1

2

∫ k

−∞
euΦ

(
u

σ
√
T

)
du, (7.111)

for k ∈ [−T 1/2−ι, 0] and provided T is sufficiently small. Next, we can use a second-order Taylor

expansion and write

|Φ(u2)− Φ(u1)− f(u1)(u2 − u1)| ≤ 1

2
f(|u1| ∧ |u2|)(|u1| ∨ |u2|)(u2 − u1)2, (7.112)

for u1, u2 < 0. Using this result as well as (7.105), we have for T sufficiently small and for

k ∈ [T 1/2−ι, 0]:∣∣∣∣∣OT (k; η2)−OT (k; η1)−
∫ k

−T 1/2−ι
euf (ζ(u, T ; η1)) (ζ(u, T ; η2)− ζ(u, T ; η1))du

∣∣∣∣∣
≤ C(η1, η2)T 2−ι + C(η1, η2)|η2 − η1|2T 1−4ι

∫ k

−∞
f

(
u

σ
√
T

+ T 1/2−3ι

)
du,

(7.113)
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for two positive η1 and η2 with |η2 − η1| ≤ 1. Next, for T sufficiently small and η1 and η2 with
|η2 − η1| ≤ 1, we have∣∣∣∣∣

∫ k

−T 1/2−ι
euf (ζ(u, T ; η1)) (ζ(u, T ; η2)− ζ(u, T ; η1))du

∣∣∣∣∣
≤ C(η1, η2)|η2 − η1|

∫ k

−T 1/2−ι
f

(
u

σ
√
T

+ T 1/2−3ι

)(√
T +

u2

√
T

)
du

+ C(η1, η2)|η2 − η1|
∫ k

−T 1/2−ι
f

(
u

σ
√
T

+ T 1/2−3ι

)(
|u|
√
T +

|u|3√
T

)
du,

(7.114)

for k ∈ [T 1/2−ι, 0]. To proceed further, we make use of∫ k

−∞
u2f(u)du ∼ f(k)|k|,

∫ k

−∞
|u|f(u)du ∼ f(k), Φ(k) ∼ f(k)/|k|, (7.115)

as k ↓ −∞. Moreover, all of the above integrals are smooth and bounded functions. This implies∫ k

−∞
u2f(u)du+

∫ k

−∞
|u|f(u)du+ Φ(k) ≤ Cf(k)(|k| ∨ 1), k ≤ 0, (7.116)

for some constant that does not depend on k. Therefore, for k ∈ [−T 1/2−ι, 0] and |η2 − η1| ≤ 1, we

can write

|OT (k; η2)−OT (k; η1)|

≤ C(η1, η2)T 2−ι + C(η1, η2)T |η2 − η1|f
(

k√
Tσ

+ T 1/2−3ι

)(
|k|√
T

∨
1

)
+ C(η1, η2)T 3/2−2ι|η2 − η1|f

(
k√
Tσ

+ T 1/2−3ι

)(
|k|√
T

∨
1

)
.

(7.117)

Part II: Bounding the KL distance. Analogous bounds to the ones in (7.97), (7.111) and (7.117)

can be shown in exactly the same way as above for k ≥ 0. We also note that
∫ k
−∞ e

uΦ
(

u
σ
√
T

)
du

corresponds to an option price for terminal log-price of xT (0), i.e., with η = 0 (and with a = 0 in

addition). Therefore, we can proceed exactly as in the proof of Theorem 5 of Todorov (2019), and

conclude

KL(η1, η2) .
N∑
i=1

(OT (ki; η1)−OT (ki; η2))2

O2
T (ki; η2) ∨ T 2

. (7.118)

Now, using (7.97) above, we have∑
i:ki<−T 1/2−ι

(OT (k; η2)−OT (k; η1))2

O2
T (k; η2) ∨ T 2

≤ C(η1, η2)
T p

∆
, (7.119)

for some arbitrary big p > 0. Next, exactly as in the proof of Theorem 5 of Todorov (2019) and
given our bound in (7.111), we have for T sufficiently small,

k < −
√

2Tσ

√
log(1/

√
T ) =⇒ OT (k; η2) ∨ T = T, (7.120)
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and

k ≥ −
√

2Tσ

√
log(1/

√
T ) =⇒ OT (k; η2) ≥ C(η2)

√
Tf

(
k√
Tσ

)(
|k|√
T

∨
1

)−2

, (7.121)

for some positive C(η2). Therefore, for T sufficiently small and ι sufficiently small and upon using
(7.117), we have

∑
i:−T 1/2−ι≤ki≤−

√
2Tσ
√

log(1/
√
T )

(OT (ki; η1)−OT (ki; η2))2

O2
T (ki; η2) ∨ T 2

.
T 5/2−3ι

∆
+ |η2 − η1|2

∑
i:−T 1/2−ι≤ki≤−

√
2Tσ
√

log(1/
√
T )

f2

(
ki√
Tσ

+ T 1/2−3ι

)
k2
i

T

.
T 5/2−3ι

∆
+

√
T

∆
|η2 − η1|2

∫ −√2σ
√

log(1/
√
T )

−T−ι−∆

f2

(
k

σ
+ T 1/2−3ι

)
k2dk

.
T 5/2−3ι

∆
+
T 3/2

∆

√
log(1/T )|η2 − η1|2,

(7.122)

where for the second inequality we made use of the fact that f(k)|k| is decreasing for |k| ≥ 1. Next,
using the lower bound for OT (k; η) in (7.121) as well as the bound in (7.117), we have

∑
i:−
√

2Tσ
√

log(1/
√
T )≤ki≤0

(OT (ki; η1)−OT (ki; η2))2

O2
T (ki; η2) ∨ T 2

.
T 5/2−2ι

∆
log(1/T )

+ T |η2 − η1|2
∑

i:−
√

2Tσ
√

log(1/
√
T )≤ki≤0

(
|ki|√
T

∨
1

)6

.
T 5/2−3ι

∆
+ |η2 − η1|2

T 3/2(log(1/T ))7/2

∆
.

(7.123)

The same bounds hold also when summing over k positive, and therefore altogether, we have

KL(η1, η2) .
T 5/2−3ι

∆
+ |η2 − η1|2

T 3/2

∆
(log(1/T ))7/2. (7.124)

Evaluating the above bound with η2−η1 =
√

∆
T 3/4(log(1/T ))7/4

(and making use of the fact that α < 5/2

by assumption), we get the result of the theorem.

7.3.2 Case with jumps

Denoting with OcT (k; η) the option price corresponding to terminal payoff of xT −JxT and using the

fact that Jxt is compound Poisson with unit intensity and deterministic jump size of J , we have for

k ≤ 0

OT (k; η) = e−TOcT (k; η) +OrT (k; η)

+ Te−T eJ
{
OcT (k − J ; η)1{k≤J} + (OcT (k − J ; η)− 1 + ek−J)1{k>J}

}
,

(7.125)
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for some non-negative OrT (k; η) satisfying

|OrT (k; η)| ≤ C(η)T 2. (7.126)

Similar result holds also for the case k > 0. From here, bounding the KL distance follows similar

steps as in the case of no jumps in x.
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