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Abstract

We propose a nonparametric estimator for the deterministic periodic component of volatility
from short-dated options within an in-fill asymptotic setting. The estimator uses options with
zero and one day to expiration sampled at high-frequency during a trading day. At each point
in time, we aggregate the options to form nonparametric estimates of conditional risk-neutral
expectations of future integrated return variation for the two available option tenors. A suitable
ratio of these estimates removes the stochastic components of the conditional expectations of
future volatility, up to asymptotically higher-order terms, and allows to form estimates of the
deterministic periodic component of volatility. We derive a Central Limit Theorem for the
estimator, with its rate of convergence determined from the mesh of the strike grid and the
length of the time to expiration of the options. The newly-developed estimation procedure is
applied to S&P 500 index options data.
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1 Introduction

A well-recognized and important feature of the volatility of most financial assets is its strong

intraday periodic pattern, see e.g., Wood et al. (1985), Harris (1986), Admati and Pfleiderer (1988),

Andersen and Bollerslev (1997, 1998) and Hong and Wang (2000), with volatility being much higher

on average following market open and prior to market close than during the middle of the trading

day. This intraday pattern of stochastic volatility is too large to be ignored and can have nontrivial

effect on many estimation problems that involve the use of high-frequency data. For example, the

nonparametric detection of jumps depends strongly on a good local estimator of volatility, which

in turn depends on accounting for the intraday volatility pattern, see e.g., Boudt et al. (2011).

Earlier work has used both parametric and nonparametric methods for estimating the intraday

periodic volatility component, see e.g., Andersen and Bollerslev (1997), Taylor and Xu (1997) and

Boudt et al. (2011), among others. The nonparametric method, in particular, consists of forming

local estimators of volatility during the day and then averaging the time series of these estimates.

This estimation approach relies on a joint in-fill and long-span asymptotics.1 Intuitively, the high-

frequency data is needed for recovering nonparametrically volatility from stock returns while a

long time span of the data set is needed in order to disentangle the stochastic (and stationary)

component of volatility from the intraday periodic one. However, in a recent work, Andersen et al.

(2019) show using a nonparametric test that the periodic component of volatility can change over

time and Andersen et al. (2023) estimate its average value.

Given this evidence, the goal of this paper is to develop a nonparametric method for identifying

the intraday periodic component of volatility without making use of long-span asymptotics. Such a

method will avoid the need to use long time series of data and avoid either making an assumption

that the intraday periodic component remains constant over time or modeling this time series

variation via a parametric model.

Our method is based on short-dated options written on the asset, i.e., options that have short

time to expiration and asymptotic expansions for risk-neutral variance measures constructed from

them. As documented in Andersen et al. (2017), short-dated options have increased in popularity

among investors over the last decade. Trading in such options has been facilitated by the intro-

duction of the so-called weekly options which have weekly expiration cycle. For example, many

stocks and indices have options, traded on the CBOE options exchange, that expire every Friday.

Moreover, for options written on the S&P 500 index, starting from around the middle of 2022,

1One special situation in which long-span asymptotics will not be needed is if the stochastic component of volatility
remains constant during the trading day, see Christensen et al. (2018).
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CBOE offers options expiring on every day of the trading week. In Figure 1, we show the percent-

age of daily volume of S&P 500 index options traded on CBOE grouped by time to expiration. We

consider only days on which options that expire on the same day (left plot) or on the following

trading day (right plot) are available. As seen from the figure, a rather nontrivial percent of the

total volume of traded S&P 500 index options is for ones with zero or one day tenor. These are

the options that we are going to use in our analysis.
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Figure 1: S&P 500 Index Options Volume for 0-Day (left) and 1-Day (right) Tenor. The
left/right plot corresponds to days with options expiring on the same/next day.

Our estimator is built from measures of conditional risk-neutral expectations of future return

variation for two short horizons measured at high-frequency during a trading day. These mea-

sures are constructed from portfolios of options with zero- and one-day tenor. Using short-time

asymptotics, i.e., asymptotics for shrinking tenor of the options, we can proceed as if the stochas-

tic components of volatility and jump intensity remain constant over the life of the options and

equal to their value at the time of observing the option prices. Thus, the ratio of the risk-neutral

volatility estimates over the two horizons, up to higher-order bias terms, does not depend on the

stochastic components of volatility and jump intensity. Instead, its asymptotic limit is determined

by functions of the deterministic periodic component of volatility we are after. By comparing such

ratios at different parts of the trading day, we can estimate the intraday periodicity in volatility.

Importantly, such estimators require that the periodic component of volatility is constant only over

the short life of the options. This is in sharp contrast to return-based nonparametric estimates of
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these quantities that require that the periodic component of volatility remains constant throughout

time.

We derive the rate of convergence of our estimator and provide an associated Central Limit

Theorem (CLT). The asymptotic setup is of joint type: the mesh of the strike grids and the tenors

of the options shrink simultaneously with the increase of the strike ranges of the options, which

asymptotically converge to cover the whole positive part of the real line. The rate of convergence

of the estimator is determined by both the mesh of the two strike grids as well as by the length

of the two tenors. Its limiting behavior is governed by the options with strikes near the current

underlying spot price, which in turn are dominated by the diffusive component of the spot price.

We evaluate the performance of our estimator on simulated data from a model that matches

key empirical features of real option data. Our Monte Carlo results show that the accuracy of

the estimator depends strongly on the time of the trading day. In particular, the precision of the

estimation is lower for estimating the value of the periodic function at the earlier part of the trading

day because the signal to noise ratio is weaker at that time. Relative to a standard return-based

estimator of the intraday volatility pattern, the option-based one (constructed over the same time

window as the return-based one) offers nontrivial efficiency gains, particularly towards the end

of the trading day. Moreover, since option- and return-based estimates of the intraday volatility

pattern are asymptotically uncorrelated, one can combine the two estimates to increase further

precision.

We apply our estimation procedure to S&P 500 index options over the period 2018-2020. We

use intraday option observations on Fridays with expiration on the same day and on the following

trading day (typically Monday). We estimate the intraday volatility pattern on a yearly basis. Our

results reveal variation in the ratio of volatility at the beginning and at the end of the trading day

over the sample period.

The rest of the paper is organized as follows. In Section 2, we introduce our setting and the

option observation scheme. In Section 3, we present our option-based estimate of the intraday

periodic component of volatility and analyze its asymptotic properties. Section 4 contains a Monte

Carlo study and Section 5 our empirical application. Section 6 concludes. Additional estimation

results as well as the technical assumptions and the proofs are given in Section 7.

2 Setting and Option Observation Scheme

The asset price process is denoted with X and the logarithm of it with x. The price process is

defined on the sample space Ω, with the associated σ-algebra F , and (Ft)t∈R+ being the filtration.
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We will consider two probability measures, one being the true (statistical) one, denoted with P, and

the other one being the risk-neutral one, denoted with Q. The latter, under the weak condition of

arbitrage-free asset prices, is locally equivalent to the true one. The significance of Q stems from

the fact that the payoff process of any asset, discounted at the risk-free rate, is a local martingale

under Q. We will use this result to connect the value of derivatives written on the asset with its

volatility. More specifically, the dynamics of x under Q is given by

dxt = αtdt+
√
ηt/κ−⌊t/κ⌋σtdWt +

∫
R
xµ(dt, dx), (1)

where W is a Q Brownian motion and µ is an integer-valued random measure on R+ × R with Q

jump compensator dt⊗ηt/κ−⌊t/κ⌋νt(dx), for some predictable measure νt satisfying
∫
R |x|νt(dx) <∞.

Finally, η : [0, 1] → R+ is a deterministic function capturing the intraday periodicity in volatility.

The length of the periodic cycle is an interval from market close on one day till market close on

the next trading day (one business day). The length of that period is denoted with κ. Our interest

in this paper is the study of the function η from short-dated option observations.

We note that local equivalence of P and Q implies that x obeys the same dynamics under P

but with a different drift coefficient αP
t and a different jump compensator measure νPt (dx). The

diffusion coefficient σt is the same under the two probability measures. Importantly, since ηt is

deterministic function, it does not change when switching from Q to P.

Remark 1. In the specification in (1), we assumed that the periodic component of the diffusive

variance is the same as that of the jump intensity. This seems a natural assumption and it is

implicitly imposed by earlier studies that do not separate diffusive variance from jumps. If however,

one is interested only in the periodic component of diffusive variance, without making assumptions

about the periodicity of jumps, then the analysis that follows should be modified by making use of

jump-robust estimates of volatility from options data like the ones proposed in Todorov (2019). We

present such results in Section 7.1. They provide support for the above assumption that equates the

periodicity in diffusive variance with that in the jump intensity.

We turn next to our option observation scheme. We denote with Ot,T (K) the price at time t

of a European-style out-of-the-money option price written on the asset and expiring at time t+ T .

We recall that Ot,T (K) is the minimum of the put and call option prices with strike K. The option

prices corresponding to the pair (t, T ) are observed on the following discrete strike grid:

Kt,T (1) < ... < Kt,T (Nt,T ), Nt,T ∈ N+. (2)

Option prices are observed with error, i.e., we observe

Ôt,T (Kt,T (j)) = Ot,T (Kt,T (j)) + ϵt,T (j), (3)
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where the errors ϵt,T (j) are defined on a space Ω(1) = RR ×RR which is equipped with the product

Borel σ-field F (1), and transition probability P(1)(ω(0), dω(1)) from the probability space Ω(0), on

which X is defined, to Ω(1). We further define,

Ω = Ω(0) × Ω(1), F = F (0) ×F (1),

and

P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)) .

We assume that we observe the options on the following equidistant time grid:

t0 = 0 < t1 < t2 < ... < tn =
(⌊ κ

∆

⌋
− 3
)
∆, (4)

with ti− ti−1 = ∆, for some 0 < ∆ < κ. This corresponds to intraday sampling of option prices like

in our application. At each sampling time ti, we will have observations of options with two tenors,

T 0
i and T 1

i . The shorter tenor will be T 0
i = κ − ti and the longer one will be T 1

i = T 0
i + κ. That

is, the shorter tenor will correspond to zero-day options expiring on the same trading day and the

longer tenor to options expiring on the next trading day.

To simplify notation, we will use the following shorthand notation henceforth: Ni,l = Nti,T l
i
,

Ki,l(j) = Kti,T l
i
(j), ϵi,l(j) = ϵti,T l

i
(j) and Ôi,l(j) = Ôti,T l

i
(Kti,T l

i
(j)), for l = 0, 1 and j = 1, ..., Nti,T l

i
.

Remark 2. In the specification of x in (1), η is assumed to be a deterministic function. However,

as will become clear from the analysis below, we only need that η is F0-adapted for the estimator

that we propose. For notational simplicity, we will present our results for η deterministic.

3 Estimation of the Periodic Component of Volatility

Our strategy for recovering the periodic component of volatility is to form measures of conditional

risk-neutral expectation of future return variation over the two tenors of the available options.

These conditional expectations will depend both on the periodic (and deterministic) volatility

component as well as on its stochastic component. By taking advantage of the two tenors and

the fact that they are both short, we can suitably cancel out the stochastic components of the

conditional expectations of future return variation and identify the periodic volatility component.

We now provide the details about our estimation strategy. Using the formula for computing

the VIX index, see e.g., Britten-Jones and Neuberger (2000) and Carr and Wu (2009), we have

QVt,T ≡ EQ
t

(∫ t+T

t
ηs/κ−⌊s/κ⌋

(
σ2s + 2

∫
R
(ex − 1− x)νs(dx)

)
ds

)
= 2

∫ ∞

0

Ot,T (K)

K2
dK. (5)
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We note that the integral in QVt,T is not exactly the quadratic variation of the log-price, with the

deviation from the latter being due to the price jumps. This difference, however, will play no role

in our analysis henceforth.

Using the available options, a Riemann sum approximation of the integral in (5) leads to the

following feasible counterpart of the risk-neutral conditional expectation of the quadratic variation:

Q̂V t,T = 2

Nt,T∑
j=2

Ôt,T (Kt,T (j − 1))

K2
t,T (j − 1)

(Kt,T (j)−Kt,T (j − 1)). (6)

With the help of Q̂V t,T , we can construct estimates of the function η.2 Recall that we have

observations of options at the discrete times ti, for i = 0, 1, ..., n. Then, we set

Q̂V
(0)

ϕ = Q̂V ti,T 0
i
and Q̂V

(1)

ϕ = Q̂V ti,T 1
i
, for i =

⌊
ϕκ

∆

⌋
and ϕ ∈ [0, 1). (7)

With this notation, we introduce

η̂ϕ =
Q̂V

(0)

ϕ

Q̂V
(1)

ϕ − Q̂V
(0)

ϕ

, ϕ ∈ [0, 1). (8)

We will show that η̂ϕ is an estimator of
∫ 1
ϕ ηsds/

∫ 1
0 ηsds (note that η is uniquely identified up to a

constant only). From here, we can also define

η̂ϕ1,ϕ2 = η̂ϕ2 − η̂ϕ1 , 0 ≤ ϕ1 < ϕ2 < 1, (9)

which is an estimator of
∫ ϕ2

ϕ1
ηsds/

∫ 1
0 ηsds.

3 In what follows, we will be interested in the asymptotic

properties of η̂ϕ and η̂ϕ1,ϕ2 . The latter, in particular, can be used for studying the intraday volatility

pattern we are after.

For this, we will first derive a CLT result for Q̂V
(0)

ϕ and Q̂V
(1)

ϕ , for some fixed ϕ ∈ [0, 1).

The convergence in distribution result will hold F (0)-conditionally. This is denoted by
L|F(0)

−−−−→ and

formally means convergence in probability of the conditional probability laws when the latter are

considered as random variables taking values in the space of probability measures equipped with

the weak topology, see e.g., VIII.5.26 of Jacod and Shiryaev (2003).

2Q̂V t,T , with T corresponding to same day expiration and next day expiration that we work with here, are used
by CBOE for calculating the 1-day VIX.

3Even if the intraday pattern on the two days differ, we can still use η̂ϕ1,ϕ2 as an estimator of the intraday periodic
component of volatility on the current day. More specifically, suppose that the periodic component of volatility on
the current day is given by η(0) and by η(1) on the following day. In that case, it is easy to show that η̂ϕ is a consistent

estimate of
∫ 1

ϕ
η
(0)
s ds/

∫ 1

0
η
(1)
s ds. Thus, by varying ϕ, we can learn about the function η(0) (but not about η(1)), which

is identified up to a constant only.
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For stating the next theorem, we introduce the following additional notation

Φ̃(k) = f(k) + |k|Φ(−|k|), k ∈ R, (10)

where f and Φ are the pdf and cdf, respectively, of a standard normal random variable. We

also use the shorthand notation K = maxi=1,...,n, l=0,1Ki,l(1) and K = mini=1,...,n, l=0,1Ki,l(Ni,l).

We note that K and K will typically correspond to the minimum and maximum available strike,

respectively, at the last observation time tn. Finally, in the theorem below, δ denotes a reference

“average” log-strike gap, formally defined in assumption A3.

Theorem 1. Suppose assumptions A1-A4 hold and fix ϕ ∈ [0, 1). Let κ ↓ 0 and δ ≍ κα, K ≍ κβ,

K ≍ κ−γ, for α > 1
2 and β, γ > α

4 − 1
8 . In addition, let ∆√

δκ3/4
→ 0. We have

1√
δκ3/4

 Q̂V
(0)

ϕ −QVϕκ,(1−ϕ)κ

Q̂V
(1)

ϕ −QVϕκ,(2−ϕ)κ

 L|F(0)

−−−−→

 Zϕ,0

Zϕ,1

 , (11)

where F (0)-conditionally (Zϕ,0, Zϕ,1) is a centered Gaussian vector with F (0)-conditional variance

given by Σϕ = diag(Σϕ,0, Σϕ,1), with

Σϕ,l =

(∫ 1

ϕ
ηsds+ 1{l=1}

∫ 1

0
ηsds

)3/2

σ30ψ0,l(0)ζ
2
0,l(0)

∫
R
Φ̃2(k)dk, l = 0, 1, (12)

where the functions ψt,l and ζt,l, for l = 0, 1, appear in assumption A4.

We make several observations about the above CLT result. First, the rate of convergence of

the risk-neutral quadratic measures is determined from the options with strikes in the vicinity of

the current spot price. The reason for this is that, these options dominate asymptotically the rest

of the options with strikes away from the current spot price. We refer to Lemma 1 for a formal

statement of this. In turn, the asymptotic behavior of the near-the-money options is dominated

by the diffusive component of the underlying asset price. Thus, in spite of the fact that Q̂V t,T

is a measure of total return variation that includes jumps, its asymptotic behavior for T small is

governed by the diffusive component of the underlying price. Second, the rate of convergence in

the CLT is determined by the mesh of the log-strike grid δ and the bound on the time-to-maturity

of the options κ. Third, the asymptotics here is of joint type as we require δ and κ to go to zero

simultaneously and also K → 0 and K → ∞.

In the statement of the theorem, we impose various rate conditions that ensure that biases

that arise in the estimation are of higher asymptotic order. In particular, the rate condition for K
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and K guarantees that the bias due to the truncation of the two tails in the integration in (5) is

negligible. This bias is given by

2

∫ Ki,l(1)

0

Oi,l(K)

K2
dK + 2

∫ ∞

Ki,l(Ni,l)

Oi,l(K)

K2
dK, i =

⌊
ϕκ

∆

⌋
, l = 0, 1. (13)

How big the above bias is depends naturally on how fat are the tails of the return distribution.

This, in turn, is related to the tail behavior of the jumps because in our case κ ↓ 0. Assuming

that the law of the big jumps of x belongs to the Fréchet maximum domain of attraction, see e.g.,

Bollerslev and Todorov (2014), with left and right tail decay parameters of α± > 0, the leading

term of the above bias is given by

2

α− − 1

Oi,l(Ki,l(1))

Ki,l(1)
+

2

α+ + 1

Oi,l(Ki,l(Ni,l))

Ki,l(Ni,l)
. (14)

In practice, Oi,l(Ki,l(1)) and Oi,l(Ki,l(Ni,l)) are determined by the minimum bid and ask quotes

on the exchange (our option observation is the mid-quote) and hence typically do not vary over

time. Given that κ ↓ 0, Ki,l(1) and Ki,l(Ni,l) are close to the current stock price Xϕκ. Thus,

in practice, the downward bias due to truncation of the limits of integration does not change by

much as ϕ varies. On the other hand, the estimands of {Q̂V
(l)

ϕ }l=0,1 shrink as ϕ converges to one.

As a result, in relative terms this bias naturally becomes more prominent as ϕ increases. While

this is problematic for the estimation of QV
(0)
ϕ when ϕ is close to one, note that our interest is

in the estimand of η̂ϕ1,ϕ2 during the trading day. Since the truncation biases in η̂ϕ1 and η̂ϕ2 are

approximately the same, as argued above, they will cancel out in η̂ϕ1,ϕ2 = η̂ϕ2 − η̂ϕ1 . Thus, from

a practical point of view, the truncation bias should not be of concern here for our purposes. We

will confirm this in the Monte Carlo.

Next, the requirement δ ≍ κα with α > 1/2 guarantees that error due to the Riemann sum

approximation of the integral in (5) is of higher order. If this condition does not hold, then the

change of the option price as the strike moves on the strike grid in the vicinity of the current stock

price will be too big, which in turn will cause the Riemann sum approximation error to be big.

From a practical point of view, the strike grid is fixed by the exchange,4 so the above rate condition

involving δ and κ puts a limit on how short the tenor of the options can be for our asymptotics to

work well. This will be discussed later on in the Monte Carlo analysis.

When δ/
√
κ → 0, then the Riemann sum approximation error is always dominated by the

observation error in the options which drive the CLT result in Theorem 1. Due to the leading

role in the estimation played by the options with strikes in vicinity of the current stock price, the

4For example, for the S&P 500 index options used in our empirical analysis it is set to 5.
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discretization error around-the-money dominates the remaining part of this error. Since around-the-

money options are approximated by the Black-Scholes formula (see Lemma 1), out-of-the-money

puts and calls with strikes that are equal distance from the spot price are approximately the same.

Hence, there will be cancelation in the discretization error around the money. Furthermore, one

can perform linear interpolation of the observed option prices on a finer strike grid in Black-Scholes

implied volatility space and form the Riemann sum from the interpolated prices. This will reduce

the discretization error and has been often done in empirical work, see e.g., Carr and Wu (2009).

Finally, the requirement ∆√
δκ3/4

→ 0 is due to the fact that the option observations are on a

discrete grid while our interest is estimation at a fixed point in time (which is not necessarily on the

observation time grid). If the centering of Q̂V
(0)

ϕ and Q̂V
(1)

ϕ is with their limits at the observation

time, then this condition will not be necessary.

Remark 3. The CLT result of the theorem is derived under the assumption that the ratio of the

option observation error to the true (latent) option price is Op(1), see assumption A4. Empirically,

the ratio of option bid-ask spread to the mid-quote, which can be viewed as a proxy for the relative

option observation error, is a small number, see e.g., Andersen et al. (2015a). We can generalize

the result of the above theorem by allowing for the relative option pricing error to shrink to zero.

The result of Theorem 1 can be extended to cover such a situation, with the rate of decay of the

option observation error showing up in the rate of convergence of the estimator.

Remark 4. Assumption A4 in the Appendix assumes that the observation errors are F-conditionally

independent across strikes and over time. This requirement can be relaxed to allow for weak time-

series and spatial dependence. Andersen et al. (2021) document only very mild spatial dependence

in short-dated SPX options that we are going to use in the empirical application. For that reason,

we will not consider an extension of Theorem 1 that allows for weak F-conditional dependence in

the observation errors.

The limit quantities QVϕκ,(1−ϕ)κ and QVϕκ,(2−ϕ)κ can be used to estimate the periodic compo-

nent of volatility by taking advantage of the fact that κ is small and that the stochastic component

of the diffusive volatility and of the jump intensity is smooth in expectation by our assumption

A1. We note in this regard that we do not require an assumption regarding the smoothness of the

periodic component η. The next theorem presents the formal result.

Theorem 2. Suppose assumptions A1-A2 hold and fix ϕ ∈ [0, 1). We have

QVϕκ,(1−ϕ)κ

QVϕκ,(2−ϕ)κ −QVϕκ,(1−ϕ)κ
−
∫ 1
ϕ ηsds∫ 1
0 ηsds

= Op (κ) . (15)
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The bound on the error in the above theorem is sharp and is directly linked to the assumed

degree of smoothness of the stochastic component of diffusive volatility and jump intensity given

in assumption A1. This assumption is satisfied when diffusive volatility and jump intensity are

modeled via Itô semimartingales, which is the case for most asset pricing models used in applied

work.

By combining the results of the above two theorems, we can arrive at a feasible estimate of tail

integrals of the periodic component of volatility. The result is stated in the following corollary.

Corollary 1. Suppose the conditions in Theorem 1 hold. We then have

κ1/4√
δ

(
η̂ϕ −

∫ 1
ϕ ηsds∫ 1
0 ηsds

)
L|F(0)

−−−−→
√
Avar(η̂ϕ)Z, (16)

where Z is a standard normal random variable defined on an extension of the original probability

space and independent from F and

Avar(η̂ϕ) =

(∫ 1
ϕ ηsds+

∫ 1
0 ηsds

)2
v20

(∫ 1
0 ηsds

)4 Σϕ,0 +

(∫ 1
ϕ ηsds

)2
v20

(∫ 1
0 ηsds

)4Σϕ,1, (17)

with v0 given by

v0 = σ20 + 2

∫
R
(ex − 1− x)ν0(dx). (18)

In addition, η̂ϕ1 and η̂ϕ2 are F (0)-conditionally asymptotically independent for ϕ1 ̸= ϕ2.

The F (0)-conditional asymptotic variance of η̂ϕ1,ϕ2 is given by Avar(η̂ϕ1) + Avar(η̂ϕ2). We

note also that in the above Corollary, we do not need any additional requirement for the option

observation scheme than what is already assumed in Theorem 1.

Given the limit result in Corollary 1, we can analyze the precision in the estimation as a function

of time of day, i.e., as a function of ϕ. This is easiest to do in the case when ψ0,0(0) = ψ0,1(0) and

ζ0,0(0) = ζ0,1(0), where the functions {ψt,l}l=0,1 and {ζt,l}l=0,1 are given in assumption A4. These

quantities are related to the denseness of the strike grid and the variance of the option observation

error for the two tenors. With this simplifying assumption, we have

Avar(η̂ϕ) ∝
(∫ 1

ϕ
ηsds

)3/2(∫ 1

ϕ
ηsds+

∫ 1

0
ηsds

)2

+

(∫ 1

ϕ
ηsds

)2(∫ 1

ϕ
ηsds+

∫ 1

0
ηsds

)3/2

, (19)

with ∝ above means that Avar(η̂ϕ) equals the right-hand-side of (19) times a random variable that

does not depend on ϕ. It is easy to see now that the precision in the estimation increases as ϕ

approaches one. The reason for this is as follows.
∫ 1
ϕ ηsds increases when ϕ decreases, i.e., when

11



we look at earlier parts of the trading day. Since option observation errors are proportional to

option prices, this automatically translates in larger noise (in absolute terms) in Q̂V ϕκ,(1−ϕ)κ and

Q̂V ϕκ,(2−ϕ)κ for lower values of ϕ. This can explain the dependence of Avar(η̂ϕ) on ϕ. This strong

dependence of the precision of the estimation on the time of day will carry over to the situation

where one uses longer-tenor options than the ones used here to recover η. That is, if one attempts

estimation of η on the basis of options Q̂V ϕκ,(k−ϕ)κ, for some k > 1, then the precision of such

estimation would drop significantly relative to our estimator based on zero- and one-day tenor

options.

The same observations naturally apply to the estimator η̂ϕ1,ϕ2 . The differencing reduces the

signal (i.e.,
∫ ϕ2

ϕ1
ηsds is much smaller than

∫
ϕ1
ηsds when ϕ2 is close to ϕ1) while the noise (i.e., the

estimation error) increases. This implies that estimation of
∫ ϕ2

ϕ1
ηsds is significantly harder than

estimation of
∫ 1
ϕ1
ηsds and that the precision in estimating

∫ ϕ2

ϕ1
ηsds increases as ϕ1, ϕ2 → 1.

Finally, although feasible estimates of Avar(η̂ϕ) are theoretically possible, see e.g., Todorov

(2019), we will not provide such here as we conjecture that reliable fully nonparametric estimation

of the asymptotic variance will be difficult given the very short tenor of the options used in the

analysis (which results in nontrivial changes in the true option prices around-the-money).

4 Monte Carlo Study

In this section, we evaluate the performance of the option-based estimator of the periodic volatility

component on simulated data.

4.1 Setup

We use the following model for the underlying asset dynamics, under the risk-neutral probability,

to generate the true option prices:

dXt

Xt−
=
√
VtdWt +

∫
R
(ex − 1)µ(dt, dx), (20)

dVt = κv(θv − Vt)dt+ σv
√
VtdBt, (21)

where Wt and Bt are Q Brownian motions with corr(dWt, dBt) = ρdt, and µ is an integer-valued

random measure with Q compensator dt⊗ νt(dx), for νt given by

νt(dx) = Vt × νts(x)dx, νts(x) = c−
e−λ−|x|

|x|1+α
1{x<0} + c+

e−λ+|x|

|x|1+α
1{x>0}. (22)

In the above specification for X, the stochastic variance is modeled as a square-root diffusion

process like in the popular model of Heston (1993). The jump intensity is affine in the level of
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diffusive variance like in the stochastic volatility model of Duffie et al. (2000) and subsequent

empirical option pricing work. Our jump specification is a time-changed tempered stable process,

see Carr et al. (2003), with the time-change being the integrated diffusive variance. We allow for

different parameters to control the negative and positive jumps. Throughout, we set λ− = 100

and λ+ = 200. This generates tail decays in deep out-of-the-money puts and calls with zero and

one day to expiration that are similar to those observed in our empirical application. We set c±

according to

c− = 0.9×
λ2−α
−

Γ(2− α)
and c+ = 0.1×

λ2−α
+

Γ(2− α)
,

which implies that risk-neutral spot jump variation is equal to spot diffusive variance, and further

that 90% of the jump variation is due to negative jumps. This separation of the risk-neutral

variation into diffusive and one due to positive and negative jumps is similar to that implied from

parametric models fitted to observed S&P 500 index options, see e.g., Andersen et al. (2015b).

Finally, we set the parameter α, which governs the behavior of the small jumps, to 1.8. This

implies presence of a lot of smaller-sized jumps.5

In our model in the Monte Carlo, the periodic function is the identity. This allows us to obtain

option prices in semi-closed form, which will not be the case otherwise.6 Our goal in the Monte

Carlo is to investigate the effect from the mean reversion in the stochastic component of volatility,

the discreteness and finite range of the strike grids and the option observation error on the precision

in recovering the intraday periodic component of volatility. For this, a Monte Carlo setup with η

being the identity function should suffice.

We consider two parameter settings for the diffusive variance dynamics. In both of them, we

set the mean of the variance to θv = 0.02 and the correlation between the two Brownian motions to

ρ = −0.9. These parameters match roughly estimates from prior empirical work for the risk-neutral

mean of variance and the leverage effect. In the first of our two specifications, case S, we set κv

so that the half-life of a shock to variance is one month. In the second specification, case F, we

increase the speed of mean reversion by setting κv so that the half-life of a shock to variance is

only one week. In both cases, we set the volatility of volatility parameter σv so that the coefficient

of variation of V (given by σv/
√
2κvθv) is equal approximately to 0.35. The parameter values for

the two cases are given in Table 1.

We turn next to the option observation scheme. Observed options are given by

Ôt,T (kt,T (j)) = Ot,T (kt,T (j))(1 + 0.015× zt,T (j)), j = 1, ..., Nt,T , (23)

5The parameter α should be below 2 and higher values of α means higher rate of explosion of νts around zero.
6We are grateful to Nicola Fusari for providing the option pricing codes used in the Monte Carlo section.
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Table 1: Parameter Setting for the Monte Carlo

Case Variance Parameters Jump Parameters

θv κv σv ρ α λ− λ+ c− c+

S 0.02 8.3 0.2 −0.9 1.8 100 200 0.4924 0.0629

F 0.02 34.9 0.4 −0.9 1.8 100 200 0.4924 0.0629

where {zt,T (j)}
Nt,T

j=1 are sequences of i.i.d. standard normal variables which are independent of each

other. The size of the observation error is calibrated to match roughly bid-ask spreads of index

option data around the money. The initial level of the stock price at the start of the day is set to

3500. For each pair (t, T ), the strikes are multiples of 5. The strikes below and above the current

price are extended in both directions by increments of 5 until the true out-of-the-money option price

falls below 0.075. This specification of the strike grid mimics that of available of S&P 500 index

options. The starting value of the diffusive variance at the beginning of the day is set to 25-th,

50-th or 75-th quantile of its marginal distribution. Option prices are observed at 77 equidistant

times in a trading day. This corresponds to sampling at a five-minute frequency over the period

9.35-15.55 EST in a trading day. Note that the option trading day at CBOE, where S&P 500 index

options are traded, lasts over the period 9.30−16.15 EST. Therefore, in our case ∆ = 1/(252×82).

Finally, the time to maturities T 0
1 and T 1

1 are equal to 81/(252 × 82) and 1/252 + 81/(252 × 82),

respectively.

4.2 Precision of the Option-based Estimator

Before presenting the results from the Monte Carlo, we assess the effect of the Riemann sum

discretization error and the error due to truncation of the integral in (5) on the estimator. For

this purposes, we switch off the observation error and consider the last increment during the day,

15.50-15.55 EST where the effect of these errors should be largest. We use case S for this illustration

and set the starting value of volatility at the 25-th quantile of the unconditional distribution of

Vt. The value of the underlying stock price is drawn uniformly from an equidistant grid of points

covering the interval 3500.5 − 3505 at increments of 0.5 (recall that the gaps between strikes in

our setup is 5). For this setting, the number of out-of-the-money options used in the estimation

is only 8. We first assess the size of the truncation error. For η̂ϕ, the relative size of this error is

approximately 2%. Due to the partial cancelation of this error that we discussed in the previous

section, its relative size for η̂ϕ1,ϕ2 gets reduced significantly to 0.5%. We next evaluate the size of
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the Riemann sum discretization error. For this purpose, we compare η̂ϕ and η̂ϕ1,ϕ2 using the coarse

strike grid with increments of 5, described above, with a finer strike grid with increments of only

0.1. We find that the relative discretization error for η̂ϕ is around 4% and only 0.5% for η̂ϕ1,ϕ2 .

Overall, these results show that higher-order biases due to the Riemann sum discretization error

and the truncation error are small in relative terms for the estimator η̂ϕ1,ϕ2 even when one looks

at the end of the trading day.

We proceed with the general Monte Carlo results which are summarized in Figures 2 and 3. For

both parameter settings and for all starting values of volatility, we can notice a strong monotone

increase in the precision of the estimation, with the noisiest estimation being for the value of the

periodic volatility function at the start of the trading day. This is consistent with the dependence

of the asymptotic variance of η̂ϕ on ϕ, see equation (19) above.
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Figure 2: Monte Carlo Results for Simulation Scenario S. For each time of day, we report
25-th, 50-th and 75-th quantile of the estimate of η̂ϕ1,ϕ2 , for ϕ1 and ϕ2 corresponding to consecutive
observations on a 5-minute grid covering the time interval 9.35 − 15.55 EST. The estimates are
standardized by dividing by their average value across the times-of-day. The number of Monte
Carlo replications is 3000.
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Figure 3: Monte Carlo Results for Simulation Scenario F. For each time of day, we report
25-th, 50-th and 75-th quantile of the estimate of η̂ϕ1,ϕ2 , for ϕ1 and ϕ2 corresponding to consecutive
observations on a 5-minute grid covering the time interval 9.35 − 15.55 EST. The estimates are
standardized by dividing by their average value across the times-of-day. The number of Monte
Carlo replications is 3000.

Another observation from the reported Monte Carlo results is that the precision of the estimation

appears slightly higher for higher values of the volatility. This difference is nevertheless very small.

The explanation for that effect is that when volatility is higher, we have more option observations

on average. Thus, in this case the option observation error can be more effectively “diversified

away” in the option portfolios Q̂V ϕκ,(1−ϕ)κ and Q̂V ϕκ,(2−ϕ)κ. That said, we note that what matters

for the limiting distribution is not the total number of options per tenor but rather the number of

those around the money. For this reason, the dependence of the estimation precision on the level

of volatility is not very strong.

Finally, comparing the results in the two figures, we can detect little differences in the estimation

in the two parameter settings. In particular, in both cases the medians of the estimates are not very

different from their true values (recall in the Monte Carlo η is the identity function). This suggests
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that the effect from mean-reversion in the stochastic component of volatility on the recovery of η

is negligible. This is, of course, due to the very short tenor of the options used in the estimation.

Overall the reported Monte Carlo results show that the intraday periodic component of volatility

can be reliably estimated from short-dated options. While estimation using a single day of data

is considerably noisy, pooling option data across several trading days should significantly improve

the precision.

4.3 Comparison with a Return-based Estimator

We next compare the precision of the option-based estimator of the periodic function η with a

nonparametric one constructed from high-frequency data.We note that the asymptotic behavior

of option- and return-based estimators is very different. When one uses options, then this is

equivalent to having direct observations of expectations of future volatility over different short

horizons contaminated with measurement error. Thus, the option observation error governs the

limiting behavior of the option-based estimator of η. On the other hand, when one uses high-

frequency returns, we do not have direct observations of expectations of future volatility over

different horizons. Instead, we need to resort to long-span asymptotics and a Law of Large Numbers

to disentangle the periodic component of volatility from its stationary part. As a result, the limiting

distribution of a return-based estimator of η is determined by the empirical process error associated

with the latent stationary component of volatility, see Andersen et al. (2023). This is in sharp

contrast to the option-based estimator which does not require any stationarity assumption for the

volatility.

This very different asymptotic behavior of the option- and return-based estimators of η means

that they are best compared in a Monte Carlo experiment. This is what we do here. Towards

this end, denote the increment of the log-price with ∆n
j,ix = x(j−1)κ+i∆ − x(j−1)κ+(i−1)∆. The

return-based estimator of intraday periodic component of volatility we use is given by

η̂retϕ1,ϕ2
=

⌊ϕ2κ/∆⌋∑
i=⌊ϕ1κ/∆⌋+1

T∑
j=1

(
∆n

j,ix
)2/ ⌊κ/∆⌋∑

i=1

T∑
j=1

(
∆n

j,ix
)2
, (24)

where 0 ≤ ϕ1 < ϕ2 < 1 and T is some integer denoting the number of trading days used in the

estimation. This estimator, possibly with truncation of the returns, has been used commonly in

prior work, see e.g., Taylor and Xu (1997) and more recently Andersen et al. (2023).7 We do

7An alternative to η̂ret
ϕ1,ϕ2

that can potentially provide efficiency gains is the counterpart of η̂ret
ϕ1,ϕ2

in which the
high-frequency returns are standardized by same day measure of integrated volatility, see e.g., Boudt et al. (2011). We
do not provide results for such alternative estimators for two reasons. First, as far as we are aware the theoretically
properties of such estimators have not been analyzed in prior work. Second, since we use relatively short time
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not perform truncation of the returns because the diffusive and jump volatility share the same

intraday diurnal pattern per our assumption in Section 2. We present results on the real data for

the truncated counterpart of η̂retϕ1,ϕ2
in Section 7.1.

We compare η̂ϕ1,ϕ2 and η̂retϕ1,ϕ2
using the same time window of 50 days. That is, we set T to

50 days for η̂retϕ1,ϕ2
and we average η̂ϕ1,ϕ2 over the same number of days. In Figure 4 we compare

the precision of η̂ϕ1,ϕ2 and η̂retϕ1,ϕ2
across the trading day. Since the time for computing the option

prices is nontrivial, we report result on the basis of 100 replications only. As seen from Figure 4,

the efficiency gains offered by the option data can be rather nontrivial, particularly towards the

end of the trading day when η̂ϕ1,ϕ2 is around five times more efficient than η̂retϕ1,ϕ2
.
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Figure 4: Monte Carlo Results for Option- versus Return-based Estimator of Intraday
Periodicity. ϕ1 and ϕ2 correspond to consecutive observations on a 5-minute grid covering the
time interval 9.35−15.55 EST. Each dot on the plots corresponds to the ratio of standard deviations
of the two estimators at each observation point during the trading day. The number of Monte Carlo
replications is 100.

We note, however, that given the different source of the error in η̂ϕ1,ϕ2 and η̂retϕ1,ϕ2
, one can

show that these estimators are asymptotically uncorrelated. Hence the optimal thing to do is to

combine them. This is similar to the optimal use of high-frequency return data and option data

for estimating spot volatility, see e.g., Todorov and Zhang (2022).

windows, the benefits from standardization with realized volatility are typically not very big (in the Monte Carlo
experiments they result in around 5% reduction in the standard error of the estimates).
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5 Empirical Application

5.1 Data

We apply the newly-developed estimators of volatility calendar effects to short-dated options written

on the S&P 500 market index. Our sample covers the period from January 2, 2018 until December

31, 2020. The data is obtained from CBOE Data Shop and consists of best bid and best ask option

quotes. Over our sample period, CBOE issued weeklies expiring on Monday, Wednesday and Friday

of the week. Since in our analysis we use zero- and one-day tenor options (counting in business

days), we thus look at intraday option data on every Friday which is not a holiday and consider

the options on that day that expire either on the same day or on the next trading day. At each

point in time and for each tenor, we determine an implied forward rate by using put-call parity for

three distinct strikes with the smallest gap between call and put mid-quotes. Using the implied

forward, we determine the moneyness of the options (defined as strike over forward) and keep only

out-of-the-money options with non-zero bid quotes. We compliment the option data with intraday

price records of the SPY exchange traded fund on the S&P 500 Index obtained from the NYSE

Trade and Quote (TAQ) database. Our sampling frequency for both option and price data is every

five minutes over the interval 9.35− 15.55 EST.

In Figures 5 and 6, we provide summary statistics for the option data used in our analysis.

As seen from Figure 5, the number of strikes of the out-of-the-money short-dated options declines

over the trading day as the options get closer to expiration. This effect is very pronounced for

the zero-day options and is barely noticeable for the one-day options. Nevertheless, the median

number of available strikes at 15.55 EST for the zero-day options is still nontrivial making possible

the calculation of QVt,T . Not surprisingly, the number of available strikes for the one-day options

is significantly higher as they have one more day to expiration.

In Figure 6, we plot the volatility-adjusted moneyness range of the available options. We

use at-the-money Black-Scholes implied volatility for computing the volatility adjustment of the

moneyness range. As seen from the figure, the moneyness range for the one-day options is stable

during the day. It is pretty wide on the negative side due to the well-known pricing of short-term

left tail risk. The available range for the zero-day options is somewhat smaller and we note that it

starts to shrink gradually around 14.30, with most of the change due to reduction in the available

strikes for deep out-of-the-money puts. Nevertheless, the median strike range even at 15.55 EST

is still relatively large, particularly when one takes into account the fact that Black-Scholes at-

the-money implied volatility is higher than true volatility due to the risk premium embedded in
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Figure 5: Number of Strikes of S&P 500 Index Options for 0-Day (upper) and 1-Day
(lower) Tenor. For each time of day, we report 25-th, 50-th and 75-th quantile of the out-of-the-
money strike counts across all days in the sample on a 5-minute grid covering the time interval
9.35− 15.55 EST.

it.8

5.2 Empirical Results

Using the available data, we compute the risk-neutral variance measures and form our estimates

of the periodic component of volatility. In order to minimize the effect of occasional strike gaps in

the data, we conduct linear interpolation in Black-Scholes implied volatility space to create option

prices on equidistant strike grid with mesh of five and use these options in the calculation of Q̂V t,T .

Note that the standard gap between observed strikes is five and in this sense the interpolation is

8The observed time-of-day patterns in Figures 5 and 6 of the number of options and the volatility-adjusted
moneyness are related to the scaling laws of the Itô semimartingale increments over small time scales and to the
properties of the jump compensator. Similar patterns, particularly the dependence of the strike count on the time of
day, are observed in our Monte Carlo experiments as well.
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Figure 6: Moneyness Range of S&P 500 Index Options for 0-Day (upper) and 1-Day
(lower) Tenor. For each time of day, we report 25-th, 50-th and 75-th quantile of the volatility-
adjusted moneyness across all days in the sample on a 5-minute grid covering the time interval
9.35 − 15.55 EST. The moneyness is volatility-adjusted using Black-Scholes at-the-money implied
volatility.

minimal.9 We further remove from the analysis pairs (t, T ) with less than five observed out-of-

the-money options. Finally, we make a finite-sample adjustment to η̂ϕ that makes the estimate

monotonic as a function of ϕ (recall that the estimand of η̂ϕ is a decreasing function of ϕ). Mainly,

starting from the end of the trading day (for which the precision of the estimation is highest), we

modify iteratively the estimate of η̂ϕ at observation times by taking the maximum of the original

estimate and the estimate at the following observation time.

9We also experimented with interpolation at strike gaps of 1, with the results being essentially identical to the
ones reported here. As an additional robustness check, we further experimented by performing bias correction for the
tail truncation error using the expression for this bias given in (14) and the estimation of the tail decay parameters
as in Bollerslev and Todorov (2014). Such bias correction had again negligible effect on the estimation and hence
was performed only as a robustness check.
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We estimate intraday volatility pattern on a yearly basis, i.e., by taking time series averages of

η̂ϕ1,ϕ2 over each of the year in the sample. The estimates are plotted in Figure 7. We can make

several observations about the reported estimates. First, consistent with our simulation results,

the option-based estimates at the beginning of the day appear noisier than the ones for later on in

the trading day. Second, the estimated intraday volatility pattern has the familiar U-shape with

volatility being higher at market open and market close relative to the middle of the trading day.

Third, we do note some variation in the diurnal pattern over the three years in our sample. In

particular, we can note a much higher estimate of volatility at 15.55 EST in 2020 than in the

previous two years.
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Figure 7: Intraday Periodic Volatility Pattern of S&P 500 Index Volatility. For each time
of day, we report the time series average of the estimate of η̂ϕ1,ϕ2 , for ϕ1 and ϕ2 corresponding
to consecutive observations on a 5-minute grid covering the time interval 9.35 − 15.55 EST. The
estimates are standardized by dividing by their average value across the times-of-day. The solid
lines correspond to a tenth-order polynomial fit to the time-of-day estimates.

Overall, the reported estimates of η from the short-dated options illustrate the ability of such

22



data to extract information for various volatility calendar effects. The recent introduction in 2022

of daily expiration cycle for the S&P 500 index options (and options written on other indices)

should facilitate the application of such an analysis at a much more refined level. This can help

uncover time-variation in volatility calendar effects that has been difficult or impossible to do with

return data alone.

6 Conclusion

In this paper we propose an option-based nonparametric estimator of the deterministic periodic

component of volatility. The estimator is based on short-dated options written on the underlying

asset, expiring on the same or the following trading day. Unlike existing nonparametric methods

for estimating the periodic component of volatility from high-frequency returns, the option-based

method does not require the use of long time series of data (and the associated long-span asymp-

totics and assumptions needed for it). Instead, it relies on short-time asymptotics and options

with two different times-to-maturity to disentangle the stochastic component of volatility from its

deterministic periodic component. We derive the rate of convergence and an associated CLT for

our estimator. A Monte Carlo study and an empirical application using S&P 500 index options

show the applicability of the newly-developed estimation procedure.

7 Appendix

7.1 Jump-Robust Intraday Volatility Patterns

As mentioned in the main text, the intraday volatility pattern estimator developed in the paper

relies on an assumption that the jump intensity exhibits the same intraday pattern as the diffusive

volatility. In this section we provide empirical evidence using both options and stock returns in

support of such an assumption. Towards this end, we introduce intraday volatility pattern estimates

built from jump-robust volatility estimators. More specifically, we define

ŜV t,T = − 2

û2t,T
log |L̂t,T (ût,T )|, (25)

where

L̂t,T (u) = 1− (u2 + iu)

Nt,T∑
j=2

eiu[log(Kt,T (j−1))−log(Xt)] Ôt,T (Kt,T (j − 1))

K2
t,T (j − 1)

(Kt,T (j)−Kt,T (j − 1)), (26)

and

ût,T = û
(1)
t,T

∧
û
(2)
t,T , û

(1)
t,T = inf{u ≥ 0.01 : |L̂t,T (u)| > 0.5}, û(2)t,T =

√
2 log(1/0.05)

σATM
t,T

, (27)
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for σATM
t,T being the non-annualized at-the-money implied volatility. As shown in Todorov (2019),

this is a consistent estimator of EQ
t

(∫ t+T
t ηs/κ−⌊s/κ⌋σ

2
sds
)
, provided T is small. Using this estimator,

we can construct a jump-robust counterpart of η̂ϕ1,ϕ2 . We denote this estimator with ηϕ1,ϕ2
.

Similarly, we denote the truncated counterpart of η̂retϕ1,ϕ2
with ηretϕ1,ϕ2

. That is, we use the

truncated increment ∆n
j,ix1{|∆n

j,ix|≤3∆0.49
√

BVj∧RVj} in ηretϕ1,ϕ2
, where

BVj =
π

2

⌊κ/∆⌋∑
i=2

|∆n
j,i−1x||∆n

j,ix| and RVj =

⌊κ/∆⌋∑
i=1

|∆n
j,ix|2. (28)

In Figure 8, we compare the jump-robust estimates of the intraday volatility pattern with those

in the main text that do not separate diffusive volatility from jumps in the estimation. We do

this over the entire period 2018-2020 to reduce the effect from the estimation error. Starting with

the option-based estimates, we can see only small differences. These differences are most apparent

at the start of the trading day when the estimation error is much bigger. We can draw similar

conclusion when comparing the two return-based estimators of the intraday volatility pattern. The

differences between the two estimators appear small and there is no systematic pattern in these

deviations along the trading day.

7.2 Assumptions and Proofs

7.2.1 Assumptions

The process x is defined on a filtered probability space
(
Ω,F , (Ft)t≥0,Q

)
. We now state our as-

sumptions for the dynamics of x which we need for the asymptotic analysis. Since we use different

probability measures, to avoid confusion in the statements that follow, we will denote with EQ the

expectation under Q and similarly EQ
t will be the Ft-conditional expectation under Q. We will not

use superscripts for the counterparts of these expectations under P. Our assumptions are as follows:

A1. For s ≤ t in a neighborhood of 0, we have

EQ
s |σ2t − σ2s |2 ≤ Cs|t− s|, (29)

and

EQ
s

∣∣∣∣∫
R
(ex − 1− x)νt(dx)−

∫
R
(ex − 1− x)νs(dx)

∣∣∣∣2 ≤ Cs|t− s|, (30)

for some process Ct with càdlàg paths.
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Figure 8: Intraday Periodic Volatility Pattern of S&P 500 Index Volatility with and
without Removal of Jumps. For each time of day, we report the time series average of the
estimate of η̂ϕ1,ϕ2 , for ϕ1 and ϕ2 corresponding to consecutive observations on a 5-minute grid
covering the time interval 9.35 − 15.55 EST. The estimates are standardized by dividing by their
average value across the times-of-day. VIX and SV correspond to η̂ϕ1,ϕ2 and ηϕ1,ϕ2

, respectively.
RV and TV correspond to η̂retϕ1,ϕ2

and ηretϕ1,ϕ2
, respectively.

A2. For t in a neighborhood of 0, there exist F (0)
t -adapted random variables Ct and t > t such that

for s ∈ [t, t]:

EQ
t |αs|4 + EQ

t |σs|6 + EQ
t (e

4|xs|) + EQ
t

(∫
R
(e3|x| − 1)νs(dx)

)4

< Ct. (31)

A3. For i = 1, ..., n, the log-strike grids {ki,0(j)}
Ni,0

j=1 and {ki,1(j)}
Ni,1

j=1 are F (0)-adapted and we

have

ctiδ ≤ ki,l(j)− ki,l(j − 1) ≤ Ctiδ, l = 0, 1, as δ ↓ 0, (32)

where δ is a deterministic sequence, and ct and Ct are F (0)-adapted processes with càdlàg paths

with inft ct > 0. In addition, for some arbitrary small ζ > 0:

sup
j:|ki,l(j)−xti |<ζ

∣∣∣∣ki,l(j)− ki,l(j − 1)

δ
− ψi,l(ki,l(j − 1)− xti)

∣∣∣∣ P−→ 0, l = 0, 1, as δ ↓ 0, (33)
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where ψi,l(k) are F (0)-adapted functions which are continuous in k at 0.

A4. We have ϵi,l(j) = ζi,l(ki,l(j) − xti)ϵi,l,jOi,l(j) for l = 0, 1, where for k in a neighborhood of

zero, we have |ζi,l(k) − ξi,l(0)| ≤ Cti |k|ι, for some ι > 0 and Ct < ∞ being an F (0)-adapted pro-

cess with càdlàg paths. The two sequences {ϵi,0,j}
Ni,0

j=1 and {ϵi,1,j}
Ni,1

j=1 are defined on F (1), are i.i.d.

and independent of each other across i = 1, ..., n, and of F (0). We further have E(ϵi,l,j |F (0)) = 0,

E((ϵi,l,j)2|F (0)) = 1 and E(|ϵi,l,j |κ|F (0)) <∞, for some κ ≥ 4 and l = 0, 1.

7.2.2 Proof of Theorem 1

We will make use of the following lemma in the proof:

Lemma 1. Assume A and C1 hold. There exists F (0)
t -adapted random variables Ct and t > 0 that

do not depend on T such that for T < t, we have

Ot,T (K) ≤ Ct

(
TK31{log(K/Xt)<−1} + TK−11{log(K/Xt)>1}

+

(√
T ∧ T

| log(K/Xt)|

)
1{| log(K/Xt)|<1}

)
,

(34)

|Ot,T (K1)−Ot,T (K2)| ≤ Ct

[
T

log(K2/Xt)4

∧ T

log(K2/Xt)2

∧
1

]
|K1 −K2|, (35)

where K1 < K2 < Xt or K1 > K2 > Xt. In addition, for | log(K/Xt)| ≤
√
T | log(T )| and some

ι > 0 arbitrary small:∣∣∣∣Ot,T (K)−√
ηt,Tσtf

(
log(K/Xt)√

ηt,Tσt

)
− |k − xt|Φ

(
−| log(K/Xt)|√

ηt,Tσt

)∣∣∣∣ ≤ CtT
1−ι, (36)

where ηt,T =
∫ t+T
t ηs/κ−⌊s/κ⌋ds.

Proof of Lemma 1 The result in (34) for the cases log(K/Xt) < −1 and log(K/Xt) > 1 follows

from the bound (7.5) of Lemma 1 of Todorov (2019) (note that Lemma 1 of Todorov (2019) is

presented using the normalization Xt = 1). The result in (34) for the case | log(K/Xt)| < 1 follows

from combining the bounds in (7.6)-(7.8) of Lemma 1 of Todorov (2019). The result in (35) follows

directly from the bound in (7.11) of Lemma 1 of Todorov (2019).

We are thus left with showing the result in (36). Denote with Oc
t,T (K) corresponding to log-

price xcs = σt
∫ s
t
√
ηu/κ−⌊u/κ⌋dWu, for s ∈ [t, t+T ], instead of xs. Then, using Hölder inequality, we

have that |Ot,T (K)−Oc
t,T (K)| ≤ CtT

1−ι. Now, we note that η is a deterministic function. Hence,
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xct+T −xct is Ft-conditionally normal with mean zero and variance σ2t
∫ t+T
t ηu/κ−⌊u/κ⌋du. From here,

the proof follows exactly as that of the last one from Lemma 2 of Todorov (2019).

We proceed with the proof of the theorem. We can make the decomposition

Q̂V t,T −QVt,T = Ẑt,T +Rt,T , (37)

where

Ẑt,T =

Nt,T∑
j=2

2

K2
t,T (j − 1)

ϵt,T (j − 1)(Kt,T (j)−Kt,T (j − 1)), (38)

and

Rt,T = −2

∫ Kt,T (1)

0

Ot,T (K)

K2
dK − 2

∫ ∞

Kt,T (Nt,T )

Ot,T (K)

K2
dK

+ 2

Nt,T∑
j=2

∫ Kt,T (j)

Kt,T (j−1)

(
Ot,T (Kt,T (j − 1))

K2
t,T (j − 1)

−
Ot,T (K)

K2

)
dK.

(39)

Using the first two bounds of Lemma 1, we have

Rt,T = Op

(
(K2

t,T (1) +K−2
t,T (Nt,T ))κ+ δ

√
κ
)
. (40)

Next, let us set Ẑ
(l)
ϕ = Ẑti,T l

i
for i =

⌊
ϕκ
∆

⌋
and l = 0, 1, and write

Ẑ
(l)
ϕ =

N
(l)
ϕ∑

j=2

z
(l)
j,ϕ. (41)

Using our assumption for the observation error and Lemma 1, we have

E
(
z
(l)
j,ϕ|F

(0)
)
= 0,

N
(l)
ϕ∑

j=2

E
(
|z(l)j,ϕ|

2+ι
∣∣F (0)

)
= Op

(
κ3/2+ι/2δ1+ι

)
, (42)

for some ι ∈ (0, 1) and l = 0, 1. Therefore, we will have 1√
δκ3/4

(Ẑ
(1)
ϕ , Ẑ

(2)
ϕ )

L|F(0)

−−−−→ (Zϕ,1, Zϕ,2), by

Theorem VIII.5.25 of Jacod and Shiryaev (2003), if we can establish the following convergence

1

δκ3/2

N
(l)
ϕ∑

j=2

E
(
|z(l)j,ϕ|

2
∣∣F (0)

)
P−→ Σϕ,l, l = 0, 1. (43)

We establish the above convergence results in several steps by applying Lemma 1 and using as-

sumptions A1 and A4. A direct application of assumption A4 yields

E
(
|z(l)j,ϕ|

2
∣∣F (0)

)
=

4

K4
i,l(j − 1)

O2
i,l(j − 1)ζ2i,l(ki,l(j − 1)− xti)(Ki,l(j)−Ki,l(j − 1))2. (44)
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Next, denote with Iκi,l, the set of integers j such that | log(Ki,l(j − 1)/Xt)| ≤
√
T l
i | log(T l

i )|. Using
the first bound of Lemma 1, the result in (44), assumption A3, and the fact that Ot,T (K) is

monotone increasing for K < Xt and monotonically decreasing for K > Xt, we have

N
(l)
ϕ∑

j=2

E
(
|z(l)j,ϕ|

2
∣∣F (0)

)
=
∑
j∈Iκi,l

E
(
|z(l)j,ϕ|

2
∣∣F (0)

)
+Op

(
δκ3/2/| log(κ)|

)
. (45)

Using the first and third bounds of Lemma 1 and assumption A3, we can next write∑
j∈Iκi,l

E
(
|z(l)j,ϕ|

2
∣∣F (0)

)
=
∑
j∈Iκi,l

4

K4
i,l(j − 1)

(O
c
i,l(j − 1))2ζ2i,l(ki,l(j − 1)− xti)(Ki,l(j)−Ki,l(j − 1))2

+Op

(
δκ2−ι| log(κ)|

)
,

(46)

for some 0 < ι < 1/2 and where we use the following shorthand notation

O
c
t,T =

√
ηt,Tσtf

(
log(K/Xt)√

ηt,Tσt

)
+ |k − xt|Φ

(
−| log(K/Xt)|√

ηt,Tσt

)
. (47)

Making use of assumption A3, assumption A4 for the function ζ as well as the first bound of

Lemma 1, we can further expand∑
j∈Iκi,l

4

K4
i,l(j − 1)

(O
c
i,l(j − 1))2ζ2i,l(ki,l(j − 1)− xti)(Ki,l(j)−Ki,l(j − 1))2

= ζ2i,l(0)
∑
j∈Iκi,l

4

K4
i,l(j − 1)

(O
c
i,l(j − 1))2(Ki,l(j)−Ki,l(j − 1))2 +Op

(
δκ(

√
κ| log(κ)|)1+ι

)
,

(48)

for some arbitrarily small ι > 0. Next, making use of assumption A3, we can write∑
j∈Iκi,l

4

K4
i,l(j − 1)

(O
c
i,l(j − 1))2(Ki,l(j)−Ki,l(j − 1))2

=
∑
j∈Iκi,l

4

K2
i,l(j − 1)

(O
c
i,l(j − 1))2(ki,l(j)− ki,l(j − 1))2 +Op

(
δ2κ3/2

)
,

(49)

and upon use of assumption A3 again and the definition of the set Iκi,l, we have further∑
j∈Iκi,l

4

K2
i,l(j − 1)

(O
c
i,l(j − 1))2(ki,l(j)− ki,l(j − 1))2 =

4

X2
ti

∑
j∈Iκi,l

(O
c
i,l(j − 1))2(ki,l(j)− ki,l(j − 1))2

+Op

(
δκ2| log(κ)|

)
.

(50)

Now, we note that Xti −X0 = op(1) and ζi,l(0)− ζ0,l(0) = op(1) since Xt and ζt,l(0) are processes

with càdlàg paths. Hence, we are left with the analysis of
∑

j∈Iκi,l
(O

c
i,l(j−1))2(ki,l(j)−ki,l(j−1))2.
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Using assumption A3 and the càdlàg path of ψt,l(0), we have∑
j∈Iκi,l

(O
c
i,l(j− 1))2(ki,l(j)− ki,l(j− 1))2 = ψ0,l(0)δ

∑
j∈Iκi,l

(O
c
i,l(j− 1))2(ki,l(j)− ki,l(j− 1))+ op(δκ

3/2).

(51)

By applying first and second bound of Lemma 1 (which apply also to O
c
t,T (K)) and assumption A3

∑
j∈Iκi,l

(O
c
i,l(j−1))2(ki,l(j)−ki,l(j−1)) =

∫ √
T l
i | log(T

l
i )|

−
√

T l
i | log(T l

i )|

(
O

c
ti,T l

i
(Xte

k)
)2
dk+Op

(√
κ| log(κ)|2(δ2 + δ

√
κ)
)
,

(52)

and we note that since δ ≍ κα with α > 1/2, we have that
√
κ| log(κ)|2(δ2+δ

√
κ) = op(κ

3/2). Now,

note that ∫
|k|>

√
T l
i | log(T l

i )|

(
O

c
ti,T l

i
(Xte

k)
)2
dk = op(κ

3/2). (53)

We thus need to look at
∫
R
(
O

c
ti,T l

i
(Xte

k)
)2
dk. From here, the result in (43) follows by a change of

variable of integration and using the fact that the process σt has càdlàg paths.

In order to establish the result of the theorem, we are left with evaluating the difference

QV⌊ϕκ/∆⌋∆,(l+1)κ−⌊ϕκ/∆⌋∆ −QVϕκ,(l+1−ϕ)κ. We trivially have

QV⌊ϕκ/∆⌋∆,(l+1)κ−⌊ϕκ/∆⌋∆ −QVϕκ,(l+1−ϕ)κ = Op(∆), l = 0, 1. (54)

Taking into account the rate condition in the theorem involving ∆, we get the result of the theorem.

7.2.3 Proof of Theorem 2

Using assumption A1 and the fact that the function η is deterministic, we have

EQ
ϕκ

(∫ κ

ϕκ
ηs/κ−⌊s/κ⌋

(
σ2s + 2

∫
R
(ex − 1− x)νs(dx)

)
ds

)
− κ

∫ 1

ϕ
ηsds

(
σ2ϕκ +

∫
R
(ex − 1− x)νϕκ(dx)

)
= Op(κ

2).

(55)

Similar result holds for QVϕκ,(2−ϕ)κ. From here, the result of the theorem follows.
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