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Abstract

Jumps in asset prices are ubiquitous, yet the apparent high price of jump risk observed em-
pirically is commonly viewed as puzzling. We develop new model-free short-time risk-neutral
variance expansions, allowing us to clearly delineate the importance of jumps in generating
both price and variance risks. We find that simultaneous jumps in the price and the stochas-
tic volatility and/or jump intensity of the market commands a sizeable risk premium. The
existence of “jump leverage” risk premium may be rationalized in the context of equilibrium-
based models by jumps in the conditional moments of the underlying fundamentals and/or
changes in investors’ risk aversion.
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1. Introduction

There is ample empirical evidence for the existence of jumps, or discontinuities, in the
price of the market portfolio. There is also an extensive literature suggesting that the
risk associated with market price jumps is priced differently from the risk associated with
“smooth,” or continuous, price moves.1 Accordingly, jumps also feature prominently in
many equilibrium-based models that seek to rationalize the joint behavior of stock and
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option markets.2 These existing empirical analyses and theoretical models notwithstanding,
the apparent “high” price of market jump risk is widely regarded as puzzling.3

Can this puzzling “high” price of market jump risk be explained by the risk being accom-
panied by other risks that are similarly disliked by investors? Indeed, as widely documented
in the literature, market price jumps are often accompanied by jumps in market volatility,
typically proxied by the VIX index, in the opposite direction.4 We refer to this risk as the
jump leverage effect. Meanwhile, positive jumps in the VIX are clearly disliked by investors,
as evidenced by the pronounced right skew in implied volatilities extracted from short-dated
VIX index options. Correspondingly, one might naturally expect a nontrivial risk premium
for said co-jumps in price and volatility. The goal of this paper is to provide a model-free
theoretical analysis and empirical assessment of this jump leverage risk premium, that is the
risk premium demanded by investors for the jump leverage effect.

The term “leverage effect” is commonly used more generally to refer to the dependence
between return and volatility. Consistent with this usage of the term, we rely on the notion
of quadratic covariation to assess this dependence.5 More specifically, let x denote the
logarithmic market price, and V refer to some proxy for the market spot variance. The
stochastic leverage effect process for the market is then naturally defined by [x,V ]t, where
[·, ·]t denotes the time 0 to time t quadratic covariation. The jump leverage effect that we
are after, as formally defined below, effectively obtains by restricting the calculation of the
quadratic covariation to simultaneous jumps in the price and the volatility proxy. In our
analyses we will rely on the instantaneous counterpart to the VIX volatility index as our V .
This definition of the leverage effect also directly mirrors the definition previously used by
Andersen et al. (2015a) and Kalnina and Xiu (2017) among others. Doing so has the obvious
advantage of allowing for reliable model-free inference procedures. Importantly, however, as
discussed in more detail below, as long as positive jumps in the specific volatility measure
used in the definition, whether defined under the true or the risk neutral probability measure,
are disliked by investors, our key theoretical and empirical results will remain the same.6

We are not the first to explicitly highlight the existence of jump leverage effects, or
the tendency for negative market price jumps to trigger positive jumps in market volatility
and/or market jump intensity, see, e.g., Jacod and Todorov (2010), Todorov and Tauchen

2See, e.g., Eraker and Shaliastovich (2008), Du (2011), Drechsler and Yaron (2011), Wachter (2013),
Dew-Becker et al. (2017), Martin (2017), Seo and Wachter (2019), Schreindorfer (2020), Dew-Becker et al.
(2021) and Eraker and Yang (2022), among others.

3This also echoes longstanding empirical evidence for the “expensiveness” of deep out-of-the-money put
options; see, e.g., Bondarenko (2014b), among others.

4See, e.g., Todorov and Tauchen (2011), Andersen et al. (2015a) and Kalnina and Xiu (2017).
5See, e.g., Wang and Mykland (2014), Andersen et al. (2015a), Aı̈t-Sahalia et al. (2017), and Kalnina and

Xiu (2017).
6Most parametric stochastic volatility models used in prior work also imply a tight connection between

alternate volatility proxies, as illustrated by the specific equilibrium models discussed in Section 5 below.
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(2011), Bandi and Renò (2012), Bandi and Renò (2016), Aı̈t-Sahalia et al. (2017), Jacod
et al. (2017), among others. There is also a large existing literature concerned with the
nonparametric estimation of leverage effects more generally without separately considering
the impact of jumps; see, e.g., Bollerslev et al. (2006), Ait-Sahalia et al. (2013), Wang and
Mykland (2014), Andersen et al. (2015a) and Kalnina and Xiu (2017), among others. Our
paper is perhaps most closely related to the recent work by Orlowski et al. (2023), who
measure the skewness risk premium through the average profits of a trading strategy that
creates exposure to said risk in a model-free manner. However, the pricing implications of
the jump leverage effect and its role in explaining the seemingly “high” price of market jump
risk has not previously been thoroughly studied in the literature. We seek to fill this void
and precise the impact of the jump leverage effect for explaining market jump risk premiums.
In so doing, we find that allowing for volatility jumps and price-volatility co-jumps are both
necessary for properly understanding the propagation of market jump risk and the pricing
thereof.7

Our empirical approach is decidedly non-parametric, relying on the rich information in
short-dated options with different tenors for extracting information about the pricing of the
jump leverage effect.8 Intuitively, while asymmetry in the jump distribution and the jump
leverage effect will both contribute to asymmetry in the distributions of returns over very
short horizons, it is possible to separate the two effects by also looking at slightly longer
horizons and the term structure of skewness, as the leverage effect should manifest more
strongly over slightly longer horizons.9 However, we purposely do not seek to explicitly
model the dynamics of the spot volatility and jump intensities of the price jumps and the
price-volatility co-jumps, as would be required to study the propagation of risks over “long”
horizons. Instead, we rely solely on the non-parametric model-free procedures and focus on
the short-term pricing. This also clearly distinguishes our paper from other existing work.

We begin our analysis by nonparametrically identifying the risk-neutral expectation of
the jump leverage effect. We do so by developing new short-term expansions for two al-
ternative risk-neutral variance measures: (i) the risk-neutral conditional expectation of the
log-price, mirroring the measure used by the Chicago Board Options Exchange (CBOE) in

7By contrast, earlier work based on the estimation of parametric stochastic volatility models and options
with longer tenors than the ones used here often report much smaller economic gains from incorporating
volatility jumps, and jump leverage effects, in the price dynamics; see, e.g., Broadie et al. (2007). Our
results are also in line with the recent study by Beason and Schreindorfer (2022), and the finding that most
existing equilibrium-based models as traditionally calibrated are not consistent with where in the domain of
the return space the equity premium is actually earned.

8Jackwerth and Vilkov (2019) have also recently proposed an estimator for the risk-neutral leverage effect
based on a parametric copula model and options on the S&P 500 and VIX index. By contrast, our method
is fully nonparametric and seeks to estimate the instantaneous jump leverage effect.

9Note, this is distinctly different from the realized skewness of returns over very long horizons analyzed
in the work by Neuberger (2012).
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their computation of the VIX index, and (ii) the risk-neutral conditional log-return variance.
While both of our expansions are linear functions of the return time horizon and its square,
with the leading term in both being equal to the risk-neutral spot variance, the slopes of the
two expansions differ. Moreover, this difference is almost exclusively attributable to the jump
leverage effect, allowing for its nonparametric estimation from actively traded short-dated
S&P 500 index options. Comparing the resulting risk-neutral estimates with their realized
counterparts estimated from high-frequency intraday S&P 500 index returns, in turn reveal
strong compensation for short-term leverage risk, with more than half of the risk premium
in third return moments at a horizon of two weeks attributable to the jump leverage effect.

From a theoretical perspective, this pricing of the jump leverage effect is naturally as-
sociated with instantaneous changes in the investment opportunity set induced by jumps in
the volatility and/or jump intensity. Accordingly, shocks to the stochastic volatility and/or
jump intensity should be priced. Consistent with this thesis, we find that at a horizon of
two weeks, close to one-fifth of the variance risk premium may be directly attributed to com-
pensation for time variation in the stochastic volatility and/or jump intensity, as opposed to
compensation for instantaneous variance risk. Further corroborating the non-trivial pricing
of the jump leverage effect, we find that the term structure of the variance risk premium
substantially flattens for horizons beyond two weeks.10

At a broader level, our new model-free empirical results naturally calls into question the
ability of existing equilibrium-based asset pricing models to explain the observed phenomena.
Focussing on popular consumption-based models that have previously been proposed in the
literature for explaining option prices, two different economic channels that could be at
work stand out: (i) jumps in the consumption volatility combined with preferences for early
resolution of uncertainty by the representative agent in the economy; or (ii) jumps in the
risk-aversion of the representative agent possibly triggered by habit formation and jumps in
the level of consumption. While both of these channels in theory could account for the jump
leverage effect, and the non-trivial pricing thereof, the equilibrium-based models hitherto
studied in the literature are invariably too stylized to warrant direct estimation or any exact
quantification of the effects that we document.

The rest of the paper is organized as follows. We begin in Section 2 with a discussion of our
general theoretical setup and formal definition of the jump leverage effect. Section 3 develops
the short-time expansions for the risk-neutral variance measures that allow us to quantify the
relevant features from options in a model-free manner. Section 4 formally defines the jump
and leverage risk premiums. Section 5 considers possible equilibrium-based foundations for
the existence of jump leverage risk. Section 6 discusses our practical implementation of the
different measures based on short-dated S&P 500 options and high-frequency intraday S&P

10This flattening of the term structure over longer horizons is also in line with the empirical evidence of
Dew-Becker et al. (2017).
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500 returns. Section 7 presents our main empirical findings pertaining to the pricing of
the jump leverage effect, including the results from a series of simple return predictability
regressions directly highlighting the practical relevance of the new measures, together with
additional supportive empirical evidence related to the pricing of VIX index options. All
of the proofs, along with Monte Carlo simulation evidence underscoring the accuracy of the
new variance expansions, are deferred to Appendices.

2. Formal Setup and Definitions

This section formally defines the key features that we are after, including the jump
leverage effect, within a general theoretical setting. To this end, let Xt denote the underlying
price process for the market, with the corresponding log-price process denoted by xt. We
will assume that Xt is defined on the probability space

(
Ω,F , (Ft)t≥0,P

)
, and that the price

obeys the following general Itô semimartingale dynamics

dXt

Xt−
= αtdt+ σtdWt +

∫
R3

(ex − 1)(µ− νP)(dt, dx, dy, dz), (1)

where Wt is a Brownian motion, µ is an integer-valued jump measure counting the jumps
in X with compensator νP(dt, dx, dy, dz), αt denotes the drift capturing the instantaneous
expected return, and σt refers to the instantaneous stochastic volatility. We further assume
that the jump compensator is of the form

νP(dt, dx, dy, dz) = φP
t dtF

P(x, y, z)dxdydz + φ̃P
t dtF̃

P(y, z)ε0(dx)dydz, (2)

for some predictable processes φP
t and φ̃P

t , some functions over the jump sizes F P and F̃ P,
and ε0 denoting the Dirac measure at zero.11 The two separate components of the jump
compensator capture the jump arrival intensity of the jumps that occur in the price, and the
ones that do not, but still trigger jumps in volatility.12 We will further express the volatility
dynamics under P as

dσ2
t = bσt dt+ ησt dWt + η̃σt dW̃t +

∫
R3

y(µ− νP)(dt, dx, dy, dz), (3)

11Defining the jump measure over a three-dimensional jump size space makes it easier to represent the
jumps in the diffusive volatility and jump intensity captured by our measures.

12Our analysis allows for more general forms of νP(dt, dx, dy, dz) in which each triple (x, y, z) might have its
own source of variation. We do not consider such a general representation here in order to help simplify the
exposition. Most asset pricing models used in prior work also satisfy the specification for νP(dt, dx, dy, dz)
considered here.
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for some suitable coefficients bσt , ησt and η̃σt . We will assume that the pricing kernel, denoted
by Λ, evolves according to

dΛt
Λt−

= −λtdWt − λ̃tdW̃t

+

∫
R3

(
φQt F

Q(x, y, z)

φPt F
P(x, y, z)

1{x 6=0} +
φ̃Qt F̃

Q(y, z)

φ̃Pt F̃
P(y, z)

1{x=0} − 1

)
(µ− νP)(dt, dx, dy, dz) +Rt,

(4)

for some processes φQ
t and φ̃Q

t , and functions FQ and F̃Q, and a process R that is orthogonal

(in a martingale sense) to Wt, W̃t and µ. The inclusion of the R process allows for the

possibility that other shocks, in addition to the ones generated by Wt, W̃t and µ, could be
priced, although we do not explicitly consider such shocks here. For some of our analysis,
we also need the dynamics of the φQ

t process under P.13 We will assume that

dφQ
t = bφt dt+ ηφt dWt + η̃φt dW̃t +

∫
R3

z(µ− νP)(dt, dx, dy, dz), (5)

for some suitable coefficients bφt , ηφt and η̃φt .
As shown in Appendix Appendix A, given the pricing kernel defined above, the dynamics

of X under the risk-neutral probability measure, denoted with Q, may be expressed as14

dXt

Xt−
= σtdW

Q
t +

∫
R
(ez − 1)(µ− νQ)(dt, dx, dy, dz), (6)

where WQ
t is a Q-Brownian motion, and νQ denotes the jump compensator of µ under Q

νQ(dt, dx, dy, dz) = [φQ
t dtF

Q(x, y, z)dxdydz + φ̃Q
t dtF̃

Q(y, z)ε0(dx)dydz].

The specification of the pricing kernel in (4), and the resulting risk-neutral distribution for
X, is extremely general. It encompasses essentially all pricing kernels implied by existing
equilibrium models, as well as the pricing kernels used in prior reduced-form no-arbitrage
models. The λt and λ̃t parameters represent the prices attached to the two Brownian mo-
tions Wt and W̃t, respectively, while the price of jump risk is determined by the ratios of
φQ
t F

Q(x, y, z) to φP
t F

P(x, y, z) and φ̃Q
t F̃

Q(y, z) to φ̃P
t F̃

P(y, z) that essentially reweight the

13The process φQt , which drives the risk-neutral jump compensator, contributes to the risk-neutral measures
of variance that we rely on; see, e.g., equations (9) and (14) and the accompanying discussion below.

14Since we will be focussing on short return horizons, for notational simplicity we have set the risk-free
rate and the dividend yield identically equal to zero. The extension to allow for nonzero interest rate and/or
dividend yield is discussed in Appendix Appendix C. This appendix also shows that the effect from ignoring
the risk-free interest rate and the dividend yield in our analysis is small.
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arrival intensity of the jumps under the P and Q measures. In many reduced form represen-
tations and equilibrium-generated pricing kernels, these ratios are either assumed or implied
to be time-invariant.15

To formally define the leverage effect, we need a specific proxy for volatility. Following
Andersen et al. (2015a) and Kalnina and Xiu (2017), we will rely on the instantaneous
counterpart to the VIX volatility index for this purpose. More specifically, the conditional
risk-neutral mean of the log-return over a horizon T ,

VQt,t+T ≡ −
2

T
EQ
t (xt+T − xt) =

1

T
EQ
t

(∫ t+T

t
σ2
sds+ 2

∫ t+T

t

∫
R3

(ex − 1− x)µ(ds, dx, dy, dz)

)
, (7)

where the second equality follows by an application of Itô’s lemma. For T corresponding to
a month, this directly mirrors the variance measure used by the CBOE in the construction
of their popular VIX volatility index. Accordingly, we define the instantaneous counterpart
of the VIX measure as

VQ
t ≡ lim

∆→0
VQ
t,t+∆, (8)

which may also be formally expressed as:

VQ
t = σ2

t + vQφQ
t , vQ = 2

∫
R3

(ex − 1− x)FQ(x, y, z)dxdydz. (9)

As discussed in the introduction, the leverage effect, as commonly defined, measures the
covariation between price and volatility. Correspondingly, for arbitrary processes y and z,
we denote their quadratic covariation by:

[y, z]t = plim
n→∞

bntc∑
i=1

[(yi/n − y(i−1)/n)(zi/n − z(i−1)/n)]. (10)

Given the price, volatility and jump intensity dynamics specified above, it follows that

[x,VQ]t =

∫ t

0

σs(η
σ
s + vQηφs )ds+

∫ t

0

∫
R3

x(y + vQz)µ(ds, dx, dy, dz)

=

∫ t

0

σs(η
σ
s + vQηφs )ds+

∫ t

0

∫
R3

x(y + vQz)νP(ds, dx, dy, dz) + P-martingale

=

∫ t

0

σs(η
σ
s + vQηφs )ds+

∫ t

0

∫
R3

x(y + vQz)νQ(ds, dx, dy, dz) + Q-martingale.

(11)

15As a case in point, in equilibrium models based on a representative agent with Epstein-Zin preferences,
the ratios are constant determined by exponential tilting; see, e.g., Section 4.4 in Eraker and Yang (2022).
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From these expressions, the instantaneous drifts of [x,VQ]t under P and Q are therefore given
by:

LP
t = (ησt + vQηφt )σt +

∫
R3

x(y + vQz)φP
t F

P(x, y, z)dxdydz,

LQ
t = (ησt + vQηφt )σt +

∫
R3

x(y + vQz)φQ
t F

Q(x, y, z)dxdydz.

(12)

The first terms, which are identical across the two expressions, arise from diffusive comove-
ments between the price and the volatility. The second terms, which differ between LP

t and
LQ
t , stem from price-volatility co-jumps. Accordingly, we will refer to LP

t and LQ
t as the in-

stantaneous leverage effect under P and Q, respectively. In the next section, we will develop
a novel model-free method for identifying LQ

t from short-dated options, while, as discussed
in Section 6, inference concerning LP

t can be made from the use of high-frequency returns.
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Figure 1: The left panel shows the SPY at a 5-minute intraday frequency for the week of March 4 - 11, 2020.
The right plot shows the total weekly realized variation based on the summation of the squared 5-minute
returns (solid line) and the realized jump variation (dashed line) constructed as the difference between the
total variation and the bipower variation. The week of March 4 - 11, 2020 corresponds to week 0. Both of
the variation measures are reported in annualized volatility units.

To help fix ideas and directly illustrate the practical importance of leverage effects through
jumps, the left panel in Figure 1 shows the intraday prices for the S&P 500 market index at
a 5-minute frequency for the week of March 4 - 11, 2020. Due to heightened fears about the
global pandemic, the index dropped by more than 10% for that week as a whole. Meanwhile,
even though the single large overnight decline on March 6 clearly stands out, there were
also many other smaller intraday price jumps during that week. Consistent with the jump
leverage effect, most of these smaller price jumps are clearly followed by heightened volatility.
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This is further corroborated by the dynamics of the weekly realized volatility
∫ t+T
t

σ2
sds +∫ t+T

t

∫
R3 x

2µ(ds, dx, dy, dz) (solid line) and its jump component
∫ t+T
t

∫
R3 x

2µ(ds, dx, dy, dz)
(dashed line) plotted in the right panel in Figure 1. While the realized jump risk for the
week as a whole (indicated by the dashed line at week 0) did indeed increase compared to
the week before (indicated by the dashed line at week -1), so did the total realized volatility
inclusive of the diffusive price risk (indicated by the solid line).16 In other words, negative
jumps in the market index tend to induce positive jumps in the aggregate market volatility
and the intensity of future jump arrivals.17

Further supporting the prominence of the jump leverage effect, the term structure of the
unconditional skewness of high-frequency returns also exhibit a strong downward sloping
pattern. In particular, while the skewness of the one-minute S&P 500 returns over our
full 2007-2020 sample period is slightly positive at 0.26, the skewness of the daily returns
is decidedly negative at −0.53. Put differently, the jump leverage effect hardly affects the
skewness of returns over ultra short horizons, such as one-minute, but it clearly affects the
skewness of the cumulative intraday returns over longer, say daily, horizons.

Before turning to the new expansions that we use for more formally identifying the jump
leverage effect, a few observations are in order. By using VQ in our definition of the instan-
taneous leverage effect and the risks observed over very short horizons, the volatility due to
jumps is assessed under the risk-neutral probability measure.18 As shown below, this in turn
allows for the identification of the LQ

t jump measure from S&P 500 index options in a model-
free manner without having to impose any restrictions on the form of the jumps. Relatedly,
earlier parametric work has primarily been based on models with finite activity jumps, for

which the jump part of LP
t is naturally measured by 1

∆
lim
∆→0

EP
t

(∑
τ∈(t,t+∆) CovP

τ−(∆xτ ,∆VQ
τ )
)

,

for τ being a stopping time associated with a jump, with an analogous expression for LQ
t .

However, such measures are not well defined for models with infinite activity jumps covered
by our general model-free theoretical framework and empirical analyses.

16The total weekly realized variation measures are based on the summation of the squared 5-minute returns
over the week. The realized jump variation measures are constructed by subtracting the corresponding jump-
robust bipower variation of Barndorff-Nielsen and Shephard (2004).

17These observations are also broadly consistent with the high-frequency-based parametric model estimates
in Bates (2019), and the finding that large daily market moves typically represent the accumulation of a
series of self-exciting intradaily volatility-price co-jumps; see also the more recent estimates in Ewald and
Zou (2021).

18As previously noted, earlier nonparametric studies have similarly relied on risk-neutral variance measures
in defining the leverage effect, see, e.g., Andersen et al. (2015a) and Kalnina and Xiu (2017).
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3. Expansions of Risk-Neutral Variance Measures

In this section, we consider short-time expansions of two alternative risk-neutral variance
measures. Namely, the VQ

t,t+T measure introduced in the previous section, and the standard
conditional risk-neutral return variance. The difference between the two expansions in turn
allows us to identify and nonparametrically estimate the risk-neutral jump leverage effect,
LQ
t , from short-dated options.

The conditional risk-neutral variance of the log-price is naturally defined as

V Q
t,t+T ≡

1

T
VarQt (xt+T − xt) . (13)

The instantaneous counterpart of V Q
t,t+T , say V Q

t , may alternatively be expressed in terms of
the risk-neutral asset characteristics as

V Q
t = σ2

t + vQφQ
t , vQ =

∫
R3

x2FQ(x, y, z)dxdydz. (14)

As the expressions in (9) and (14) make clear, the instantaneous variance measures V Q
t and

VQ
t only depend on the Q probability measure through their second jump components. As

such, the difference between the two measures may be entirely explained by jumps,

V Q
t − VQ

t =

∫
R3

[x2 − 2(ex − 1− x)]FQ(x, y, z)dxdydz ≈ −1

3

∫
R3

x3FQ(x, y, z)dxdydz, (15)

that is the (scaled) Q third moment of market price jumps.
Over ultra short return horizons, or T ≈ 0, the V Q

t,t+T and VQ
t,t+T variance measures may

naturally be used as proxies for the instantaneous variance measures V Q
t and VQ

t , respectively.
However, for longer return horizons, or T > 0, mean reversion in volatility and jump intensity
will both contribute nontrivially to V Q

t,t+T and VQ
t,t+T , thus rendering the difference between

the two measures more difficult to interpret.19 In order to formally account for this, it is
useful to define the instantaneous drift term of any arbitrary process z evaluated under Q as

mQ
t (z) ≡ lim

∆→0

EQ
t (zt+∆ − zt)

∆
. (16)

Of course, if the process z is stationary, then EQ(mQ
t (z)) = 0. Meanwhile, any risk premium

for variation in z will generally imply that EP(mQ
t (z)) 6= 0, with the sign being positive

19The connection between the V Q
t,t+T and VQ

t,t+T variance measures has previously been used by Du and
Kapadia (2012) in the construction of an options-based jump index, while Bondarenko (2014a) has previously
analyzed the connection between the two measures in regards to variance trading and replication strategies.
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(negative) if the specific variation in z is disliked (liked) by investors.
Now, utilizing the above notation, it is possible to show that

VQ
t,t+T = VQ

t +
T

2
×mQ

t (VQ
t ) + T 2 × Ct +Op(T

3), T ↓ 0, (17)

where Ct denotes some Ft-adapted random variable.20 Notably, the leading term in the
expansion, which does not depend upon T , is given by the instantaneous risk-neutral variance
VQ
t , while the slope of the expansion, when viewed as a function of T , is solely determined

by the mean reversion of VQ
t . The random variable Ct that dictates the T 2 term depends in

a complicated way on various features of the volatility and jump intensity dynamics. This
term is numerically small and we treat it as a nuisance parameter in what follows. The
analogous expansion for the V Q

t,t+T variance measure is given by:

V Q
t,t+T = V Q

t +
T

2
×
(
mQ
t (V Q

t )− LQ
t

)
+ T 2 × Ct +Op(T

3), T ↓ 0, (18)

where again Ct denotes some numerically small Ft-adapted random variable.
The expressions for VQ

t,t+T and V Q
t,t+T in (17) and (18) are obviously very similar except

for one important distinction, namely the presence of the LQ
t leverage term formally defined

in (12) in the slope of the latter expansion. There are at least two intuitive reasons for this
important “extra” term, stemming from the co-movements between the conditional mean
and the martingale component of the log-price. Firstly, V Q

t,t+T is defined as a centered second

moment, while VQ
t,t+T is not. Secondly, LQ

t is computed under the Q measure, and as discussed
more formally in Appendix Appendix B, considerations of no-arbitrage explicitly restricts
the drift term of the log-price under the risk-neutral measure to be a function of the jump
intensity and the diffusive volatility. By comparison, there is no such restriction under the
P measure.

Meanwhile, since the leverage effect and the dependence between price and variance
innovations is generally found to be negative, the LQ

t term will tend to heighten the term
structure slope of V Q

t,t+T compared to the slope of VQ
t,t+T . In fact, since mQ

t (V Q
t )−mQ

t (VQ
t ) is

likely to be small in absolute value, as it depends on the third moment of jumps, the term
structure slope of V Q

t,t+T − V
Q
t,t+T will predominantly be determined by the −LQ

t leverage
term.

To more directly illustrate these features, Figure 2 plots the (normalized to unity at
the shortest horizon) term structures of the risk-neutral variance (VQ

t,t+T ) and risk-neutral

third moment (3(V Q
t,t+T −V

Q
t,t+T )) calculated from short-dated S&P 500 options on two select

20Formal proofs of this expansion and the expansion presented below are provided in Appendix Appendix
B.

11



4 4.5 5 5.5 6 6.5 7

Time to Matirity (Business Days)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

4 4.5 5 5.5 6 6.5 7

Time to Matirity (Business Days)

1

1.5

2

2.5

3

3.5

3 3.5 4 4.5 5 5.5 6

Time to Matirity (Business Days)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

3 3.5 4 4.5 5 5.5 6

Time to Matirity (Business Days)

1

1.1

1.2

1.3

1.4

1.5

1.6

Figure 2: The left two panels show the second risk neutral moments calculated from short-dated S&P 500
options for different horizons on February 4, 2019 (top) and March 26, 2020 (bottom). The right two panels
show the third risk neutral moments on the same two days. For easy of comparisons, the moments at the
shortest horizons are normalized to unity.

days: February 4, 2019, a day with relatively low volatility, and March 26, 2020, a day
with relatively high volatility.21 Since volatility is well-known to be mean reverting, the
risk-neutral variance term structure is naturally upward sloping on the low volatility day
and downward sloping on the high volatility day due to mQ

t (VQ
t ) being positive and negative,

respectively. By contrast, the term structure for the risk-neutral third moment is strongly
upward sloping on both days. Looking across other high and low volatility days reveal
the same general pattern: the risk-neutral third moment term structure is almost always
upward sloping. This finding is difficult to reconcile with mean reversion in state variables,
including the volatility and/or jump intensity, as one would expect these effects to manifest
in opposite directions on high and low volatility days. Instead, the systematic upward sloping
term structure for the risk-neutral third moment again underscores the importance of the
jump leverage effect and the −LQ

t term.22

21The estimates for the variance and the third moment shown in the figure are based on the expressions
for V̂Q

t,t+T and 3(V̂ Q
t,t+T − V̂

Q
t,t+T ) formally defined in equations (41) and (42) below.

22Relatedly, Bakshi et al. (2003), Kozhan et al. (2013) and Schneider et al. (2020) have previously em-
phasized the nontrivial pricing of skewness and coskewness risk embedded in options. The risk-neutral third
moment is, of course, also formally affected by the total leverage effect; i.e., the covariation between price

12



Before considering our formal definitions of the jump and leverage risk premiums, to help
further intuit the above results, it is instructive to more explicitly consider how the different
features of the price process manifest in the new asymptotic expansions.23 Specifically,
denote the martingale component of the log-price process by

Mt =

∫ t

0

σsdW
Q
s +

∫ t

0

∫
R3

x(µ− νQ)(ds, dx, dy, dz). (19)

Given the dynamics of x under Q, and recalling our expressions for the two spot variance
measures V Q

t and VQ
t in (9), it follows by an application of Itô’s formula that

xt = x0 −
1

2

∫ t

0

VQ
s ds+Mt. (20)

From there, it follows that

T × V Q
t,t+T = EQ

t

(∫ t+T

t

σ2
sds+

∫ t+T

t

∫
R3

x2νQ(ds, dx, dy, dz)

)
− CovQ

t

(
Mt+T −Mt,

∫ t+T

t

VQ
s ds

)
+

1

4
VarQt

(∫ t+T

t

VQ
s ds

)
.

(21)

Comparing the above expression with that for T ×VQ
t,t+T in equation (7), reveals two “new”

terms (the second and third) on the right-hand side of the expression for T × V Q
t,t+T . The

third term is small, as shown in the technical Appendix Appendix B. The second term
accounts for the conditional covariance between the martingale increment of the log-price
and an integrated measure of variance, i.e., a leverage effect. It is possible to expand this
term by pretending that volatility and jump intensity remain constant over the short time

and volatility shocks in general. Meanwhile, as argued below it appears impossible to reconcile the empir-
ically very steep short-term slope observed in Figure 2 without explicitly allowing for pricing of the jump
leverage effect. The additional results for the parametric double-jump stochastic volatility model discussed
in Appendix Appendix D also further corroborate this.

23At the same time, it is important to stress, that the new expansion results are essentially model-free in
the sense that they only require regularity type conditions for the P and Q dynamics, and correspondingly
for the pricing kernel. These regularity type conditions are automatically satisfied if the price is embedded
in a SDE of potentially larger dimension, as is the case for, e.g., the popular parametric affine jump-diffusion
class of models of Duffie et al. (2000) discussed further in Appendix Appendix D below.
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interval [t, t+ T ], leading to:

CovQ
t

(
Mt+T −Mt,

∫ t+T

t

VQ
s ds

)
=

∫ t+T

t

CovQ
t

(
Mt+s −Mt,VQ

s

)
ds

=

∫ t+T

t

sLQ
t ds+ Ct × T 3 =

T

2
LQ
t + Ct × T 3.

(22)

Accordingly, the three different terms on the right-hand-side in (21) may be expressed as

1

T
EQ
t

(∫ t+T

t
σ2
sds+

∫ t+T

t

∫
R3

x(µ− νQ)(ds, dx, dy, dz)

)
= V Q

t +
T

2
×mQ

t (V Q
t )+T 2×Ct+Op(T

3),

1

T
CovQ

t

(
Mt+T −Mt,

∫ t+T

t
VQs ds

)
=
T

2
LQ
t + T 2 × Ct +Op(T

3),

1

T
VarQt

(∫ t+T

t
VQs ds

)
= T 2 × Ct +Op(T

3),

where Ct is a nuisance Ft-adapted random variable that can differ across the above equations.
Combining these three expansions, in turn provides the expression for V Q

t,t+T in (18).

4. Market Jump and Leverage Risk Premiums

The risk-neutral measures defined in connection with the expansions discussed in the
previous section naturally suggest the definition of corresponding risk premiums.24

To begin, the instantaneous variance risk premiums for the two different variance mea-
sures may straightforwardly be defined by:

IV RPt ≡ V Q
t − V P

t , IVRP t ≡ VQ
t − VP

t , (23)

where V P
t and VP

t denote the P counterparts to the V Q
t and VQ

t instantaneous variances. Since
the diffusive spot volatility σ2

t must be identical under the P and Q measures in order to
prevent arbitrage opportunities, the IV RPt and IVRP t risk premiums are solely determined
by the pricing of jumps. However, that is not the case for the corresponding variance risk
premiums defined over non-trivial time intervals T > 0,

V RPt,t+T ≡ V Q
t,t+T − V

P
t,t+T , VRP t,t+T ≡ VQ

t,t+T − V
P
t,t+T . (24)

The second of these two measures, in particular, has been extensively studied empirically in

24To help fix ideas, Appendix Appendix D further discusses how the different risk premiums defined below
manifest in the context of the parametric double-jump stochastic volatility model of Duffie et al. (2000).
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the recent literature, typically with T set to one-month mimicking the horizon of the popular
VIX index used in place of VQ

t,t+T .25

To help more formally assess what drives the V RPt,t+T and VRP t,t+T measures over
short horizons T , it is instructive to employ the expansions developed in the previous section.
Doing so, we obtain the following two decompositions:

V RPt,t+T = IV RPt +
T

2
×
(
mQ
t (V Q

t )−mP
t (V

Q
t )
)
− T

2
×
(
LQ
t − LP

t

)
+Op(T

2), (25)

and

VRP t,t+T = IVRP t +
T

2
×
(
mQ
t (VQ

t )−mP
t (V

Q
t )
)

+Op(T
2). (26)

As previously noted, the leading component in V RPt,t+T (resp. VRP t,t+T ), that is the
instantaneous variance risk premium IV RPt (resp. IVRP t), is solely determined by asset
price jumps. On the other hand, the second mQ

t (V Q
t ) −mP

t (V
Q
t ) (resp. mQ

t (VQ
t ) −mP

t (V
Q
t ))

term, which depends linearly on the horizon T , reflects compensation demanded by investors
for any changes in the investment opportunity set. In the context of the underlying general
Itô semimartingale in (1), and its risk-neutral counterpart in (6), that is temporal variation
in σ2

t and/or changes in the intensity of the jumps. More specifically, the volatility drift term
under the true probability measure is given by:26

mP
t (V

Q
t ) = bσt + vQbφt . (27)

By comparison, following the derivations in Appendix Appendix A, the pricing kernel implies
the following volatility drift under the risk-neutral probability measure:

mQ
t (VQ

t ) = mP
t (V

Q
t ) + λt(η

σ
t + vQηφt ) + λ̃t(η̃

σ
t + vQη̃φt )

+

∫
R3

(y + vQz)(φQ
t F

Q(x, y, z)− φP
t F

P(x, y, z))dxdydz

+

∫
R2

(y + vQz)(φ̃Q
t F̃

Q(y, z)− φ̃P
t F̃

P(y, z))dydz.

(28)

Unlike the instantaneous variance risk premium in (23), which solely depends on price jumps,
the difference mQ

t (VQ
t ) − mP

t (V
Q
t ) manifests the pricing of all the different types of shocks

to volatility and jump intensity. The first two terms in the expression in the first line in
equation (28), in particular, stem from the pricing of diffusive risk in diffusive volatility and
jump intensity. This includes shocks that directly affect the price (in the form of Wt) as well

25See, e.g., Bollerslev et al. (2009), Drechsler and Yaron (2011) and Bekaert and Hoerova (2014), along
with many subsequent studies.

26Note that to ensure stationarity of the volatility process, it must be the case that EP(bσt ) = EP(bφt ) = 0.
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as shocks that do not (in the form of W̃t). The terms in the last two lines in (28) are due to
the pricing of jumps in volatility and jump intensity, which either arrive together with the
price jumps (second line) or independently (last line).

The decomposition for V RPt,t+T contains an additional linear-in-T component specifi-
cally due to the compensation for leverage risk. We will refer to this “extra” term as the
instantaneous leverage risk premium in the sequel, or

ILRP t ≡ LQ
t − LP

t . (29)

In parallel to the instantaneous variance risk premiums, which are solely determined by
jumps and the pricing thereof, ILRP t is solely determined by the jump leverage effect and
the pricing thereof, that is the risk premium for co-jumps between the log-price x and VQ.
Indeed, given the definitions of LQ

t and LP
t in Section 2, we have

LQ
t − LP

t =

∫
R3

x(y + vQz)(φQ
t F

Q(x, y, z)− φP
t F

P(x, y, z))dxdydz. (30)

Empirically, we would expect ILRP t to be negative and thus contribute positively to the
variance risk premium V RPt,t+T .

It is useful to compare the part of the mQ
t (VQ

t ) − mP
t (V

Q
t ) risk premium attributed to

the pricing of jumps with the instantaneous leverage risk premium. Even though the two
expressions look similar, the mechanisms underlying the pricing of jumps are very different.
In particular, while mQ

t (VQ
t ) − mP

t (V
Q
t ) is generated by the level of jump risk in diffusive

volatility and jump intensity, LQ
t −LP

t is generated by comovements between the price and the
volatility and/or jump intensity. Hence, in the absence of price and volatility co-jumps, as is
the case in many asset pricing models as discussed further below, the instantaneous leverage
risk premium will be identically equal to zero. At the same time, individual jumps in the
volatility and/or the jump intensity may give rise to non-trivial volatility risk premiums, i.e.,
the third line in (28) might be different from zero. Of course, if

∫
R3 x(y+vQz)(φQ

t F
Q(x, y, z)−

φP
t F

P(x, y, z))dxdydz 6= 0, then typically
∫
R3(y+vQz)(φQ

t F
Q(x, y, z)−φP

t F
P(x, y, z))dxdydz 6=

0 as well. That is, price-volatility cojumps will contribute to the mQ
t (VQ

t ) − mP
t (V

Q
t ) risk

premium.
In addition to the above expressions for the instantaneous variance and leverage risk

premiums, as shown in Appendix Appendix A, the pricing kernel also naturally implies the
following expression for the instantaneous equity risk premium:

αt = −λtσt +

∫
R
(ex − 1)(φP

t F
P(x, y, z)− φQ

t F
Q(x, y, z))dxdydz. (31)

As this expression makes clear, in contrast to the instantaneous variance and leverage risk
premiums, both of which are solely driven by jumps, diffusive and jump risks both contribute
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to the instantaneous equity risk premium. Intuitively, diffusive risks are of second order
importance for higher order moments, like variances and covariances, over short horizons.
At the same time, the above expression also makes it clear that the instantaneous equity,
leverage, and variance risk premiums are all related through compensation for price jump
risk. Ceteris paribus a higher (lower) instantaneous leverage risk premium should naturally
result in a higher (lower) equity risk premium. Similarly, a higher (lower) instantaneous
variance risk premium should naturally result in a higher (lower) equity risk premium.

More specifically, suppose that φP
t = φQ

t , as is the case, for example, in equilibrium
models with a representative agent equipped with Epstein-Zin preferences. In this situation,
the components of the instantaneous equity, leverage and variance risk premiums due to
the compensation for jump risk are all multiples of φP

t , leading to perfect linear dependence
between the three components. A similar type of perfect dependence also occurs if F P = FQ,
leading to the components of the instantaneous equity, leverage, and variance risk premiums
due to the compensation for jump risk all being multiples of φP

t −φ
Q
t . We will briefly return to

these connections in some of our empirical analyses below. At the same time, the connection
between mQ

t (VQ
t ) −mP

t (V
Q
t ) and the instantaneous equity risk premium is less clear, as the

former includes the potential compensation for diffusive and jump volatility risks that are
independent from the diffusive and jump price risks in (31).

5. Market Jump and Leverage Risk Premiums in Equilibrium Settings

The expressions derived in the previous section are completely general and model-free.
Endowing the general setup with more specific economic structure, this section illustrates
how jump leverage risk can be generated endogenously within the context of certain consumption-
based equilibrium asset pricing models, while other equilibrium-based models imply that the
jump leverage effect is nonexistent. To keep the presentation manageable, we restrict our
attention to models that have previously been used in the literature to explain option prices.
At the same time, we caution that consumption-based equilibrium models have generally
not been developed to speak to empirical effects over the frequencies studied here.

We begin by considering the broad class of continuous-time jump-models proposed by
Wachter (2013), Seo and Wachter (2019), and Eraker and Yang (2022); see also Eraker
and Shaliastovich (2008) and Drechsler and Yaron (2011) who similarly consider equilibrium
models with jumps in the consumption dynamics. In all of these models, the representative
agent is endowed with Epstein-Zin preferences and faces the following consumption dynamics

dCt
Ct−

= µdt+ σctdB
c
t +

∫
R2

(ex − 1)µ(dt, dx, dy),

d(σct )
2 = κv(θv − (σct )

2)dt+ σvσ
c
tdB

v
t ,

dλct = κλ(θλ − λct)dt+ σλλ
c
tdB

λ
t ,

(32)
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where Bc
t , B

v
t and Bλ

t denote three independent Brownian motions, and µ is an integer-
valued measure that counts the jumps in consumption and its volatility with compensator
λctdtν(dx, dy) for some function ν that captures the distribution of the jumps. This con-
sumption dynamics obviously comprises several structural shocks: diffusive or jump shocks
to the level of consumption, diffusive or jump shocks to consumption volatility, and diffusive
shocks to the intensity of jumps in consumption and/or consumption volatility. However as
a distinguishing feature, the model of Eraker and Yang (2022) explicitly rules out jumps in
the level of consumption, while the models studied by Wachter (2013) and Seo and Wachter
(2019) fix σct to be constant and thus rule out jumps in consumption volatility.

Meanwhile, all of the different shocks in (32) may in theory affect the equilibrium asset
price Xt, while only shocks to consumption volatility and the jump intensity affect the
stochastic volatility VQ

t . That is

Xt = F (lnCt, σ
C
t , λ

C
t ), VQ

t = G(σCt , λ
C
t ), (33)

for some functions F and G that depend on the model parameters. Correspondingly, the
jumps in the equilibrium price and the spot risk-neutral volatility may be expressed succinctly
as:

∆Xt = F
(
ln(Ct− + ∆Ct), σ

c
t− + ∆σt, λ

c
t−
)
− F

(
lnCt−, σ

c
t−, λ

c
t−
)
,

∆VQ
t = G(σct− + ∆σt, λ

c
t−)−G(σct−, λ

c
t−).

(34)

In other words, jumps in the equilibrium price level Xt are either due to jumps in the level
of consumption, or jumps in the consumption volatility, while jumps in the risk-neutral
spot volatility measure VQ

t are only triggered by jumps in the consumption volatility. In
particular, jumps in the level of consumption do not trigger jumps in the stochastic volatility
of the price. Accordingly, in this setting the jump leverage effect can only be generated by
consumption volatility jumps. As a result, while the model of Eraker and Yang (2022) is in
theory consistent with the jump leverage effect, the earlier models of Wachter (2013) and
Seo and Wachter (2019) do not accommodate this effect.

As a different class of consumption-based equilibrium models, we next describe the impli-
cations for jump leverage risk in a setting in which the representative agent has external-habit
type preferences. This class of models was originally introduced and analyzed by Campbell
and Cochrane (1999) and Menzly et al. (2004). However, we more closely follow the setup
of Du (2011), who has previously used a habit-based model in the context of option pricing.
The aggregate consumption in that model is determined by:

dCt
Ct−

= µdt+ σcdBc
t +

∫
R

(ex − 1)µ(dt, dx), (35)

where µ is a standard Poisson measure. In contrast to the dynamic consumption process
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defined in (32), the process in (35) assumes that consumption growth is i.i.d. Accordingly,
the temporal variation in the model-implied risk premiums is instead generated by temporal
variation in the representative agent’s degree of risk-aversion induced by the time-varying
habits. The resulting dynamics for the agent’s instantaneous risk-aversion coefficient is
described by:

dγt
γt−

= µγ(γt−)dt+ σγ(γt−)dBc
t +

∫
R

h(γt−, x)µ(dt, dx), (36)

for some functions µγ, σγ and h. In other words, shocks to risk aversion are driven by shocks
to consumption. With the two state variables in the model being the level of consumption
and the level of risk aversion, the equilibrium price and its volatility may be written as:

Xt = F (lnCt, γt) VQ
t = G(γt), (37)

for some functions F and G, the exact forms of which again depend on the specific model
parameters. The jumps in the price and the volatility may thus be succinctly expressed as:

∆Xt = F (ln(Ct− + ∆Ct), γt− + ∆γt)− F (lnCt−, γt−) ,

∆VQ
t = G(γt− + ∆γt)−G(γt−).

(38)

Since jumps in risk-aversion are triggered by jumps in consumption, the model therefore
naturally accounts for jump leverage effects.

Intuitively, even though the jump structure for the consumption dynamics in (35) is
similar to that of the models of Wachter (2013) and Seo and Wachter (2019), in the sense
that jumps only manifest in the level of consumption and not in its volatility, the temporal
variation in the degree of risk-aversion induced by the habit formation implies that jumps not
only affect the price level, but also the spot price volatility. In that sense the model mirrors
the model of Eraker and Yang (2022). However, the economic mechanisms underlying the
jump leverage effect is still very different between the two types of models: in the model of
Eraker and Yang (2022) the jump leverage effect arises directly from jumps in consumption
volatility, while in the model of Du (2011) the effect occurs implicitly because of jumps in the
level of risk aversion. It would be interesting to further calibrate the models and quantify
the magnitudes of these different channels to help precise the mechanisms that drive the
empirically “large” jump leverage risk premium documented below. We leave further work
along these lines for future research. Instead, we turn next to a discussion of our model-free
estimation of the different risk premiums.

6. Feasible Measures

Our feasible counterparts to the risk premium quantities defined in Section 4 rely on
portfolios of short-dated options to estimate the Q risk-neutral quantities and high-frequency
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returns to proxy the corresponding P risk measures.

6.1. Option-Based Risk Measures

Let Ot,T (K) denote the time t price of a European-style out-of-the-money option expiring
at time t+ T with strike K. With the risk-free rate and the dividend yield both set to zero,
the general results in Bakshi and Madan (2000) and Carr and Madan (2001) then provide
the following two option spanning results:

EQ
t (xt+T − xt)2 = 2

∫ ∞
0

(
1− log

(
K

Xt

))
Ot,T (K)

K2
dK, (39)

and

EQ
t (xt+T − xt) = −

∫ ∞
0

Ot,T (K)

K2
dK. (40)

In practice, of course, we do not observe options on a continuum of strikes. Instead let
the discrete grid of Nt,T option prices observed at time t be denoted by K1 < .... < KNt,T ,
where for simplicity we suppress the dependence of the strike grid on the pair (t, T ). The

actually observed option prices Ôt,T (Kj) are also subject to pricing errors, say Ôt,T (Kj) =
Ot,T (Kj) + εt,T (j) for j = 1, ..., Nt,T . Following standard practice in the option pricing
literature, we will assume that the εt,T (j) observation errors exhibit only weak spatial and
temporal dependencies, and hence can be “averaged out” in the estimation.

Using the observed option prices and the spanning results in (39) and (40), we construct
the following estimates for V Q

t,t+T and VQ
t,t+T :

V̂ Q
t,t+T =

2

T

Nt,T∑
j=2

(
1− log

(
Kj−1

Xt

))
Ôt,T (Kj−1)

K2
j−1

(Kj −Kj−1)− T

4

(
V̂Q
t,t+T

)2

, (41)

V̂Q
t,t+T =

2

T

Nt,T∑
j=2

Ôt,T (Kj−1)

K2
j−1

(Kj −Kj−1). (42)

Guided by the expansions for the risk-neutral variance measures in (17) and (18), we then
run the following linear regressions at each point time using all of the available tenors:

V̂ Q
t,t+Tj

= bt,0 + bt,1Tj + bt,2T
2
j + εt,Tj , V̂Q

t,t+Tj
= βt,0 + βt,1Tj + βt,2T

2
j + εt,Tj . (43)

Denoting the resulting OLS estimates by b̂t,i and β̂t,i, respectively, our risk-neutral variance
estimates are then simply defined by:

V̂ Q
t = b̂t,0, V̂Q

t = β̂t,0. (44)
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In lieu of (17) and (18), LQ
t may seemingly be estimated by twice the difference in the

estimated slopes from the two regressions in (43). However, this estimator will be biased due
to the presence of the risk-neutral instantaneous drift mQ

t (V Q
t −VQ

t ) and the mean reversion
in
∫
R(z2 − 2(ez − 1− z))νQt (dz). Even though this bias will typically be much smaller than∫

R z
2νQt (dz), if the mean reversion in the jump intensity and the diffusive volatility manifest

in the same direction, we can easily correct for the bias. In particular, utilizing

ŝt =

∑kn
i=1 |V̂

Q
t−i/n − V̂

Q
t−(i+1)/n|∑kn

i=1 |V̂
Q
t−i/n − V̂

Q
t−(i+1)/n|

, (45)

based on a “small” window of kn variance increments, we obtain the following simple bias-
corrected leverage estimator:

L̂Q
t = −2

(
b̂t,1 − ŝtβ̂t,1

)
. (46)

The Monte Carlo simulation results reported in Appendix Appendix E underscore the
accuracy of the resulting V̂ Q

t , V̂Q
t and L̂Q

t risk-neutral risk estimators in an empirically realistic
setting, including the presence of εt,T (j) option price observation errors subject to spatial
dependencies, as well as rounding and randomly missing observations.

We turn next to a discussion of our corresponding return-based risk estimates.

6.2. Return-Based Risk Measures

We assume that market prices and options data are sampled n times during the unit time
interval. Relying on a window consisting of kn return and variance increments prior to time
t, we define our realized variance and leverage estimators as

R̂V t =
n

kn

kn∑
i=1

(xt−i/n − xt−(i+1)/n)2, (47)

and

R̂Lt =
n

kn

kn∑
i=1

[(xt−i/n − xt−(i+1)/n)(V̂Q
t−i/n − V̂

Q
t−(i+1)/n)], (48)

respectively. Under standard conditions, R̂V t and R̂Lt consistently, for n → ∞, estimate
QVt−kn/n,t and QLt−kn/n,t, formally defined as the quadratic variation of x and the quadratic
covariation of x and VQ, that is

QVt−kn/n,t ≡
n

kn
([x, x]t − [x, x]t−kn/n), (49)

21



and
QLt−kn/n,t ≡

n

kn
([x,VQ]t − [x,VQ]t−kn/n), (50)

respectively. Moreover, if kn → ∞ and kn/n → 0, the QVt−kn/n,t and QLt−kn/n,t estimands
naturally converge to their spot counterparts.

6.3. Feasible Realized Risk Premium Estimates

Armed with the above risk-neutral and realized risk estimates, our feasible versions of
IV RPt and ILRPt, defined in (23) and (29), are simply obtained as

ÎV RP t ≡ V̂ Q
t − R̂V t, (51)

and
ÎLRP t ≡ L̂Q

t − R̂Lt, (52)

respectively. These estimators of the instantaneous variance and leverage risk premiums
purposely rely on the easy-to-calculate model-free realized R̂V t and R̂Lt measures, rather
than their conditional expectations, VP

t and LP
t . Practical estimation of the conditional ex-

pectations would necessitate additional modeling assumptions pertaining to the dynamics
of R̂V t and R̂Lt. Importantly, however, relying on the realized values instead of their con-
ditional expectations, does not alter any of our main conclusions and average risk premium
estimates. In particular, ignoring the (negligible) contribution stemming from estimation
error, it readily follows that

ÎV RP t = IV RPt + P-martingale, ÎLRP t = ILRPt + P-martingale,

where the P-martingale terms reflect the differences between the respective realizations of
the discrete-time stochastic processes and their conditional expectations. Although these
P-martingale terms are not necessarily “small” numerically, they are by definition mean-zero
and unpredictable, and hence do not affect the expected values, nor the dynamic dependen-
cies, of the estimated risk premiums.

7. Empirical Evidence for Market Jump and Leverage Risk Premiums

We begin the discussion of our main empirical findings with an account of the data
underlying our results. We then provide a summary of the daily risk estimates, before finally
considering the implications of our model-free estimates for the pricing of jumps and jump
leverage risk in particular.

7.1. Data

Our empirical analyses is based on high-frequency returns and option data for the S&P
500 index spanning the period 2007-2020. The options are European style and are traded
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on the CBOE. We obtained the option data from the CBOE Data Shop. We rely on high-
frequency price records of the SPY exchange traded fund (ETF) designed to track the S&P
500 index. The SPY data is obtained from the TAQ database. We record the SPY and
options prices at a 5-minute frequency during the trading day, starting at 9.35 EST and
ending at 15.55 EST, resulting in a total of 77 price records per day.

We apply standard filters and cleaning procedures to the data. In so doing, we remove
any days for which the number of SPY zero returns exceeds twenty percent of the total daily
number of high-frequency returns. This mostly eliminates trading days around holidays. We
also remove the four 15-minute periods on March 9, 12, 16 and 18, 2020, where trading was
halted due to market-wide circuit breakers. We take the option mid-quotes as our option
price observations. We remove any options with zero bids and options for which the ratio of
the ask relative to the bid exceeds ten. We also remove date and maturity pairs for which the
minimum of the ratio of the out-of-the-money option price relative to its strike exceeds five
percent of the maximum of this ratio. We further remove date and maturity pairs for which
the maximum strike gap around the money exceeds twenty. Finally, to avoid anomalous
results associated with large event risks, we also exclude any options for which the horizons
span the dates of the 2016 Brexit and 2020 U.S. Presidential elections.

For the actual estimation, at each point in time we use the first two available shortest
maturity options with at least three business days to expiration. We then keep adding
options with tenors up until twelve business days. If on a given day the number of available
tenors is just two, or if the gap between the shortest and longest available tenor is less than
six business days, we drop the squared tenor term in the regressions in (43) in order to avoid
any issues with multicollinearity (this mostly happens in the early part of the sample). Also,
if at a given point in time, any of the estimated intercept terms in (43) are negative, we
simply remove those observations from the analysis (again this rarely happens, and when it
does, it is almost always occur around holidays).

The above choice of option tenors aims at striking a balance between bias and variance in
the estimation. Since the expansion results in (17) and (18) explicitly pertain to small T , to
reduce the bias ideally we would like to only use the shortest possible tenors on a given day.
However, restricting the estimation to only the very shortest maturities will obviously limit
the number of options, in turn resulting in noisier estimates. Motivated by the Monte Carlo
simulation results discussed in Appendix Appendix E, and the finding that even for very
high levels of mean reversion, the biases in the estimation for tenors up to around twelve
business days appear quite small, we deliberately include options with maturities up to that
horizon.

7.2. Risk Estimates

We begin by computing V̂ Q
t,t+T and V̂Q

t,t+T at each observation time, for all the included
tenors, based on the expressions in (41) and (42), respectively. Following the extant litera-
ture, we measure time in business days; i.e., the length of time from the end of trading on
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one day to end of trading on the following business day is set to 1/252. In addition, to ac-
count for the well-known intraday pattern in volatility, we compute time-to-maturity during
a trading day on a “business time scale,” with the length of the within day windows set to
equalize the contribution to the intraday volatility. To allow for possible dynamic changes
in this intraday pattern, we further calculate the pattern on a one-year rolling basis from
the intraday and overnight realized volatilities over the past year. Using the regressions in
(43), we then calculate the instantaneous variance estimates V̂ Q

t and V̂Q
t as defined in (44).

We rely on (46) for our computation of L̂Q
t , with the ŝt adjustment term in (45) calculated

from the high-frequency return and option observations on the specific trading day. For each
trading day, we then average all the high-frequency estimates and henceforth rely on these
as our daily estimates. Our realized risk measures R̂V t and R̂Lt are similarly computed
over windows of one trading day. To allow for comparison with the risk-neutral measures,
we further normalize the high-frequency return measures using an overnight adjustment fac-
tor, based on the ratio of the intraday to the overnight realized volatilities computed on a
one-year rolling basis.

Table 1 reports the full-sample means for the resulting daily P and Q estimates, together
with robust standard errors in parentheses.27 Since all the distributions are heavily right
skewed, we also report the corresponding quantiles. Looking first at the volatility estimates
in the top-portion of the table, the V̂ Q

t spot estimates are naturally lower than the short
and long maturity V̂ Q

t,t+T estimates. Meanwhile, it is noteworthy that the relative difference

between V̂ Q
t,t+T and V̂ Q

t is the smallest for the highest quantile. This may be explained by
the fact that mean reversion in volatility and the leverage effect impact the term structure
of V̂ Q

t,t+T in opposite directions, thus diminishing the relative difference between V̂ Q
t,t+T and

V̂ Q
t when volatility is high. Also, even though there is obviously a large gap between V̂ Q

t

and R̂V t, consistent with a positive IV RP t and the widely documented large variance risk
premium over longer horizons, the gap between V̂ Q

t and V̂ Q
t,t+T for short T is also fairly large,

pointing to a sizable risk premium for shocks to the instantaneous risk-neutral variance.
Turning next to the 3(V̂ Q

t,t+T − V̂
Q
t,t+T ) estimates, and measures of asymmetry in the risk-

neutral return distribution, reported in the mid-portion of the table, the values seemingly de-
pend strongly on the horizon T . Recall from the discussion in Section 3, that the leading term
in an asymptotic expansion of 3(V Q

t,t+T−V
Q
t,t+T ) for small T is 3

∫
R (z2 − 2(ez − 1− z)) νQt (dz).

Meanwhile, the second-order term in said expansion that depends on the horizon T may be
traced to mean-reversion in volatility and jump intensity, as well as the leverage effect. The
pairwise differences in the sample means and the various quantiles of 3(V̂ Q

t,t+T − V̂
Q
t,t+T ) for

short and long tenors thus directly underscore the importance of these latter effects. Fur-
ther supporting this conjecture, the mean and the median of the instantaneous 3(V̂ Q

t − V̂Q
t )

27We purposely report the 1% truncated means here and throughout to avoid the full-sample values being
unduly influenced by a few very large “crisis” observations.
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Table 1: Risk Measures

Statistic Mean Quantiles
Q25 Q50 Q75

V̂ Q
t,t+T , short T 0.0395

(0.0074)
0.0130 0.0224 0.0429

V̂ Q
t,t+T , long T 0.0418

(0.0078)
0.0151 0.0248 0.0478

V̂ Q
t 0.0378

(0.0068)
0.0111 0.0201 0.0396

R̂V t 0.0282
(0.0044)

0.0064 0.0127 0.0278

3(V̂ Q
t,t+T − V̂

Q
t,t+T ) , short T 0.0028

(0.0007)
0.0005 0.0010 0.0021

3(V̂ Q
t,t+T − V̂

Q
t,t+T ) , long T 0.0060

(0.0016)
0.0011 0.0019 0.0051

3(V̂ Q
t − V̂

Q
t ) 0.0011

(0.0003)
−0.0001 0.0002 0.0008

−L̂Q
t 0.0579

(0.0106)
0.0089 0.0203 0.0464

−R̂Lt 0.0331
(0.0074)

0.0019 0.0056 0.0179

Note: The table reports truncated at 1% sample means, with Newey-
West robust standard errors in parentheses, and quantiles for the
different daily risk estimates defined in Sections 6.1 and 6.2. The
estimates are constructed from short-dated S&P 500 index options
and high-frequency SPY returns spanning 2007-2020.

estimates are also substantially lower than those of 3(V̂ Q
t,t+T −V̂

Q
t,t+T ) for short T . Looking at

the 3(V̂ Q
t −V̂Q

t ) estimates, it is also worth noting that with 3(V Q
t −VQ

t ) being approximately
equal to the risk-neutral third moment of the jumps (recall equation (15)), the numbers in
the table point to very little asymmetry in the implied Q jump size distribution.

7.3. Leverage Risk and Pricing

The final two rows in Table 1 summarize the results for our leverage risk estimates.
Consistent with the idea of a nontrivially sized instantaneous leverage risk premium ILRP t,
the sample mean of the risk-neutral −L̂Q

t exceeds that of the realized −R̂Lt by more than
twice of what the sample mean of the risk neutral spot variance V̂ Q

t exceeds that of the

realized variance R̂V t. The different quantiles for −L̂Q
t are also all substantially higher than

the corresponding quantiles for −R̂Lt.
To further help visualize the pricing of the jump leverage effect, and how it differs from
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the pricing of variance risk, Figure 3 plots the time series of V̂ Q
t and R̂V t, while Figure 4 plots

−L̂Q
t and −R̂Lt. All of the measures obviously varied quite substantially over the 2007-2020

sample period, generally increasing during periods of crisis. As is to be expected, the realized
measures, R̂V t and −R̂Lt, also typically exceeded their risk-neutral counterparts, V̂ Q

t and
−L̂Q

t , at the onset of a crisis, with that ordering reversed in the aftermath of a crisis. As a

case in point, during the financial crisis in the Fall of 2008, R̂V t exceeded V̂ Q
t for the month

of September and beginning of October, while V̂ Q
t exceeded R̂V t by quite a wide margin

for more than a year thereafter. This same general pattern is also evident for the −L̂Q
t and

−R̂Lt leverage risk measures.
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Figure 3: The figure plots the ten-day moving averages of the daily V̂ Q
t and R̂V t variance risk estimates.
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Figure 4: The figure plots the ten-day moving averages of the daily −L̂Q
t and −R̂Lt leverage risk estimates.

Meanwhile, the by far largest increase in all of the risk measures occurred in the Spring
of 2020 coincident with the start of the COVID-19 pandemic. At that time V̂ Q

t reached a
peak of roughly doubled that of its peak observed during the financial crisis of 2008. The
heightened values of V̂ Q

t in the Spring of 2020 was, however, noticeable shorter-lived than the
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highs attained during the 2008 financial crisis. While these same general features manifest
in −L̂Q

t as well, there are also some noticeable differences.28 In particular, −L̂Q
t increased

even more dramatically during the recent pandemic, reaching a high of almost five-fold its
high observed during the 2008 financial crises. In other words, it appears as if leverage risk
has become an even bigger concern to investors more recently than it has been historically.

To more directly illustrate the behavior of the volatility and leverage risks during periods
of market turmoil, Figure 5 plots the SPY price and the instantaneous risk-neutral volatility
measure V̂ Q

t at a five-minute frequency for the three weeks in the sample when the market fell
by more than 10%, namely the week of November 5-12, 2008 (displayed in the first panel),
the week of August 3-10, 2011 (displayed in the second panel), and the week of March 4-11,
2020 (displayed in the third panel).29 Figure 6 plots the SPY and the leverage risk measure

−L̂Q
t for the same three weeks. Looking first at Figure 5, there is obviously a strong negative

correlation between the price changes and the changes in the V̂ Q
t spot volatility estimates

during each of these three turbulent weeks. These large realized leverage effects also clearly
manifest in the −L̂Q

t leverage risk estimates displayed in Figure 6.
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Figure 5: The figure shows the price of the SPY at a five-minute frequency (solid line) together with V̂ Q
t in

annualized percentage form (dashed line) for November 5-12, 2008 (first panel), August 3-10, 2011 (second
panel), and March 4-11, 2020 (third panel).

Although both of the two risk measures generally appear to be strongly negatively cor-
related with the price, there are also some important differences between the three episodes.

28Incidently, these differences in the time series behavior of the variance and leverage risk measures also
indicate that the jump risks have a much more complicated structure than portrayed by most parametric
models hitherto employed in the literature, the popular double-jump stochastic volatility model discussed in
Appendix Appendix D included.

29To allow for easier interpretation, the volatility measures in Figure 5 are displayed in annualized volatility
units, or (252 × V̂ Q

t )1/2. The market also fell by more than 10% the first week of October 2008. However,
due to issues with missing observations and quality of the options data, we omit that week from the display.
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Figure 6: The figure shows the price of the SPY at a five-minute frequency (solid line) together with −L̂Q
t

(dashed line) for November 5-12, 2008 (first panel), August 3-10, 2011 (second panel), and March 4-11, 2020
(third panel).

In particular, while the average values of V̂ Q
t for the first week of November 2008 and the

second week of March 2020 were very similar, at 64.0% and 61.2%, respectively, the volatil-
ity stayed within a relatively narrow range of around 55% − 70% for the first of the two
weeks, while it fluctuated much more widely from a low of around 40% to a high of around
85% for the second of the two weeks. The volatility mean reversion and the leverage effect
also both manifested very differently for these two different episodes. Specifically, while the
average value of (252× V̂Q

t,t+30)1/2, as proxied by the VIX, equalled 59.2% for the first week
of November 2008, it was “only” equal to 43.1% for the second of March 2020. Recalling
again the short-time expansions for the risk-neutral volatility measures in Section 3, this
noticeably lower average value of the VIX for the second of the two weeks may naturally be
attributed to stronger mean reversion during that week. As previously noted, this strong
volatility mean reversion was also accompanied by more pronounced leverage effects during
the pandemic. Indeed, as Figure 6 shows, the estimates for −L̂Q

t are an order of magnitude
larger for the second week of March 2020 compared to he first week of November 2008.

7.4. Leverage Risk and Equity and Variance Risk Premiums

The empirical evidence presented above shows that the instantaneous leverage risk pre-
mium ILRPt is both time-varying and strongly persistent. Our theoretical analyses in
Section 4 further highlight that variations in the instantaneous leverage and equity risk pre-
miums are naturally connected. These two observations in turn combine to suggest that
the jump leverage risk premium should be able to predict future market returns. The same
connection should also hold between the instantaneous variance risk premium and future
market returns.

To empirically investigate this conjecture, we estimate a series of return predictability
regressions for the aggregate market. For ease of interpretation, we restrict our analysis to
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simple univariate regressions of the form:

xt+h − xt = a0 + a1zt + εt+h, (53)

with return horizons h ranging from one month to twelve months, and the predictor variable
zt denoting the 20-day moving average of various predictors.30 The predictors that we

consider are: ÎLRP t, ÎV RP t, ÎLRP
⊥
t , R̂V RP t, L̂

Q
t and −R̂Lt, where ÎLRP

⊥
t denotes the

residual from a linear projection of ÎLRP t on ÎV RP t (i.e., the part of ÎLRP t that is not

in the linear span of ÎV RP t), and following the extant literature (see, e.g., Bollerslev et al.

(2009) and Drechsler and Yaron (2011)) R̂V RP t is computed as the difference between the
square of the VIX index and the realized variance over the previous month. Due to limited
availability of short-dated options for the early part of our sample, and nontrivial gaps in
our option-based estimates prior to 2011, we restrict the estimation of all the regressions to
the 2011-2020 period.

The results reported in Table 2 show that ÎLRP t and ÎV RP t both provide strong pre-
dictive signals for future market returns. This, of course, is consistent with the existence
of the jump leverage effect and time-variation of the compensation for price jump risk, as
discussed in Section 4, see equations (15), (23), (29)-(31). Moreover, the lack of significance

of ÎLRP
⊥
t indicate that the predictive contents of ÎLRP t and ÎV RP t for future market

returns are similar. This again is in line with the discussion in Section 4, as ILRPt and
IV RPt are both related to price jumps and hence to the equity risk premium.

Turning next to the L̂Q
t and −R̂Lt components of ÎLRP t, the results show that both

strongly predict future market returns across all horizons. Recall that both of these measures
include diffusive leverage effects (which are the same under the P and Q measures), so that
this effect may potentially also help in predicting the returns. Meanwhile, the signal-to-

noise ratios for the L̂Q
t and −R̂Lt estimates are both much higher than the ratio for ÎLRP t,

possibly explaining the slightly stronger predictive results for L̂Q
t and −R̂Lt, compared to

those for ÎLRP t.
In contrast to earlier empirical evidence, the monthly variance risk premium R̂V RP t,

as traditionally defined, does not help predict aggregate market return over the somewhat
limited 2011-2020 time period.31 Again following the discussion in Section 4, the monthly
variance risk premium is attributable to several different sources of risks, not all of which
are formally connected with the equity risk premium (e.g., volatility risk that is unrelated

30To avoid the estimates being driven by a few very large influential observations, following standard
practice we winsorize zt at 1%.

31This is also broadly consistent with the regression results for the S&P 500 reported in Heston and
Todorov (2023) based on data over a similar more recent time period.
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Table 2: Market Return Predictability Regressions

ÎLRP ÎV RP ÎV RP
⊥

−L̂Q −R̂L V̂ RP
One Month Horizon

â1 1.56 11.88 0.15 1.00 0.76 -0.95
t(â1) (4.58) (6.24) (0.12) (8.80) (8.15) (−0.40)

R2 0.04 0.07 0.00 0.07 0.08 0.00
Three Month Horizon

â1 1.14 8.89 0.08 0.78 0.56 -0.30
t(â1) (4.34) (8.25) (0.10) (7.18) (5.28) (−0.15)

R2 0.07 0.15 0.00 0.15 0.17 0.00
Six Month Horizon

â1 0.74 5.49 0.11 0.52 0.38 0.25
t(â1) (3.98) (7.46) (0.20) (5.68) (4.68) (0.14)

R2 0.07 0.14 0.00 0.16 0.18 0.00
Nine Month Horizon

â1 0.77 5.29 0.22 0.45 0.35 0.24
t(â1) (4.67) (8.82) (0.40) (7.82) (6.50) (0.13)

R2 0.11 0.18 0.01 0.17 0.21 0.00
Twelve Month Horizon

â1 0.74 5.31 0.16 0.46 0.35 0.27
t(â1) (4.61) (8.20) (0.29) (8.33) (6.11) (0.15)

R2 0.11 0.19 0.00 0.19 0.24 0.00

Notes: The table reports the â1 estimated slope coefficients, t-statistics, and R2s, from predictive
return regressions for the Fama-French market portfolio, for return horizons ranging from one month
to a year. All of the predictor variables, indicated in the top row of the table, are define in the main
text. Standard errors are computed using the Equal-Weighted Cosine estimator of the long-run variance
with fixed-b critical values proposed by Lazarus et al. (2018) based on 0.4 × T 2/3 degrees of freedom,
where T refers to the number of time series observations.

to equity risk). Instead, the more nuanced decomposition of the variance risk premium
into potentially different priced risk components afforded by our new model-free procedures,
including jump leverage risk, allows for much stronger predictive results.

To further underscore the nontrivial pricing of jump leverage risk, and the economic
mechanisms at work, it follows that shocks in the form of jumps to the stochastic volatility
and/or the jump intensity should be priced. Accordingly, we should expect the mean of the
instantaneous drift mQ

t (VQ
t ) to be positive.32 Consistent with that thesis and the expansion

32Ideally, we would like to have an estimate of the mQ
t (VQ

t )−mP
t (V

Q
t ) risk premium. However, estimating

the drift of the volatility process VQ
t is impossible in a general nonparametric way.
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in (17), the full-sample mean of the estimates for βt,1 from the regression in (43) equals
0.0636, corresponding to an estimate of 0.1272 for mQ

t (VQ
t ). We can similarly estimate the

forward quantity, say EQ
t (mQ

t+T (VQ)) for some T > 0, by employing options recorded at time
t expiring shortly after time t + T . Doing so with options expiring shortly after two weeks,
the full-sample mean estimate of EQ

t (mQ
t+T (VQ)) only equals 0.0050. A formal test for the null

hypothesis that the mean of mQ
t (VQ

t ) equals that of EQ
t (mQ

t+T (VQ)) is strongly rejected with

a t-statistic of 4.34. This much lower estimate for EQ
t (mQ

t+T (VQ)) compared to the estimate

for mQ
t (VQ

t ) thus again suggests that the risk premium associated with the variation in VQ
t

is mostly due to the compensation for short-lived spikes, or jumps.

7.5. Jump Leverage Risk Premiums Embedded in VIX Options

All of the key empirical findings discussed above are based on the pricing of S&P 500
index options. In this section we provide independent verification of the importance of the
jump leverage risk premium through the use of options written on the VIX index and the
pricing thereof. Intuitively, if the jump leverage effect constitutes an important source of
risk that requires compensation by investors, then some of the jumps to volatility, namely
the ones directly related to price jumps, should also be priced. In fact, based on existing
empirical evidence (see, e.g., Jacod and Todorov (2010), Todorov and Tauchen (2011) and
Caporin et al. (2017), among others), one would naturally expect many volatility jumps to
be accompanied by simultaneous price jumps in the opposite direction.33

The VIX index computed by the CBOE is formally based on the V̂Q
t,t+T risk-neutral

variance measure defined in (7), together with the two available tenors T closest to 30
calendar days.34 We obtain end-of-day prices for VIX options spanning the 2007-2020 period
from OptionMetrics. We further collect 5-minute price records for the VIX index itself from
the CBOE Data Shop. We apply standard cleaning procedures and similar filters to the ones
discussed in Section 7.1 used for processing the S&P 500 price and options data.35 However,
since the number of available short-tenor VIX index options is substantially less than the
number of short-dated S&P 500 options, especially for the early part of the sample, we retain

33This strong negative dependence between jumps in the market and the volatility of the market also
naturally arises in many equilibrium models, the previously discussed model by Eraker and Yang (2022)
included. Counter to the empirical evidence, however, this particular theoretical model, as well as other
exponentially-affine models, cannot account for negative volatility jumps; see also the discussion in Amengual
and Xiu (2018).

34The CBOE uses a calendar day convention in their computation of the VIX, while as previously noted
we rely on a business day convention in our high-frequency calculations of V̂Q

t,t+T . However, since we are not

actually modeling the connection between the VIX and our V̂Q
t,t+T measure, this difference is immaterial.

35We also further apply bounce-back filters similar to the ones proposed by Barndorff-Nielsen et al. (2009)
to remove rare large intraday price swings caused in part by the rules applied by the exchange for the
inclusion of deep out-of-the-money options in the computation of the VIX; see Andersen et al. (2015a) for a
more detailed discussion of this issue.
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a somewhat wider set of VIX index options with maturities ranging from three up to thirty
business days.

Using the VIX index option data and the expressions in (41) and (42), we begin by
computing the two separate estimates for the risk-neutral variances of the VIX. We then
run the regressions in (43), omitting the T 2 terms due to the more limited availability of
different tenors. We refer to the resulting estimated intercepts, and instantaneous risk-

neutral variance estimates of the log(VIX) index, by V̂ V
Q
t and V̂V

Q
t , respectively. In parallel

to our analysis of the S&P 500 discussed above, we then compare these option-implied
volatilities for the VIX with their daily realized counterparts,

R̂V V t =
n

kn

kn∑
i=1

(
∆n
t,iV IX)

)2
, R̂VV t =

2n

kn

kn∑
i=1

(
e∆n

t,iV IX − 1−∆n
t,iV IX

)
, (54)

where ∆n
t,iV IX ≡ log(V IXt−i/n) − log(V IXt−(i−1)/n) denote the intraday high-frequency

logarithmic returns on the VIX.
Given the aforementioned strong empirical evidence for negative dependence between

market price jumps and jumps in the VIX, together with the strong empirical evidence for
the pricing of market price jumps, one would naturally expect volatility jump risk to be priced

with the opposite sign to that of market price jumps. In particular, 3(V̂ V
Q
t −V̂V

Q
t ), which by

the discussion in Section 3 provides a proxy for the third risk-neutral moment of the jumps
in the log-VIX index, would naturally be expected to be less than the corresponding realized

measure 3(R̂V V t − R̂VV t), with the gap stemming from the pricing of volatility jump risk.

Consistent with that conjecture, the full-sample mean of 3(V̂ V
Q
t − V̂V

Q
t ) equals −0.1102,

while that of 3(R̂V V t − R̂VV t) only equals −0.0007. The t-statistic of 19.16 for testing
whether the risk-neutral and realized third moments of the jumps to the market volatility
are the same is also highly significant. In other words, jumps to the state variables that drive
the stochastic volatility and risk-neutral jump intensity of the market are obviously priced
by investors, further corroborating the practical importance of the jump leverage effect and
the sizeable magnitude of the corresponding jump leverage risk premium.

8. Concluding Remarks

Jumps in asset prices trigger two types of risks: (i) risk stemming from abrupt changes
in the price level, and (ii) risk stemming from changes in the future investment opportunity
set due to jumps in the diffusive volatility and/or jump intensity. We provide new empirical
evidence in support of the nontrivial pricing of the latter type of jump risk, and so-called
jump leverage risk in particular. Our analysis is distinctly model-free, relying on novel short-
time risk-neutral variance expansions, together with short-dated S&P 500 index options and
high-frequency S&P 500 returns for non-parametrically estimating different risk measures
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and quantifying the corresponding risk premiums. We further clarify the key economic
mechanisms and types of shocks underlying the nontrivial pricing of jump leverage risk that
we document, including possible equilibrium-based explanations. We leave more detailed
analysis and estimation/calibration of specific parametric models designed to match the
empirically “large” jump leverage risk premium for future research.

Appendix A. Pricing Kernel Derivations

Using Lemma III.5.18 in Jacod and Shiryaev (2013), we have that

WQ
t = Wt −

∫ t

0

λsds, W̃
Q
t = W̃t −

∫ t

0

λ̃sds,

are independent Brownian motions under the risk-neutral measure while the jump compen-
sator of µ under Q is given by

νQ(dt, dx, dy, dz) = [φQ
t dtF

Q(x, y, z)dxdydz + φ̃Q
t dtF̃

Q(y, z)ε0(dx)dydz].

This implies the following dynamics of X under Q

dXt

Xt−
= α̃tdt+ σtdW

Q
t +

∫
R3

(ex − 1)(µ− νQ)(dt, dx, dy, dz),

where

α̃t = αt + λtσt −
∫
R
(ex − 1)(φP

t F
P(x, y, z)− φQ

t F
Q(x, y, z))dxdydz.

Since the process X is local martingale under Q (recall that we have set for simplicity the
risk-free rate and the dividend yield to zero), we need α̃t = 0. From here, the expression for
αt in (31) follows.

Next, given the prices for diffusive and jump risk, we have that the risk-neutral dynamics
of σ2

t and φQ
t is given by

dσ2
t = bσt dt+ ησt dW

Q
t + η̃σt dW̃

Q
t +

∫
R3

y(µ− νQ)(dt, dx, dy, dz)

+ λtη
σ
t dt+ λ̃tη̃

σ
t dt+

∫
R3

y(νQ − νP)(dt, dx, dy, dz),

33



and

dφQ
t = bφt dt+ ηφt dWt + η̃φt dW̃t +

∫
R3

z(µ− νP)(dt, dx, dz)

+ λtη
φ
t dt+ λ̃tη̃

φ
t dt+

∫
R3

z(νQ − νP)(dt, dx, dy, dz).

From here, the expression for mQ
t (VQ

t ) in (28) follows when taking into account the expres-
sions for the P and Q jump compensators.

Finally, given the dynamics of the processes X, σ2 and φQ under the two probability
measures, we have the following expressions for the quadratic covariation between the log-
price and σ2 and between the log-price and φQ:

[x, σ2]t =

∫ t

0

σsη
σ
s ds+

∫
R3

xyµ(dt, dx, dy, dz)

=

∫ t

0

σsη
σ
s ds+

∫
R3

xyνP(dt, dx, dy, dz) + P-martingale

=

∫ t

0

σsη
σ
s ds+

∫
R3

xyνQ(dt, dx, dy, dz) + Q-martingale,

and

[x, φQ
t ]t =

∫ t

0

σsη
φ
s ds+

∫
R3

xzµ(dt, dx, dy, dz)

=

∫ t

0

σsη
φ
s ds+

∫
R3

xzνP(dt, dx, dy, dz) + P-martingale

=

∫ t

0

σsη
φ
s ds+

∫
R3

xzνQ(dt, dx, dy, dz) + Q-martingale.

From here, the expressions for LP
t and LQ

t in (12) follow.

Appendix B. Short-Term Variance Expansions

Appendix B.1. Assumptions

We start with stating the assumptions needed for the short-time expansions of the vari-
ance measures. For this derivations, we need only the dynamics of X in (6) in which the
risk-free rate and the dividend yield are set to zero and assumptions about the risk-neutral
dynamics that we make here. Throughout this section, for simplicity, we set x0 = 0. Further,
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as in the main text, we denote the martingale component of x with

MT =

∫ T

0

σsdW
Q
s +

∫ T

0

∫
R3

x(µ− νQ)(ds, dx, dy, dz). (B.1)

To derive the expansions, we assume that the Q-dynamics of z, for z being one of the pro-
cesses VQ, V Q, mQ(VQ), mQ(V Q), mQ(mQ(VQ)), LQ, mQ(LQ), mQ(VQ)M , mQ(mQ(VQ)M),
[VQ,VQ] and mQ([VQ,VQ]), is of the form

zt = z0 +

∫ t

0

mQ
s (z)ds+ Q−martingale, (B.2)

with the above martingale being F0-conditionally square-integrable, mQ
t being a process with

càdlàg paths, and EQ
0 (mQ

t )2 <∞. We further denote the martingale part of VQ by ZQ(VQ).
We assume that the above decomposition also holds for the processes mQ(VQ)ZQ(VQ),
mQ(mQ(VQ)ZQ(VQ)) and mQ(mQ(VQ))ZQ(VQ).

The above assumptions are rather weak and generally satisfied for the continuous-time
asset pricing models used in finance, including standard reduced-form models, as well as
equilibrium-based models. In particular, the assumptions hold when the asset price dynamics
is embedded in a general stochastic differential equation (SDE), and the coefficients of the
SDE have finite conditional moments of certain order.

Appendix B.2. Proofs

Given the decomposition of x in (20) and an application of Itô’s formula for the product
of two processes, we have

T × V Q
0,T = EQ

0

(
−1

2

∫ T

0

(VQ
s − EQ

0 (VQ
s ))ds+MT

)2

=
1

4
varQ0

(∫ T

0

VQ
s ds

)
+ EQ

0 (M2
T )− EQ

0

(∫ T

0

V Q
s dsMT

)
=

1

4
varQ0

(∫ T

0

VQ
s ds

)
+

∫ T

0

EQ
0 (V Q

s )ds−
∫ T

0

covQ
0 (VQ

s ,Ms)ds,

(B.3)

and

T × VQ
0,T =

∫ T

0

EQ
0 (VQ

s )ds. (B.4)
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Using our assumption for VQ
s , mQ(VQ) and mQ(mQ(VQ)), we further have

EQ
0 (VQ

s ) =

∫ s

0

EQ
0 (mQ

u (VQ))du =

∫ s

0

EQ
0

(
mQ

0 (VQ) +

∫ u

0

mQ
v (mQ(VQ))dv

)
du

=

∫ s

0

EQ
0

(
mQ

0 (VQ) + u×mQ
0 (mQ(VQ)) +

∫ u

0

∫ v

0

mQ
z (mQ(mQ(VQ)))dzdv

)
du

= s×mQ
0 (VQ) + s2 × C0 + C̃0(s),

(B.5)

for some F0-adapted random variable C0 and F0-adapted random function C̃0(s) satisfying

|C̃0(s)| ≤ s3 × C̃ ′0, where C̃ ′0 is another F0-adapted random variable. A similar expansion
for EQ

0 (V Q
s ) also readily obtains. Next, applying Itô’s formula and using the definition of the

processes M and LQ (note in particular that M0 = 0), as well as our assumptions for the
dynamics of LQ, mQ(LQ), mQ(VQ)M and mQ(mQ(VQ)M), we obtain

covQ
0 (VQ

s ,Ms) = EQ
0

(∫ s

0

mQ
u (VQ)duMs

)
+ EQ

0 (ZQ
s (VQ)Ms)

= EQ
0

(∫ s

0

mQ
u (VQ)Mudu

)
+ EQ

0

(∫ s

0

LQ
udu

)
= EQ

0

(∫ s

0

∫ u

0

mQ
v (mQ(VQ)M)dvdu

)
+ EQ

0

(∫ s

0

(
LQ

0 +

∫ u

0

mQ
v (LQ)dv

)
du

)
= s× LQ

0 + s2 × C0 + C̃0(s),

(B.6)

where C0 and C̃0(s) satisfy the same properties as above. Finally, direct expansion and the
fact that ZQ(VQ) is a martingale leads to:

varQ0

(∫ T

0

VQ
s ds

)
= EQ

0

(∫ T

0

∫ s

0

(
mQ
u (VQ)− EQ

0 (mQ
u (VQ))

)
duds

)2

+ E0

(∫ T

0

∫ T

0

ZQ
u (VQ)ZQ

v (VQ)dudv

)
+ 2EQ

0

(∫ T

0

∫ s

0

(
mQ
u (VQ)− EQ

0 (mQ
u (VQ))

)
duds

∫ T

0

ZQ
u (VQ))du

)
.

(B.7)

Using the definition of quadratic variation and the fact that ZQ(VQ) is a martingale, we may
write:

E0

(∫ T

0

∫ T

0

ZQ
u (VQ)ZQ

v (VQ)dudv

)
= 2

∫ T

0

(T − s)EQ
0 ([VQ,VQ]s)ds.
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Next, using again the fact that ZQ(VQ) is a martingale,

EQ
0

(∫ T

0

∫ s

0

(
mQ
u (VQ)− EQ

0 (mQ
u (VQ))

)
duds

∫ T

0

ZQ
u (VQ)du

)
= EQ

0

(∫ T

0

(T − s)
∫ s

0

(
mQ
u (VQ)− EQ

0 (mQ
u (VQ))

)
duZQ

s (VQ)ds

)
+ EQ

0

(∫ T

0

∫ s

0

(
mQ
u (VQ)− EQ

0 (mQ
u (VQ))

)
du

∫ s

0

ZQ
u (VQ)duds

)
= 2EQ

0

(∫ T

0

(T − s)mQ
s (VQ)ZQ

s (VQ)

)
ds

+ EQ
0

(∫ T

0

∫ s

0

(mQ
s (VQ)−mQ

u (VQ))ZQ
u (VQ)duds

)
.

From here, by making use of our assumptions for [VQ,VQ], mQ([VQ,VQ]), mQ(VQ)ZQ(VQ),
mQ(mQ(VQ)), mQ(mQ(VQ)ZQ(VQ)) and mQ(mQ(VQ))ZQ(VQ), it now follows that

varQ0

(∫ T

0

VQ
s ds

)
= T 3 × C0 + C̃0(T ), (B.8)

where C0 is some F0-adapted random variable, and the F0-adapted random function C̃0(T )

satisfies |C̃0(T )| ≤ T 4 × C̃ ′0 for some some F0-adapted random variable C̃ ′0.

Appendix C. Nonzero Interest Rate and Dividend Yield

All of our expansions and empirical calculations are based on the simplifying assumption
that the risk-free rate and the dividend yield are identically equal to zero. In this appendix,
we show how the empirical results are practically unaffected by this assumption.

We denote the constant continuously-compounded risk-free rate and dividend yield by r
and d, respectively. We further denote the time t price of a futures contract written on the
market expiring at time t+ T by Ft,T , with the corresponding log price denoted by ft,T . By
standard no-arbitrage pricing arguments, Ft,T = e(r−d)TXt. With this additional notation,
the definitions of our two risk-neutral variance measures previously defined in (13) and (7)
now naturally become

V Q
t,t+T =

1

T
VarQt (xt+T − ft,T ), VQ

t,t+T = − 2

T
EQ
t (xt+T − ft,T ). (C.1)

Note that since ft,T is adapted to Ft, the definition of V Q
t,t+T remains unchanged compared

to the case with r = d = 0, while the centering term in VQ
t,t+T gets slightly modified. With
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this adjustment, the key expansion results in (17) and (18) both continue to hold.
Correspondingly, the option spanning results needed to construct the estimates of VQ

t,t+T

and V Q
t,t+T now take the form

EQ
t (xt+T − ft,T )2 = 2

∫ ∞
0

(
1− log

(
K

Xt

))
erTOt,T (K)

K2
dK, (C.2)

and

EQ
t (xt+T − ft,T ) = −

∫ ∞
0

erTOt,T (K)

K2
dK. (C.3)

Compared to the previous expressions in (39) and (40), the only difference is that we now

consider the future values of the option prices. Using these modified spanning results, V̂Q
t,t+T

and V̂ Q
t,t+T may again be constructed exactly as previously done in (41) and (42).

Importantly, the above analysis further implies that if nonzero interest rates and dividend
yields are ignored, then, up to a higher order term, the OLS estimates of bt,0, bt,1, βt,0 and βt,1
from the regressions in (43) will simply be scaled down by the same interest rate factor e−rT

relative to their counterparts where nonzero r and d are explicitly accounted for. Obviously,
e−rT = 1− rT +O(T 2) as T ↓ 0. Hence, not only will this correction similarly affect all the
coefficient estimates of interest, given the invariably low value of the risk-free interest rate,
it will also be numerically very small.

Appendix D. Jumps and Leverage Risk in a Parametric Model

This Appendix demonstrates how the risk premium measures defined in Section 4 mani-
fest in the popular parametric double-jump stochastic volatility model of Duffie et al. (2000).
This particular model has been extensively used in the empirical asset pricing literature.

The model postulates the following asset dynamics under P

dXt

Xt−
= αtdt+ σtdW

P
t +

∫
R2

(ez − 1)(µ− νP)(ds, dz, dy), (D.1)

dσ2
t = κP(θP − σ2

t )dt+ ησtdB
P
t +

∫
R2

y(µ− νP)(ds, dz, dy), (D.2)

where αt is a linear function of σ2
t , (W P

t , B
P
t ) is a bivariate Brownian motion with correlation

ρ, and the jump compensator takes the form

νP(ds, dz, dy) = (λP0 + λP1σ
2
t )
e
− (z−µPz)

2

2vPz√
2πvPz

e−y/µ
P
y

µP
y

1{y>0}dsdzdy. (D.3)
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This specification in turn accounts for a number of key empirically relevant features: volatility
is time-varying, price and volatility can both jump, and the jumps typically arrive together,
the intensity of the jumps is an affine function of σ2

t and therefore time-varying. We note
that we have slightly constrained the original specification of Duffie et al. (2000) by assuming
that the size of the price and volatility jumps are independent of each other, even though
they arrive together. This simplification of the double-jump volatility model is only for ease
of exposition and has no bearing on our analysis of jump leverage.

Per the discussion in the main text, assume for simplicity that the risk-free interest rate
and the dividend yield are both zero. The dynamics of X under the P and Q measures then
formally coincide, although the pricing of various risks may cause the values of the risk-
neutral parameters, superscripted with Q in the following, to differ from the corresponding
P superscripted parameters. Importantly, however, the ρ and η parameters do not change
under this equivalent change of measure.

To begin, consider the instantaneous variance risk premium. Using the shorthand no-

tation ṽQz = 2
(
eµ

Q
z+vQz /2 − 1− µQ

z

)
, the two differently defined risk-neutral instantaneous

variances may be expressed as

V Q
t = σ2

t + (λQ0 + λQ1 σ
2
t )((µ

Q
z )2 + vQz ), VQ

t = σ2
t + (λQ0 + λQ1 σ

2
t )ṽ

Q
z . (D.4)

The same expressions also obtain for V P
t and VP

t , except for the Q-parameters being replaced
by their P counterparts. Correspondingly, the IV RPt instantaneous variance risk premium
takes the specific form

IV RPt = (λQ0 + λQ1 σ
2
t )((µ

Q
z )2 + vQz )− (λP0 + λP1σ

2
t )((µ

P
z )

2 + vPz ). (D.5)

As previously noted, IV RPt generally only reflects the pricing of price jump risk, which in
the context of the double-jump stochastic volatility model can arise from either different
jump intensities, or different jump distributions under the P and Q measures.

Turning next to the leverage risk, we have

1

T

(
[x,VQ]t+T − [x,VQ]t

)
=

1

T
(1 + λQ1 ṽ

Q
z )

ρη ∫ t+T

t

σ2
sds+

∑
s∈[t,t+T ]

∆xs∆σ
2
s

 . (D.6)

The dependence of the leverage risk on the Q-parameters stems from the fact that this
risk is defined as a co-movement between x and VQ, which depends on the Q-parameters
because of jumps in the price and the pricing thereof. Meanwhile, the first term in the
parentheses above stems from the dependence between the Brownian motions driving the
price and volatility, while the second term is due to the price-volatility co-jumps. Taking
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conditional expectations and letting T ↓ 0, it further follows that

LQ
t = (1 + λQ1 ṽ

Q
z )
[
ρησ2

t + µQ
z µ

Q
y (λQ0 + λQ1 σ

2
t )
]
, (D.7)

and
LP
t = (1 + λQ1 ṽ

Q
z )
[
ρησ2

t + µP
zµ

P
y(λ

P
0 + λP1σ

2
t )
]
. (D.8)

These expressions for the instantaneous leverage effects in turn implies the following instan-
taneous leverage risk premium

ILRPt = (1 + λQ1 ṽ
Q
z )
[
µP
zµ

P
y(λ

P
0 + λP1σ

2
t )− µQ

z µ
Q
y (λQ0 + λQ1 σ

2
t )
]
. (D.9)

Since the terms in LQ
t and LP

t due to the continuous leverage effect coincide, these terms
cancel in the ILRPt risk premium, which therefore only depends on price-volatility co-jumps.
As such, ILRPt is effectively a difference of, re-scaled by constants, P and Q jump intensities.
This also directly parallels the expression for IV RPt. Correspondingly, IV RPt and ILRPt
are both affine functions of σ2

t , and thus exhibit the same dynamics. This result is a particular
feature of the double-jump volatility model. If the intensity of the price jumps that arrive
together with the volatility jumps differed from those that do not, this would naturally cause
the dynamics of IV RPt and ILRPt to differ.

Finally, it is easy to see that

mP
t (V

Q
t ) = (1 + λQ1 ṽ

Q
z )κP(θP − σ2

t ), mQ
t (VQ

t ) = (1 + λQ1 ṽ
Q
z )κQ(θQ − σ2

t ), (D.10)

which implies the following change in the instantaneous drift term of VQ
t

mQ
t (VQ

t )−mP
t (V

Q
t ) = (1 + λQ1 ṽ

Q
z )[κQ(θQ − σ2

t )− κP(θP − σ2
t )]. (D.11)

This in turn implies the following compensation for jumps risk

(1 + λQ1 ṽ
Q
z )

∫
R2

y(νQt (dz, dy)− νPt (dz, dy)) = (1 + λQ1 ṽ
Q
z )
[
µQ
y (λQ0 + λQ1 σ

2
t )− µP

y(λ
P
0 + λP1σ

2
t )
]
.

(D.12)
This expression, not surprisingly, looks very similar to the expression for ILRPt in (D.9)
above, as they both reflect the compensation for the simultaneously arriving jumps in price
and volatility.

To more concretely illustrate the important role played by price-volatility co-jumps in
the pricing of jump risk, we finish our discussion of the parametric double-jump stochastic
volatility model by showing the model-implied term structure of the second and third risk-
neutral moments with and without volatility jumps. To help more clearly illustrate the
effect, we further plot the different term structures obtained for initial low and high levels
of volatility, as defined relative to the unconditional model-implied volatility. We rely on
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the same parameter values listed in Table E.3 that we use in our Monte Carlo simulations
discussed in Appendix Appendix E.

Looking first at the left panels in Figures D.7 and D.8 with and without volatility jumps,
respectively, the general features of the term structures for the second moments appear
largely unaffected by volatility jumps. By comparison, the term structures of the third risk-
neutral moments clearly differ across the two figures, and are obviously much steeper when
volatility jumps are allowed for. In fact, the slope of the term structure appears almost
flat in the high volatility regime in the absence of volatility jumps, while the slopes are
highly significant and positive regardless of whether the initial volatility is low or high when
volatility jumps are included. Importantly, the patterns evident in Figure D.7 also fairly
closely mirror the corresponding actual empirical illustration in Figure 2, thus indirectly
underscoring the importance of price-volatility co-jumps, and the jump leverage effect, from
a practical pricing perspective.
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Figure D.7: The figure plots the model-implied term structure of the risk-neutral second and third moments
allowing for volatility jumps. The risk-neutral moments are computed from the double-jump stochastic
volatility model with the parameters given in Table E.3. The low and high volatility regimes corresponds
to V0 = 0.017 and V0 = 0.035, respectively. The moments at the shortest horizons in each of the panels are
normalized to unity.
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Figure D.8: The figure plots the model-implied term structure of the risk-neutral second and third moments
not allowing for volatility jumps. The risk-neutral moments are computed from the double-jump stochastic
volatility model with parameters given in Table E.3, except for µQ

y which is fixed at zero. The low and high
volatility regimes corresponds to V0 = 0.017 and V0 = 0.035, respectively. The moments at the shortest
horizons in each of the panels are normalized to unity.

Appendix E. Monte Carlo

This appendix evaluates the accuracy of the new V̂ Q
t , V̂Q

t and L̂Q
t feasible risk-neutral

measures discussed in Section 6.1. We rely on the double-jump stochastic volatility model
discussed in Appendix Appendix D to generate the true option prices. The specific values
of the model parameters used in the simulations are reported in Table E.3.

The parameter values imply that EQ(σ2
t ) = 0.0257, together with a relatively fast mean

reversion of volatility with a half-life of around 8 days only. The jump parameters are set in
a way so that

∫
R2 z

2νt(dz, dy) = σ2
t , implying that jumps contribute half of the risk-neutral

jump variation at any point in time. We also allow for nontrivial volatility jumps, with a
mean value equal to 0.0234, very close to that of the risk-neutral mean of σ2

t .
The observed option prices used in the estimation are contaminated by the following

errors
Ôt,T (Kj) = Ot,T (Kj)(1 + 0.025× zt,T (j)), j = 1, ..., Nt,T ,

where

zt,T (j) =
1√

1 + 0.52
[εt,T (j) + 0.5εt,T (j − 1)] , j = 2, ..., Nt,T ,
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Table E.3: Parameter Values

Parameter Value Parameter Value Parameter Value

κQ 30 θQ 0.018 η 0.2

ρ −0.9 λQ0 0 λQ1 385

µQz −0.05 µQy 0.0234
√
vQz 0.01

Note: The table reports risk-neutral parameter values for the
double-jump stochastic volatility model in (D.1)-(D.3) in Ap-
pendix Appendix D used in the simulations.

and {εt,T (j)}Nt,Tj=1 are sequences of i.i.d. standard normal independent random variables.
The size of the observation error is calibrated to roughly match the bid-ask spreads of the
S&P 500 index options used in our empirical analyses. In the above setting, following
nonparametric evidence reported in Andersen et al. (2021), we allow for spatial dependence
in the observation error of MA(1) type. Finally, we round the generated option prices with
error to a multiple of 0.025 and perform computations on the rounded prices. Our rounding
mimics that in observed SPX option prices.

We initialize the simulations by setting the time-t value of the spot variance to a low,
average and a high value of 0.0170, 0.0204 and 0.0267, corresponding to the 25-th, 50-th
and 75-th quantiles, respectively, of the unconditional distribution of σ2

t . The initial level of
the underlying stock price is set to 4, 500. For each (t, T ) pair the strike grid is equidistant
with gaps between strikes of 5. Starting from the at-the-money strike of 4, 500, the strikes
are then extended on both sides until the true out-of-the-money option price falls below
0.075. We employ three different tenors in the estimation, namely T1 = 3/252, T2 = 5/252
and T3 = 10/252, corresponding to 3, 5 and 10 business days to expiration, respectively.
Again, this specification of the strike grids and the choice of tenors mimics those of the
S&P 500 index options used in the actual estimation. Finally, the ŝt bias-adjustment term
for L̂Q

t is computed from 80 high-frequency return and option observations, approximately
corresponding to a day worth of observations when sampling at the 5-minute frequency.
To mimic missing observations in the data, we randomly remove 6 out of the 80 option
observations from the computations. The locations of the missing observations are drawn
uniformly from the observation times.

Table E.4 reports the quantiles of the resulting V̂ Q
t , V̂Q

t and L̂Q
t risk estimates based on

1,000 Monte Carlo replications. As the table shows, the new estimates generally perform
admirably, with the medians almost exactly equal to the true values, together with fairly
narrow interquartile ranges.
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Table E.4: Monte Carlo Simulation Results

Estimand True Value Estimates
Q25 Q50 Q75

Initial Volatility σ2
t = 0.0170

V Q
t 0.0340 0.0335 0.0340 0.0345

VQt 0.0337 0.0332 0.0337 0.0342

−LQ
t 0.0214 0.0210 0.0223 0.0237

Initial Volatility σ2
t = 0.0204

V Q
t 0.0408 0.0402 0.0408 0.0413

VQt 0.0404 0.0399 0.0404 0.0410

−LQ
t 0.0257 0.0241 0.0256 0.0271

Initial Volatility σ2
t = 0.0267

V Q
t 0.0534 0.0527 0.0533 0.0540

VQt 0.0529 0.0522 0.0529 0.0536

−LQ
t 0.0336 0.0300 0.0317 0.0336

Note: The table reports the simulated quantiles of the
V Q
t , VQt , and −LQ

t risk estimates for different initial
volatility levels based on 1,000 Monte Carlo replica-
tions.

44



References

Aı̈t-Sahalia, Y., Fan, J., Laeven, R.J., Wang, C.D., Yang, X., 2017. Estimation of the con-
tinuous and discontinuous leverage effects. Journal of the American Statistical Association
112, 1744–1758.

Ait-Sahalia, Y., Fan, J., Li, Y., 2013. The leverage effect puzzle: Disentangling sources of
bias at high frequency. Journal of Financial Economics 109, 224–249.

Aı̈t-Sahalia, Y., Jacod, J., Xiu, D., 2021. Inference on risk premia in continuous-time asset
pricing models. National Bureau of Economic Research, Working Paper .

Aı̈t-Sahalia, Y., Karaman, M., Mancini, L., 2020. The term structure of equity and variance
risk premia. Journal of Econometrics 219, 204–230.

Aleti, S., 2022. The high-frequency factor zoo. Duke University, Working Paper .

Amengual, D., Xiu, D., 2018. Resolution of policy uncertainty and sudden declines in
volatility. Journal of Econometrics 203, 297–315.

Andersen, T.G., Bondarenko, O., Gonzalez-Perez, M.T., 2015a. Exploring return dynamics
via corridor implied volatility. Review of Financial Studies 28, 2902–2945.

Andersen, T.G., Fusari, N., Todorov, V., 2015b. The risk premia embedded in index options.
Journal of Financial Economics 117, 558–584.

Andersen, T.G., Fusari, N., Todorov, V., Varneskov, R.T., 2021. Spatial dependence in
option observation errors. Econometric Theory 37, 205–247.

Bakshi, G., Cao, C., Chen, Z., 1997. Empirical performance of alternative option pricing
models. Journal of Finance 52, 2003–2049.

Bakshi, G., Kapadia, N., Madan, D., 2003. Stock return characteristics, skew laws, and the
differential pricing of individual equity options. Review of Financial Studies 16, 101–143.

Bakshi, G., Madan, D., 2000. Spanning and derivative-security valuation. Journal of Finan-
cial Economics 55, 205–238.
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