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Abstract
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assets, we estimate nonparametrically the asymmetry in the risk-neutral expected idiosyncratic
variation, i.e., the difference in variation due to negative and positive returns, which asymptot-
ically is solely attributed to jumps. We derive a feasible Central Limit Theorem that allows
to quantify precision in the estimation, with the limiting distribution being mixed Gaussian.
We find strong empirical evidence for aggregate asymmetry in idiosyncratic risk which shows
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1 Introduction

Equity markets experience large downward moves (jumps) and investors are willing to pay in order

to avoid such risks. Empirical studies and equilibrium models suggest that the compensation for

downside market jump risk demanded by investors is a nontrivial part of the equity risk premium

and can help rationalize its dynamics, see e.g., Bates (1991, 1996, 2000), Pan (2002), Bollerslev and

Todorov (2011), Drechsler and Yaron (2011), Gabaix (2012) and Wachter (2013), among others.

The recent introduction and increased liquidity of markets for short-dated options (options with

short time to maturity) facilitate the management of such risks by investors and at the same time

provide a powerful way to study them nonparametrically, see e.g., Andersen et al. (2017). To

illustrate, in Figure 1, we plot out-of-the-money option prices (i.e., the prices of puts for strikes

below the current stock price and calls for strikes above the current stock price) written on the S&P

500 index at market close on November 18, 2016 which expire a week later on November 25, 2016.

On this day, the market volatility, inferred by the at-the-money Black-Scholes implied volatility,

was 6% which implies that the lowest strike of the displayed put options corresponds approximately

to a ten standard deviation downward move on the market. Such moves are essentially impossible

to materialize without a significant downward jump on the market, and hence the prices of these

very deep out-of-the-money puts are determined largely by the probability of this risk and the price

attached to it by investors. The large difference in the option prices for strikes corresponding to

positive and negative moves on the market reveals the nontrivial asymmetry in the risk-neutral

jump distribution. This large asymmetry is not present in the true return distribution and is thus

a manifest of the large risk premium demanded by investors for exposure to downside market risk.

In Figure 1 we compare the S&P 500 option prices with those written on the Apple stock which

are recorded at the same time as the index options and have the same expiration date. The option

prices are normalized with the corresponding current stock prices, so that they reflect prices of

return exceedances and are therefore directly comparable across the two underlying assets. As seen

from the figure, the option prices of Apple are more expensive than the market index options and

we also have far smaller difference in the pricing of calls and puts with strikes equally distant from

the current stock price. Given that the market beta of Apple at the time was very close to one,

the reason for the elevated (normalized) option prices of Apple relative to the index options is the

presence of jumps in its stock price which do not lead to market jumps. We refer to these jumps

as idiosyncratic, i.e., idiosyncratic risk here is relative to market risk. They can be either due to

stock-specific news as in the seminal work of Merton (1976) or due to systematic events that do not

move the market, e.g., due to exposure of stocks to systematic shocks that do not trigger moves in
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Relative Log Prices of OTM Apple and SP500 Short-dated Options on 11/18/2016

Figure 1: Relative Log Prices of OTM Apple and SPX Short-dated Options. The y-axis is the
logarithm of the ratio of the out-of-the-money option prices over the current stock price. Stars
correspond to S&P 500 index options and the crosses to options on Apple stock.

the aggregate market index. In the model of Merton (1976), the former type of idiosyncratic jump

risk can be diversified away and hence does not appear in the aggregate pricing kernel and does

not command risk premium for bearing. This is in general not the case, however, for the second

type of idiosyncratic jump risk that is due to the occurrence of market-neutral systematic events.

In this paper we aim to understand the nature of idiosyncratic jump risk in asset prices. We

study how it aggregates in the cross-section as well as its pricing. In particular, are idiosyncratic

jumps firm-specific only or do they also cluster in the cross-section? Do idiosyncratic jumps share

an exposure to a common systematic shock? Is there asymmetry in idiosyncratic jump risk? Does

this asymmetry “survive” cross-sectional averaging and if so is this aggregate risk priced like the

negative market return skewness? We develop nonparametric tools for studying these questions by

taking advantage of the availability of short-dated options written on a cross-section of stocks.

Our estimation strategy is as follows. We first construct model-free measures of asymmetry in

the risk-neutral jump distribution from options. We combine these measures with local estimates

of market betas from high-frequency returns to identify the asymmetry in the risk-neutral idiosyn-

cratic risk in stocks. Cross-sectionally aggregating these estimates allows us to study clustering

of idiosyncratic jump risk across stocks and contrasting them with counterparts of these measures

built solely from returns allows us to identify the risk premium component in them.

For the goal of this study, any measure of asymmetry in the risk-neutral jump distribution

will do. We use one based on the so-called semivariance, whose estimation from high-frequency
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data has been recently studied in Barndorff-Nielsen et al. (2010), see also Bollerslev et al. (2019).

Option-based estimates of quantities similar to the semivariances have been also used in empirical

applications for studying the downside market variance risk premium by Feunou et al. (2018) and

Kilic and Shaliastovich (2018). Formally, the positive and negative semivariance split the total

return variation over a given interval into one due to positive and negative, respectively, returns.

The positive (negative) semivariance of a semimartingale equals half of the diffusive integrated

volatility and the sum of squared positive (negative) jumps. Therefore, by taking the difference

of the negative and positive semivariances, we get the difference in the quadratic variation due

to negative and positive jumps. We refer to this quantity as the asymmetric quadratic variation.

It does not depend on the diffusive risk in the assets and thus it allows us to study directly the

asymmetry in the jump distribution. Using the option spanning results of Carr and Madan (2001)

as well as the asymptotic behavior of functionals of increments of a continuous time process over

shrinking time intervals and approximations in the tails of the conditional distributions based on

extreme value theory, which relate directly to the jump tails as in Bollerslev and Todorov (2011),

we derive measures of risk-neutral of positive and negative semivariances.

To separately identify the idiosyncratic component of jump risk embedded in the option-based

semivarances of the individual assets, we need to account for the exposure of the stock jumps

to those on the market, i.e., for their market jump beta. The latter can be estimated using high-

frequency return data in a window around the time of observing the option prices, following Li et al.

(2017). We derive a Central Limit Theorem (CLT) for the joint behavior of the option and return

measures of variation which allows us to conduct formal inference about the pricing of idiosyncratic

jump risk. The limit distribution reflects two types of estimation uncertainty: one stems from the

martingale component in the price and the other one is due to the measurement error in the observed

option prices, with observation errors in the options with strikes in the vicinity of the current stock

price playing an asymptotically leading role. Our setup is of joint type, with both the number of

high-frequency observations and the number of available short-dated options increasing, and we do

not impose restrictions on their relative growth which is convenient for applications.

In addition to the semivariance estimates, we develop alternative measures of asymmetry in the

jump distribution which can fully characterize it and can also serve as an important robustness

check for our results based on the semivariance. These alternative measures are based on option-

implied estimates of the imaginary part of the log-characteristic function of the returns. We show

that they have faster rate of convergence than their semivariance counterparts and work in more

general asymptotic setups. By varying the value of the characteristic exponent, these measures of
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asymmetry can shed light on the region of the return distribution that generates its asymmetry.

We estimate the measures of idiosyncratic asymmetric jump variation using return and option

data on a cross-section of stocks during the period 2007-2017. Our cross-section consists of stocks

that are part of the implied correlation index constructed by the CBOE options exchange. We select

the 50 stocks that are most frequently included in the index during our sample period. The total

market capitalization of the stocks in our sample is over 40% of the value of the S&P 500 index.1

In order to focus on the aggregate pricing implications of idiosyncratic jump risk, we average the

individual option-based measures in the cross-section and estimate the risk-neutral expectation of

the aggregate idiosyncratic asymmetric jump variation.

Using the developed inference theory, we overwhelmingly reject the natural hypothesis that

aggregate idiosyncratic asymmetric jump variation is equal to zero, with the empirical results

showing that the risk-neutral expectation of the aggregate downside idiosyncratic jump variation

risk is significantly higher than its upside counterpart. This finding confirms not only the presence

of idiosyncratic jump risk but also sheds light on its nature. In particular, if the idiosyncratic jump

risk is solely firm-specific as in Merton (1976), then cross-sectional averaging should remove it as it

does not cluster across stocks at any given point in time. The fact that the negative idiosyncratic

skewness “survives” cross-sectional aggregation shows that this is not the case empirically and

instead the idiosyncratic jump risk is due to the existence of market-neutral systematic events.

They can be either due to cross-sectionally uncorrelated jumps arriving at a common point in time

or due to exposure of assets to a common systematic shock that does not move the aggregate market.

However, for either of this to be a valid explanation of our empirical finding, we crucially also need

that the cross-sectional distribution of the asset returns at the market-neutral systematic event to

be significantly left skewed. Our finding of the importance of the cross-sectional heterogeneity of

idiosyncratic jump risk is related to the recent literature on the granularity of aggregate macro

quantities, see e.g., Gabaix (2011) and Acemoglu et al. (2017), where it is shown that the cross-

sectional heterogeneity in individual risks can generate aggregate level tail risks. Our empirical

result also implies that, conditional on the common shocks in returns, the idiosyncratic jump risk

can generate cross-sectional fat tails and asymmetry in the return distribution which have been

studied recently in Kelly and Jiang (2014) and Oh and Wachter (2019).

While the option-based measures of idiosyncratic jump risk are under the risk-neutral prob-

ability measure, by comparing these quantities with their realized counterparts constructed from

1In the data appendix, we further extend the empirical results to the wider cross-section of stocks that are part
of the S&P 100 index over the last three years of our original sample. The results for the aggregate asymmetry in
the idiosyncratic jump risk for the original and the extended cross-section are very similar.
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the high-frequency return data with the help of the realized semivariances of Barndorff-Nielsen

et al. (2010) and measures of jump variation due to Jacod (2008), we can separate risks from

risk premium. Our formal tests reveal that aggregate idiosyncratic downside jump risk is heavily

priced and this premium varies significantly over time. To illustrate the economic importance of

the latter time variation, we further show that the option-based measure of aggregate idiosyncratic

asymmetric jump variation is a strong predictor of future equity returns, performing on par with

option-based measures of downside market jump risk. The risk premium for aggregate asymmetry

in idiosyncratic jump risk suggests that investors are willing to pay a premium to protect against

a scenario where an exposure towards a systematic market-neutral risk can become suddenly big

and thus limiting the ability to be diversified away in market-neutral investment strategies which

are known to be followed by many hedge funds, see e.g., Khandani and Lo (2007).

Overall, our results show that there is a cross-sectional clustering of jumps outside events that

move the aggregate market index. By comparing asymmetry measures on the aggregate market

index and its constituents, we find evidence that the cross-sectional distribution of stock returns

during such market-neutral systematic events implied by the option data has a left skew. The

aggregate asymmetry in idiosyncratic risk commands a nontrivial risk premium and the latter

serves as a strong predictor of future equity returns.

The current paper is related to several strands of existing work. First, we build on the earlier

result of Carr and Madan (2001) regarding spanning of risk-neutral moments by option portfolios.

We use this result and asymptotic expansions of moments of returns over short intervals of time,

similar to Qin and Todorov (2018), to derive new measures of asymmetric jump variation as well as

a CLT for the option statistics which allows to conduct formal inference. In addition, our measures

combine cross-section of option and high-frequency return data and the limit variable in our CLT

is governed by both sources of risk. Second, some of our statistics build on semivariance measures

which are the object of study in high-frequency context in Barndorff-Nielsen et al. (2010) and

Bollerslev et al. (2019), and have been shown to generate better volatility forecasts by Patton and

Sheppard (2015). They have been further used by Feunou et al. (2018) and Kilic and Shaliastovich

(2018) to separate market variance risk premium into one due to upside and downside moves.

Third, there is a lot of work on the pricing of downside negative jump risk both in reduced-form

and in equilibrium settings. Examples include Bates (1991, 1996, 2000), Pan (2002), Bollerslev

and Todorov (2011), Drechsler and Yaron (2011), Gabaix (2012) and Wachter (2013), among many

others. Unlike this strand of work, our focus here is on the structure of jump risk in the cross-section.

Fourth, there is a growing literature that studies cross-sectional asset pricing using information
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from individual options. In particular, Bakshi et al. (2003) and Driessen et al. (2009) show that gaps

between option-implied second moments and their historical counterparts are significantly smaller

than those for the market. Martin and Wagner (2018) presents a model in which expected stock

returns are connected with market and individual risk-neutral volatilities. Unlike those studies

our focus here is on the asymmetry in the return variation and more specifically on the pricing of

downside idiosyncratic jump risk. In addition, Begin et al. (2019) study idiosyncratic jump risk in

a parametric setting and assuming constant market betas in a large cross-section of assets. Their

focus is in the Merton style firm-specific idiosyncratic jump risk. By contrast, we use nonparametric

methods, which are immune to model misspecification. We allow for idiosyncratic risk to cluster

cross-sectionally in our analysis and study the implications of that. Another related work from

this strand of research is Kelly et al. (2016) who show that there was more compensation for tail

risk in financial stocks than for an aggregate financial sector index in the aftermath of the financial

crisis. This is in line with our finding regarding the importance of non-market jump risk. Finally,

Conrad et al. (2013) and Pederzoli (2018) study skewness risk premium on an individual asset

price level. These papers identify idiosyncratic skewness premium as the component in risk-neutral

asset skewness that is orthogonal to market (co)skenwess in a time series sense. Thus, orthogonality

between systematic and idiosyncratic risk in Conrad et al. (2013) and Pederzoli (2018) is in terms of

their risk premium and not the risks per se which is therefore very different from our decomposition

of jump risk in assets that is in the (traditional) martingale sense. This difference is highlighted in

the ability of our decomposition to identify the existence of market-neutral systematic jump events

and cross-sectional skewness in the stock returns during these episodes.

Fifth, our finding of a nontrivial compensation demanded by investors for aggregate idiosyncratic

return variation is consistent with recent literature that argues through various economic channels

for investors’ preference for positive skewness and lottery-like features in individual returns, see

e.g., Brunnermeier and Parker (2005), Mitton and Vorkink (2007), Barberis and Huang (2008),

Bali et al. (2011) and Boyer and Vorkink (2014).

The paper is organized as follows. We start in Section 2 with introducing the setup and the

jump decomposition. In Section 3 we construct semivariance measures on the basis of option and

return data, and in Section 4 we develop the necessary limit theory for conducting inference. Sec-

tion 5 derives the asymptotic properties of alternative measures of asymmetric variation. Section 6

contains our empirical analysis. Section 7 concludes. The assumptions and the proofs are given in

Section 8. In Section 9 we provide additional details on the data and report results from various

robustness checks.
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2 Setup and Notation

2.1 Asset Dynamics and the Decomposition of Jump Risk

We start with introducing our setup and notation. All processes in the paper are defined on a filtered

probability space
(
Ω,F , (Ft)t≥0,P

)
. The value of the market portfolio at time t is denoted with

X
(0)
t while the individual asset prices are denoted with X

(j)
t , for j = 1, ..., N . We will henceforth

use lower case letters to denote log-prices. The dynamics of x
(0)
t is given by the following general

semimartingale

x
(0)
t = x

(0)
0 +

∫ t

0
α(0)
s ds+

∫ t

0
λ(0)
s dWs +

∑
s≤t

∆x(0)
s , (1)

where Wt is a N+1×1 Brownian motion and ∆x
(0)
s = x

(0)
s −x(0)

s− is the jump in x(0). The dynamics

of the log-prices of the individual assets is given by

x
(j)
t = x

(j)
0 +

∫ t

0
α(j)
s ds+

∫ t

0
λ(j)
s dWs +

∑
s≤t

∆x(j)
s , j = 1, ..., N, (2)

The spot diffusive market variance and the spot diffusive idiosyncratic variances are denoted as

V
(0)
t = λ

(0)
t (λ

(0)
t )> and Ṽ

(j)
t = λ

(j)
t (λ

(j)
t )> −

(
λ

(j)
t (λ

(0)
t )>

)2

λ
(0)
t (λ

(0)
t )>

, j = 1, ..., N. (3)

Apart from weak regularity conditions, the specification of the asset prices in (1)-(2) puts no

restriction on the drift and the continuous martingale part of the prices. For the jumps, we impose

the following conditional factor structure:

∆x
(j)
t = β

(j)
t ∆x

(0)
t + ∆x̃

(j)
t , ∆x

(0)
t ∆x̃

(j)
t = 0, ∀t ≥ 0, (4)

where β
(j)
t is some predictable process. We refer to the jumps ∆x̃

(j)
t as idiosyncratic because they

happen outside of the times the market jumps. We put no restrictions on those. In particular, we

note that we do not rule out the possibility that ∆x̃
(i)
t ∆x̃

(j)
t 6= 0, for i 6= j and i, j = 1, ..., N . That

is, we do allow for the idiosyncratic jumps to have cross-sectional dependence. In the case when the

jumps ∆x̃
(j)
t occur at different points in time across the different assets j = 1, ..., N , we then have

the specification of jump risk introduced in the seminal work of Merton (1976). The critical aspect

of the jump specification in (4) is that stock jumps react in a linear way to a market jump but we

note that we allow for the loading to be time-varying in an unspecified way. Li et al. (2019) test

this specification of jump risk and find empirical support for it. We will further provide evidence

for the jump structure in (4) using our short-dated option data.
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The compensator of the jumps in x(j), under P, is given by dt ⊗ νPt,j(x)dx, for j = 0, 1, ..., N .

The jump compensator associated with the jumps in x(j) which happen outside the jump times of

x(0) is denoted with dt⊗ ν̃Pt,j(x)dx, for j = 1, ..., N . Given the structure of jumps in (4), we have

ν̃Pt,j(x) = νPt,j(x)− νPt,0(x/β
(j)
t ), (5)

with νPt,0(∞) = 0.

2.2 Option Prices

We continue with introducing notation for the option prices written on the assets. We will assume

the existence of a risk-neutral measure, denoted with Q, under which discounted cum-dividend

asset prices (including derivatives) are local martingales. Under technical conditions, the probability

measure Q exists provided observed asset prices are free of arbitrage opportunities, see e.g., chapter

6 of Duffie (2001). Local equivalence of P and Q implies that the diffusion coefficients in front of

the Brownian motions in the dynamics of x
(j)
t remain the same under the two measures, and

importantly for our analysis the jump decomposition in (4) holds under Q as well. The reason for

the latter result is that the relationship between stock and market jumps holds pathwise and hence

is preserved under equivalent change of measure. Note, however, that this does not mean that the

jump intensities under P and Q are the same. The factor structure of jumps in (4) only implies

that the risk premium (the P-Q wedge) for jumps in the stocks that arrive at the time of market

jumps is proportional to the market jump risk premium (with coefficient of proportionality given

by the time-varying market beta).

Formally, the risk-neutral dynamics of the assets is given by

x
(0)
t = x

(0)
0 +

∫ t

0
α(Q,0)
s ds+

∫ t

0
λ(0)
s dWQ

s +
∑
s≤t

∆x(0)
s , (6)

x
(j)
t = x

(j)
0 +

∫ t

0
α(Q,j)
s ds+

∫ t

0
λ(j)
s dWQ

s +
∑
s≤t

∆x(j)
s , j = 1, ..., N, (7)

where WQ
t is a N + 1 × 1 Brownian motion. As mentioned above, local equivalence of P and Q

imply that the jumps in the asset prices continue to satisfy the conditional factor model (4). The

counterparts of νPt,j(x) and ν̃Pt,j(x) under Q are denoted with νQt,j(x) and ν̃Qt,j(x). Given (4), exactly

as under P, we have

ν̃Qt,j(x) = νQt,j(x)− νQt,0(x/β
(j)
t ). (8)

We proceed with introducing the notation for the option prices. For simplicity of exposition, as

we will consider only short-dated options, we will assume that the risk-free rate and the dividend
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yield of the assets are all zero in our asymptotic analysis.2 The theoretical value of out-of-the-

money (OTM) European-style option price at time t expiring at time t+ T in the future on asset

j with strike K is therefore given by

O
(j)
t,T (k) =

 EQ
t (ex

(j)
t+T − ek)+, if f

(j)
t,T < k,

EQ
t (ek − ex

(j)
t+T )+, if f

(j)
t,T ≥ k,

(9)

where k = log(K) is the log-strike and f
(j)
t,T = log(F

(j)
t,T ), with F

(j)
t,T denoting the price of a futures

contract written on asset j at time t and expiring at t+T .3 The option is call if the strike is above

the current futures price and is a put otherwise.

For each of the assets, we will consider options that have only one maturity date which is

common across all assets. The log-strikes of the observed options are denoted with

k
(j)
1 < ... < k

(j)
Sj
, j = 0, 1, ..., N. (10)

We will further set

k = max
j=0,...,N

k
(j)
1 , K = exp(k), k = min

j=0,...,N
k

(j)
Sj
, K = exp(k). (11)

Finally, the option prices are observed with error, i.e., we observe

Ô
(j)
t,T (k

(j)
i ) = O

(j)
t,T (k

(j)
i ) + ε

(j)
t,i , i = 1, ..., Sj , j = 0, ..., N. (12)

The probability space has the product form

Ω = Ω(0) × Ω(1), F = F (0) ×F (1), P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)),

with P(1)(ω(0), dω(1)) being transitional probability from Ω(0) to Ω(1). Th underlying asset price as

well as the true (unobserved) option prices are defined on Ω(0) while the option observation errors

are defined on Ω(1). The observation errors will be F (0)-conditionally independent although not

identically distributed, see assumption A6 in the appendix.

3 Nonparametric Option Measures of Variation

We next introduce nonparametric measures of variation constructed from the option data which will

allow us to study idiosyncratic jump risk, and more specifically the asymmetry in the idiosyncratic

2In the empirical application we will account for both dividends and the risk-free interest rate.
3With dividend yield and risk-free rate set to zero, we have f

(j)
t,T = x

(j)
t .
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jump distribution. Using the option spanning results in Carr and Madan (2001), we have

EQ
t

[(
x

(j)
t+T − x

(j)
t

)2
1{x(j)

t+T−x
(j)
t >0}

]
=

∫ ∞
x

(j)
t

2e−k(1− k + x
(j)
t )O

(j)
t,T (k)dk,

EQ
t

[(
x

(j)
t+T − x

(j)
t

)2
1{x(j)

t+T−x
(j)
t <0}

]
=

∫ x
(j)
t

−∞
2e−k(1− k + x

(j)
t )O

(j)
t,T (k)dk.

(13)

For T small, we can directly relate the signed squared moments of returns with the underlying

diffusive volatility and jump risk. At the same time, the integrals on the right-hand sides of the

above equalities can be approximated using the available options via Riemann sums and extensions

in the tails based on extreme value theory combined with an assumption for regular variation in

the tails of the risk-neutral return distributions. More specifically, our estimates of the conditional

risk-neutral signed squared moments of returns from the option data are given by

SV
(−,j)
t =

∑i∗(j)
i=2 h(k

(j)
i−1, k

(j)
i , x

(j)
t )Ô

(a,j)
t,T (k

(j)
i−1) + h(k

(j)
i∗(j), x

(j)
t , x

(j)
t )Ô

(j)
t,T (k

(j)
i∗(j)) + TC

(−,j)
t ,

SV
(+,j)
t =

∑Sj

i=i∗(j)+2 h(k
(j)
i−1, k

(j)
i , x

(j)
t )Ô

(a,j)
t,T (k

(j)
i−1) + h(x

(j)
t , k

(j)
i∗(j)+1, x

(j)
t )Ô

(j)
t,T (k

(j)
i∗(j)+1) + TC

(+,j)
t ,

(14)

where we denote the local average option price with

Ô
(a,j)
t,T (k

(j)
i−1) =

1

2

(
Ô

(j)
t,T (k

(j)
i−1) + Ô

(j)
t,T (k

(j)
i )
)
, i = 2, ..., Sj , j = 0, 1, ..., N, (15)

the index of the strike immediately preceding the current spot price with

i∗(j) = sup{i = 1, ..., Sj : k
(j)
i ≤ x

(j)
t }, j = 0, 1, ..., N, (16)

and the weight function in the option portfolios in (13) with

h(kl, kh, x) = 2e−x
[
(kh − x)e−(kh−x) − (kl − x)e−(kl−x)

]
, x, kl, kh ∈ R. (17)

Finally, TC
(±,j)
t are approximations of the integrals

∫∞
k

(j)
Sj

2e−k(1−k+x
(j)
t )O

(j)
t,T (k)dk and

∫ k(j)
1
−∞ 2e−k(1−

k + x
(j)
t )O

(j)
t,T (k)dk which are based on extreme value theory and are constructed in the following

way:

TC
(+,j)
t =

2

α̂
(+,j)
t

(
1− k(j)

Sj
+ x

(j)
t −

1

α̂
(+,j)
t

)
e
−k(j)

Sj Ô
(j)
t,T (k

(j)
Sj

),

TC
(−,j)
t =

2

α̂
(−,j)
t

(
1− k(j)

1 + x
(j)
t +

1

α̂
(−,j)
t

)
e−k

(j)
1 Ô

(j)
t,T (k

(j)
1 ),

(18)
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and where

α̂
(+,j)
t = median

s=t−τ,...,t

 log(Ô
(j)
s,T (k

(j)
i+

)/Ô
(j)
s,T (k

(j)
Sj

))

k
(j)
i+
− k(j)

Sj

∨
1

 ,

α̂
(−,j)
t = median

s=t−τ,...,t

 log(Ô
(j)
s,T (k

(j)
i− )/Ô

(j)
s,T (k

(j)
1 ))

k
(j)
i− − k

(j)
1

∨
1

 ,

(19)

with i+ = max{i = 1, ..., Sj : k
(j)
i ≤ k

(j)
Sj
/2 + x

(j)
t /2} and i− = min{i = 1, ..., Sj : k

(j)
i ≥ k

(j)
1 /2 +

x
(j)
t /2}, and τ being some integer. We slightly simplified notation in the above definitions by not

indexing the observed strikes with the point of time the options are observed and further by forcing

the time to maturity of the options across the different days to be the same. This is done only for

ease of exposition though.

We note that the tail approximations TC
(±,j)
t are typically small in magnitude because the op-

tion prices corresponding to the maximum and minimum available strikes, Ô
(j)
t,T (k

(j)
Sj

) and Ô
(j)
t,T (k

(j)
1 ),

are in most of the cases very close to zero. Nevertheless, TC
(±,j)
t help minimize the impact of po-

tential biases when comparing SV
(±,j)
t for different assets as we will need to do for computing the

idiosyncratic variation measures below. The particular form of TC
(±,j)
t is due to an assumption for

regular variation in the tails of the return distribution, see e.g., Definition 1.4.3 in Bingham et al.

(1987), which implies linear decay of the log-option prices as |k| → ∞. In Section 9, we illustrate

the tail approximation for the deep out-of-the-money options that forms the basis for TC
(±,j)
t .

The semivariance measures in (14) can be viewed as the option-based analogues of the realized

semivariances of Barndorff-Nielsen et al. (2010). We denote the difference and the sum of the two

option-based semivariance measures as

AV
(j)
t = SV

(−,j)
t − SV (+,j)

t , QV
(j)
t = SV

(−,j)
t + SV

(+,j)
t , j = 0, 1, ..., N, (20)

with the first capturing the asymmetry in the return distribution and the second one being a

measure of the total return variance. We note that QV
(j)
t , without the tail approximations used

in its construction, is the second-moment option portfolio introduced in Bakshi and Madan (2000)

and Bakshi et al. (2003).

Our interest in the paper is in the idiosyncratic risk and in order to identify it from the measures

of variation of the assets and the market index, we need to have an estimate for the market

jump beta, β
(j)
t . We use high-frequency observations of the underlying assets for its inference. In

particular, we assume that for each unit interval (trading day) we have n + 1 equidistant price

records, resulting in n log-returns denoted as

∆n
i x

(j) = x
(j)
i/n − x

(j)
(i−1)/n, i = 1, 2, ..., j = 0, 1, ..., N. (21)
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Following Li et al. (2017), our high-frequency jump beta estimator is then based on ordinary least

squares for the high-frequency increments that identified to contain market jumps:

β̂
(j)
t =

∑
i∈Int

∆n
i x

(0)∆n
i x

(j)1{|∆n
i x

(0)|>ν(0)
n }∑

i∈Int
(∆n

i x
(0))21{|∆n

i x
(0)|>ν(0)

n }
, t ≥ κ, j = 1, ..., N, β̂t =

(
β̂

(1)
t , ..., β̂

(N)
t

)′
, (22)

where Int = {btnc − κn+ 1, ..., btnc} is a local window around the point in time t, for some integer

κ and ν
(0)
n � n−$, for some $ ∈ (0, 1/2). Using the high-frequency beta estimates, our measures

of idiosyncratic variation are given by

ÃV
(j)

t = AV
(j)
t − (β̂

(j)
t )2AV

(0)
t , Q̃V

(j)

t = QV
(j)
t − (β̂

(j)
t )2QV

(0)
t , j = 1, ..., N, (23)

provided of course that the market betas are nonnegative. This is empirically a non-binding as-

sumption and it will therefore be assumed henceforth for ease of exposition.

4 Inference for the Asymmetric Idiosyncratic Variation

We proceed with developing feasible inference for the variation measures introduced above. We note

that while the true (unobservable) option prices are computed under the risk-neutral probability

measure, the observation equation (12) and the assumption A6 for the observation errors are

naturally under the statistical probability measure. Hence all limits results derived here and in the

next section are under P and can be directly used for feasible inference.

We start with a convergence in probability result. For the statement of this result, we need

some additional notation which we now introduce. We denote the signed square function with

f(x) = x2(1{x<0} − 1{x>0}). (24)

Henceforth, ιk is a 1 × N + 1 vector whose elements are zeros except for the k-th one which is 1.

We further set:

ιk:N+1 =
(
ι′k · · · ι′N+1

)′
, k = 2, ..., N + 1. (25)

In all of the theorems below, we will denote with ∆ a reference deterministic sequence that decreases

asymptotically to zero and captures the order of magnitude of the mesh of the strike grids of the

available options. The precise definition of ∆ is given in assumption A5 in Section 8.1. With this

notation, we are ready to state our convergence in probability result.

Theorem 1 Suppose assumptions A1-A7 in Section 8.1 hold. For ∆→ 0, T → 0, (|k| ∨ k)→∞
and n→∞, with ∆ � Tα for α > 1

2 , we have for j = 0, 1, ..., N :

1

T
AV

(j)
t

P−→
∫
R
f(x)νQt,j(x)dx,

1

T
QV

(j)
t

P−→ λ
(0)
t (λ

(0)
t )> + Ṽ

(j)
t +

∫
R
x2νQt,j(x)dx. (26)
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In addition,
1

T
ÃV

(j)

t
P−→

∫
R
f(x)ν̃Qt,j(x)dx, (27)

and if
λ

(j)
t (λ

(0)
t )>

λ
(0)
t (λ

(0)
t )>

= β
(j)
t , then also

1

T
Q̃V

(j)

t
P−→ Ṽ

(j)
t +

∫
R
x2ν̃Qt,j(x)dx. (28)

The asymptotics of Theorem 1 is of joint type: the time to maturity of the options decreases, the

mesh of the strike grid shrinks while its span increases, and the sampling frequency of the returns

used to estimate betas increases. For the convergence in probability results of the theorem, we need

to have ∆/
√
T → 0. This condition guarantees that the error associated with the option price with

strike closest to the current stock price is of smaller order than the quantity to be estimated via

the option portfolios.

Because of the shrinking time to maturity of the options, T , the limits of the option-based

measures of variation can be readily linked to the jumps and the volatility of the underlying process.

In particular, we note that the asymmetry in the return variation over short intervals is solely due

to the asymmetry in the jump distribution of the underlying process. Finally, for Q̃V
(j)

t to measure

the risk-neutral idiosyncratic variance, we need the continuous and jump market betas to be the

same.

We continue next with deriving Central Limit Theorems for the option-based variation mea-

sures. For brevity, given the empirical analysis that follows, we will present only limit results

for the asymmetric variation measures. We start with the total asymmetric variation quantities

{AV (j)
t }j=0,1,...,N which are constructed solely from the option data. In the following theorem,

L|F (0) denotes convergence in probability of the F (0) laws in the space of probability measures

equipped with the weak convergence topology, see VIII.5.26 in Jacod and Shiryaev (2003).

Theorem 2 Suppose assumptions A2-A7 in Section 8.1 hold. Let ∆→ 0, T → 0 and (|k| ∨ k)→
∞, with ∆ � Tα for α ∈

(
1
2 ,

3
2

)
and (|k| ∨ k) � T−β for some β satisfying minj=0,1,...,N (α±j )β >

α
2 −

1
4 , where α±j are the tail coefficients of assumption A7. Then, we have

T 1/4

√
∆

Ω
−1/2
AV,t


1
TAV

(0)
t −

∫
R f(x)νQt,0(x)dx

...

1
TAV

(N)
t −

∫
R f(x)νQt,N (x)dx

 L|F(0)

−→ Zt, (29)

where Zt is N + 1-dimensional standard normal vector defined on an extension of the original

probability space and independent of F (0) and the N + 1 × N + 1 F (0)-adapted matrix ΩAV,t is

defined in Section 8.3.
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There are several errors in the estimation of
∫
R f(x)νQt,j(x)dx via 1

TAV
(j)
t . These are due to the

presence of measurement error in the observed option prices, the discreteness and finite range of

the observed strike grid as well as the approximation 1
T E

Q
t (f(x

(j)
t+T − x

(j)
t ))−

∫
R f(x)νQt,j(x)dx. The

conditions on the relative order of ∆, T and (|k| ∨ k) in Theorem 2 ensure that the leading error

term is due to the observation error. More specifically, the error due to the finite range of the strike

grid plays an asymptotically negligible role for the limit result whenever minj=0,1,...,N (α±j )β > α
2 −

1
4

holds, where α±j control the tail decay of jump compensators, with the condition becoming naturally

weaker for a faster tail decay. From a practical point of view, this condition is not binding as

typically the strikes of the available options cover the “effective” support of the return distribution

(in the sense that the deepest out-of-the-money option quotes we typically observe have asks at

the minimum tick size) and we further implement tail approximation on the basis of extreme value

theory.

Next, the requirement for the relative magnitude of ∆ and T is due to the asymptotic order of

the option prices across the different strikes and the approximation error 1
T E

Q
t (f(x

(j)
t+T − x

(j)
t )) −∫

R f(x)νQt,j(x)dx. In particular, if we replace
∫
R f(x)νQt,j(x)dx in Theorem 2 with 1

T E
Q
t (f(x

(j)
t+T −

x
(j)
t )), then the limit result of the theorem will continue to hold but without the requirement for

the upper bound on α. On the other hand, the lower bound restriction on α is needed to guarantee

that the option error from the option with the strike closest to the current spot price does not

dominate the rest of the observation errors (and the quantity to be recovered). In this regard, we

note that the option prices with different strikes are of different asymptotic order: the options with

strikes in the vicinity of the current spot price are asymptotically larger than those away from it.

This carries over to the observation errors attached to the option prices, and therefore the ones

corresponding to strikes in the vicinity of the current spot price govern the limit distribution in

Theorem 2 and the rate of convergence of the estimator. From a practical point of view, this is a

desirable feature due to the higher liquidity of options with strikes that are not very far in the tails.

The limit distribution in Theorem 2 is mixed Gaussian, with F (0)-conditional volatility depending

on the observed path of the stock prices and the latent true option prices.

We next state a CLT for ÃV
(j)

t . The convergence in law in the next theorem is stable, denoted

with L − s, which means that the convergence in law holds jointly with any bounded random

variable defined on the original probability space, see e.g., VIII.5.28 in Jacod and Shiryaev (2003).

Theorem 3 Suppose assumptions A1-A7 in Section 8.1 hold. Let ∆ → 0, T → 0, (|k| ∨ k) →
∞ and n → ∞, with ∆ � Tα for α ∈

(
1
2 ,

3
2

)
and (|k| ∨ k) � T−β for some β satisfying
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minj=0,1,...,N (α±j )β > α
2 −

1
4 , where α±j are the tail coefficients of assumption A7. Set

Ω
ÃV ,t

=
∆√
T

(ι2:N+1ΩAV,tι
′
2:N+1 + diag(β̂t)β̂tι1ΩAV,tι

′
1β̂
′
tdiag(β̂t))

+
4

n

(AV
(0)
t )2

T 2
diag(β̂t)Ωβ,tdiag(β̂t).

(30)

Then, if Ωβ,t is of full rank, we have

Ω
−1/2

ÃV ,t


1
T ÃV

(1)

t −
∫
R f(x)ν̃Qt,1(x)dx

...

1
T ÃV

(N)

t −
∫
R f(x)ν̃Qt,N (x)dx

 L−s−→ Zt, (31)

where Zt is N + 1-dimensional standard normal vector defined on an extension of the original

probability space and independent of F .

The limit distribution of ÃV
(j)

t is mixed Gaussian, with the limit determined by the option error

as well as the error in recovering the betas from the high-frequency return data. There is no

requirement for the relative order of ∆ and T on one hand and n on the other hand. The rate of

convergence is implicitly determined by the smaller of
√

∆/T 1/4 and
√
n, and we do not need to

take a stand on which of them is asymptotically larger.

For making use of the above limit result, we need to replace Ω
ÃV ,t

with a consistent estimate

for it and further take advantage of the fact that the convergence in Theorem 3 holds stably. The

corresponding result is stated in the theorem below, with the explicit construction of the consistent

estimate of Ω
ÃV ,t

given in Section 8.3.

Theorem 4 Under the conditions of Theorem 3, the limit result of this theorem continues to

hold upon replacing Ω
ÃV ,t

with Ω̂
ÃV ,t

constructed from the option and return data and defined in

Section 8.3.

We note that the feasible estimate of the asymptotic variance, Ω̂
ÃV ,t

does not depend on ∆ and n.

5 Alternative Option-Based Measures of Asymmetry

While the semivariance measures introduced and analyzed in the previous two sections have easy to

interpret limits associated with the variation of jumps in the processes, there is nevertheless a more

efficient and complete way of identifying the asymmetry in the jump (and respectively return)

distribution from the short-dated options. We introduce and analyze the asymptotic properties

of this alternative approach in this section. In the Appendix, as a robustness check, we redo the
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empirical analysis of next section by replacing the semivariances with these alternative option-based

measures of asymmetry. The measures that we develop here are defined from the following two

portfolios of options:4

L̂(j)
t,T (u) = 1− (u2 + iu)e−iux

(j)
t

Sj∑
l=2

e(iu−1)k
(j)
l − e(iu−1)k

(j)
l−1

iu− 1
Ô

(a,j)
t,T (k

(j)
l−1), (32)

M̂(j)
t,T =

Sj∑
l=2

(e−k
(j)
l−1 − e−k

(j)
l )Ô

(a,j)
t,T (k

(j)
l−1), (33)

where Ô
(a,j)
t,T (k

(j)
i−1) is the average option price defined in equation (15). The first option portfolio

L̂(j)
t,T (u) is a measure of the characteristic function of the return EQ

t (eiu(x
(j)
t+T−x

(j)
t )) (see Qin and

Todorov (2018)) while the second one is an estimate of −EQ
t (x

(j)
t+T − x

(j)
t ) and is one-half of the

squared volatility VIX index quoted by the CBOE option exchange. Our alternative measure of

asymmetry is then given by

AM
(j)
t (u) = =

(
log(L̂(j)

t,T (u))
)

+ uM̂(j)
t,T , (34)

where the complex logarithm is given by log(z) = log |z|+ Arg(z) for z ∈ C, with Arg(z) denoting

the principal value of the argument (taking values in (−π, π]). The idea behind the above estimator

of asymmetry is the following. For small T , using Lévy-Khintchine theorem (Theorem 8.1 in Sato

(1999)), we have

EQ
t (eiu(x

(j)
t+T−x

(j)
t )) ≈ exp

(
iuTα

(Q,j)
t − u2

2
T (σ

(j)
t )2 + T

∫
R

(eiuz − 1− iuz)ν(Q)
t,j (z)dz

)
, (35)

where α
(Q,j)
t is the drift term of the log-price under Q (i.e., the Q counterpart of α

(j)
t ), and further

EQ
t (x

(j)
t+T − x

(j)
t ) ≈ Tα(Q,j)

t . (36)

Combining them, we have that for T sufficiently small

=
(

log(EQ
t (eiu(x

(j)
t+T−x

(j)
t )))

)
− uEQ

t (x
(j)
t+T − x

(j)
t )) ≈ T

∫
R

(sin(uz)− uz)νQt,j(z)dz, (37)

and we stress that the above approximation is exact if volatility and jump intensity are constant over

[t, t+T ]. This is not the case for the semivariances, i.e., there will be estimation error in separating

volatility from jumps for these measures even when volatility and jump intensity are constant. This

4For simplicity, here we do not add tail integral approximations like we did in the construction of the semivariance
measures.
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is the reason why our alternative measure of asymmetry AM
(j)
t (u) has better asymptotic properties

than AV
(j)
t (which is based on the semivariances).

Since the function sin(uz)−uz is odd, then nonzero values of AM
(j)
t (u) correspond to asymmetry

in the jump distribution. In fact, asymmetry in νQt,j(z) is equivalent to
∫
R(sin(uz) − uz)νQt,j(z)dz

being different from zero for some value of u. In that sense AM
(j)
t (u) as a function of u can fully

characterize the asymmetry in the jump distribution. By contrast, we can have AV
(j)
t = 0 and the

jump distribution being asymmetric. For low values of u, AM
(j)
t (u) loads more on the big jumps

(indeed sin(uz)−uz � −u3z3/6 for u converging to zero) while for big u, the statistic is dominated

by the first moment of the jumps. Compared to AV
(j)
t , the measure AM

(j)
t (u) puts more weight in

relative terms to the “moderately-sized” jumps, i.e., for a fixed u, we have (uz − sin(uz))/z2 → 0

as either z ↑ ∞ or z ↓ 0.

Using the estimate for the market beta, we can recover the asymmetry in the idiosyncratic

jumps via

ÃM
(j)

t (u) = AM
(j)
t (u)−AM (0)

t (β̂
(j)
t u). (38)

In the following theorem we derive the asymptotic order of magnitude of the difference between

the measures AM
(j)
t (u) and ÃM

(j)

t (u) and their asymptotic limits.

Theorem 5 Suppose assumptions A1-A6 in Section 8.1 hold. Let ∆→ 0, T → 0 and (|k| ∨ k)→
∞, with

√
∆| log(T )| → 0. Then, for a fixed u ∈ R+, we have

1

T
AM

(j)
t (u) =

∫
R

(sin(uz)− uz)νQt,j(z)dz +Op(
√

∆ ∨ T ∨ e−2(|k|∧|k|)), j = 0, 1, .., N, (39)

1

T
ÃM

(j)

t (u) =

∫
R

(sin(uz)− uz)ν̃Qt,j(z)dz +Op(
√

∆ ∨ T ∨ e−2(|k|∧|k|) ∨ n−1/2), j = 1, .., N. (40)

We note that we can also derive CLT results for AM
(j)
t (u) and ÃM

(j)

t (u) but in order to keep the

analysis short, we do not do this here. The difference between AM
(j)
t (u) and ÃM

(j)

t (u) and their

asymptotic limits are driven by three sources of error: (1) observation error and discreteness of

the strike grid, (2) the finite strike range and (3) the time variation in the volatility and the jump

intensity. As mentioned above, AM
(j)
t (u) and ÃM

(j)

t (u) do not contain error in separating volatility

from jumps unlike their counterparts AV
(j)
t and ÃV

(j)

t . This results in a weaker requirement for the

asymptotic relation between ∆ and T . In addition, the option portfolios used in forming AM
(j)
t (u)

and ÃM
(j)

t (u) load slightly less on the options with strikes in the vicinity of the current spot price

than AV
(j)
t and ÃV

(j)

t do. This leads to a smaller impact of the observation error in AM
(j)
t (u) and

ÃM
(j)

t (u) in an asymptotic sense.

18



Overall, AM
(j)
t (u) and ÃM

(j)

t (u) have faster rate of convergence and weaker conditions on

∆ and T than the measures AV
(j)
t and ÃV

(j)

t (based on semivariances). Nevertheless, since the

asymptotic limits of AV
(j)
t and ÃV

(j)

t are somewhat easier to interpret, we will base our empirical

analysis on AV
(j)
t and ÃV

(j)

t . In the appendix, we show that the key empirical findings remain

intact when switching to AM
(j)
t (u) and ÃM

(j)

t (u) (for low values of u).

6 Empirical Exploration of Asymmetry in Idiosyncratic Risk

6.1 Data

We begin the empirical section with describing the data that we use in our analysis. We obtain daily

closing best bid and ask quotes for equity options covering the period 2007-2017 from OptionMetrics.

Our sample consists of stocks in the CBOE S&P 500 Implied Correlation Index. Specifically, we

select the 50 stocks that are most frequently included in the index during our sample period, all

of which are part of the S&P 500 index throughout our sample. Our proxy for the market is the

S&P 500 index portfolio and we use options written on the cash index (ticker SPX). We keep

out-of-the-money options and take the mid-quote as the observed option price in the construction

of the variation measures. On each day, we use options with the shortest available maturity given

that it is at least 5 business days. This leads to a median time-to-maturity of the options in the

sample of 8 business days. Further details on the data filtering are given in the data appendix,

with Table 6 providing summary statistics for the option data. As a robustness check, in Section 9,

we extend the empirical analysis to the stocks in the S&P 100 index for the last three years in the

sample when the liquidity of the stock option market has increased significantly.

The options on the S&P 500 index are European style while the options on the individual stocks

are American, i.e., they allow for early exercise. We ignore the latter in the analysis as the impact

of the option to exercise early is negligible.5

Following earlier empirical option pricing work, we back out f
(j)
t from the option data by

making use of put-call parity for European style options. To reduce noise, we use the two strike

prices that are closest to the spot price provided by OptionMetrics, and we take the average of the

two option-implied futures prices.

Finally, the high-frequency return data for individual stocks is taken from the NYSE Trade and

Quote (TAQ) database, and the S&P 500 index exchange traded fund (ticker SPY) is used as a

5American calls are never optimal to exercise early when the underlying asset does not pay a dividend till expiration
(which is the case most of the time). American puts can be optimal to exercise early in order to gain the interest
on the strike. However, since the interest rate is rather low and the time to maturity of the options is rather short,
these gains are nevertheless small and therefore we ignore them.
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proxy for the market index. The sampling frequency is five-minutes during the trading hours. Data

cleaning procedures are described in the data appendix.

6.2 Is Aggregate Asymmetry in Idiosyncratic Risk Present?

In our empirical analysis we will focus on cross-sectional averages of the measures of variation. In

particular, we will analyze

ÃV t =
1

N

N∑
j=1

ÃV
(j)

t and Q̃V t =
1

N

N∑
j=1

Q̃V
(j)

t . (41)

Individual stock variation measures ÃV
(j)

t and Q̃V
(j)

t can reflect temporary increases in expected

future stock variation and/or asymmetry in the return distribution, most notably around the times

of earnings announcements, which have no aggregate pricing implications. In addition, from an

econometric point of view, cross-sectional averaging will reduce estimation error which is of im-

portance as the option coverage for some of the stocks during parts of the sample can be scant.

While ÃV t is constructed by putting equal weights to the stocks in the cross-section, in Section 9

we repeat the empirical analysis by weighting the individual ÃV
(j)

t measures according to the value

of the stocks. The results based on the value-weighted statistics are very similar to the ones based

on the equally-weighted ÃV constructed above.

We start our empirical analysis with conducting tests for deciding whether the aggregate asym-

metry in the risk-neutral return distribution of the assets, ÃV t, is statistically different from zero.

That is, we test whether 1
N

∑N
j=1

∫
R f(x)ν̃

(Q)
t,j (x)dx = 0. This is a natural hypothesis. Indeed, if

jump risk in stocks outside market-wide jump events is perfectly diversifiable as in the seminal

work of Merton (1976), then we would expect ν̃
(Q)
t,j (x) to be averaged out in the cross-sectional

aggregation, and therefore in this case ÃV t should not be different from zero statistically.6

We implement the test on the option data in our sample, and we note that N differs across days

due to data availability (with lower values of N in the early part of the sample). To further gain

power, particularly for the early part of the sample, we test the null hypothesis
∑t

s=t−20 ÃV s = 0.

The lower 95% confidence bounds for
∑t

s=t−20 ÃV s are plotted in Figure 2 and reveal the latter is

statistically different from zero for most of the sample. The null hypothesis of
∑t

s=t−20 ÃV s = 0

cannot be rejected only in the first half of 2007. However, this is mostly due to the larger estimation

uncertainty during that period. Indeed, we have lower N and on average lower number of options

per stock in 2007.

6Our asymptotics is for fixed N . However, it can be extended to the N → ∞ case. For N → ∞, the error
associated with measuring the index options will not get averaged out in the cross-sectional aggregation and therefore
it will become the leading term asymptotically in the CLT for ÃV t.
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The results from Figure 2 suggest presence of aggregate idiosyncratic risk, with the positive

values of ÃV t being due to a combination of aggregate asymmetry in the idiosyncratic jump dis-

tribution under P and/or asymmetry in the P − Q wedge associated with the idiosyncratic jump

distribution (i.e., risk premium). We will separate these two components of ÃV t in the next section

with the help of return data.
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Figure 2: Lower 95% confidence bound for 20-day moving average of ÃV t. The confidence interval
is constructed on the basis of Theorem 4.

While on majority of the days in the sample after 2007, the null hypothesis of
∑t

s=t−20 ÃV s = 0

is overwhelmingly rejected, there are nevertheless periods where the value of the test statistic is

significantly lower. This happens, in particular, before major pre-scheduled economy-wide events in

our sample, mainly the Brexit vote in June 2016 and the US elections in November 2016. What is the

reason for this? Typically, as the expiration date approaches, the options get cheaper as, intuitively,

there is less volatility which “generates” the option value. With our notation, Ot,T (k)→ 0 as T → 0

almost surely and for any fixed k. This holds in the case when the asset price follows a general

semimartingale with no fixed time of discontinuity as is assumed here and in most existing work.

Things are very different, however, when the underlying stock price has a fixed time of dis-

continuity before the expiration date of the option written on the stock, such as a pre-scheduled

economic announcement or an expected major political event. In this case, it is easy to show that

Ot,T (k) = Op(1) as T → 0, with the value of the option price solely determined in the limit (as

T → 0) by the jump at the known fixed event time. In the case of the Brexit vote and the 2016 US

election, the fixed jump event is a market-wide event. Hence, asymptotically for these events our

estimate of ÃV t will be zero. This of course does not mean that there is no idiosyncratic jump risk
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at this points of time. Instead, this is due to the fact that the latter plays only a negligible role in

the short-dated options which include the economy-wide jump with fixed arrival time.

Such events, therefore, present an opportunity to test our (conditional) linear factor structure

of jumps associated with events that cause the market to jump. More specifically, if the jump

structure in (4) is true, then the normalized option prices of the individual stocks should be possible

to reconstruct (in the limit as T → 0) from the market index options. For example, if the beta

of the stock is 1, then the normalized individual stock and index options should be approximately

the same. We illustrate this in Figure 3 with S&P 500 index and Apple stock short-dated options

recorded on the day before the 2016 US election (the market beta of Apple on this date was very

close to one). Comparing Figures 1 and 3, we see a substantial difference. Mainly, consistent with

the conditional factor specification in (4), the normalized Apple options are very close to the market

index options on the day before the election. This is because, while idiosyncratic risk is still present

in the Apple stock, its importance in relative terms to the anticipated systematic risk is negligible

when a prescheduled market-wide event is approaching. This is particularly true for the left tail

(corresponding to out-of-the-money puts) for which in relative terms the systematic risk is much

bigger than the idiosyncratic one.
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Relative Log Prices of OTM Apple and SP500 Short-dated Options on 11/07/2016

Figure 3: Relative Log Prices of OTM Apple and SPX Short-dated Options before 2016 US Elec-
tions. The y-axis is the logarithm of the ratio of the out-of-the-money option prices over the current
stock price. Stars correspond to S&P 500 index options and the crosses to options on Apple stock.

While such events are useful for showing the validity of our assumed factor structure at market-

wide jump events, they are nevertheless quite rare in the sample and therefore do not invalidate
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our inference for the idiosyncratic jump risk.7

6.3 Pricing of Asymmetry in Idiosyncratic Jump Risk

6.3.1 Empirical Evidence

Given the strong evidence of the previous section for presence of aggregate asymmetry in the risk-

neutral expected idiosyncratic risk, we now study what part of this aggregate asymmetry can be

attributed to risk premium. As a reference point, we note that there is a large body of work

which has shown that risk-neutral market return skewness is largely explained by time-varying risk

premium for downside market risk. Here we investigate whether this is the case for the aggregate

idiosyncratic skewness and we further study the implications of this.

In order to isolate the risk premium component in ÃV t, we need to construct its counterpart

from returns on the assets. To this end, we introduce the realized asymmetric variation measures8

RAV
(j)
t =

b(t+T )nc∑
i=btnc+1

f(∆n
i x

(j)), j = 0, 1, ..., N. (42)

Following general results in Barndorff-Nielsen et al. (2010), we have

RAV
(j)
t

P−→
∑

s∈[t,t+T ]

f(∆x(j)
s ), j = 0, 1, ..., N, (43)

as n → ∞, i.e., as we sample the asset prices more frequently. Our estimate for the realized

idiosyncratic asymmetry risk is then given by

R̃AV
(j)

t = RAV
(j)
t − (β̂

(j)
t )2RAV

(0)
t , R̃AV t =

1

N

N∑
j=1

R̃AV
(j)

t , j = 1, ..., N, (44)

and under assumption A1 in the appendix, we have:

R̃AV
(j)

t
P−→

∑
s∈[t,t+T ]

f(∆x̃(j)
s ), j = 1, ..., N. (45)

On Figure 4, we plot 20-day moving average of R̃AV t against that of ÃV t. As can be seen from

the figure, the aggregate realized idiosyncratic asymmetric variation risk is significantly smaller in

magnitude than its risk-neutral expectation. Nevertheless, we do note that there are periods in

the sample, where this risk is present. Most notably, we do have (negative) aggregate idiosyncratic

return skewness in the Fall of 2007, during the Fall of 2008 and in early 2009.

7That is, even if we were to exclude the days in the sample in which the expiration date of the options is after a
large economy-wide event with known arrival time, our empirical findings about ÃV will continue to hold.

8In computing RAV
(j)
t , we include the returns covering the period from market close to the the next market open.

We also computed RAV
(j)
t using daily returns, with the resulting measures being similar (but of course noisier).
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Figure 4: ÃV versus R̃AV . Dotted line is ÃV and solid line is R̃AV from five-minute returns.
Plotted series are 20-day moving averages.

Testing formally the hypothesis R̃AV t = 0 will require a feasible CLT for R̃AV t which is in

general difficult as the drift term in the asset dynamics will show up in the asymptotic limit as

an asymptotic bias.9 However, a realized counterpart of the asymmetry measure AM
(j)
t , which is

defined in the appendix, has a feasible CLT. Using it, we show formally in the appendix that the

aggregate asymmetry in the idiosyncratic risk is statistically different from zero. This is in line with

our earlier result for ÃV t being different from zero and formally shows that there is cross-sectional

clustering of idiosyncratic risk. This, in turn, means that idiosyncratic jump risk cannot be solely

explained with firm-specific shocks as in Merton (1976), and instead idiosyncratic jump arrival is

a systematic event.

The wedge between the risk-neutral and statistical probability measures is a manifest of the risk

premium. With regards to the risk in R̃AV , no pricing of the aggregate idiosyncratic asymmetry

variation risk at time t means

ÃV t = EP
t (R̃AV t), (46)

and this implies the following conditional moment restriction

EP
t

(
R̃AV t − ÃV t

)
= 0. (47)

Conditional moment restrictions of this type arise naturally from asset pricing models and inference

9However, we conjecture that a mild truncation of the increments from below (in absolute value) will allow for

feasible CLT without changing the probability limit of R̃AV
(j)

t . Such limit result will complement our CLT for AV
(j)
t

(and can be shown to hold jointly with it). For brevity, we do not pursue this any further here.
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procedures for them have been developed following the seminal work on GMM, see e.g., Hansen

(1982) and Hansen and Singleton (1982). One can turn the conditional moment restriction into

unconditional one by using instruments xt which are in the information set of the econometrician

at time t:

EP
[(
R̃AV t − ÃV t

)
xt

]
= 0. (48)

We implement the above test regarding the pricing of aggregate idiosyncratic asymmetry using the

following sample moments
m̂mean = 1

T −κ+1

∑T
t=κ

R̃AV t−ÃV t
RV

(0)
t

,

m̂
(τ)
auto = 1

T −κ−τ+1

∑T
t=κ+τ

R̃AV t−ÃV t
RV

(0)
t

R̃AV t−τ−ÃV t−τ
RV

(0)
t−τ

, τ ∈ N,
(49)

where

RV
(i)
t =

∑
i∈Int

(∆n
i x

(i))2, i = 0, 1, ..., N, (50)

denotes the realized volatility of the corresponding asset. We scale the differences R̃AV t− ÃV t by

the market realized volatility RV
(0)
t in order to improve estimation efficiency by accounting for the

well-known heteroskedasticity in asset returns. The first of the above moment conditions tests if

there is statistical difference in the means of the two (weighted) time series R̃AV t and ÃV t. The

second set of moment conditions tests for presence of time variation in that gap, i.e., for time-

varying risk premium. In calculating the standard errors for the moment conditions in (49) and

all subsequent regressions, we use Newey-West standard errors with lag length set following the

recommendations in Lazarus et al. (2018). The results from the test are summarized in Table 1.

They provide strong evidence for presence of time-varying risk premium for aggregate downside

idiosyncratic risk.

Given the above empirical evidence, we now try to link the risk premium component of ÃV t

with aggregate priced risk and its time variation. It is natural to conjecture that the risk premium

in ÃV t and the one in ÃV
(0)

t regarding the market index have a common origin, mainly fear of

large negative tail events in systematic risk. Therefore, ÃV t should be a good predictor of future

equity risk premia as the tail events in returns are part of equity risk. To study this, in Table 2

we report results from running univariate predictive regressions in which the explanatory variable

is the future excess return on an aggregate equity portfolio, constructed as an average of the

returns of the stocks in our sample, and the explanatory variable being one of the aggregate option

variation measures.10 Our sample is short, so the predictive regression results are obviously noisy.

10We also conducted predictive regressions for the aggregate market portfolio, using the CRSP Value-Weighted
Market Portfolio as a proxy, with very similar results to the ones reported in Table 2.
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t-stat (HF) t-stat (daily)

m̂mean -4.7169 -5.3435

m̂
(1)
auto 2.5801 2.9742

m̂
(5)
auto 2.3574 2.6127

m̂
(22)
auto 2.1378 2.0369

Table 1: Tests for Risk Premium in ÃV . First
column corresponds to R̃AV computed from five-
minute intraday data and the second column to

R̃AV from daily returns. Standard errors are
calculated using Newey-West estimator with lag
length of 1.3

√
T .

6 Months 9 Months 12 Months

AV
(0)
t,T 0.8539 1.5029 2.0974

(0.5798) (0.6868) (0.6861)

QV
(0)
t,T −AV

(0)
t,T 0.7592 1.2504 1.7127

(0.5320) (0.5770) (0.5344)

ÃV t,T 0.6080 1.0906 1.4910

(0.4862) (0.4839) (0.3756)

Q̃V t,T − ÃV t,T 0.3099 0.6040 0.9994

(1.0305) (1.2974) (1.4084)

0.0481 0.0542 0.0594 0.0040 0.0967 0.0950 0.1239 0.0102 0.1397 0.1314 0.1715 0.0208

Table 2: Predicting Returns of Equally-Weighted Portfolio Constructed by the Stocks in the sample. The explanatory variables are 20-day moving
averages. Standard errors are calculated using Newey-West estimator with lag length of 1.3

√
T .

However, we note that unlike standard predictors used in prior work on return predictability, our

measures, and in particular ÃV t, have significantly less time-series persistence (and this obviously

helps precision). With these econometric issues in mind, Table 2 reveals that ÃV t is a strong

predictor of future returns at the longer horizons of 9 and 12 months. The predictive ability of ÃV t

is comparable to that of AV
(0)
t . Interestingly, the results from the predictive regressions show that

once we remove the asymmetric component of Q̃V t, it no longer has predictive ability for the future

equity risk premium. This suggests that significant part of the price for idiosyncratic volatility, see

e.g., Herskovic et al. (2016), is due to the risk premium for aggregate downside idiosyncratic jump

risk in asset prices.

In order to compare the risk premia dynamics for market and aggregate idiosyncratic downside

risks, in Figure 5 we plot the 20-day moving averages of ÃV and AV (0) normalized by their sample

means. As seen from the figure, the two series have very similar dynamics, becoming elevated in the
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aftermath of the financial crisis of 2008 as well as around the time of the European sovereign debt

crises of 2010 and 2011. Nevertheless, there are notable differences in their behavior. In particular,

ÃV increased significantly in the early part of 2009, a period associated with continued market

decline and the passage of the stimulus plan aimed at boosting economic growth. This reaction

of ÃV is in contrast to that of AV (0) which did not increase significantly (in relative terms) and

is indicative of concerns among investors regarding the cross-sectional heterogeneity in the impact

from the stimulus plan and more generally from the economic turbulence at the time. Another

notable example of different behavior of ÃV and AV (0) is the flash crash of May 2010 and the

subsequent market fears which had a far bigger impact on AV (0) than on ÃV . Overall, Figure 5

suggests that there are similarities in the pricing of market and aggregate idiosyncratic downside

risks but differences can appear particularly during events which can have heterogeneous effect on

various sectors of the economy.
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Figure 5: AV (0) versus ÃV . Dotted and solid lines correspond to 20-day moving averages of ÃV
and AV (0), respectively. Both series have been normalized by their sample means.

6.3.2 Interpretation of the Results

How can we explain the documented nontrivial price for aggregate idiosyncratic downside risk? As

already discussed, if idiosyncratic jumps are in the style of Merton (1976), i.e., arrive at different

times with ∆x̃
(i)
t ∆x̃

(j)
t = 0 for i 6= j, then at any point in time 1

N

∑N
j=1

∑
f(∆x̃

(j)
t ) should be

approximately zero whenever N is large. Therefore, this type of idiosyncratic jump risk cannot

explain R̃AV t being different from zero and the gap R̃AV t − ÃV t documented above. Our empir-

ical results are instead suggestive of cross-sectional clustering of jumps outside market-wide jump
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episodes. More specifically, we can justify the findings of the previous section with the following

structure for idiosyncratic jump risk:

∆x̃
(j)
t = χ

(j)
t Zt, j = 1, ..., N, (51)

where conditional on a “common shock” information set C (in the terminology of Andrews (2005)),

containing the systematic risk information, {χ(j)
t }Nj=1 are mean zero, independent from each other

and from Zt, with the latter being adapted to C. In such a specification, we have

1

N

N∑
j=1

χ
(j)
t

P−→ 0,
1

N

N∑
j=1

f(χ
(j)
t )

P−→ f(χ), as N →∞, (52)

provided χ
(j)
t have C-conditional finite fourth moments and where f(χ) = E(χ

(j)
t |C). In general,

f(χ) is a random number that depends on the systematic risks which are in the information set C.
Given (52), we have

1

N

N∑
j=1

∆x̃
(j)
t

P−→ 0,
1

N

N∑
j=1

f(∆x̃
(j)
t )

P−→ − f(χ)f(Zt), as N →∞. (53)

That is, the idiosyncratic asymmetry on an individual level “survives” cross-sectional aggrega-

tion and generates a systematic source of risk. We note, however, that the probability limit of

1
N

∑N
j=1 f(∆x̃

(j)
t ) for N large is different from zero only if f(χ) 6= 0, i.e., only if the factor loadings

have asymmetry in their cross-sectional distribution. For example, if negative skew in Z carries a

positive risk premium, then we need positive skewness in the cross-sectional distribution of {χ(j)
t }Nj=1

in order to generate the aggregate (realized) risk premium R̃AV t− ÃV t. This will be the case if we

have a small number of stocks with very high positive exposure to the risk in Zt and a majority of

stocks with much smaller negative exposure to Zt. Of course, conditional on the systematic shock

Zt and the market return, the asymmetry and presence of fat-tails in the cross-sectional distribution

of the factor loadings {χ(j)
t }Nj=1 maps directly into asymmetry and fat tails in the cross-sectional

distribution of stock returns, which has been studied in the recent work of Kelly and Jiang (2014)

and Oh and Wachter (2019).

There are two very different possibilities regarding the time series behavior of χ
(j)
t . The first is

the case when χ
(j)
t is only Ft-adapted but is not in the information set Ft−. This means that we

cannot fully predict the value of the factor loading χ
(j)
t from observing all the information prior

to the jump time, captured in Ft−. In this case, ∆x̃
(j)
t are uncorrelated both in the time series

and in the cross-section. In fact, we can even have Zt being a constant and in this case ∆x̃
(j)
t will

be cross-sectionally independent. Note, however, that in this scenario the systematic risk consists
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of the fact that the jumps in the individual stocks arrive at the same time. When χ
(j)
t is not

Ft−-adapted, then the econometrician cannot infer χ
(j)
t from the data.

The second situation is one in which χ
(j)
t is Ft−-adapted. When this is the case, and under

some additional structure, the econometrician can uncover χ
(j)
t from information in Ft−, provided

Zt is a known risk factor. In such a situation, one can test for the above specification in (51) by

checking whether AV
(j)
t line up in the cross-section according to their loadings χ

(j)
t . We performed

such tests using commonly used risk factors such as the Fama-French ones and we found that the

loadings on such risk factors cannot rationalize the observed cross-sectional dispersion in AV
(j)
t .

7 Conclusion

In this paper we study idiosyncratic jump risk using option and return data on a cross-section

of assets. From the option data, we construct nonparametric measures of expected risk-neutral

semivariance which split the expected variation into parts due to positive and negative returns as

well as additional measures of asymmetric return variation based on the characteristic function of

the returns. By combining these option-based quantities with local estimators of market beta from

high-frequency returns, we construct nonparametric measures of expected risk-neutral idiosyncratic

variation in assets. We derive feasible limit theory for the estimators which builds on in-fill asymp-

totics in time and in the space of strike grids of the options. Using the developed econometric tools,

we show empirically that there is aggregate idiosyncratic downside risk in assets which commands

a nontrivial premium with dynamics that yields significant forecast power for future equity returns.

Our results suggest cross-sectional clustering of idiosyncratic jump risk as well as cross-sectional

negative return skewness during market-neutral systematic jump events.

8 Assumptions and Proofs

In the proofs we will denote with Ct an F (0)
t -adapted finite-valued random variable which can

change from line to line.

8.1 Assumptions

Henceforth, we will denote the diffusion coefficient of x
(j)
t with

σ
(j)
t =

√
λ

(j)
t (λ

(j)
t )>, j = 0, 1, ..., N. (54)

A1. The processes {α(j)
t }j=0,...,N , λ

(0)
t and {λ(j)

t }j=1,...,N are with càdlàg paths. We have ∆x
(0)
s ∆σ

(0)
s =

0, ∆x
(j)
s ∆σ

(0)
s = 0 and ∆x

(j)
s ∆σ

(j)
s = 0, for j = 1, ..., N and s ∈ [t− κ, t]. Finally, β

(j)
s = β

(j)
t ≥ 0,
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for j = 1, ..., N and s ∈ [t− κ, t].

A2. We have |σ(j)
t | > 0 and the process σ(j) has the following dynamics under Q:

dσ
(j)
t = b

(j)
t dt+ η

(j)
t dWQ

t + η
(j)
t dW

Q,j
t +

∫
R
δ(σ,j)(t, u)µ(σ,j)(dt, du), j = 0, 1, ..., N, (55)

where W
(Q,j)

is a (univariate) Brownian motion independent of WQ; µ(σ,j) is a Poisson random

measure on R+ × R with compensator ν(σ,j)(ds, du) = ds ⊗ du, with the jumps in x(j) having

arbitrary dependence with those in σ(j); b(j), η(j) and η(j) are processes with càdlàg paths and

δ(σ,j)(s, u) : R+ × R→ R is left-continuous in its first argument.

A3. With the notation of A2, there exist F (0)
t -adapted random variables Ct and t > t such that for

s ∈ [t, t] and j = 0, 1, ..., N :

EQ
t |α(Q,j)

s |8 + EQ
t |σ(j)

s |16 + EQ
t (e8|x(j)

s |) + EQ
t

(∫
R

[e4|z| ∨ 1]ν
(Q)
s,j (z)dz

)8

< Ct, (56)

and in addition for some ι > 0

EQ
t

(∫
R

(|δ(σ,j)(s, z)|4 ∨ |δ(σ,j)(s, z)|)dz
)1+ι

≤ Ct. (57)

A4. With the notation of A2, there exist F (0)
t -adapted random variables Ct and t > t such that for

s, r ∈ [t, t] and j = 0, 1, ..., N :

EQ
t |α(Q,j)

s − α(Q,j)
r |p + EQ

t |σ(j)
s − σ(j)

r |p + EQ
t ||η(j)

s − η(j)
r ||p + EQ

t |η(j)
s − η(j)

r |p

≤ Ct|s− r|, ∀p ∈ [2, 4],
(58)

EQ
t

(∫
R

(ez∨0|z| ∨ |z|2)|νQs,j(z)− ν
Q
r,j(z)|dz

)p
≤ Ct|s− r|, ∀p ∈ [2, 3], (59)

and

|EQ
t (α(Q,j)

s − α(Q,j)
r )| ≤ Ct|s− r|, |EQ

t (νQs,j(z)− ν
Q
r,j(z))| ≤ Ct|s− r|G(z), (60)

where the positive-valued function G(z) satisfies
∫
R z

2G(z)dz <∞.

A5. The log-strike grids {k(j)
i }

Sj
i=1, for j = 0, 1, ..., N , are F (0)-adapted and we have

ct∆ ≤ k(j)
i − k

(j)
i−1 ≤ Ct∆, j = 0, 1, ...N, as ∆ ↓ 0, (61)

where ∆ is a deterministic sequence. In addition, for some arbitrary small ζ > 0:

sup
i:|k(j)

i −x
(j)
t |<ζ

∣∣∣∣∣k
(j)
i − k

(j)
i−1

∆
− ψ(j)

t (k
(j)
i−1 − x

(j)
t )

∣∣∣∣∣ P−→ 0, j = 0, 1, ..., N, as ∆ ↓ 0, (62)
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where ψ
(j)
t (k) are F (0)-adapted functions which are continuous in k at 0.

A6. We have ε
(j)
t,i = ν

(j)
t (k

(j)
i − x

(j)
t )ε

(j)
t,i O

(j)
t,T (k

(j)
i ) for j = 0, 1.., N , where for k in a neighborhood

of zero, we have |ν(j)
t,i (k) − ν

(j)
t,i (0)| ≤ Ct|k|ι, for some ι > 0; {ε(j)t,i }

Sj
i=1, for j = 0, 1.., N , are

i.i.d. sequences defined on an extension of F (0) and independent of it and from each other. We

further have E(ε
(j)
t,i |F (0)) = 0, E((ε

(j)
t,i )2|F (0)) = 1 and E(|ε(j)t,i |κ|F (0)) < ∞, for some κ ≥ 4 and

j = 0, 1, ..., N .

For stating our last assumption, we need to introduce some notation. First, we denote

ψ(x) = e|x|, x ∈ R. (63)

Next, for a generic measure ν, we set the tail integrals

ν(x) =


∫∞
x ν(x)dx, for x > 0,∫ x
−∞ ν(x)dx, for x < 0.

(64)

We further set

ν+
ψ (x) =

ν(log(x))

x
, ν−ψ (x) =

ν(− log(x))

x
, for x > 1. (65)

A7. The jump intensities have the following decomposition νQt,j(x) = at,jνj(x) for processes at,j

with càglàd paths and the functions νj(x) satisfy the following two conditions:

1. The functions ν±j,ψ(x) are regularly varying at infinity, that is, ν±j,ψ(x) = x−α
±
j L±(x), where

α±j > 1 and L±j (x) are slowly varying at infinity, i.e., limx→∞
L±j (tx)

L±j (x)
= 1 for every t > 0.

2. The functions L±j (x) satisfy the condition
L±j (tx)

L±j (x)
− 1 ∼ h(t)g(x) as x→∞, where g±j (x)→ 0

as x→∞ and g±j (x) are regularly varying at infinity with index ρ±j < 0.

Finally, we have supi=1,...,Sj log(1 + ν
(j)
t (k

(j)
i − x

(j)
t )ε

(j)
t,i ) = Op(1).

8.2 Auxiliary Results

Lemma 1 Suppose assumptions A2-A4 hold. For xt being one of {x(j)
t }j=0,...,N , νQt being the

corresponding {νQt,j}j=0,...,N and Vt the corresponding diffusive spot volatility, we have as T ↓ 0:

1

T
EQ
t (xt+T − xt)2 − Vt −

∫
R
x2νQt (x)dx = op(1), (66)

EQ
t (f(xt+T − xt))− T

∫
R
f(x)νQt (x)dx = Op(T

3/2). (67)
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Proof of Lemma 1. We denote with x̃s, for s ≥ t, the same process as xt but in which the drift

coefficient, the diffusive volatility and the jump intensity are frozen at their values at time t. This

process can be defined on an extension of the original probability space by making use of Grigelionis

representation for jump processes (Theorem 2.1.2 of Jacod and Protter (2012)). The process x̃s is

F (0)
t -conditionally a Lévy process.

Using first-order Taylor expansion, we have

|f(xt+T − xt)− f(x̃t+T )| ≤ C|xt+T − xt − x̃t+T ||x̃t+T |+ C|xt+T − xt − x̃t+T |2. (68)

Furthermore, using Burkholder-Davis-Gundy inequalities, we have

EQ
t |xt+T − xt − x̃t+T |2 ≤ CtT 2, EQ

t |x̃t+T |2 ≤ CtT. (69)

From here, by application of Cauchy-Schwartz inequality, we have

EQ
t |f(xt+T − xt)− f(x̃t+T )| ≤ CtT 3/2. (70)

F (0)
t -conditionally, the jumps of x̃t+T are Poisson, therefore

Qt (# jumps in x̃t+T ≥ 2) ≤ CtT 2. (71)

From here, applying Cauchy-Schwartz inequality, we have

|EQ
t (f(x̃t+T ))− T

∫
R
EQ
t (f(x+ σt

√
Tz))νQt (x)dx| ≤ CtT 3/2, (72)

where z is a standard normal variable. Finally, applying first-order Taylor series expansion, we

have ∣∣∣∣∫
R
EQ
t (f(x+ σt

√
Tz))νQt (x)dx−

∫
R
f(x)νQt (x)dx

∣∣∣∣ ≤ Ct√T . (73)

�

For stating the next lemmas we introduce the following notation:

O
(c,j)
t,T (k) = f

(
k − x(j)

t√
Tσ

(j)
t

)
√
Tσ

(j)
t − |k − x

(j)
t |Φ

(
−|k − x

(j)
t |√

Tσ
(j)
t

)
, j = 0, 1, ..., N, (74)

O(k) = f(k)− |k|Φ (−|k|) , (75)

where f and Φ denote the pdf and cdf, respectively, of the standard normal distribution.
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Lemma 2 Assume A2-A4 hold. There exist F (0)
t -adapted random variables Ct and t > t, that do

not depend on T such that for T < t+ t and j = 0, 1, ..., N + 1, we have

O
(j)
t,T (k) ≤ Ct


Te3k, if k < −1,

T e−k, if k > 1,
√
T
∧ T
|k| , if |k| ≤ 1,

(76)

∣∣∣O(j)
t,T (k1)−O(j)

t,T (k2)
∣∣∣ ≤ Ct [ T

k4
2

∧ T

k2
2

∧
1

]
|ek1 − ek2 |, (77)

where k1 < k2 < x
(j)
t or k1 > k2 > x

(j)
t . In addition, for |k − x(j)

t | ≤
√
T | log(T )|, we have∣∣∣O(j)

t,T (k)−O(c,j)
t,T (k)

∣∣∣ ≤ CtT log2(T ). (78)

Proof of Lemma 2. These results follow by applying Lemmas 2-7 in Qin and Todorov (2018). �

To state the following lemma, we need some auxiliary notation. We denote

O
(d,j)
t,T (k) =


∫∞
k (ex − ek)+νQt,j(x)dx, for k ≥ x(j)

t ,∫ k
−∞(ek − ex)+νQt,j(x)dx, for k < x

(j)
t ,

(79)

and using it, we set

T̃C
(+,j)

t (k) = 2

∫ ∞
k

e−k(1− k + x
(j)
t )O

(d,j)
t,T (k)dk,

T̃C
(−,j)
t (k) = 2

∫ k

∞
e−k(1− k + x

(j)
t )O

(d,j)
t,T (k)dk.

(80)

Lemma 3 Suppose assumption A7 holds. We then have:

O
(d,j)
t,T (k) =

at,j

α+
j − 1

e(1−α+
j )k +Op

(
e(1−α+

j +ρ+
j )k
)
, as k →∞,

O
(d,j)
t,T (k) =

at,j

α−j + 1
e(1+α−j )k +Op

(
e(1+α−j +ρ−j )k

)
, as k → −∞,

(81)

and further

T̃C
(+,j)

t (k) =
2

α+
j

(
1− k + x

(j)
t −

1

α+
j

)
e−kO

(d,j)
t,T (k) +Op

(
ke(ρ+

j −α
+
j )k
)
, as k →∞,

T̃C
(−,j)
t (k) =

2

α−j

(
1− k + x

(j)
t +

1

α−j

)
e−kO

(d,j)
t,T (k) +Op

(
|k|e(−ρ−j +α−j )k

)
, as k → −∞.

(82)

Proof of Lemma 3. In the proof we suppress the subscript j (the index of the asset) in the

notation of various quantities that are indexed by it. We start with establishing the results for the

right tail.
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Using assumption A7, we can write

O
(d)
t,T (k) = at

∫ ∞
k

(ex − ek)ν(x)dx, k > xt.

Then, by changing the variable of integration and using integration by parts (recall the notation of

ν±ψ and ν±ψ of Section 8.1):

O
(d)
t,T (k) = at

∫ ∞
ψ(k)

(X − ψ(k))ν(log(X))d log(X)

= at

∫ ∞
ψ(k)

(X − ψ(k))
ν(log(X))

X
dX

= at

∫ ∞
ψ(k)

ν+
ψ (X)dX.

(83)

Using assumption A7 for the regular variation of ν+
ψ , we can write:

O
(d)
t,T (k) = atψ(k)ν+

ψ (ψ(k))

∫ ∞
1

ν+
ψ (uψ(k))

ν+
ψ (ψ(k))

du

= atψ(k)ν+
ψ (ψ(k))

∫ ∞
1

u−α
+L+(uψ(k))

L+(ψ(k))
du

= atψ(k)ν+
ψ (ψ(k))

(∫ ∞
1

u−α
+
du+ g+(ψ(k))

∫ ∞
1

u−α
+
h+(u)du+ o(g+(ψ(k)))

)
, as k →∞,

where the last step follows from Proposition 2.5.1 in Goldie and Smith (1987) and we note that∫∞
1 u−α

+
h+(u)du < ∞ by results of Section 3.12.1 of Bingham et al. (1987) and our assumption

α+ > 1. Thus,

O
(d)
t,T (k) = atψ(k)ν+

ψ (ψ(k))

(∫ ∞
1

u−α
+
du+O(g+(ψ(k))) + o(g+(ψ(k)))

)
=

at
α+ − 1

ψ(k)ν+
ψ (ψ(k)) + ψ(k)ν+

ψ (ψ(k))Op(g
+(ψ(k))), as k →∞.

(84)

Using equation (83) and performing integration by parts, we have:

T̃C
+

t = 2at

∫ ∞
k

e−k(1− k + xt)

(∫ ∞
ψ(k)

ν+
ψ (X)dX

)
dk

= −2at

∫ ∞
k

(∫ ∞
ψ(k)

ν+
ψ (X)dX

)
d
[
e−k(−k + xt)

]
= 2at

(∫ ∞
ψ(k)

ν+
ψ (X)dX

)[
e−k(−k + xt)

]
+ 2at

∫ ∞
k

e−k(−k + xt)d

(∫ ∞
ψ(k)

ν+
ψ (X)dX

)

= 2(−k + xt)e
−kO

(d)
t,T (k)− 2at

∫ ∞
k

(−k + xt)ν
+
ψ (ψ(k))dk︸ ︷︷ ︸

A

.
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We can further decompose the term A as follows:

A = 2atν
+
ψ (ψ(k))

∫ ∞
K

(− log(K) + xt)

K

ν+
ψ (K)

ν+
ψ (K)

dK

= 2atν
+
ψ (ψ(k))

∫ ∞
1

(− log(uK) + xt)

u

ν+
ψ (uK)

ν+
ψ (K)

du

= 2atν
+
ψ (ψ(k))

∫ ∞
1

(− log(uK) + xt)

u
u−α

+L+(uK)

L+(K)
du

= 2atν
+
ψ (ψ(k))

∫ ∞
1

(− log(uK) + xt)

u
u−α

+
du︸ ︷︷ ︸

B

+ 2atν
+
ψ (ψ(k))

(
g+(ψ(k))

∫ ∞
1

(− log(uK) + xt)

u
u−α

+
h+(u)du+ op(g

+(kψ(k)))

)
, as k →∞,

where we denote K = ek, and in the first and second lines we change the variable of integration,

the third line follows from assumption A7, and for the last line we applied Proposition 2.5.1 in

Goldie and Smith (1987) and made use of α+ > 1. For the term B, direct integration leads to

B =

∫ ∞
k

(−k + xt)e
−α+(k−k)dk =

1

α+

(
−k + xt −

1

α+

)
.

Thus, for the term A we have

A =
2at
α+

(
−k + xt −

1

α+

)
ν+
ψ (ψ(k)) + ν+

ψ (ψ(k))Op(kg
+(ψ(k)))

=
2(α+ − 1)

α+

(
−k + xt −

1

α+

)
e−kO

(d)
t,T (k) + ν+

ψ (ψ(k))Op(kg
+(ψ(k))),

where the first line uses assumption A7 and the second line uses equation (84). Altogether, we can

write:

T̃C
+

t =
2

α+

(
1− k + xt −

1

α+

)
e−kO

(d)
t,T (k) + ν+

ψ (ψ(k))Op(kg
+(ψ(k)))

=
2

α+

(
1− k + xt −

1

α+

)
e−kO

(d)
t,T (k) +Op

(
ke(ρ+−α+)k

)
.

(85)

The results for the left tail follow similar steps. In particular, for k → −∞, we have:

O
(d)
t,T (k) = at

∫ k

−∞
(ek − ex)ν(x)dx

= at

∫ ∞
ψ(k)

(ψ(−k)−X−1)ν(− log(X))d log(X)

= at

∫ ∞
ψ(k)

X−2ν−ψ (X)dX

= ate
kν−ψ (ψ(k))

(∫ ∞
1

u−α
−−2du+ g−(ψ(k))

∫ ∞
1

u−α
−−2h−(u)du+ o(g−(ψ(k)))

)
.
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Thus,

O
(d)
t,T (k) =

at
α− + 1

ekν−ψ (ψ(k)) + ekν−ψ (ψ(k))Op(g
−(ψ(k))), k → −∞.

For the left tail integral, we have

T̃C
−
t = 2

∫ k

−∞
e−k(1− k + xt)O

(d)
t,T (k)dk

= −2(−k + xt)e
−kO

(d)
t,T (k) + 2at

∫ k

−∞
(−k + xt)ν

−
ψ (ψ(k))dk︸ ︷︷ ︸

A

,

where using assumption A7,

A = 2atν
−
ψ (ψ(k))

∫ ∞
1

(log(uK) + xt)

u
u−α

−
du︸ ︷︷ ︸

B

+ 2atν
−
ψ (ψ(k))

(
g−(ψ(k))

∫ ∞
1

(log(uK) + xt)

u
u−α

−
h−(u)du+ op(g

−(|k|ψ(k)))

)
, as k → −∞,

and by direct integration

B =
1

α−

(
−k + xt +

1

α−

)
.

Thus, altogether,

T̃C
−
t =

2

α−

(
1− k + xt +

1

α−

)
e−kO

(d)
t,T (k) +Op

(
|k|e(−ρ−+α−)k

)
. (86)

�

Lemma 4 Suppose assumptions A2-A7 hold, and that T → 0 with (|k|∨k) � T−β for some β > 0.

Then, for j = 0, 1, ...., N , we have∫ k
(j)
1

−∞
h(k, x

(j)
t )O

(j)
t,T (k)dk −

∫ ∞
k

(j)
Sj

h(k, x
(j)
t )O

(j)
t,T (k)dk

= T̃C
(−,j)
t (k

(j)
1 )− T̃C

(+,j)

t (k
(j)
Sj

) +Op(T
3/2| log T |2),

(87)

where we denote

h(k, x) = 2e−k(1− k + x). (88)

Proof of Lemma 4. We make use of the notation of x̃(j) in the proof of Lemma 1 and we further

denote the option price corresponding to x̃
(j)
t+T with Õ

(j)
t,T (k). Then, we have∫ k

(j)
1

−∞
h(k, x

(j)
t )(O

(j)
t,T (k)− Õ(j)

t,T (k))dk −
∫ ∞
k

(j)
Sj

h(k, x
(j)
t )(O

(j)
t,T (k)− Õ(j)

t,T (k))dk

= EQ
t (f(x

(j)
t+T − x

(j)
t )− f(x̃

(j)
t+T − x

(j)
t ))−

∫ k
(j)
Sj

k
(j)
1

h(k, x
(j)
t )(O

(j)
t,T (k)− Õ(j)

t,T (k))dk

= Op(T
3/2| log T |2),

(89)
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where the last claim follows by making use of Lemma 4 and Lemmas 3 and 4 of Qin and Todorov

(2018). Further, by making use of the fact that F (0)
t -conditionally the jumps in x̃

(j)
s are Poisson

(so that Qt (# jumps in x̃t+T ≥ 2) ≤ CtT
2) and by applying Cauchy-Shwarz inequality and the

integrability conditions of assumption A2, we have∣∣∣∣Õ(j)
t,T (k)− T

∫
R
EQ
t (ex+σ

(j)
t

√
Tz − ek)+νQt,j(x)dx

∣∣∣∣ ≤ Cte−kT 3/2, k ≥ k(j)
Sj
,∣∣∣∣Õ(j)

t,T (k)− T
∫
R
EQ
t (ek − ex+σ

(j)
t

√
Tz)+νQt,j(x)dx

∣∣∣∣ ≤ Cte3kT 3/2, k ≤ k(j)
1 ,

(90)

where z is a standard normal random variable (under Q). From here, using again the integrability

conditions of assumption A2, we have∣∣∣∣∫
R
EQ
t (ex+σ

(j)
t

√
Tz − ek)+νQt,j(x)dx−O(d,j)

t,T (k)

∣∣∣∣ ≤ Cte−kT 1/2, k ≥ k(j)
Sj
,∣∣∣∣∫

R
EQ
t (ek − ex+σ

(j)
t

√
Tz)+νQt,j(x)dx−O(d,j)

t,T (k)

∣∣∣∣ ≤ Cte3kT 1/2, k ≤ k(j)
1 .

(91)

Combining the above inequalities, we get the result of the lemma. �

In the next lemma and henceforth we will use the following weights

w
(j)
t,i =



1
2h(k

(j)
1 , k

(j)
2 , x

(j)
t ), if i = 1,

1
2h(k

(j)
Sj−1, k

(j)
Sj
, x

(j)
t ), if i = Sj ,

1
2

(
h(k

(j)
i−1, k

(j)
i , x

(j)
t ) + h(k

(j)
i , k

(j)
i+1, x

(j)
t )
)
, if i = 2, ..., Sj − 1 \ {i∗(j), i∗(j) + 1},

1
2h(k

(j)
i∗(j)+1, k

(j)
i∗(j)+2, x

(j)
t ) + h(x

(j)
t , k

(j)
i∗(j)+1, x

(j)
t ), if i = i∗(j) + 1,

1
2h(k

(j)
i∗(j)−1, k

(j)
i∗(j), x

(j)
t ) + h(k

(j)
i∗(j), x

(j)
t , x

(j)
t ), if i = i∗(j).

(92)

Lemma 5 Suppose assumptions A2-A7 hold. Let T → 0, ∆→ 0, (|k| ∨ k)→∞ with ∆ � Tα, for

α ∈
(

1
2 ,

3
2

)
and (|k| ∨ k) � T−β for some β satisfying minj=0,1,...,N (α±j )β > α

2 −
1
4 . Then, we have

T 1/4

√
∆

{
1

T
AV

(j)
t − 1

T
EQ
t (f(x

(j)
t+T − x

(j)
t ))

}
j=0,1,...,N

L|F(0)

−→
{√

ω
(j)
AV,tZ

(j)
t

}
j=0,1,...,N

, (93)

where {Z(j)
t }j=0,1,...,N is a sequence of i.i.d., standard normal random variables defined on an ex-

tension of the original probability space and independent of F and

ω
(j)
AV,t = 4e−2x

(j)
t ψ

(j)
t (0)ν

(j)
t (0)(σ

(j)
t )3

∫
R
O(k)2dk, j = 0, 1, ..., N, (94)

with O(k) defined in (75).
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Proof of Lemma 5. We note that, following results in Carr and Madan (2001), we have

EQ
t (f(x

(j)
t+T − x

(j)
t )) =

∫ ∞
−∞

h(k, x
(j)
t )O

(j)
t,T (k)dk. (95)

Using this result, we make the following decomposition

AV
(j)
t − EQ

t (f(x
(j)
t+T − x

(j)
t )) =

3∑
i=1

η
(j)
t,i , (96)

η
(j)
t,1 =

∫ k
(j)
1

−∞
h(k, x

(j)
t )O

(j)
t,T (k)dk −

∫ ∞
k

(j)
Sj

h(k, x
(j)
t )O

(j)
t,T (k)dk − TC(−,j)

t + TC
(+,j)
t , (97)

η
(j)
t,2 =

i∗(j)∑
i=2

h(k
(j)
i−1, k

(j)
i , x

(j)
t )O

(a,j)
t,T (k

(j)
i−1) + h(k

(j)
i∗(j), x

(j)
t , x

(j)
t )O

(j)
t,T (k

(j)
i∗(j))

−
Sj∑

i=i∗(j)+2

h(k
(j)
i−1, k

(j)
i , x

(j)
t )O

(a,j)
t,T (k

(j)
i−1)− h(x

(j)
t , k

(j)
i∗(j)+1, x

(j)
t )O

(j)
t,T (k

(j)
i∗(j)+1)

−
∫ x

(j)
t

k
(j)
1

h(k, x
(j)
t )O

(j)
t,T (k)dk +

∫ k
(j)
Sj

x
(j)
t

h(k, x
(j)
t )O

(j)
t,T (k)dk,

(98)

η
(j)
t,3 =

Sj∑
i=1

w
(j)
t,i ε

(j)
t,i , (99)

where O
(a,j)
t,T (k

(j)
i ) is defined from O

(a,j)
t,T (k

(j)
i ) exactly as Ô

(a,j)
t,T (k

(j)
i ) is defined from Ô

(a,j)
t,T (k

(j)
i ) and

recall the definition of w
(j)
t,i in (92).

We start with η
(j)
t,1 . First, by making use of Lemma 4, we have

η
(j)
t,1 = T̃C

(−,j)
t − T̃C

(+,j)

t − TC(−,j)
t + TC

(+,j)
t +Op(T

3/2| log T |2). (100)

Next, tedious calculations and making use of the bounds in Lemmas 1-3 in Qin and Todorov (2018)

as well as the proof of Lemma 4, lead to

|O(j)
t,T (k)−O(d,j)

t,T (k)| ≤ C

 e−kT 3/2| log T |, for k ≥ k(j)
Sj
,

e3kT 3/2| log T |, for k ≤ k(j)
1 .

(101)

Taking into account this bound and assumptions A6-A7 as well as Lemma 3, we have

T̃C
(−,j)
t − T̃C

(+,j)

t − TC(−,j)
t + TC

(+,j)
t = Op

(
Tke−α

+
j k
∨
T |k|e−α

−
j |k|

∨
T 3/2| log T |

)
. (102)

Thus, altogether

η
(j)
t,1 = Op

(
Tke−α

+
j k
∨
T |k|e−α

−
j |k|

∨
T 3/2| log T |2

)
. (103)
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For η
(j)
t,2 , we can use the second bound of Lemma 2, and get

η
(j)
t,2 = Op(

√
T∆), j = 0, 1, ..., N. (104)

We turn to η
(j)
t,3 . Since F (0)-conditionally, {ε(j)t,i }i=1,..,Sj are independent, we will have

1

T 3/4
√

∆
{η(j)
t,3 }j=0,1,...,N

L|F(0)

−→
{√

ω
(j)
AV,tZ

(j)
t

}
j=0,1,...,N

, (105)

by application of Theorem VIII.5.25 and Remark VIII.5.5.27 of Jacod and Shiryaev (2003), provided

we can show the following

1

T 3/2∆
E
(

(η
(j)
t,3 )2

∣∣F (0)
t

)
−→ ω

(j)
AV,t, F

(0) − a.s., (106)

1

T (1+ι/2)3/2∆1+ι/2

Sj∑
i=1

E
(
|w(j)
t,i ε

(j)
t,i |

2+ι|F (0)
)
−→ 0, F (0) − a.s., (107)

for some ι > 0. We start with the first of the above convergence results. Application of the first

and the third bound of Lemma 2 yields

E
(

(η
(j)
t,3 )2

∣∣F (0)
t

)
=

Sj∑
i=1

(w
(j)
t,i )2O

(j)
t,T (k

(j)
i )2v

(j)
t,i

=
∑

i=1,...,Sj :|k
(j)
i −x

(j)
t |≤

√
T | log T |

(w
(j)
t,i )2O

(j)
t,T (k

(j)
i )2v

(j)
t,i +Op

(
T 3/2

| log T |
∆

)

=
∑

i=1,...,Sj :|k
(j)
i −x

(j)
t |≤

√
T | log T |

(w
(j)
t,i )2O

(c,j)
t,T (k

(j)
i )2v

(j)
t,i +Op

(
T 3/2

| log T |
∆

)
.

(108)

Further,

E
(

(η
(j)
t,3 )2

∣∣F (0)
t

)
= ∆

∫ x
(j)
t +
√
T | log T |

x
(j)
t −
√
T | log T |

h(k, x
(j)
t )2O

(c,j)
t,T (k)2ψ

(j)
t (k − x(j)

t )ν
(j)
t (k − x(j)

t )dk

+Op

(
T 3/2

| log T |
∆ ∨ T | log T |∆2

)
,

(109)

E
(

(η
(j)
t,3 )2

∣∣F (0)
t

)
= 4e−2x

(j)
t ψ

(j)
t (0)ν

(j)
t (0)∆

∫ x
(j)
t +
√
T | log T |

x
(j)
t −
√
T | log T |

O
(c,j)
t,T (k)2dk + op(T

3/2∆). (110)

From here, by change of variable of integration

E
(

(η
(j)
t,3 )2

∣∣F (0)
t

)
= 4e−2x

(j)
t ψ

(j)
t (0)ν

(j)
t (0)(σ

(j)
t )3T 3/2∆

∫ | log T |/σ(j)
t

−| log T |/σ(j)
t

O(k)2dk + op(T
3/2∆)

= T 3/2∆ω
(j)
AV,t + op(T

3/2∆).

(111)

39



From here, the first of the two convergence results to be shown follows. For the second one, we can

make use of the first bound of Lemma 2 to get

1

T (1+ι/2)3/2∆1+ι/2

Sj∑
i=1

E
(
|w(j)
t,i ε

(j)
t,i |

2+ι|F (0)
)
≤ Ct∆ι/2. (112)

Combining (111) and (112), the convergence in (105) follows. This convergence combined with the

bounds in (103) and (104) yields the convergence result in (93). �

We define the N + 1×N + 1 matrix

Σt =
(

(σ
(0)
t )>, ...., (σ

(N)
t )>

)>
. (113)

The following lemma follows from Theorem 2.12 of Jacod (2008).

Lemma 6 Suppose assumption A1 holds and let ν
(0)
n be univariate sequence satisfying ν

(0)
n � n−$

for $ ∈ (0, 1/2). Then as n→∞, we have

√
n



∑
i∈Int

(∆n
i x

(0))21{|∆n
i x

(0)|>ν(0)
n }
−
∑

s∈[t−κ,t](∆x
(0)
s )2∑

i∈Int
∆n
i x

(1)∆n
i x

(0)1{|∆n
i x

(0)|>ν(0)
n }
−
∑

s∈[t−κ,t] ∆x
(0)
s ∆x

(1)
s

...∑
i∈Int

∆n
i x

(N)∆n
i x

(0)1{|∆n
i x

(0)|>ν(0)
n }
−
∑

s∈[t−κ,t] ∆x
(0)
s ∆x

(N+1)
s



L−s−→
∑

s∈[t−κ,t]


2∆x

(0)
s ι1ΣsZs

(∆x
(0)
s ι2 + ∆x

(1)
s ι1)ΣsZs

...

(∆x
(0)
s ιN+1 + ∆x

(N)
s ι1)ΣsZs

 ,

(114)

where {Zs}s∈[t−κ,t] are standard normal N + 1 vectors defined on an extension of the original

probability space and independent from F .

A consistent estimate of the F-conditional variance of the limiting distribution, Σhf is given by

Σ̂hf =
∑

i∈Int :|∆n
i x

(0)|>ν(0)
n


2∆n

i x
(0)ι1Σ̂i/n

(∆n
i x

(0)ι2 + ∆n
i x

(1)ι1)Σ̂i/n

...

(∆n
i x

(0)ιN+1 + ∆n
i x

(N)ι1)Σ̂i/n




2∆n

i x
(0)ι1Σ̂i/n

(∆n
i x

(0)ι2 + ∆n
i x

(1)ι1)Σ̂i/n

...

(∆n
i x

(0)ιN+1 + ∆n
i x

(N)ι1)Σ̂i/n



′

,

(115)

where Σ̂i/n is the square-root of the following matrix

n

kn

kn∑
j=1

∆n
i−jx∆n

i−jx
′1{|∆n

i−jx|≤νn}, (116)
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and νn is a N + 1 vector satisfying νn � n−$ for $ ∈ (0, 1/2).

8.3 Notation and Tuning Parameters for Theorems 2-4

For Ω
ÃV ,t

, we need to define ΩAV,t and Ωβ,t. The first of them is defined as

ΩAV,t = diag
(
ω

(0)
AV,t, ω

(1)
AV,t, · · · , ω

(N)
AV,t

)
. (117)

Ωβ,t is defined as

Ωβ,t =
1(∑

s∈[t−κ,t](∆x
(0)
s )2

)2 [ι2:N+1 − (βt 0N×N )] Σhf [ι2:N+1 − (βt 0N×N )]′ . (118)

For the feasible implementation of the limit result, we construct the counterparts of ΩAV,t and Ωβ,t

from the data as follows. First, the tail decay parameters α̂
(±,j)
t are computed using a local window

of τ = 5 (recall equation (19)). Next, we define

ε̂
(j)
t,i =

√
2

3

[
Ô

(j)
t,T (k

(j)
i )− 1

2

(
Ô

(j)
t,T (k

(j)
i−1) + Ô

(j)
t,T (k

(j)
i+1)

)]
, i = 2, ..., Sj − 1, j = 0, 1, ..., N, (119)

and ε̂
(j)
t,Sj

= ε̂
(j)
t,Sj−1 as well as ε̂

(j)
t,1 = ε̂

(j)
t,2 , for j = 0, 1, ..., N . We then set

Ω̂AV,t = diag
(
ω̂

(0)
AV,t, ω̂

(1)
AV,t, · · · , ω̂

(N)
AV,t

)
, (120)

where

ω̂
(j)
AV,t =

1

T 3/2∆

Sj∑
i=1

(ω
(j)
t,i )2(ε̂

(j)
t,i )2, j = 0, 1, ..., N, (121)

with ω
(j)
t,i defined in (92).

Second, the feasible counterpart of Ωβ,t is given by

Ω̂β,t =
1(∑

i∈Int
(∆n

i x
(0)
s )2

)2 [ι2:N+1 − (βt 0N×N )] Σ̂hf [ι2:N+1 − (βt 0N×N )]′ . (122)

In implementing Ω̂β,t, we set νn = αn−0.49 where the elements of the vector α are 3 times daily

bipower variation (Barndorff-Nielsen and Shephard (2004)) of the corresponding element of x.

Further, the intraday high-frequency interval is of length five-minutes. The length of the window

for estimating the high-frequency beta is κ = 66 (3 months). The local window for estimating the

diffusive volatility around a jump time, used in the construction of Σ̂hf , is set to kn = 30.

8.4 Proof of Theorems 1 and 2

Theorem 1 is an easy consequence of Lemmas 1, 2 and 6 as well as assumption A6 for the option

error. Theorem 2 follows by combining Lemmas 1, 2, 5 and 6.
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8.5 Proof of Theorem 3

The convergence results of Lemmas 5 and 6 can be concisely written as

Υ̂1
L|F(0)

−→ Υ1, Υ̂2
L−s−→ Υ2, (123)

with the first one being for T → 0, ∆ → 0 and (|k| ∨ k) → ∞, and the second being for n → ∞.

We will show that the above convergence holds jointly, i.e., we will show that

(Υ̂1, Υ̂2)
L−s−→ (Υ1,Υ2), (124)

where Υ1 and Υ2 are F-conditionally independent (the F-conditional marginal laws of Υ1 and Υ2

are given in Lemmas 5 and 6 and this together with their F-conditionally independence uniquely

determines the law of (Υ1,Υ2)). To establish the above result, we need to show the following

E
(
g1(Υ̂1)g2(Υ̂2)Y

)
→ E (g1(Υ1)g2(Υ2)Y ) , (125)

as T → 0, ∆ → 0, (|k| ∨ k) → ∞ and n → ∞, and where Y is F-adapted random variable and

gi : RN+1 → R, for i = 1, 2, are continuous and bounded functions.

First, we consider the case when Y is F (0)-adapted. In this case from Lemma 5, we have

E
(
g1(Υ̂1)|F (0)

)
P−→ E

(
g1(Υ1)|F (0)

)
. (126)

Therefore, since Y is bounded and g2 is bounded, we have

E
(

(g1(Υ̂1)− g1(Υ1))g2(Υ̂2)Y
)
→ 0. (127)

Moreover, since g1(Υ1) is F-adapted, we have

E
(
g1(Υ1)g2(Υ̂2)Y

)
→ E (g1(Υ1)g2(Υ2)Y ) . (128)

This two results show the joint convergence in the case when Y is F (0)-adapted. Suppose now

that Y is F (1)-adapted. Since F (1) is the product sigma algebra of the option observation errors,

we can assume that Y depends on a fixed number of them. We now note that the limit result of

Lemma 5 will continue to hold even if a fixed number of options is excluded from the construction

of the statistics {AV (j)
t }j=0,1,...,N . Then the above two convergence results will continue to hold for

this modification of Υ̂1 while its remainder term is asymptotically negligible. This shows the joint

convergence in the case when Y is F (1)-adapted.

From here the joint stable convergence result in (124) holds. The convergence result of the

theorem then follows from the convergence in probability of {AV (j)
t }j=0,1,...,N and β̂t, and by making

use of the following property of stable convergence: if Xn
L−s−→ X and Yn

P−→ Y for some random

variables X and Y , then XnYn
L−s−→ XY .
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8.6 Proof of Theorem 4

Given the consistency of Σ̂hf , we only need to show the convergence in probability of ω̂
(j)
AV,t to ω

(j)
AV,t.

Given the proof of Lemma 5, we need to show

1

T 3/2∆

Sj∑
i=1

(ω
(j)
t,i )2[(ε̂

(j)
t,i )2 −O(j)

t,T (k
(j)
i )2v

(j)
t,i ]

P−→ 0, j = 0, 1, ..., N. (129)

Using the bounds of Lemma 2 as well as assumption A6 for the F (0)-conditional independence of

the option observation errors, we have

1

T 3∆2
E

 Sj∑
i=1

(ω
(j)
t,i )2[(ε̂

(j)
t,i )2 −O(j)

t,T (k
(j)
i )2v

(j)
t,i ]

2 ∣∣∣∣F (0)

 = Op

(
∆√
T

)
, (130)

and this implies the above convergence in probability in (129) as ∆/
√
T → 0 by assumption.

8.7 Proof of Theorem 5

We first introduce some auxiliary notation that we will use throughout the proof. In particular, we

denote

L(j)
t,T (u) = EQ

t

(
eiu(x

(j)
t+T−x

(j)
t )
)
, M(j)

t,T = EQ
t (x

(j)
t+T − x

(j)
t ), (131)

L̃(j)
t,T (u) = exp

(
iuTα

(Q,j)
t − Tu2

2
σ2
t + T

∫
R

(eiux − 1− iux)ν
(Q)
t,j (x)dx

)
. (132)

We start the proof with establishing a lemma that bounds the effect on our statistics from “freezing”

the characteristics of the semimartingale at time t. This lemma is the counterpart of Lemma 1 for

the semivariances.

Lemma 7 Suppose assumptions A2-A4 hold. Then for T ↓ 0 and j = 0, 1, ..., N , we have:

<(L(j)
t,T (u))−<(L̃(j)

t,T (u)) = Op(T ), =(L(j)
t,T (u))−=(L̃(j)

t,T (u)) = Op(T
2), (133)

1

T
M(j)

t,T − α
(Q,j)
t = Op(T ). (134)

Proof of Lemma 7. The first of the bounds to be proved follows from Todorov (2018). The

second one follows upon an application of Itô’s lemma and then making use of assumption A2 and

A4 as well as the first of the bounds of the current lemma. The last bound to be proved follows

similarly. �

Since

<(L̃(j)
t,T (u))

P−→ 1, =(L̃(j)
t,T (u)) = Op(T ), (135)
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we have that for T sufficiently small

Arg(L̃(j)
t,T (u)) = arctan(=(L̃(j)

t,T (u))/<(L̃(j)
t,T (u))). (136)

Using assumption A6 for the observation error as well as Lemma 2 as well as the relative growth

conditions of the theorem, we have

|L̂(j)
t,T (u)− L(j)

t,T (u)| = Op(T
3/4
√

∆ ∨∆
√
T ∨ Te−2(|k|∧|k|)). (137)

Combining this result with the result of Lemma 7, we have that on a set of probability approaching

one, denoted with Ω, we have

−ι ≤ =(L̂(j)
t,T (u))/<(L̂(j)

t,T (u)) ≤ ι, <(L̂(j)
t,T (u)) > 1− ι, (138)

for some arbitrary small and fixed ι > 0. On this set and for T sufficiently small, we have

Arg(L̂(j)
t,T (u)) = arctan(=(L̂(j)

t,T (u))/<(L̂(j)
t,T (u))),

Arg(L(j)
t,T (u)) = arctan(=(L(j)

t,T (u))/<(L(j)
t,T (u))).

(139)

Therefore, using Taylor expansion, we have∣∣Arg(L̂(j)
t,T (u))−Arg(L(j)

t,T (u))

− (=(L̂(j)
t,T (u))−=(L(j)

t,T (u)))<(L(j)
t,T (u)) + (<(L̂(j)

t,T (u))−<(L(j)
t,T (u)))=(L(j)

t,T (u))
∣∣1{Ω}

≤ K|L̂(j)
t,T (u))− L(j)

t,T (u))|2,

(140)

for some positive constant K. Therefore, we have

Arg(L̂(j)
t,T (u))−Arg(L(j)

t,T (u)) = (=(L̂(j)
t,T (u))−=(L(j)

t,T (u)))
<(L(j)

t,T (u))

|L(j)
t,T (u)|2

− (<(L̂(j)
t,T (u))−<(L(j)

t,T (u)))
=(L(j)

t,T (u))

|L(j)
t,T (u)|2

+Op(T
3/2∆ ∨ T∆2 ∨ T 2e−4(|k|∧|k|)).

(141)

Taking into account the bounds of Lemma 7 and the order of probability of |L̂(j)
t,T (u) − L(j)

t,T (u)|
derived above, we further get

Arg(L̂(j)
t,T (u))−Arg(L(j)

t,T (u)) = =(L̂(j)
t,T (u))−=(L(j)

t,T (u)) +Op

(
T 7/4
√

∆ ∨ T 3/2∆ ∨ T 2e−2(|k|∧|k|)
)
.

(142)
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Therefore, using Taylor expansion and Lemma 2, we can write

Arg(L̂(j)
t,T (u))−Arg(L(j)

t,T (u)) + u(M̂(j)
t,T −M

(j)
t,T )

=

Sj∑
l=2

h̃(k
(j)
l−1, x

(j)
t , u)(Ô

(a,j)
t,T (k

(j)
l−1)−O(a,j)

t,T (k
(j)
l−1))∆

(j)
l

+

Sj∑
l=2

∫ k
(j)
l

k
(j)
l−1

(
h̃(k

(j)
l−1, x

(j)
t , u)O

(a,j)
t,T (k

(j)
l−1)− h̃(k, x

(j)
t , u)O

(j)
t,T (k)

)
dk

+Op

(
T 7/4
√

∆ ∨ T 3/2∆ ∨ T∆| log(T )| ∨ Te−2(|k|∧|k|)
)
,

(143)

where ∆
(j)
l = k

(j)
l − k

(j)
l−1, O

(a,j)
t,T (k

(j)
l−1) = (O

(j)
t,T (k

(j)
l−1) +O

(j)
t,T (k

(j)
l ))/2, and we further denote

h̃(k, x, u) = u(1− cos(uk − ux))e−k − u2 sin(uk − ux)e−k, u, kl, kh, x ∈ R. (144)

Now, we can note that

|h̃(k, x, u)| ≤ Ce−k|k − x|, (145)

for some constant C that does not depend on k and x (but it depends on u). Taking into account

this bound, our assumption A6 for the observation error as well as the bounds for the option prices

in Lemma 2, we have

Sj∑
l=2

∫ k
(j)
l

k
(j)
l−1

(
h̃(k

(j)
l−1, x

(j)
t , u)O

(a,j)
t,T (k

(j)
l−1)− h̃(k, x

(j)
t , u)O

(j)
t,T (k)

)
dk = Op(T∆), (146)

Sj∑
l=2

h̃(k
(j)
l−1, x

(j)
t , u)Ô

(a,j)
t,T (k

(j)
l−1)∆

(j)
l = Op(T

√
∆). (147)

Combining the above two results with (143) and Lemma 7, we get the result of the theorem.

9 Data Appendix

9.1 Data Filters

We use the following filters for the high-frequency return data:

1. Delete entries with a time stamp outside the 9:30 – 16:00 window.

2. Delete entries with transaction price equal to zero.

3. Retain entries originating from NYSE, NASDAQ, and AMEX only.

4. Delete entries with corrected trades. (Trades with a Correction Indicator, CORR = 7,8,10,11,12).
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5. Delete entries with abnormal Sale Condition. (Trades with a Condition Indicator, COND =

Z,B,U,T,L,G,W,K,J).

6. If multiple transactions happen within the same second, use the median price.

We use the following filters for the option data:

1. Delete options with maturity less than 5 business days.

2. Delete entries with zero best-bid.

3. Delete entries with best-ask/best-bid greater than 15.

4. For each equity on each day, select the options with the shortest maturity.

5. For each equity, discard the days when there are less than three out-of-money calls or three

out-of-money puts.

After filtering, we report in Table 6 for each stock its industry sector, the number of valid trading

days in the sample, and the medium number of strikes each day throughout the sample period.

9.2 Tail Approximation

The estimates TC
(±,j)
t in (18) are approximations of the integrals

∫∞
k

(j)
Sj

2e−k(1− k+ x
(j)
t )O

(j)
t,T (k)dk

and
∫ k(j)

1
−∞ 2e−k(1− k+ x

(j)
t )O

(j)
t,T (k)dk which are based on extreme value theory. In particular, from

Lemma 3, we have

O
(j)
t,T (k) ≈

 O
(j)
t,T (k

(j)
1 )e1+α

(−,j)
t , k ≤ k(j)

1 ,

O
(j)
t,T (k

(j)
Sj

)e1−α(+,j)
t , k ≥ k(j)

Sj
.

(148)

Here we illustrate these “extrapolations” of the option data in the tails in Figure 6 for a representa-

tive day and stock in the sample. As seen from the figure, the log-option prices decay approximately

linearly in the tails (as implied by extreme value theory) and our tail decay parameter estimates

α̂
(±,j)
t capture this decay relatively well. In terms of the option price levels, the extrapolation does

not appear very big as Ô
(j)
t,T (k

(j)
1 ) and Ô

(j)
t,T (k

(j)
Sj

) are already relatively small in value. Nevertheless,

such a tail extension ensures that we treat “symmetrically” all stocks and the market index. Fur-

thermore, this way we treat the left and right tail also “symmetrically”. As seen from the figure, on

this day Ô
(j)
t,T (k

(j)
Sj

) > Ô
(j)
t,T (k

(j)
1 ) and without the tail approximation we can introduce some upward

bias in AV
(j)
t .
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Figure 6: Relative Prices of OTM JNJ Short-Dated Options on 11/16/2016 with Tail Extension.
Relative option price stands for option divided by the current stock price. Observed option quotes
are denoted with stars while extrapolated ones with crosses.

9.3 Empirical Results using AM
(j)
t

In this section we perform analysis using the alternative measure of aggregate idiosyncratic asymme-

try ÃM t(u) = 1
N ÃM

(j)

t (u). Throughout, we set u = 5. The reason for this choice is the following.

Too low value of u implies more reliance on the very deep out-of-the-money options which can be

(in relative terms) less reliable. On the other hand, a very high value u puts more emphasis on the

smoothness of the option price as a function of the strike. Indeed, the characteristic function of the

returns (from which ÃM t(u) is derived) is governed by the smoothness of the return density which

maps into smoothness of the option price. Given these considerations, we pick u such that for a

large support of the jump return distribution of (−0.3, 0.3), we have approximately |ux| ≤ π/2 and

for this range of values, sin(ux) is an increasing function in x.

The realized counterparts of AM
(j)
t and ÃM

(j)

t are naturally defined as

RAM
(j)
t (u) =

b(t+T )nc∑
i=btnc+1

(sin(u∆n
i x

(j))− u∆n
i x

(j)), u ∈ R, j = 0, 1, ..., N, (149)

R̃AM
(j)

t (u) = RAM
(j)
t (u)−RAM (0)

t (β̂
(j)
t u), R̃AM t(u) =

1

N

N∑
j=1

R̃AM
(j)

t (u), u ∈ R, j = 1, ..., N.

(150)

Using Theorem 3.3.1 in Jacod and Protter (2012) and under assumption A1, we have

R̃AM
(j)

t
P−→

∑
s∈[t,t+T ]

(sin(u∆x̃(j)
s )− u∆x̃(j)

s ), j = 1, ..., N. (151)

Using Theorem 11.1.2 in Jacod and Protter (2012) and using the fact that E(sin(uZ) − uZ) = 0

for Z a standard normal distribution, we can construct a CLT for R̃AM
(j)

t . Upon implementing it
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on the data, we find that on 76% of the days in the sample, R̃AM t(u) is statistically different from

zero.11 This provides strong evidence for clustering of idiosyncratic jumps in the cross-section.

On Figure 7, we compare ÃM with R̃AM . The relationship between the two quantities is very

similar to that between ÃV with R̃AV as seen by comparing Figures 4 and 7. Mainly, while the

realized aggregate asymmetry measure R̃AM is different from zero in many instances, it is typically

much smaller than the risk-neutral expectation for it measured via ÃM . We next compare AM (0)
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Figure 7: ÃM versus R̃AM . Dotted line is ÃM and solid line is R̃AM from five-minute returns.
Plotted series are 20-day moving averages.

and ÃM in Figure 8. The relationship between these two measures of asymmetry is very similar

to that between their counterparts AV (0) and ÃV . The only notable difference is that now the

financial crisis of the Fall of 2008 has a somewhat larger impact on the market asymmetry AM (0).

Finally, in Table 3 we report predictive regression estimates using AM
(0)
t,T and ÃM t,T as the

explanatory variables. The aggregate idiosyncratic asymmetry measure ÃM t,T has very similar

predictive ability as ÃV t,T . For AM
(0)
t,T , the results are a bit weaker than the corresponding results

for AV
(0)
t,T reported in Table 2. This is likely due to the more extreme reaction of AM

(0)
t,T during the

financial crisis in the Fall of 2008.

Overall, we conclude that the major empirical findings in the text are preserved when using the

alternative asymmetry measures AM
(0)
t,T and ÃM t,T .

11Details on the implementation of the test are available upon request.
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Figure 8: AM (0) versus ÃM . Dotted and solid lines correspond to 20-day moving averages of ÃM
and AM (0), respectively. Both series have been normalized by their sample means.

6 Months 9 Months 12 Months

AM
(0)
t,T 0.2374 0.3900 0.5101

(0.1385) (0.1558) (0.1433)

ÃM t,T 0.0838 0.1621 0.2344

(0.0798) (0.0832) (0.0698)

R2 0.0828 0.0419 0.1450 0.1022 0.1835 0.1584

Table 3: Predicting Returns of Equally-Weighted Portfolio Constructed by
the Stocks in the Sample. The explanatory variables are 20-day moving
averages. Standard errors are calculated using Newey-West estimator with
lag length of 1.3

√
T .
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9.4 Robustness Checks

9.4.1 Value Weighted ÃV

We check the robustness of our results by computing the following value-weighted counterpart of

ÃV :

ÃV
vw

t =
N∑
j=1

wt,jÃV
(j)

t , (152)

where wt,j is the proportion of the value of stock j to the total value of the stocks under consideration

at time t. In Figure 9, we compare the equal and value-weighted ÃV . As seen from the figure, the

two series are very close to each other, with ÃV
vw

t being only slightly lower than ÃV . This small

difference in the two series implies that our test for presence of risk premia for the idiosyncratic

downside jump risk and our predictive regressions using ÃV will remain largely unchanged when

switching to the value-weighted ÃV
vw

t . This is confirmed by the results reported in Tables 4 and

5.
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Figure 9: Equally-Weighted versus Value-Weighted ÃV . Dotted line corresponds to the equally-
weighted and the solid line to the value-weighted ÃV series. Plotted series are 20-day moving
averages.

9.4.2 Extended Cross-Section

We further check the robustness of our results by extending the sample to all stocks in the S&P 100

Index as of December 31, 2017. Due to lower liquidity in the earlier years in our sample, we only

focus on the period from 2015 to 2017. Also, we exclude stocks with low option market liquidity,

i.e., stocks that do not survive the data filtering procedure. A summary of the extended sample
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t-stat (HF) t-stat (daily)

m̂mean -4.8943 -5.4348

m̂
(1)
auto 2.5849 3.1662

m̂
(5)
auto 2.3678 2.7119

m̂
(22)
auto 2.1987 2.1724

Table 4: Tests for Risk Premium in ÃV
vw

. Stan-
dard errors are calculated using Newey-West esti-
mator with lag length of 1.3

√
T .

6 Months 9 Months 12 Months

AV
(0)
t,T 0.7768 1.4174 1.9511

(0.5448) (0.6398) (0.6194)

QV
(0)
t,T −AV

(0)
t,T 0.7042 1.1816 1.5896

(0.4914) (0.5162) (0.4507)

ÃV t,T 0.5711 1.1226 1.5675

(0.6195) (0.6363) (0.4870)

Q̃V t,T − ÃV t,T 0.2067 0.2500 0.4935

(1.2320) (1.5790) (1.7092)

0.0488 0.0573 0.0390 0.0011 0.1062 0.1047 0.0984 0.0010 0.1524 0.1427 0.1463 0.0037

Table 5: Predicting Returns of Value-Weighted Portfolio Constructed by Stocks in the Sample. Standard errors are calculated using Newey-West
estimator with lag length of 1.3

√
T .

is reported in Table 7. Overall, the extended cross-section consists of 102 stocks whose market

capitalization is over 60% of the value of the S&P 500 index (as of December 31 2017). Comparing

Tables 6 and 7, we can notice that the liquidity of the option market have increased significantly

over the last few years with the stocks in the original sample having higher number of traded

options over the more recent period of 2015-2017. In Figure 10, we compare the value-weighted ÃV

using our original and extended cross-sections. The two series are very close to each other, with the

one based on the larger S&P 100 Index cross-section being slightly larger than the one based on

the original cross-section thus providing even stronger evidence for the importance of idiosyncratic

downside jump risk.
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Figure 10: Comparison of Value-Weighted ÃV from Original and Extended Cross-Sections. Dotted
line corresponds to the original cross-section and the solid line to the extended one. Plotted series
are 20-day moving averages.
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Table 6: Summary Statistics for Individual Stock Options

Company Name Ticker Sector Sample Days Med. # of Strikes Weight (%)

Apple Inc. AAPL Information Technology 2233 29 3.62

Abbott Laboratories ABT Health Care 982 10 0.42

Amgen Inc. AMGN Health Care 2164 12 0.53

Amazon.com & Inc. AMZN Consumer Discretionary 2107 22 2.37

American Express Company AXP Financials 2070 16 0.36

Boeing Company BA Industrials 1996 16 0.74

Bank of America Corp BAC Financials 1164 8 1.29

Bristol-Myers Squibb Company BMY Health Care 1692 16 0.42

Berkshire Hathaway Inc. BRK.B Financials 898 12 1.11

Anheuser-Busch InBev BUD Consumer Staples 217 9 0.75

Citigroup Inc. C Financials 1909 18 0.83

Comcast Corporation Class A CMCSA Communication Services 1381 15 0.78

ConocoPhillips COP Energy 1879 15 0.28

Cisco Systems Inc. CSCO Information Technology 1514 9 0.80

CVS Health Corporation CVS Health Care 1529 16 0.31

Chevron Corporation CVX Energy 1600 17 1.00

Walt Disney Company DIS Communication Services 1689 16 0.68

Facebook Inc. Class A FB Communication Services 1389 29 1.78

General Electric Company GE Industrials 1524 9 0.64

Gilead Sciences Inc. GILD Health Care 2197 18 0.39

Alphabet Inc. Class C GOOG Communication Services 2221 34 1.32

Goldman Sachs Group Inc. GS Financials 2550 17 0.40

Home Depot Inc. HD Consumer Discretionary 1838 15 0.93

HP Inc. HPQ Information Technology 1530 11 0.15

International Business Machines IBM Information Technology 2217 13 0.60

Intel Corporation INTC Information Technology 1903 10 0.91

Johnson & Johnson JNJ Health Care 1288 14 1.58

JPMorgan Chase & Co. JPM Financials 2370 18 1.56

Coca-Cola Company KO Consumer Staples 1265 9 0.82

McDonald’s Corporation MCD Consumer Discretionary 1595 14 0.58

3M Company MMM Industrials 1259 12 0.59

Altria Group Inc MO Consumer Staples 1237 14 0.57

Merck & Co. Inc. MRK Health Care 1792 14 0.64

Microsoft Corporation MSFT Information Technology 2269 12 2.77

Oracle Corporation ORCL Information Technology 1815 11 0.82

Occidental Petroleum Corporation OXY Energy 1971 14 0.24

PepsiCo Inc. PEP Consumer Staples 1217 14 0.71

Pfizer Inc. PFE Health Care 1137 8 0.91

Procter & Gamble Company PG Consumer Staples 1447 16 0.98

Philip Morris International Inc. PM Consumer Staples 1328 14 0.69

QUALCOMM Incorporated QCOM Information Technology 2225 15 0.40

Schlumberger NV SLB Energy 2107 15 0.39

AT&T Inc. T Communication Services 1734 10 1.00

UnitedHealth Group Incorporated UNH Health Care 1786 14 0.90

United Technologies Corporation UTX Industrials 1414 14 0.43

Visa Inc. Class A V Information Technology 2037 14 0.87

Verizon Communications Inc. VZ Communication Services 1790 13 0.91

Wells Fargo & Company WFC Financials 2053 14 1.26

Walmart Inc. WMT Consumer Staples 1574 16 1.23

Exxon Mobil Corporation XOM Energy 1871 14 1.49

Summary statistics are for the period 2007-2017. For each stock, the table reports the sector it belongs to, the number of valid
trading days in the sample after filtering, the median number of strikes per day, and its weight in S&P 500 Index as of 12/31/2017.
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Table 7: Summary Statistics for Extended Cross-Section of Options

Company Name Ticker Sector Sample Days Med. # of Strikes Weight (%)

Apple Inc. AAPL Information Technology 729 36 3.62

AbbVie Inc. ABBV Health Care 721 18 0.65

Abbott Laboratories ABT Health Care 391 11 0.42

Accenture Plc Class A ACN Information Technology 709 14 0.41

Allergan plc AGN Health Care 574 21 0.23

American International Group Inc. AIG Financials 734 19 0.23

Allstate Corporation ALL Financials 4 7 0.16

Amgen Inc. AMGN Health Care 717 17 0.53

Amazon.com Inc. AMZN Consumer Discretionary 678 68 2.37

American Express Company AXP Financials 739 25 0.36

Boeing Company BA Industrials 728 22 0.74

Bank of America Corp BAC Financials 486 8 1.29

Biogen Inc. BIIB Health Care 494 29 0.28

Bank of New York Mellon Corporation BK Financials 690 10 0.23

BlackRock Inc. BLK Financials 108 8 0.35

Bristol-Myers Squibb Company BMY Health Care 739 24 0.42

Berkshire Hathaway Inc. BRK.B Financials 516 13 1.11

Citigroup Inc. C Financials 739 23 0.83

Caterpillar Inc. CAT Industrials 734 32 0.39

Celgene Corporation CELG Health Care 729 28 0.35

Charter Communications Inc. Class A CHTR Communication Services 94 23 0.34

Colgate-Palmolive Company CL Consumer Staples 726 15 0.28

Comcast Corporation Class A CMCSA Communication Services 730 18 0.78

Capital One Financial Corporation COF Financials 705 26 0.20

ConocoPhillips COP Energy 732 21 0.28

Costco Wholesale Corporation COST Consumer Staples 670 17 0.34

Cisco Systems Inc. CSCO Information Technology 475 9 0.80

CVS Health Corporation CVS Health Care 723 22 0.31

Chevron Corporation CVX Energy 737 22 1.00

Danaher Corporation DHR Health Care 7 6 0.27

Walt Disney Company DIS Communication Services 737 23 0.68

Emerson Electric Co. EMR Industrials 61 8 0.19

Ford Motor Company F Consumer Discretionary 111 7 0.20

Facebook Inc. Class A FB Communication Services 736 33 1.78

FedEx Corporation FDX Industrials 711 15 0.28

Twenty-First Century Fox Inc. Class B FOX Consumer Discretionary 11 7 0.11

Twenty-First Century Fox Inc. Class A FOXA Communication Services 111 8 0.15

General Dynamics Corporation GD Industrials 6 7 0.26

General Electric Company GE Industrials 506 10 0.64

Gilead Sciences Inc. GILD Health Care 738 33 0.39

General Motors Company GM Consumer Discretionary 729 13 0.24

Alphabet Inc. Class C GOOG Communication Services 632 46 1.32

Goldman Sachs Group Inc. GS Financials 737 20 0.40

Halliburton Company HAL Energy 738 21 0.18

Home Depot Inc. HD Consumer Discretionary 718 20 0.93

Honeywell International Inc. HON Industrials 61 13 0.49

HP Inc. HPQ Information Technology 304 11 0.15

International Business Machines IBM Information Technology 719 19 0.60

Intel Corporation INTC Information Technology 709 12 0.91

Johnson & Johnson JNJ Health Care 724 17 1.58

JPMorgan Chase & Co. JPM Financials 738 25 1.56

Kraft Heinz Company KHC Consumer Staples 15 11 0.40

Kinder Morgan Inc Class P KMI Energy 527 10 0.17

Coca-Cola Company KO Consumer Staples 535 10 0.82

Eli Lilly and Company LLY Health Care 731 19 0.39

Lockheed Martin Corporation LMT Industrials 372 12 0.39

Lowe’s Companies Inc. LOW Consumer Discretionary 426 23 0.32

Mastercard Incorporated Class A MA Information Technology 730 26 0.66

McDonald’s Corporation MCD Consumer Discretionary 708 19 0.58

Mondelez International Inc. Class A MDLZ Consumer Staples 434 17 0.27

Medtronic plc MDT Health Care 705 21 0.46

MetLife Inc. MET Financials 694 17 0.22

3M Company MMM Industrials 560 13 0.59

Altria Group Inc MO Consumer Staples 734 18 0.57

Monsanto Company MON Health Care 398 24 0.22

Merck & Co. Inc. MRK Health Care 735 17 0.64

Morgan Stanley MS Financials 729 15 0.40

Microsoft Corporation MSFT Information Technology 739 19 2.77

NextEra Energy Inc. NEE Utilities 2 8 0.31

NIKE Inc. Class B NKE Consumer Discretionary 736 19 0.34

NVIDIA Corporation NVDA Information Technology 719 23 0.49

Oracle Corporation ORCL Information Technology 685 12 0.82

Occidental Petroleum Corporation OXY Energy 683 23 0.24

The Priceline Group Inc. PCLN Consumer Discretionary 382 90 0.35

PepsiCo Inc. PEP Consumer Staples 730 18 0.72

Pfizer Inc. PFE Health Care 527 9 0.91

Procter & Gamble Company PG Consumer Staples 739 20 0.98

Philip Morris International Inc. PM Consumer Staples 717 18 0.69

PayPal Holdings Inc PYPL Information Technology 609 15 0.37

QUALCOMM Incorporated QCOM Information Technology 733 22 0.40

Raytheon Company RTN Industrials 27 8 0.23

Starbucks Corporation SBUX Consumer Discretionary 732 18 0.34

Schlumberger NV SLB Energy 713 30 0.39

Southern Company SO Utilities 34 8 0.20

AT&T Inc. T Communication Services 650 11 1.00

Target Corporation TGT Consumer Discretionary 735 22 0.15

Time Warner TWX Communication Services 582 26 0.30

Texas Instruments Incorporated TXN Information Technology 732 19 0.43

UnitedHealth Group Incorporated UNH Health Care 681 16 0.90

Union Pacific Corporation UNP Industrials 736 27 0.44

United Parcel Service Inc. Class B UPS Industrials 715 18 0.34

U.S. Bancorp USB Financials 674 13 0.37

United Technologies Corporation UTX Industrials 709 15 0.43

Visa Inc. Class A V Information Technology 738 25 0.87

Verizon Communications Inc. VZ Communication Services 719 15 0.91

Walgreens Boots Alliance Inc WBA Consumer Staples 730 25 0.30

Wells Fargo & Company WFC Financials 734 18 1.26

Walmart Inc. WMT Consumer Staples 738 21 1.23

Exxon Mobil Corporation XOM Energy 714 24 1.49

The table summarizes the option data used in the extended cross-section of stocks in the S&P 100 Index with high option liquidity over
the period 2015 to 2017. For each stock, the table reports the sector it belongs to, the number of valid trading days in the sample after
filtering, the median number of strikes per day, and its weight in S&P 500 Index as of 12/31/2017.
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