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We develop a nonparametric test for deciding whether a semimartingale process, modeling an
asset price, contains a fixed time of discontinuity, i.e., a positive probability of a jump, at a
given point in time, and we further propose a rate-optimal estimator of the jump distribution
when this is the case. [t6 semimartingales used commonly in applied work have absolutely
continuous in time, with respect to Lebesgue measure, jump compensators, and this rules out
fixed times of discontinuity in their paths. However, certain phenomena, such as scheduled
economic announcements in finance, make the existence of such discontinuities a possibility. The
inference in the paper is based on noisy observations of options written on the asset with different
strikes and two different expiration dates. The asymptotics is joint in which the times to maturity
of the options shrink to zero and the number of observed options increases to infinity. The test
is based on estimates of the characteristic function of the increments of the semimartingale,
constructed from the option data, and the fact that the asymptotic limit of the increments and
their characteristic functions is different with and without fixed time of discontinuity. The limit
distribution of the test statistic is derived and feasible inference is developed on the basis of wild
bootstrap type techniques. A Monte Carlo and an empirical illustration show the applicability
of the developed inference procedures.
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1. Introduction

Our interest in this paper is in the jump part of the following semimartingale process
used to model the dynamics of an asset price X:

Xe _ aidt + o dW; + /(ez — 1)p(ds, dz), (1.1)
th R
where a is a process with cadlag paths, W is a Brownian motion, u is an integer-valued
random measure on Ry X R, counting the jumps in X, with compensator v(dt, dz) and
1 is the martingale measure associated with u. For the above process, we develop tests
for deciding whether the realization of v({t*},R) = Py_(AX- # 0) is positive, for
1
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some fixed time t*. That is, we propose a test for deciding whether there is a positive
probability of jump arrival at a given point in time, i.e., whether X contains fixed times
of discontinuity. We further propose a rate-efficient estimator of the density of v at t*.

The standard models used in many applications, e.g., the class of Lévy processes, time-
changed Lévy models with absolutely continuous time change, and more generally Ito
semimartingales imply Py« _ (AX;« # 0) = 0 for any deterministic time ¢t*. For example,
the jump compensator of the classical Lévy process is of the form dt ® F(dz), for some
measure I satisfying [;(2* A 1)F(dz) < oo, implying time homogeneity and hence no
atoms in time. That is, for these processes the jump arrivals on a given time interval are
uniformly distributed on the interval. However, for the modeling of various phenomena,
it can be more natural for the process to have fixed times of discontinuity. For example,
in finance for different reasons such as predetermined releases of information or periods
of market closure, one might expect that jumps with fixed arrival time are built into
asset prices.

How can we test whether Py _ (AXys # 0) > 07 Obviously, from observing the jump
times of X, we cannot decide whether these are times of fixed discontinuity. Similarly, if
X does not jump at a given time on a given path, this does not mean that this time point
is not one of fixed time of discontinuity. Our identification and testing for the presence
of such times will be based on option prices written on the asset price X. The option
prices will let us study directly the jump compensator of X in a way that we describe
below, and hence they will allow us to identify whether the latter is strictly positive at
a given fixed point in time.

More specifically, using nonparametric techniques and following the results of Carr
and Madan (2001), we can recover from option prices written at time ¢ and expiring
at time ¢ + T the conditional characteristic function of the increment of x = log(X),
ie., E; (ei“(mHT"”t)), for w € R. Then suppose that x is a semimartingale process with
independent increments (Jacod and Shiryaev (2003), Definition I1.4.1) with fixed time
of discontinuity at t* € (¢,£+T), and further that the increments are stationary outside
the jump time t*. In this case, we can write (see Jacod and Shiryaev (2003), Theorem
11.4.15):

E, (em@w*mt)) = TP <1 + /R G l)y({t*},dz)) , (1.2)

for some function ¥ : R — C. This means that the characteristic exponent is proportional
to the length of the time interval T" whenever there is no fixed time of discontinuity in X.
Therefore, we can construct a test for the latter scenario by using observations of options
at time t < t* with two different times to maturity 77 < 15, such that t* < ¢t + T5, and
forming estimates of the difference E; (ei“(x“rTz _xt)) — (Et (ei“(’”f+T1_x‘)))T2/Tl.

While the above discussion is for a semimartingale process with independent incre-
ments which are further stationary outside of the fixed time of discontinuity, it can be
easily extended to the general semimartingale setting by letting 77 and 75 shrink to
zero. This way, the effect of the variation of the semimartingale characteristics will be of
higher asymptotic order (with the precise assumptions needed for this provided in the
main text) and therefore the above-described statistics can still be used for the purposes
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of testing for fixed times of discontinuity in this more general context.

In our setup, the number of options with different strikes increases asymptotically at
the same time as the maturities of the options shrink. The separation of the null from
alternative hypothesis occurs because of the different asymptotic order of the options
and the characteristic function of the price increments with and without fixed times
of discontinuity in the underlying asset price. The characteristic function of the price
increments is of asymptotic order proportional to the length of the increment (which is
shrinking) under the null and it is of asymptotic order one under the alternative.

We derive a functional Central Limit Theorem (CLT) for our characteristic function
estimates from the option data, and the associated test statistic, under the null of no
fixed time of discontinuity in a weighted Lo space. The rate of convergence of the statistic
depends both on the length of the time to maturity of the options as well as on the mesh
of the strike grid, both of which are asymptotically shrinking. The asymptotic variance
of our estimators is determined by the diffusive volatility of the underlying asset price
at the time of observing the option prices as well as the heteroskedastic volatility of
the observation error, which is left unspecified. We develop an easy-to-implement wild
bootstrap type method for doing feasible inference which consists of regenerating new
option prices with error on the basis of noisy estimates of the heteroskedastic variance of
the observation error. The developed limit theory should be of independent interest for
conducting inference for models for the underlying asset and the option prices written
on it.

We further propose a nonparametric rate-efficient estimator of the jump distribution
at time t*, when t* is a point of fixed discontinuity in the underlying asset price. The
estimator is based on recovering the characteristic function of the price increment from
options which expire after ¢*, and an appropriate bias correction formed from the options
with the different times-to-maturity to correct for the Itd semimartingale component of
the price outside of ¢*. Unlike the case of the null hypothesis, now the options and the
associated errors are not asymptotically shrinking in spite of the shrinking options’ time-
to-maturity. The error in the density recovery depends both on the shrinking maturity
(because of the bias due to the It6 semimartingale component of the price increment) as
well as the mesh of the observation grid (due to the observation error).

The current paper relates to several strands of existing work. First, Belomestny and
ReiB (2006, 2015), Cont and Tankov (2004), S6hl (2014), S6hl and Trabs (2014) and Trabs
(2014, 2015) propose rate-efficient estimators of the Lévy density from options with fixed
time to maturity in exponential Lévy models and Qin and Todorov (2019) propose rate-
efficient estimators of the Lévy density of It6 semimartingales in a setting with shrinking
maturity of the options. Unlike these papers, we derive a functional CLT for estimates
of the characteristic function of the underlying process and develop novel wild bootstrap
for conducting feasible inference. Both of these results are nonstandard because of the
different asymptotic order of the option prices that are used in the computation of the
statistic. Another difference between the above-cited papers and the current work is
that here we derive rate-efficient estimators at times of fixed discontinuity which is not
allowed for in the setup of the above-cited work. Our estimator combines features of both
asymptotic setups, with and without shrinking maturity of the options.
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Second, our work is related to studies of the asymptotic behavior of the option price
written on an underlying It6 semimartingale as their maturity shrinks, see e.g., Ander-
sen et al. (2017), Bentata and Cont (2012), Euch et al. (2018), Figueroa-Lopez et al.
(2012), Figueroa-Lopez and Olafsson (2016a,b), Fukasawa (2017), Medvedev and Scaillet
(2006), Mijatovi¢ and Tankov (2016) and Muhle-Karbe and Nutz (2011), and the many
references therein. Unlike this strand of work, we consider fixed times of discontinuity in
the underlying process, allow for observation errors in the option prices (which drive our
CLT), and integrate options with different strikes in the analysis (which is challenging
because of their different asymptotic order as the maturity of the options shrinks).

The rest of the paper is organized as follows. In Section 2 we present the formal setup
and state the assumptions. Section 3 formulates the test statistic and in Section 4 we
analyze its asymptotic behavior. Section 5 presents a density estimator for the jump
distribution at the fixed time of discontinuity. Sections 6 and 7 contain a Monte Carlo
study and an empirical application, respectively. The proofs are given in Section 8.

2. Setup and Assumptions

The process X is defined on a filtered probability space (Q(O), FO), (Ft(o))tzo, IP’(O)). As
noted in the introduction, our inference in this paper will be based on European style
options written on X, and from finance theory, see e.g., Duffie (2001), and in the absence
of arbitrage, their theoretical values equal their conditional expected future discounted
payoffs (given in (2.1) below) under the so-called risk-neutral probability, which we hence-
forth denote with Q. The latter is locally equivalent to the true probability measure and
is of major interest both theoretically and for applications. The dynamics of X under Q
is given in (1.1) above.

For ease of exposition, we will assume that the dividend yield of X and the risk-free
interest rate are both zero. As in the introduction, henceforth we denote the logarithm of
the underlying asset price with = log(X). With these normalizations, the theoretical
values of the option prices we will use in our analysis are given by

E2(eF — emt+7)F, if k < a,
Orr (k) = { E?Ee“” — ek;+, if k > a4, 2.1)
where K = eF and k are the strike and log-strike, respectively, of the option. O r(k)
is the price of an out-of-the-money option, i.e., an option which will be worth zero if it
were to expire today. This is a call contract (an option to buy the asset) if £ > x; and a
put contract (an option to sell the asset) if k < z;.
Our data will consist of two sets of out-of-the-money options both observed at time t,
with one set expiring at time ¢ + 77 and the other one at t 4+ T5, for some 0 < T} < T5.
The log-strike grid of the observed options is given by

khl < khg << kLAU7 l =1,2. (2.2)
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We further denote 7
k= kl,l A k2’1 and k= kl,Nl V ]{72’1\[27 (23)

and we set K = exp(k) and K = exp(k). Finally, as common in empirical asset pricing,
we allow for observation errors, i.e., we observe:

6t7Tl(kl7j> = Ot7Tl(kl7j> + et,Tl(kl,j)) j=1,.., N, 1=1,2 (2.4)

where the sequence of observation errors is defined on a space Q1) = k><RAk’ for Ay = R.
€

This space is equipped with the product Borel o-field F1) and with transition probability
P (w®, dw™) from the original probability space Q(°) — on which X is defined — to
QM) We further define,

Q=00 x oM F=rF0 x g1 ]P’(dw(o),dw(l)) - ]}D(O)(dw(o))]p(l)(w(o),dw(l)).

Below we state our assumptions for the dynamics of X as well as the option observation
scheme for which we make use the following additional notation. The compensator of the
jumps for t # t* is of the form

v(dt,dz) = dt @ Fi(z)dz + €« (dt) Gy« (2)dz, (2.5)

where €, denotes the Dirac measure at a, and F; and G4+ are some predictable functions.

A1. The process o has the following dynamics under Q:

t t t t
oy = 0y +/ beds +/ NsdW +/ NsdW +/ / 87 (s,u)u’ (ds, du), (2.6)
0 0 0 o Jr

where W is a Brownian motion independent of W ; u? is an integer-valued random mea-
sure on Ry xR with compensator v°(ds, du) = ds @ du+ €« (ds)vi. (du), having arbitrary
dependence with the random measures p, and for some measure vi.; b, n and i are pro-
cesses with cadlag paths and §7 (s, u) : Ry xR — R is left-continuous in its first argument.

In addition, inficp«_. =)oy > 0, for some arbitrary small € > 0 and v{. is identically
zero if v({t*},R) = 0.

A2. With the notation of Al, for t € [t* —e,t*] with ¢ > 0 arbitrarily small, there exist
ft(o)-adapted random variables Cy and t >t such that for s € [t,1]:

4
Eflas|* + EZ|os|® + B (e*17]) + B </ (7 — 1)Fs(3)d2> < Ct, (2.7)
R
and in addition for some ¢ >0

E2 (/R((S”(s7z)|4 Vv |6U(s,z)|)dz>1+L < C. (2.8)
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Furthermore, we have sup; ¢« _. 4+) Ct < 00 and infyejp- . 1+ t>t*.

A3. With the notation of A1, fort € [t* —e,t*] with € > 0 arbitrarily small, there exist

]-"t(o)—adapted random variables Cy and t > t such that if v({t*},R) = 0, we have for
s,1 € [t, 1]

E9|as —a|? +E9|Us — o P +E9|775 —nel? +E9|ﬁs — P

2.9
<Cls—r) vpezg, &Y

and
P
E(t@ (/ €Oz V |2]?)|Fs(2) — F,«(Z)|d2’> < Cils—r|, Vp e [2,3]. (2.10)
R
Furthermore, we have sup,cp«_. 4+ Ct < 00 and infyepps— ¢x) t>t*.
A4. We have [;(e* —1)Gy+(2)dz = 0. For t € [t* — e, t*) with € > 0 arbitrarily small,
there exists ft(g)—adapted random variable Cy such that for s,r € [t,t*] with s <r < t*:
, , 2
E® ‘IES{(@WA“*) —E2 (™A% < CyJulP V1)|s — 7|, for some p>0,  (2.11)
where supyep_. 4+ Ct < 00. In addition, for t € [t* —e,t*), we have E2(efudre) =
E2 (efAe+) | almost surely.
A5. The log-strike grids {kl’j}é\;’l, forl=1,2, are FO-adapted and we have
CtA S kl,j - kl,j—l S CtA, = 1,27 as A J, O, (212)

where A is a deterministic sequence, and inf;cg«_. 4-j ¢; > 0 and SUD;e[te—c 7] C; < o0,
for some arbitrary small € > 0. In addition, for some arbitrary small ¢ > 0:

kij —kij—

sup — (ki j—1 — x¢) LN 0, 1=1,2, asA 0, (2.13)

Jilkr, g —me|<C A
where Y (k) are FO) _adapted functions which are continuous in k at 0 with ¥ (0) > 0.

A6. We have €, 1, (ki j) = &1 (ki j—x1)€,1,;O0¢ 1, (K1) forl = 1,2, where & ,;(0) is continu-
ous int att* and further for k in a neighborhood of zero, we have |1 (k)—&:,1(0)] < Cy|k|*,
for some ¢ >0 and sup,¢jpe_. 4+ Cr < 00 as well as SUPyeys _ 4+] SUPger [€2,1| < 00, with

some arbitrary small e > 0. Forl =1,2, &, = Zﬁl/l:o Yt 1.mCel,j—m, With {e1m M,
being an FO -adapted sequence, with Yi1m continuous int at t*, and {(,; }évzll_m being
an i.i.d. sequence defined on an extension of FO) and independent of it, and for some
nonnegative integer M. The sequences {(t,lyj};»v:ll_m and {Ct’zj};-vil_m are independent
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from each other and have arbitrary dependence on t. We further have E(Et’17j|}'(0)) =0,
E((€1,;)|1F?) =1 and E(|&,1 ;% F ) < oo, for some k >4 and 1 = 1,2.

In the case v({t*},R) = 0, assumption Al specifies that o is an It6 semimartingale,
which is the standard way of modeling stochastic volatility in applied work. In the case
when x can has a fixed time of discontinuity at ¢t = t* (i.e., when v({t*},R) > 0),
assumption Al allows the volatility process o to have a fixed time of discontinuity at ¢ =
t* as well. We impose non-vanishing oy, for ¢ in a neighborhood of ¢*, which is satisfied in
most applications and is important for characterizing the limiting distribution of our test
statistic. Assumption A2 imposes existence of conditional moments and we note that the
condition on CY is automatically satisfied when C; has cadlag paths. Assumption A3 is a
smoothness in expectation condition which holds when the processes involved in it are Ito
semimartingales. This assumption is needed only in the case v({t*}, R) = 0. Assumption
A4 imposes existence of moments of the conditional jump distribution function Gy« (x)
as well as a smoothness in expectation condition on the conditional expectation of the
jump Az« which will hold if its dependence on time is through an It6 semimartingale
process.

Assumption A5 is our regularity condition for the log-strike grid which imposes very
mild smoothness of the denseness of the strike grid in a neighborhood of the current
price. Finally, assumption A6 is about the observation error. We note that the errors
are proportional to the option prices they are attached to, so that the relative errors
remain Op(1) as the time to maturity of the options shrinks. As we will see later, this
implies that the asymptotic order of the observation error depends on the distance of
the strike to the current spot price. We allow for heteroskedasticity in the observation
error and we only assume a very mild condition on the smoothness of the latter as a
function of the strike which is needed for its nonparametric recovery from the observed
options. In addition, we allow for F(®)-conditional dependence in the observation error.
This dependence can change over time and can change from one sample path to another
(the coefficients 1y ; ., can be stochastic).

3. Formulation of the Test and Construction of the
Test Statistic

We now state formally the null and alternative hypotheses and develop a test statistic to
discriminate between the two. Our interest is in deciding whether the jump compensator
is strictly positive at the fixed time t*, i.e., whether ¢* is a fixed time of discontinuity for
X. Formally, we are trying to decide whether the realization of v({t*},R) is positive or
not, i.e., in which of the following two subsets of the sample space €2, the observed w € (2
belongs to:

Qo= {weQ:v{t'},R) =0}, Qu={weQ:v({t'},R)>0}. (3.1)

The idea of the test we propose is the following. When 77 and 75 are small, then under
the null hypothesis, the increments of X over the intervals [t,t + T3] and [t,t + T»] are
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approximately ft(o)—conditionally like those from a Lévy process. Hence, by use of Lévy-
Khintchine theorem, Theorem 8.1 in Sato (1999), their ffo)—conditional characteristic
exponents are equal up to division by 77 and 75, respectively. This scaling of the char-
acteristic exponents of the time increments with their length, however, does not work if
X has a fixed time of discontinuity at ¢*.

We follow Qin and Todorov (2019) and utilize results in Carr and Madan (2001) to pro-
pose the following estimator of the conditional characteristic function of the increments
of the log-price x:

N,
Et,T(U) =1- (’U,2 + iu) th(u, kl,jfl, kl’j)OtyT(k‘l’j,l), u € R, (32)
=2
where

. (iu—1)ks _ ,(iu—1)k;
ht(u,kth) :efzumte e

R, ki, ks € R. 3.3
=1 , W€ 1, K2 € (3.3)
Since our test will be based on comparing Et7T1 (u) and Et);@ (u) as functions in wu, the
convergence results that follow will be functional and will take place in the complex-
valued Hilbert space £%(w):

e = {r® - [ 1wPuta <o}, (3.4

where w is some positive-valued and continuous weigth function with exponential tail
decay. The inner product on £2(w) is induced from the inner products of its real and
imaginary parts, i.e., for f and g two elements of £2(w), we set

<ﬁ@=4f@ﬂ5ﬂ@w- (3.5)

Next, for a random complex function Z taking values in £2(w), we introduce the co-
variance operator Kh = E[(Z — E(Z))(h,Z — E(Z))] and the relation operator Ch =
E[(Z —E(2))(h,Z —E(Z))], where h € L?(w). We recall that a Gaussian law on £?(w)
is uniquely identified by the mean, covariance and relation operators and we denote it
with CN (u, K, C), for pu being the mean, K being the covariance and C being the relation
operator.

As we will show later (see Lemma 1), under assumptions A1-A4, if v({¢t*},R) = 0,
tTt"and T |0,

—~ 2 .
Lir(u) =exp (iuTEt - T%af + T/(e“‘z —uz — l)Ft(z)dz) +0,(T%?),  (3.6)
R

where we denote )

ay = ag — 503 - /(ez —1-2)F(z)dz, (3.7)
R
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and if v({t*},R) >0, ¢t1¢* and T | 0,
For(u) = / €5 (2)dz + 0y(1). (3.9)
R

This motivates the following test statistic for discriminating the null from the alternative
hypothesis:

/W1,2 = HEt,Tz AZZ)T/lTlH = \// }/Jt 1y (w) — Loy (U)TQ/T1’27U(U)CZU7 (3.9)

and the power in the above expression is uniquely defined by the principal value of the
argument of the complex number.

4. Asymptotic Behavior of the Test Statistic

We proceed with charatcterising the limit behavior of our statistic under the null and
alternative hypotheses. We start with a CLT result under the null.

Theorem 1. Assume A1-A6 hold. Suppose t < t* < t+ Ty and Ty = 711 for some

T € (1, Ii] (with Kk bez'ng the constant in A6) Let t T t* together with Ty | 0, A < T},

K = Tl,Kx Y, for B,y > 0 and & < o < &+ (1 A4B A4y). Then, under
v({t*},R) =0, we howe

(0)
) AFL g (4.1)

~ ~
(£t7T2 — ATy

with Z defined on an extension of the original probability space and having F ) -conditional
law of CN (0, K,C) where K and C are covariance and relation operators with integral
representations,

Kh(z) = /Rk(z,u) h(u) w(u) du, Ch(z) = /Rc(z,u) h(u) w(u) du, Vh € L2(w), (4.2)

and the kernels k(z,u) and c(z,u) are given in Section 8.2.

L) FO
We provide several comments about the above result. First, the notation ‘—) means

convergence in probability of the conditional probability laws when the latter are con-
sidered as random variables taking values in the space of probability measures equipped
with the weak topology, see e.g., VIIL.5.26 of Jacod and Shiryaev (2003). Second, a
similar CLT result holds for C,;Tl E2(ei(@i+m1=24)) with the covariance and relation
operators of the limit being the components of K and C above from the options with
maturity ¢ + 77. Such a result should be of independent interest for making inference

imsart-bj ver. 2014/10/16 file: ftd.tex date: March 5, 2020
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for the characteristic triplet of x at time ¢. Third, the asymptotic variance of the limit
is determined by the diffusive part of X. This is because, by assumption A6, the option
error is proportional to the true option price it is attached to and the latter is dominated
by the diffusion in X for strikes that are close to the current stock price. Fourth, the con-
ditions for o, # and 7 in the theorem guarantee that the leading term in the asymptotic
behavior of Ly 1, — L] 7, is due to the observation error. We note in that regard, that
the condition for the strike range is rather weak and this condition can be satisfied even
if only 8V v > 0 holds. Finally, even though the scaling in the CLT is using A (defined
in assumption A5), which is not known, for performing feasible inference, its knowledge
is not necessary. .

From Theorem 1, the limit behavior of our test statistic Wy, 4, follows by continuous
mapping. For feasible inference, we will develop an easy-to-implement simulation-based
approach which is reminiscent of the wild bootstrap, see e.g., Wu (1986). In an analogy
to the applications of the bootstrap, here we have nontrivial heteroskedasticity in the two
cross-sections of options in the strike domain. Indeed, the asymptotic order of magnitude
of the observation errors varies across the strikes. To develop the feasible inference, we
make use of the following estimate of the observation error:

—~ 2 A 1/~ ~

e (kig) =1/ 3 {Ot,n(ki,y‘) ~5 (Ot,Ti(ki,j—l) + Ot,Ti(ka))] ; (4.3)
forj=2,...,N;—1andi=1,2, and further €, 1, (ki 1) = €1, (ki 2) as well as €, 1, (ki1;) =
€1, (kir,—1) for i = 1,2. We denote next with J;, the smallest element of the set of
integers (1,2, ..., N;) such that

|kJ: — xt\ S |ki,j — $t|7 ] = 17..,]\&7 7 = 1,2. (44)

That is, k- is the available log-strike that is closest to the current log-price z¢. We then
modify the estimate of the error corresponding to k- by replacing it with
er,(kigr) = % (&, (kiogs— )| + €7 (R gz +1)]) . 0= 1,2. (4.5)
The construction of €, 7, (k; ;) above makes use of the fact that the true option price is
smooth as a function of its strike, and hence €. 1, (k; ;) is dominated by the observation
error in the options used in forming it. Given the smoothness in strike assumption for the
F(©)_conditional volatility of the relative option error in A6, |€; 7, (k; ;)| provides therefore
an estimate of the F(9)-conditional volatility of the option error (albeit a very noisy one).
Since the observation error can have spatial dependence (recall assumption A6), we
need to construct estimates for this dependence. Towards this end, we first form the
sample spacial autocovariance of our estimates of the observation error:

N;
Xeih) = > [@mkig)en (kig-n) e iz ny)
Jj=h+1
4.6
) X 2 (4.6)
NI S amki)geay | o h=0,.,Ni—1, i=12
i j=1
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The centering in (4.6), i.e., the inclusion of the second term on the right hand side of
(4.6), is standard in covariance estimation but in the current context is not necessary as
€1, (k; ;) are, up to an asymptotically negligible error, mean zero. Nevertheless, we keep
this term in (4.6) as in small samples it can help correcting biases in €. 1, (k; ;) due to
the change in the true option price across strikes.

The behavior of X ;(h) is non-standard because the asymptotic order of the options
used in its construction is different. As we show in the proofs (see Lemma 4), we have
the following convergence in probability in the setting of Theorem 1 (where the null
hypothesis holds):

T2 P — .
ZTXt,i(h) = Cixpi(h), i=1,2, (4.7)

where CY is an ]-"t(o)—adapted random variable that does not depend on h, given explicitly
in the statement of Lemma 4, and where X, ;(h) is:

1
4

1

Yt,i(h) = 2 (3%,1‘(]1) - ’Yt,i(h + 1) - ’Yt,i(h - 1) + ’Yt,i(h + 2) + 4’7t,z‘(h - 2)) ) (4~8)

3\2

with v, ;(h) denoting the FO)_conditional covariances between €45 and € ; j_n:
’Vt,i(h) =E (gt,i,jgt,i,j7h|]:(0)) 5 = ]., 2. (49)

Since €., (ki ;) is formed by a second-order difference of the observed option price as
a function of its strike, the error estimates € r,(k; ;) have spatial dependence, which is
generated by the overlap of the option observation errors contained in them. Using the
FO)_conditional M-dependence of the observation errors (assumed in A6), we have

Yi(h) =6X,(h+2) 1+ L+ ..+ L") h=01,.., (4.10)

where L denotes the “spatial lag” operator that shifts the spatial autocovariance by
one lag, i.e., L7, ;(h) =¥, ;(h + 1). Using this relationship, we can solve iteratively for

.....

denote these estimates with {J;;(h)}nh=01,....0. We then introduce the following scaling
factor

M ~
~ _1 ik )
St,i = 1+ 25 <Zh§tl’zt0’)()1{ﬁt,l(0)>0}7]vz>a 1= 17 2a (411)

where the function »(x, N) satisfies
#(x, N) — xz, locally uniformly in z € R, as N — oc. (4.12)

The function s(z, N) is a finite sample correction that guarantees that §t,i is a finite and
positive number in finite samples. It reduces to a small-sample correction of the spatial
autocovariances past lag zero. This correction is the counterpart in the current setting
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12 Viktor Todorov

of the kernel-based estimators of the long-run asymptotic variance of sample averages of
dependent sequences. The latter similarly dampen the autocovariance estimates past lag
Zero.

Under the null hypothesis, the result of Lemma 4 implies

M
N 1 (h
[ L= Vei(h) ), i=1,2. (4.13)

7t,i(0)
The limit on the right-hand side of the above convergence captures the effect from the
spatial dependence of the observation error on the limiting standard deviation of L; 7. In
particular, if there is positive spatial dependence in the observation error, the asymptotic
variance will naturally go up.
We are now ready to describe our bootstrap procedure. Using the above estimates, we
add noise to the observed option prices and denote the new observations with

07 1, (ki j) = Our, (kig) + €m (kij)Seizig, §=1,..Ni, i=1,2, (4.14)

where {zl,j};vzll and {z2 ; };V:zl are two 1.i.d. sequences of standard normal variables de-
fined on an extension of the original probability space and independent from F and from
each other. We then define £ ;- from Ly r by replacing Oy r, (ki ;) with OF 1, (k; ;). With
this notation, we set

Wiy =||Lin, — Lomy — L0 7 (Lipy — L) |- (4.15)

We note that in defining Wl”‘g, we center E:,TQ and EA;",TI around LAt,TQ and LAtVTl, respec-
tively. This guarantees that the F-conditional limiting distribution of Wl*Q is the same
as that of our statistic /VI71’2 under the null and it has important implications also for the
behavior of I//V\l*z under the alternative hypothesis. The F-conditional limit behavior of

/V[71*72 is given in the following theorem.

Theorem 2. Under the conditions of Theorem 1, we have

1 = L|F
= |Wiall — 1IZ]l, (4.16)
iya
where Z is a random function in L?(w), defined on extension of the original probabil-

ity space with F-conditional distribution of CN (0, K,C) where K and C are given in
Theorem 1.

The above theorem allows for a very easy way of implementing our test. One needs
only to compute the quantiles of ||W; || via simulation. In particular, we avoid the need
to estimate consistently the covariance and relation operators of the limiting distribution
of Theorem 1. To fully characterize the asymptotic behavior of our test, we need to derive
the behavior of Wi 2 and W7, in the case of fixed time of discontinuity at time ¢ = ¢*.
This is done in the following theorem.
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Testing and Inference for Fized Times of Discontinuity 13

Theorem 3. Assume AI1-A6 hold. Suppose t < t* < t 4+ Ty and To = 717 for some
T € (1,K] (with k being the constant in A6). Let t T t* together with Ty | 0, A < T,
K = Tf, K =T, with o, B, v > 0. Then, under v({t*},R) > 0, we have

Lir, 51, Lip > / Gy (2)dz, if Ty < t*, (4.17)
R
Et7T1 LN /ei“ZGt*(z)dz, Et,Tz L /ei“zGt*(z)dz, if t* > T, (4.18)
R R
and -
[Wiall = O, (VA). (4.19)

As seen from the above theorem, when X has a fixed time of discontinuity at ¢t = t*,
then this becomes the leading component in the increments of & over time intervals that
include t*. Importantly, this holds regardless of whether o and F have a fixed time of
discontinuity at ¢ = t*. To convey the intuition for this, it is instructive to look at the
special case when a is zero, F' is zero and ¢ remains constant apart from the possible
jump at ¢ = t*. In this case, for an interval [t,¢ + T] that includes ¢*, we can write
(because oy = oyr_):

Ti4T — Tt = Ut(Wt+T - Wt) + Aoy~ (Wt+T - Wt*) + Az,

Then, in the asymptotic setting in which ¢ T ¢* and T | 0, the first two terms are
both O,(v/T) and the last term is O,(1). In particular, the fixed time of discontinuity
in 0 at t = t* plays an asymptotically negligible role in the behavior of x4y 7 — z; as
T | 0. This is because, Ao~ multiplies an increment of a Brownian motion which shrinks
asymptotically as T" | 0.

As a result, in the case of fixed time of discontinuity in = at ¢t = t*, the characteristic
exponent of z; 7, — x; is no longer shrinking as T» goes down to zero. Instead, in this
case E,;Tz estimates the characteristic function of the jump distribution of = at t*. This
implies for our testing purposes that ||/V[712\| = O,(1). This, together with the fact that
||W1*2\| = 0,(VA), means that our test will have asymptotic power to discriminate the
null against the alternative.

To state formally the result for the asymptotic behavior of our test, we denote

C/'ba = Ql—a(Wl*,Zu:)v o€ (Oa 1)7 (420)

where Qn(Z) denotes the a-quantile of the random variable Z. We can evaluate ¢v,
easily via simulation.

Corollary 4.1. Assume A1-A6 hold. Suppose t < t* < t+T5 and Ty = 7T} for some
T € (1,K] (with k being the constant in A6). Let t T t* together with Ty | 0, A < T¢,
K=T), K=T,", for ,v>0and L <a <1+ (1N4BA4y). Then, for a € (0,1),
we have - -

P (WL2 > @amo) — a, P (Wl,2 > cAva|QA> — 1. (4.21)
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14 Viktor Todorov

Remark 1. Our theoretical results can be extended to testing, in a setting with no
fized time of discontinuity, whether the Lévy measure of the jumps in x is that of a
time-changed Lévy process, i.e., whether Fy(z) is of the form a; x F(x), for a; being a
stochastic process with caglad paths and F being a time-invariant Lévy measure (see e.g.,
Theorem 8.3 in Barndorff-Nielsen and Shiryaev (2010)). On an intuitive level, the above
structure boils down to time-invariant jump distribution with all the variation of the jump
compensator being through level shifts in the latter and no changes in its shape. This is
the predominant approach of modeling jumps in applications. For example, the jumps
in the popular affine class of models that are typically used in empirical asset pricing,
see Duffie et al. (2000) and Duffie et al. (2003), are time-changes of Lévy processes
(with additional restrictions on the jump compensator). See also Figueroa-Ldpez (2009),
Belomestny (2011), Belomestny and Panov (2013a,b) and Bull (2014) for estimation of
such types of models in various asymptotic setups.

We can test the hypothesis of time-changed Lévy models by studying the change in the
characteristic function of the increments of x at different points in time (which can be
recovered from short-dated options at these time points). For this to be done, however,
we will need estimators of the spot diffusive volatility (which can be obtained either from
high-frequency record of X or the options themselves) as well as an estimate of the ratio
of the time-change (a; in the notation above) at the two different time points (which can
be obtained from the estimates of the characteristic functions of the increments). We
leave such an extension for future work.

5. Inference for the Jump Distribution at the Fixed
Time of Discontinuity

When X contains a fixed time of discontinuity at t = t*, we can use the options to recover
the density of the jump distribution at ¢*. As shown in Theorem 3, the Fourier transform
of the latter is the dominant component of £; r(u). The estimator of the characteristic
function of the jump at time t* is therefore given by

- —) if =(|Ly1, — L Lir, — 1| <1
E{d(u) _ Bll(u) At7T1 (u)7 1 -,—;1 H At,Tz At7T1H/|| At7T2 || <1 (51)
O] 1 (w), i Z5lLer, — Lo ||/ Lo, — 1| > 1,
where recall 7 = T3 /T and we denote
oy (w)) 71
B\l (u) = (Ezz?(:j)) ’ if |’Ct’T2 (u)/ﬁthl (u) - 1‘ < (T - 1)u2/CT17 (52)
(1 —w?el), if | Lo, (w) /Lo, (u) — 1] > (7 = 1)ueTy,
and R R
~ Lo (u)™ if |Le7, (u) — 1| < u?ely
B = ol ’ P ’ 5.3
Q(u) { 1-— UQETQ, if |£t,T1 (u) — 1| > UQ/CTh ( )
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Testing and Inference for Fized Times of Discontinuity 15

with € denoting a sequence of nonnegative-valued random variables which is Op(1) as
A — 0 and 71 — 0. When the fixed time of discontinuity satisfies ¢t* < ¢ + T}, then
we use the characteristic function from the shortest-dated options and the term B; (u) in
Efd(u) corrects for the effect on EAt7T1 (u) due to T¢q1, —xt —Axg«. Similarly, when t4+77 <
t* < t+1T5, then we use EnTQ (u) and with By(w), we correct for the component in it that
is due to x4, —xt — Axy. In both cases, the bias correction terms will account fully for
the biases stemming from x;y7, — 2y — Az~ only in the case when the semimartingale
spot characteristics (a¢, oy and F;) do not have a fixed time of discontinuity at ¢t = ¢*.
Even if this is not the case, however, B; (u) and gg(u) will play only a higher order
asymptotic role.

In general, the statistician might not know the location of t* relative to t+717. However,
the two alternative scenarios of t* < t+77 and t+717 < t* < t+T5 can be easily separated

by the value of ﬁ“&,n - Zt,TlH/”Zt,Tz — 1|| which converges to 0 in the former case

and to —T5 > 1 in the latter (and to 1 under the null of no fixed time to discontinuity).

Given E{d(u), our estimator of Gy~ (x) is then simply its Fourier inverse:

~ 1 ey
G+ (x) = %/ e~ 21 () du, (5.4)

for some positive sequence uy — oo as A — 0 and 71 — 0. Our asymptotic result for
Gy~ (x) will be based on the following smoothness assumption for the density of the jump
distribution:

AT. The function G- (x) belongs to the class

5:(Cye) = {f e L'(R) N L*(R) /lef(w)F(l +2%)"dz < C}

for some positive constant r and some positive Fi--adapted random variable Cy«, and
Ff denoting the Fourier transform of f.

The next theorem derives the order of magnitude for the integrated squared error in
recovering Gy«.

Theorem 4. Assume A1-A7 hold. Suppose t < t* < t + Ty and Ty = 711 for some
7 € (1,K] (with K being the constant in A6). Let t T t* together with Ty | 0, A < T},
K = Tlﬁ, K =<T,7, fora, B,v>0. Let ¢ in (5.2)-(5.8) satisfy ¢ = O,(1). If

uy — oo and ui Ty — 0, (5.5)

then, we have
/ (Goe (1) = G ()2 = O (wx? \ e (A vl Ty v e 1MD)) - (5.6)
R
where p is the constant in A4.
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16 Viktor Todorov

The above result combines features of related work on the recovery of Lévy density
from options with fixed time to maturity (Belomestny and Reifl (2006, 2015)) and shrink-
ing one (Qin and Todorov (2019)). Like Belomestny and Reiff (2006, 2015), the error in
the density recovery that is due to observation error is of order O, (u2A). This is despite
of the fact that here the maturity of the options is shrinking. The reason for this is that
when there is a fixed time of discontinuity in X before the option expiration, then option
prices are of asymptotic order O,(1), even though their time to maturity is shrinking.
Since the observation error is proportional to the true option price, the observation errors
also do not shrink when the time to maturity goes down. On the other hand, similar to
Qin and Todorov (2019), the error in recovering Gy also depends on the time to maturity
of the options, T7. The reason for this is that the increment of X contains not only the
jump at the fixed time of discontinuity, whose size distribution we are trying to recover,
but also the other part of the process (the It6 semimartingale) which is of order O, (v/T1).
Also in our setting, we allow the jump size distribution at the fixed discontinuity time
to depend also on time, and this in turn also generates error, the size of which depends
on T17.

The error in the density recovery naturally depends on the smoothness of the lat-
ter. Assumption A7 imposes power decay of the Fourier transform of Gy«. A stronger
assumption like for example Gy« being supersmooth, see e.g., Fan (1991), which means
that its Fourier transform has an exponential tail decay (which is satisfied for example by
the density of the normal distribution), will lead to replacing uy*" in (5.6) with a term
that is of significantly smaller (exponential) asymptotic order. Finally, in the case when

u%p Vl)_4T1 v e~ 4EVR) ig of smaller asymptotic order than A, using similar techniques
as in Belomestny and Reifl (2006, 2015) and Qin and Todorov (2019), we can show that
our estimator is rate-optimal.

6. Monte Carlo Study

We now present results for the performance of our test for fixed time of discontinuity on
simulated data from the following model for the risk-neutral dynamics of X:

dx,
X;_

=/ VidW; + /(ez — 1u(ds, dz) +nY, (6.1)
R
with W being a Brownian motion and V having the dynamics
dV, = 3.6(0.02 — V;)dt — 0.1/ V,dW, + 0.1732\/V,dW,, (6.2)

where W is a Brownian motion orthogonal to W. The jump measure y has a compensator
Fi(z)dt ® dz with

e—20lz| e—100[z|
Fy(z) =V, (91.751{m<0} + 102.581{w>0}> . (6.3)

‘$|1.5 |1.|1.5
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Testing and Inference for Fized Times of Discontinuity 17
Finally,

|0, fort<tr, . o 2
Y; = { N with Az = 0.0546+/Vy x Z — 0.0546°V /2, (6.4)

where Z is a standard normal variable independent from W, W and . The case n # 0
corresponds to a process with fixed time of discontinuity. When 1 = 0, the specification
in (6.1)-(6.3) belongs to the affine class of models of Duffie et al. (2000) commonly used in
empirical option pricing work. The jumps outside of t* have time-varying jump intensity,
are of infinite activity, and their distribution is like that of a tempered stable process, see
e.g., Carr et al. (2002), which is found to provide good fit to option data. The jump size at
time t* is drawn from a JFy-conditionally normal distribution with volatility proportional
to the level of diffusive volatility at time zero.

The model parameters are set in a way that results in option prices similar to observed
equity index option data. In particular, the unconditional mean of volatility is similar to
that inferred from S&P 500 index return and option data. The model, as in the data,
allows for a negative correlation between return and volatility innovations (so called lever-
age effect). Jump tails have exponential tail decay, with tail decay parameters yielding
out-of-the-money short-maturity option decays (as the strikes moves further from the
current stock price) like those observed in S&P 500 index options, see e.g., Andersen
et al. (2017). Finally, the jump at time ¢* has Fyp-conditional variance that is only 1/8-th
of the Fy-conditional variance of the increment xp, — xg — Axy~. This is rather challeng-
ing for our asymptotics under the alternative hypothesis as this way xr, — xg — Az,
although asymptotically negligible relative to Ax«, is rather nontrivial for the current
values of T7 and T5.

Options written on X are observed at time ¢t = 0 with maturities of 3 and 5 business
days and we set Xo = 2500. The strike grid and range of the options are calibrated to
match roughly the data we use in the empirical application. In particular, for each of
the maturities the strike grid is equidistant with increments of 5. The strike range is
determined by the requirement that the true option prices should be at least 0.05 in
value. Finally, the option observation error is set to €o 7, (ki ;) = &o,1; (ki ;)Oo,1, (ki ;) Zi j
for i = 1,2 and where {Z; ;},;>1 and {Z5;},;>1 are two independent sequences of i.i.d.
standard normal random variables, and

\/0-052 +0.0046875[ (0 — ki 5)/ (VT M) A1), if a0 > kg,
\/0.052 +0.009375((ks ; — 70)/(VTioATM) A1), if o < ki,

§o,1: (ki j) = (6.5)

with U{}ZT M denoting the at-the-money Black-Scholes implied volatility computed from
the option with time to maturity 7; and log-strike k = x;. This specification implies (as in
the data) smallest relative error for the options with strikes closest to the current stock
price, and larger observation error for out-of-the-money calls versus puts with strikes
equally distant from Xj.

In the Monte Carlo study, we consider three cases for the starting value of volatility:
low, median and high, corresponding to 25th, 50th and 75th quantiles, respectively, of
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18 Viktor Todorov

the unconditional distribution of V. For simplicity we assume that the statistical and
risk-neutral probabilities for the volatility dynamics coincide. Finally, we analyze two
alternative scenarios: in alternative 1 we have t* < Ty while in alternative 2 we have
T <tr <Ts.

For the implementation of the test, we set w equal to the pdf of a mean zero normal
variable with variance of 0.5u2,,,, and we then approximate the integral in our test
statistic by a Riemann sum over the interval [—umaz, Umaz), split into increments of
length 0.25, and we set Uy,q, = 30. Finally, for the calculation of the scaling factor §t,i
that accounts for the potential dependence in the observation error, we set M = 1 and
we use the following function s:

30\ N . N
#(x,N) = (1 _3oﬁ)£a ?fﬂ? € (;m, 25) (6.6)

M o~

72’151 ‘zg)’(h) in the

two tails, and further dampening this ratio when it takes moderate values. This way we
M s

Lz 70 ound zero and we modify it more severely when it takes

At,i(0)
M .
big values. The resulting estimate of 2"2177(6)(}1)

current context of the estimate of the long-run asymptotic variance of sample averages
from sequences with dependence based on a Bartlett kernel.

The results for the performance of the test in the Monte Carlo study are summarized
in Table 1. The finite sample behavior of the test under the null hypothesis is satisfactory
with only minor deviations from the nominal size in all considered cases for the starting
level of volatility. Table 1 also shows that the test has very good power against the
considered alternatives. Not surprisingly, the power against alternative 2 in which 77 <
t* < Ty is higher. This is because, under alternative 2, the difference in the distributions
of xp, —x¢, which does not contain the jump at time t*, and z, — ¢, which contains the
jump at time t*, is bigger. We also note that we have less power to reject the alternative
hypothesis when volatility starts at a low level. The reason for this is that in the low
volatility regime, options are cheaper and since we keep only options with price of at
least 0.05, this leads to fewer options and hence less power.

This choice of »(x, N) corresponds to tempering the value of the ratio

modify slightly

can be viewed as the counterpart in the

7. Empirical Application

We now apply the inference techniques developed above to options written on the S&P
500 market index in the year of 2017. More specifically, we use data at market close on
each of the Mondays in our sample period for the weeks for which there is no public
holiday. The maturity of the options in our empirical analysis expire on the Wednesday
and Friday of the same week in which the option prices are recorded. The tuning param-
eters of the test are set exactly as in our Monte Carlo experiment. In particular, we use
» given in (6.6) and set M = 1. In this regard, we note that our sample estimates of
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Scenario Vol Regime Test Size
10% 5% 1%
n =0 (Null) Low 100 51 1.0
n =0 (Null) Median 9.2 4.8 1.2
n =0 (Null) High 9.2 4.7 1.0
n=1,t" <Ty (Alt. 1) Low 63.8 50.5 26.8
n=1,t*<Ty (Alt. 1) Median 76.8 63.7 385
n=1,t"<T (Al. 1) High 81.9 70.7 44.8
n=1 Ty <t* <Tp (Alt. 2) Low 96.7 92.6 78.6
n=1"T <t* <Tp (Alt. 2) Median 95.9 919 76.2
n=1 Ty <t* <Tp (Alt. 2) High 95.9 91.5 75.0

Table 1. Monte Carlo Results for the Test. Critical values are based on 3,000 simulations.

19

Xt,i(4), for i = 1,2, are both very small in absolute value (smaller than their sampling
standard deviation), suggesting M-dependence with M = 1 for the option observation

errors.

The p-values of the test are displayed in Figure 1. As seen from the figure, for the
majority of the weeks in our sample, there is no statistical evidence for fixed times of
discontinuity. That said, our test rejects the null hypothesis at 1% level in 7 weeks. Many
of these rejections can be associated with pre-scheduled economic announcements such
as those after the Federal Open Market Committee (FOMC) meetings, unemployment
reports etc. However, it is interesting to note that not all of these events trigger fixed
times of discontinuity in the market index.

0.6

P-value of Test for Fixed Time of Disc

ontinuity
T

T T T T T T
*
*
0.5
04t " 1
*
*
L * 4
0.3 N * * *
*
*
0.2 * * 4
*
*
0.1 4
* * *
* * * *
* * % *
* *
0 ¥ « I o | 5L 1 * * »* f I **
5 10 15 20 25 30 35 40 45 50
Week in 2017

Figure 1. P-values of Test for Presence of Fixed Time of Discontinuity for S&P 500 Index Options.

We next recover the jump distribution at a fixed time of discontinuity for one of
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the weeks in the sample where our test rejects, mainly the week of June 5, 2017. The
Friday expiration options for that week are much more expensive than the ones expiring
Wednesday (both recorded at market close on Monday), reflecting the potential effect on
the markets from the UK elections on Thursday, May 8 and the European Central Bank
announcement on the same day as well as the release of important information about the
technology sector on Friday, May 9. Thus, our shortest-dated options on June 5, 2017 do
not include the fixed-arrival jump events while the longer-dated ones do include them.
We set the maximum Fourier frequency in the density recovery to the smallest value of
u for which |L; 7, (u)| falls below 0.25 and € to (Uf}lTM)Q. The recovered jump density
is displayed on the left plot of Figure 2. As seen from the figure, the jump distribution
appears symmetric, reflecting the fact that the fixed jump events created uncertainty on
the market. The median size of the jump is around 0.5% which is nontrivial given the low
volatility at the time. On the right plot of Figure 2, we show the S&P 500 Index futures
price (sampled at 1-minute frequency) for the period June 5, 2017 till June 9, 2017. As
seen from this plot, the S&P 500 Index is significantly more volatile on Thursday and
Friday when the fixed arrival jump events occur. This increased volatility also suggests
that the price jumps are accompanied by volatility jumps.

Fixed Time Jump Density Recovered on 5-June-2017 S&P 500 Index Futures Price

80

701 / \ 1 2440 |
/// \\\

60 f 4
/ \ 2435 fpy
50 | / s J N
/ \\ 2430 - ’

2445

40t /
/ \
/ \ 2425
30 - / \
/ \ 2420 |
200 o
///
w0l | 2415 |
o ‘ ‘ ‘ ‘ ‘ 2410 ‘ ‘
-0.01 -0.005 0 0.005 0.01 05-June-2017 06-June-2017 07-June-2017 08-June-2017 09-June-2017

Jump Size

Figure 2. Fixed Time Jumps in the S&P 500 Index. Left plot displays recovered Fixed Time Jump
Distribution in the S&P 500 Index on June 5, 2017. Right plot displays the S&P 500 Index futures price
sampled at 1-minute for the period June 5, 2017 till June 9, 2017. The ticks on the x-axis of the right
plot correspond to the market close on each day (3.15pm CST).
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8. Proofs

8.1. Decomposition and Notation

The jump part of the process xy, excluding the jump at time t*, can be represented as
an integral with respect to Poisson random measure (see Qin and Todorov (2019)):

/ /zudsdz //5””sz “(ds,dz), t>0, Q—a.s., (8.1)
[0,¢]\¢*

where p®(ds,dz) is a Poisson random measure on R} x F with compensator dt ® A(dz),

for some Polish space F and o-finite measure on it, u® is the martingale counterpart of

p®, and 0% is a predictable and R-valued function on £ x Ry x E such that Fi(z)dz is

the image of the measure A under the map z — §% (¢, z) on the set {z : §*(w,t, z) # 0}.
With this notation, we can split x5 — Azy«13>4+y into

xgzxt—&-/ 5udu+/ 0, dW,, xgl:/ 0% (u, 2)p” (du, dz), s >t, (8.2)
t t t JE

where recall @y = as— 507 — [p(e* —1—2z)Fy(z)dz, and this follows from the dynamics of
X in (1.1) and an apphcatlon of Itd’s formula We can approximate xs — Az 1>} — T4
with z, = 2¢ + 74, where for s > t:

T =a(s —t) + o (W, = W), 3¢ / / 0% (t, z)p* (du, dz). (8.3)

The option prices at time ¢ associated with terminal value z; + Z;17 are denoted with

O1 (k).

Using the above notation, we set for v € R and t < ¢*:
Lor(u) =BE(e™@er=m0) - Ly p(u) = BF(e™7T), L]%(u) =B (e™47).  (8.4)

Finally, we will make use of the following decomposition

)

3
12@77( ) 13t77 }E:77J Ty =1,2, (8'5)
j=1

with 77,5%( )= —(u? —l—iu)ni%( ), and where

T (u th u, kg1, kg e (ku,g), (8.6)
Jj=2
@ ( i e
Ty 1, (u Z /k eu=Dk=tuze (O, 1 (ky i 1) — Or.y (k))dk, (8.7)
l,j—1
T () = / el Vh=se Oy o (k) dk, (8.8)
k<k;1Uk>k Ny
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22 Viktor Todorov

8.2. Notation for the K and C operators of Theorem 1

We denote
C(u) = —(u* +iu), ueR, (8.9)
(k) = f(k) + [K|2(~[k), k<R, (8.10)
where f and ® are the pdf and cdf of a standard normal random variable. We further set
M
Vo= Y wilh), i=1,2, (8.11)
h=—M

where 7 ;(h) is defined in (4.9). With this notation, the kernels of the operators K and
C' are given by

k(zu) = > (Lu=y + 771 =2y ) (2)C (W) 10767 1(0)801(0) /R ®*(k)dk,  (8.12)
=1
2

c(z,u) =Y (Lu=y + 7 11=2y)C(2)S (W) Tpe 1056 1(0)21(0) /R ®(k)dk.  (8.13)

~

1

8.3. Preliminary Results

Lemma 1. Assume AI1-A4 hold. Fort € [t* — e,t*) with ¢ > 0 arbitrary small, there

exist ft(o)—adapted random variables Cy and t > t, that do not depend on v and T and
satisfy Sup;eppe_q ) Cr < 00 and infycp- ¢ oyt > %, such that for T <t —t we have

|Lor(u) = 1] < Cy(|jul? v 1)T, (8.14)

|Lo7(u) — LI (w)] < Cy(lu| v I)VT,  almost surely, (8.15)
and if in addition v({t*},R) = 0, then

Lor(u) — Lop(u)| < Cy(Jul® v 1)T3/2. (8.16)

Proof of Lemma 1. Throughout the proof, C; will denote an f;o)-adapted random
variable satisfying the conditions in the statement of the lemma, and it can further
change from line to line. We will assume in addition, without loss of generality, that
T <t —t, for ¢ being the random variable in assumptions A2-A4.

The first bound follows trivially upon noticing that by application of Lévy-Khintchine
formula (Theorem 8.1 in Sato (1999)), we can write

2

[:t,T(U) = exp (iumt - T%Uf + T/R(eiuz —fuz — I)Ft(z)dz) , (8.17)
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and using the fact that a;, oy and [, [2|*F;(z)dz have cadlag paths.
We continue with (8.16). Using Taylor series expansion, we have:

E?(eiu($t+T—$t) _ eiuftJrT) _ iUE;Q(CUHT — &y — Tyyr) (5.18)
< Ci(|ul vV DER [|zrsr — 2 — Tepr® + 2oy — 20 — Terrl|Togr]] -

From here the result follows by applying Cauchy-Schwarz inequality, the integrability
assumption for the the components of x as well as the following results

E(t@(xt+T — T — EH»T)‘ S CtT3/2, E(t@(xt+T — Xt — ’Z'VH,T)Q S CtT2, (819)

which in turn follows from assumption A3. The last bound of the lemma then follows
from applying the above two inequalities.
We finish with the bound in (8.15). First, using the second bound in (8.19), we have

[£1r(u) = B} (e 25| < Cyjul v VT (8.20)

From here, the bound in (8.15) follows by taking into account that E2(eiudze) = £F4(y)
almost surely.
O

Lemma 2. Assume A1-A3 hold and v({t*,R}) = 0. There exist f;o)-adapted random
variables Cy and t > t, that do not depend on T and satisfy sup,epy«_. 4+ Cy < 00 and

infycppe e v t > t* with some arbitrary small € > 0, such that for T <t —t we have

Te3k=z) if b — 2y < —1,
Opr(k) < Cp{ Tenh=md if kb —a; > 1, (8.21)

0urlh) - Our)| < Cltoe(r) (12 (o AT) ). 822

|€k—xt _ 1|

T T
Os.r(k1) — Oy (ko) < C 1] |eM — ek 8.23
Ourh) = O] < G [ e Agas N[5 ek, 829
where ky < ky < x4 or ky > ko > x4, In addition, for |k — x;| < V/T|log(T)|, we have

kfxt
\/Ta't

Proof of Lemma 2. The first three bounds follow from Lemmas 2-7 in Qin and Todorov
(2019) plus the fact that the bounding ]-'t(o)—adapted processes in these bounds have

cadlag paths. We show the last one here. Throughout the proof, C; will denote an ]_-t(o)_
adapted random variable satisfying the conditions in the statement of the lemma, and it

Ovr(k) — e*VTo,® < C,Tlog?(T). (8.24)
| (7))
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can further change from line to line. We will assume in addition, without loss of generality,
that T' < t — t, for ¢ being the random variable in assumptions A2-A3.

By dividing the strike of the option and the option price by X;, we can reduce the
analysis to the case x; = 0 and we do so in the rest of this proof. From the second result
of the lemma, it is clear that it suffices to show the last inequality with O, (k) replaced
by O.r(k). Now, if we denote with 5§T(k‘), the counterpart of O, p(k) in which Zy, 7 is
replaced with ¢, -, then upon using assumption Al, we have

0u7(k) — O (k)| < ER|er+r — 1| < C,T. (8.25)

Next, direct calculation yields for k > z; = 0:

Of (k) = ™ THoeT/2 (1 - ® (k\;;f - \/Tat>) — e (1 ~® (%)) . (8.26)

with a similar result holding for the case k < x; = 0. From here, using Taylor expansion,
we get the result in (8.24). O

Lemma 3. Assume A1-A4 hold and v({t*,R}) > 0. There exist ft(o)-adapted random
variables Cy and t > t, that do not depend on T' and satisfy sup,cpy«_. 4+ Cr < 00 and
infycppe o g1 > t* for some arbitrary small € > 0, such that for T' <t —t we have

e Skl yf k< x4,

Ot,T(k) S Ct { e—|k—a:t| ’Lf k> T (827)

|04/0(k1) = O (ks)| < Cylet — eF2|eF2 el (8.28)
where k1 < ko < x4 or k1 > ko > x4.
Proof of Lemma 3. The first of the two bounds follows from the following algebraic
inequalities (similar bounds are used in the proof of Theorem 2.1 in Lee (2004))

(ek _ emt+T)+ < QBW63(k_xt)e_2($t+T_$t)7 (emtJrT _ ek)—i— < 26It6_(k_wt)€2($t+T_mt),

(8.29)
and assumption A2 for the existence of conditional moments of x;;7 combined with the
fact that the process z; has cadlag paths. The second bound follows trivially from the
following algebraic inequalities

(" = eM)* — (e — ™) < e — e[ uzmingr kot (8.30)

|(ek1 o ew)+ _ (ekz _ ez)+| < |ek1 o €k2|1{gg§max{k1,k2}}7 (831)

for x, k1, ko € R together with assumption A2 for the existence of conditional moments
Of Ti4T- O
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Lemma 4. Assume A1-A6 hold and fir h € N. Suppose t < t* <t+ Ty and Ty =711
for some T € (1,k] (with K being the constant in A6). Let t 1T t* together with Ty | 0,
AT, K=<T, K=<T;", for B, 7>0and 1 <a <3+ (1AN48A4Y).

Ifu({t*,R}) = 0:

1A B e (00T () [ B0 =12 (532)
and if v({t*,R}) >0
Xei(h) = O, (i) ,and ATTXH0) = 0p(1), i = 1,2, (8.33)

where X, ;(h) is given in (4.8).

Proof of Lemma 4. In the proof, we will assume that ¢t > t* —¢ and Ty < inf;e[p_c s+ t—
t, with ¢ and t being the ones that appear in the statements of Lemmas 1 and 2. Note
that 7 is F(©-adapted random variable which satisfies ¢ > t*, so the above conditions
for t and Ty will hold for each w(® in F(© when A and T are sufficiently small (the
values for A and T} for which this happens will depend on w(®)). Throughout the proof,
¢; and Cy will denote an ft(o)—adapted random variables satisfying the conditions in the
statement of Lemmas 1 and 2, and they can further change from line to line.
We can decompose

Realh) = (1) + %32 () + 12 (0) + R (h), i =1,2, (8.34)
where
2
N;
1
e z)(h) = Z 1, (kij) 12y (8.35)
~(2
Xy =Y [ (Ot,Ti(kz’,j) = 50em(kig-1) — 20t,n(’fz’,j+1))
J=h (8.36)
(OtT( ii—h) O, (ki j—n—1) O¢,1, (ki ; h+1)> ]-{j#J:,j;ﬁJ*+h}:|
N; 1 1
?gi)(h) = Z |: <€t,Ti(ki,j) — §6t,Ti(ki,j71) — 26t,Ti(ki,j+1)>
J=htl (8.37)

1 1
x <€t,T,: (kij—n) = seer(kijn-1) = 2€t,Ti(km—h+1)) 1{j¢J:,j¢J:+h}],
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@)y : oy oMy @y o)
and X, ; (h) is defined as the residual term X¢:(h) — X; ; (h) — X; 7 (h) — X;'7 (h). Starting

with )/{Si)(h), we have the following inequality

Z e 1, (ki 1{J#J }
(8.38)

<C Z |01, (ki j) — Ovr, (Kijj—1)| + C > lee,, (ki g,
j=2

§=1,2,0*—1,J%,J*+1

for i = 1,2 and some constant C'. From here, using assumptions A5 and A6, the growth
condition for |k| and k as well as Lemma 2, we have

~( T;A . . o
Xi.i (h) = Oy <| log(Ti)|> , ifv({t,R}) =0, i =1,2, (8.39)

and upon using further Lemma 3, we have
U (h) = 0, (Allog(Ty)]), if v({t*,R}) >0, i =1,2. (8.40)
For Séi»)(h), using Lemma 2, we have
22 (h) = 0,(VTiA), i v({t*,R}) =0, i = 1,2, (8.41)
and using Lemma 3, we have
R (h) = 0p(A), if v({t'\R}) >0, i =1,2. (8.42)

Using next the M-dependence assumption for the observation error in A6 as well as the
algebraic inequality 2zy < 2% 4+ 2 for z,y € R, we have for i = 1, 2:

h+2 N;

B ((R00) 177) <6 30 S (Our (ki) - O lhs 1)) 202 (), (5:3)

l=—h—2j=2

where C} is some ]-'t(o)—adapted random variable and we set to zero Oy 1, (k; ;) for j <1
and j > N;. From here by using Lemma 2, we have

WD) = 0 (T VA), i v({t*,R}) =0, i = 1,2, (8.44)
and using Lemma 3, we have
WD (h) = 0,(VA), if v({t*R}) >0, i =1,2. (8.45)

Altogether, using the restriction a > %, we have

T73/?
)+ X8 () + 2 (h) = o, < 5 ) i v({t*,R}) =0, i = 1,2, (8.46)
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and

- - N o ,
)+ X8 () + 1 (h) = o, (A>, if v({t",R}) >0, i =1,2. (8.47)

We are left with ¥ e )(h) Using again the M-dependence assumption for the observation
error in A6, we have

2 Ni
E {()’(‘S’Z)(h) —E ("(3) }]-" ‘]—"(O)} < Z OZ{Ti(ki,j)a 1=1,2. (8.48)
From here by using Lemma 2, we have
5/4

R () —E (R )] F0) = 0, (&Z)ifu({t*,m):o,i:l,z (8.49)

and using Lemma 3, we have

R (h) —E (43) 0>) 0, () if v({t"\R}) >0, i =1,2. (8.50)
We next expand E (X;(j) ) in the case v({t*,R}) = 0. First, using A6, we have
. (et’Ti (ki g)etr, (ki) |7 ) (8.51)
= &1 (kij — 20)On 1y (ki j)&e 1 (Kij—n — 24) Ot 1y (Kij—n) i (h), i =1,2.
This result and the first bound in Lemma 2 imply
‘E (€t7Ti(kiaj)€t7T£(kj’i,jfh)‘]:(()))‘ <GT;, i=1,2. (8.52)

Further, for |k; ; — 24| < /T;|log(T;)| and T; sufficiently small, using the first and third
bounds in Lemma 2 as well as the smoothness assumption for ¢; r, (k) as a function of k
in A6, we have

[E (evrs (i g)ewm, i) | FO) = &1, iy = 2002, (ki g ()

(8.53)
< CVT; A+ C A, for |k j — ] < /T;|10g(Th)|, © = 1,2,

where ¢ is the constant of assumption A6. The smoothness assumption for & 1, (k) as a
function of k£ and the first bound in Lemma 2 further imply

(&7, (ki — 20)? = &,1.(0)*) O, (i g)|

8.54
< G (VT log(Ty)|)t, for |kij — o] < v/ T3|log(T3)|, ¢ =1,2. (8.54)
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Finally, for |k;; — x| > +/Ti|log(T})|, an application of the first bound in Lemma 2
implies

Oy 1, (ki j) < Cre=elkig—al for |k ; — x| > /Ti|log(T})|, i = 1,2, (8.55)

ki — x|’
and some a € (0,1). Combining the results in (8.51)-(8.55), using A5 and taking into
account the asymptotic order of k and k£ assumed in the statement of the lemma, we

have altogether for the case v({t*,R}) = 0:

E (%1 ()| F®) = &,(0)%,.(h) > O, (ki )
Jilki,j—x¢ | <V/T7 | log(T5)|
TR\ T log(T) .
+ <A|10g(Ti)| \V x \/ Tillog(T)[ ) , i =1,2,

(8.56)

where recall that , ;(h) is defined in (4.8). Next, using the second and fourth bounds in
Lemma 2, and denoting the set

Tz(i) = =2, Nit|kij — x| <[log(T3) |V T3}, i=1,2, (8.57)
we have for v({t*,R}) = 0:

TP log(TH)PPY .
> 0Fp(kiy) =Tie* a7 > @2( t) +0, ( Li=1,2, (8.58)
jeT;i) 75) \/70'75 A

where the function ® is defined in (8.10). Using assumption A5, we have

Zé?(ﬁf) e 2)‘1’2<faft>(’“ ™ i)

jery”
) k — Tt .
+0,(1) x E i) \/»O_f ,1=1,2,

jeT?

(8.59)

and using the smoothness of :Ig(k) and upon changing variable of integration, we have

= 5 (5 he =7

jeTt?

[ log(T:

(Jt)dkw (Allog(T)))

[log(T3)|

= fat/ k)dk + Op(Allog(T;)| v TE), i = 1,2.
(8.60)
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Combining the results in (8.58)-(8.60), we get for the case v({t*,R}) = 0 and for i = 1, 2:

3/2

2 T; 2 3 52 T3/2
Z Ot,Ti (kz,j) = W@ x‘Ut /l\%q) (k)dk + Op ZA . (861)

j:‘ki,j_wt‘g\/Ti‘ log(Ti)\

For the case v({t*,R}) > 0, we can use assumption A5 and Lemma 3 and conclude
- C .
ﬁ/ 02, (k)dk <E (X§i>(h)|f<0>) < —t/ 02, (k)dk, i = 1,2, (8.62)
A Jg 7T ' A Jg P
for some ]-"t(o)—adapted random variables ¢; > 0 and C; > 0. We note further that

o < / Of g, (k)dk < Cy, i=1,2, (8.63)
R

again for some ]-"t(o)-adapted random variables ¢; > 0 and C; > 0. The upper bound in
the above inequality follows from Lemma 3. For the lower bound, we can first use the fact
that E(X; 7, —X;)2 =2 Jg €°O¢ 1, (k)dk > 0. This is because v({t*, R}) > 0. Therefore,
there exists a region for the log-strike with positive Lebesgue measure where O 1, (k) is
bounded from below by an ]-"t(o)—adapted strictly positive random variable. From here,
the lower bound for [, OF 1, (k)dk follows.

Combining the bounds in (8.46)-(8.63) and upon making use of the fact that when
v({t*,R}) =0, oy, & and X, ;(h) are almost surely continuous at ¢ = ¢*, we get the two
results of the lemma. m|

8.4. Proof of Theorem 1

In the proof (including of Lemma 5 below), we will assume that ¢ > ¢t* — ¢ and Ty <
infycpp» o 4+t —t, with € and £ being the ones that appear in the statements of Lemmas 1

and 2. Throughout the proof, C; will denote an }"t(o)—adapted random variable satisfying
the conditions in the statement of Lemmas 1 and 2, and it can further change from line
to line.

We start with establishing a few preliminary results. First, using Lemma 2, we have

sup ;%7 ()] < Cov/Ti, - sup [y, (w)] < CiTie (50, 1= 1,2 (8.64)

Next, making use of assumption A6 as well as Lemma 2, Burkholder-Davis-Gundy in-
equality, inequality in means as well as Tonelli’s inequality, and taking into account that
a > %, we have

E (|IG@)n 3, ()| FO) = 0,17 /24271, 1= 1,2, (8.65)
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for any deterministic function G with at most polynomial growth for |u| increasing and

any 1 < p < k, for k being the constant in assumption A6. We further have by making
use of assumption A5 and Lemma 2, and taking into account again that o > %:

N;
E (sug 7i7 <u>|yf<0>) <Gy e Mgl — 20| Oum (1) A
ue

= (8.66)
< Cyllog(T))|Ty, 1=1,2.
With these bounds, we can now turn to the proof of the theorem. We denote

~ No -~ N ~

Z=3"72% 137", (8.67)
j=2 j=2
where

2 = —(u® + iu)he(u, kij1, ki j)err, (kig)y =1, Niy i =1,2, (8.68)

and we split the difference Et,n (u) — Et’Tl (u)™ — Z into the following components:

Ry(u) = 7Lom, () (Lo, () = Lo, () = (Lo, (w) = Loy (w)7),  (8.69)
Ro(u) = =7 (Lo, ()~ = 1)( Lo, () = Lo (u)), (8.70)

3 3
Ry(u) = Lom, (u) = Lo, (u)7, Raw) = 3, (u) =73 nily, (w). (8.71)

For R; and Ry, using Taylor expansion (note that the power function of a complex
variable is analytic outside the negative real axis) and making use of the fact that
|L¢ 7, (w)] <1, we have

Ry ()] < C |12, (w) = Loy @I + Lo (w) = Lor 2], (872)
|Ra ()] < CIL1r, (w) = Loz, (@) [ €47, (w) — 17D, (3.73)

for some positive constant C' > 0. From here, using the bounds for {nt(’]%(u)}jzl’g,g in

(8.64)-(8.66) as well as Lemma 1 (note that 7 € (1, ]), we have

A 1 TA2 — N\ TA2
||Ry|| = 0, (T122+3;A7-A2§ \/ ( /TlA) \/ <T1672(|E|\/k)) > , (8.74)
|1Rs|| = O, ([Tf“\/ﬁ\/ VTia\/ Tle—z%‘m} TfH)“) : (8.75)
Using again the bounds for {ng%(u)}jzl,Zg as well as Lemma 1, we have

|1Bsl = Op(T2), || Ral| = O, (Tie2EVD\/ VT1A) . (8.76)
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Altogether, we get,
Limy(u) = Lo, () —Z

=0, (TlTTMJr%AT/\Qf% \/Tl%Jr(’rfl)/\l\/Z\/ \/ﬁA\/Tlefm‘E‘VE) \/Tf’/z) , (8.77)

and we note that 7 > 1, and under the conditions of the theorem for the rate of growth
of A and |k| V k, we can therefore write

Lip,(w) = Lo () = Z = o, (T} 'VA) | (8.78)
and hence the result of the theorem will follow upon showing the following result.

Lemma 5. Assume A1-A5 hold. Suppose t < t* < t + Ty and Ty = 71y for some
T € (1,K] (with k being the constant in A6). Let t 1 t* together with Ty | 0, A < T¢,
where o > % Then, we have

1 5 L|F©®

T4 /A

Proof of Lemma 5. Using a subsequence criterion for convergence in probability, we

need to show that for all w(© and every subsequence, there is a further subsequence along

which we have MZ(QJ(O)) converge in distribution to CA(0, K (w®), C(w(®)). Using
1

Bessel’s inequality, dominated convergence and the bounds of Lemma 2, we have under

the conditions of the lemma

CN(0,K,C). (8.79)

Z(Z\, eI FO | =0, as J — oo, (8.80)
J>J

1
lim sup WE
o TPA

where {e;};>1 denotes an orthonormal basis in £?(w). This means that the sequence is
asymptotically finite-dimensional, see 1.8 in Vaart and Wellner (1996). Therefore, the
limit result of the theorem will follow from Theorem 1.8.4 in Vaart and Wellner (1996)
if we can establish . o
(2.
aRVIN

for Z denoting the limit of Theorem 1 and h an arbitrary element in £2(w). Since Z is
F©_conditionally CA (0, K, C), we have

(Z,h), (8.81)

E (<Z, h>2}f<°>) = (Kh,h), E ((Z, W(Z, h>;f<°>) = (h,Ch). (8.82)
Since the observation errors have F(©)-conditional dependence, to establish finite-
dimensional convergence, we will apply a big block-small block approach. More specifi-

cally, we denote with 153)7 for i = 1,2, two F(©-adapted sequences of integers increasing
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to infinity. We further set rgf) = LNi/lgf)J, for i = 1,2. Since lgf) are increasing, without
loss of generality, we will assume l(TZ) > 2M, for i = 1,2, almost surely. We then split

(2)

(1) (2> (1)
(Z,h) = ZA TZAl)—‘rZB TZB“)
j=1

(8.83)
Nz Nl
(2 =1
+ Y @ m-r > (Z.n),
k=r 15 41 k=r1 41
where we set
AV = STZ0 hy, BY = N (Z0 kY, =1, i=1,2, (8.84)
keL(" kes(?

(

and for j =1,. ) and i = 1,2, we denote the sets

S —{(j - 1)153) 1, G = DI+ MY, LY = (- D)1 + M +1,.., 51} (8.85)
We choose lgf) such that the following rate conditions are satisfied:

log(T)]P | |log(Ty)
VTl VT

We note that because of our rate conditions on the asymptotic order of T1, Tz, A, k and
k as well as assumption A5 for the strike grid, this will imply l% — 0o almost surely.
T

—0,1=1,2, a.s. (8.86)

Using Lemma 2 and the fact that lg)A — 0 almost surely (because of the above

condition on l(Ti))7 we have
> (B0 =0 Tia) = 0p(TVA), i = 1,2, (8.87)
k=r@1 41

where the last equality follows because of the rate condition on léf) as well as the restric-

tion a > 1/2 of the theorem. Next, using Lemma 2, the F' (0)_conditional M-dependence

of the observations errors from assumption A6 as well as the fact that lgf) > 2M, we have

e

T ? rf)
(i) o) | _ (i)
2|38 [0 | -2 (3|8
=1

j=1

Ni T A 0p(T¥2A),  (8.88)

’]:(0> <G

for i = 1,2 and an F(®-adapted random variable C;. The last inequality in (8.88) follows

from the second rate condition for l(Ti) in (8.86) as well as the assumption in the theorem
regarding the asymptotic size of k and k.
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Given the above two results in (8.87) and (8.88), the finite-dimensional CLT result in
(8.81) will be shown if we can establish:

1 ~ L|F©®

(Z,h), (8.89)
T4/A
where
2 (D
A=A 73" AW, (8.90)
j=1 j=1

This CLT, in turn, will hold by application of Theorem VIII.5.25 of Jacod and Shiryaev
(2003), if we can establish the following convergence results:

! 2|lFro) E 1 AAl @) P T
TE/%E(A Fa ) 5 (Kh,h), TE/ZA]E(AA{]-" ) L h, oy, (8.91)
1 A2+e| 7O P .
Tf’/2+3€/4A1+8/2E(|A [FO) 50, for some & € (0, 1). (8.92)

Starting with the last convergence in (8.92), we can apply Burkholder-Davis-Gundy in-
equality, inequality in means as well as assumptions A5 and A6 for the log-strike grid
and the observation error, and get

2 N
1 Ate| F0)) < CrATE2 24e
Tt (A1) < T U0 Otk (k). (899
1 =1 j=2

From here, we can make use of Lemma 2 and get

1
Tf’/2+38/4A1+5/2

E(JAPH[FO) = 0, (4721 log(1h)]) = 0,(1),  (8.94)

where for the last equality, we made use of the fact that a@ > % Next, using the F(©)-
conditional M-dependence of the observations errors from assumption A6, the F(©)-
conditional independence of the errors across the two maturities, as well as the fact that

l(Tl) > 2M and lg?) > 2M, we have

E (22[7) = ZE( (AP)2| 7)) +722E( ADRIFO) . (895)
Using assumption A6 for the observation error, we have for [ = 1, 2:

E(ADAFO) = 3 [ R k), () (e, B 1, Fe), ()
kk' €L | k—k/|<M
X (ki k-1 — 20)Ei(kiw—1 — 2¢)Op1y (ki k—1)Ory (ki —1)ve (k — K],
(8.96)
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where 7, (h) is defined in (4.9) and we further denote
he(u, ky, ko) = —(u? 4 iu)hy(u, by, ko), uwER, ki ky € R. (8.97)
Form here, by an application of Lemma 2, we have

E(AFO) = Y E(APRFO) 42 > E((A)?FO)

. (2) ~(2) 1) ~7(1)
gL )g, 5LV CT,

8.98
+0, | —~
|log(T1)\
where as in the proof of Lemma 4, we denote the sets
1 = (=2, Nyt |y — 2] < |log(T3)|V/Ti}, i=1,2. (8.99)

Using (8.96), the first and third bound in Lemma 2 as well as the smoothness assumptions

for £ in assumption A6, we next have for j such that Lg-l) cI l(l).

E((AP2FO) = 37 [l ks k) b)) € (ks = 20)0 7, (k-1)]724(0)

keLl"

+2Z ST [(helus kipor, ki), h(w) €2 (kik—1 — 20) O, (kup—1)] vea(h) + R
h=1ker ("

= Z [(Et(u,kz,k—ukl,k),h(u)>25t2,l(/€z,k—1—It)O?,Tl(kz,k—ﬂ}

®
keL!

M
X (’Yt,l(o) + QZ’Yt,z(h)> + Ry), 1=1,2,
h=1

(8.100)

where L;l)’h is the same as the set Lgl) but with the last h elements removed, and the

75 (1)

residual term ’Rj satisfies

RV| < CUPVTIAY AT + A) + CTIA?
+ Cpy A > 0 (kik—r), 1=1,2, (8.101)

©)
keL!

for + > 0 being the constant appearing in assumption A6, C; being an F(?-adapted
. —() .
random variable, and ;" given by
=)

Uy = sup
Jilki,i—ki,j—1|<VTi|log(Ty)|

kij —kij—1

A —i(0)|, 1=1,2. (8.102)
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Using the first bound of Lemma 2, we have
AT 0%y (k1) < GIYP, 1=1,2. (8.103)
kel
Using the results in (8.100) and (8.103), the bound O; 7(k) < C4v/T from Lemma 2, the

fact that Eﬁ) = 0,(1) by assumption A5 as well as the second condition for lgf) in (8.86),
we have altogether (recall notation in (8.11)):

E(A2)F0) =700 3 [(uluskopor, ko) ()€ s (ka1 — 20) O, (ko))
keT®

+ 7,4 Z [(Re(u, by o1, R g)s () 267 (By e — 24)OF gy (k1 gio1)]
ket

+op (Tf’/2A) .

(8.104)
Next, using the bounds in (8.22) and (8.24) of Lemma 2, we have for ¢ = 1,2:
> (il ki, ki g), h(w) 262 (ki j—1 — 20)OF g, (i j—1)
TV
I B - L, " (8.105)
=T, Y (helu, ki, ki), (W) (ki j—1 — 24) Oy, (Kij—1) + 0p (Ti A) :
jeTt?
where we denote
— k:—a:t) |]€—£L‘t‘ ( |k’—$(}t|>
O¢r(k) =€ oy + et o (- . 8.106
)=t (o) et (A 5100
Now, we note that
- ki,
(he(u, ki j—1,kij), h(u)) = et / (G (u, k), h(u))dk, i =1,2, (8.107)
kij—1

where we use the notation ;(u, k) = (u)e®~DFE=2:) (recall (8.9)). By Taylor expansion,
we have

k1 — ko

|0v7(k1) — Orr(ka)| < C T

for k1 < ko <z or k1 > ko > Tt, (8108)
and therefore

- . k;
(1K) B0 0% ) = Ay [

Fig—1 (8.109)
AS

<CO——, i=1,2,

="t
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where in the above expression we use the shorthand A;; = k; ; — k; j—1. Taking into
account that o > 3, the results in (8.104), (8.105) and (8.109) lead to

k}z,j .
E(A2F0) = 3,0Toe 2 Y Asy /k (G, k), 1)) 05 1, (k)2 (ka1 — o)k

eI 2i-t
25, Tie 2% A»km k), h(u))20- - (K)E2, (ky i1 — ;) dk
+ 71 The > Ay : (Celu, k), h(u)" Oy gy (K)&G 1 (F,j—1 — ¢)
°1,j—1

jeT M
+op (Tf’/QA) .
(8.110)

Finally, we can note by change of variable of integration that [, 6?)T(k)dk = 0,(VT).
Therefore, taking into account the smoothness assumption for A; ; in A5 and for &7, (k)
in A6, and by changing the variable of integration, we can write

E (A\2|I(O)> = Vt2AT23/2/<<(u),h(u)>20'?;f)2(k)ﬁ?g(())wg(())dk‘

: (8.111)

FTATY [ (), hw) 0P8 ()€, 00 0)ak + o, (17°4)
R

From here, the first convergence result in (8.91) follows by taking into account that & ;(0)
and 7, ; are continuous in ¢ and o; does not have fixed time of discontinuity at ¢*. The
second convergence in (8.91) can be shown in an analogous way, and from here (8.81)
follows and hence the result of the lemma. |

8.5. Proof of Theorem 2

In the proof, we will assume that ¢t > t* — ¢ and Tp < infyc»_c 4+ — ¢, with € and #

being the ones in Lemmas 1 and 2. Throughout the proof, C; will denote an ffo)—adapted
random variable satisfying the conditions in the statement of Lemmas 1 and 2, and it
can change from line to line. We denote

Crp(u) — Lor(u) = ni 5 (w) = —(u® + )7, . (u). (8.112)

The analysis of ﬁﬁp(u) is similar to that of ﬁgl%(u) In particular, using Lemma 2 as well

as the bounds for {ﬁi’]%(u)}jzl,gyg, we have

E (/|G )2 F) = 0, (TVTA), (8.113)
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for any deterministic function G : R — R with polynomial growth. Using Taylor expan-
sion, taking into account |L; 7, (v)] <1 and 7 > 1, we have

Lo, ()™ =1 < ClLo, (u) = Lo, (w)| ™" + ClLor, (w) = Lo, (u)]

(8.114)
+C| Lo (u) = 171+ O Lory (u) — 1,

for some positive constant. From here, using the bounds for {nt(f%(u)}jzl,mA, derived in
the proof of Theorem 1 and above, and taking into account that 7 > 1, we have

Ci o, () — Lory () — 7Ly ()L gy (w) — Lory (u))

. (8.115)
=7 +o,(T}*VD),
where
~ -~ N2 ~
Z" =S Z hi(u, ko, j—1, k2 j)€, 1, (k2,j-1)22,5-1
= 8.116
U (8.116)
=TSt Z he(u, kg1, k1 5)er (k1 j—1)21,5-1,
j=2

and the function h; is defined in (8.97) above. Hence, we will be done if we can show
1 S« LIF
3/4 4 |
VA

First, exactly as in the proof of Lemma 5, we can show

CN(0,K,C). (8.117)

SUZ5 )2 F | -0, as ] — oo, (8.118)
i>J

lim sup E
7110 T13 12N

where {e;};>1 denotes an orthonormal basis in £?(w). Therefore, the limit result of the
theorem will follow from Theorem 1.8.4 in Vaart and Wellner (1996) if we can establish
b
TA

for Z denoting the limit of Theorem 1 and h an arbitrary element in £2(w), and for the
latter we need to show

L|F

(Z*,hy == (Z,h), (8.119)

1 S P 1 S =3 P —
P (<Z ,h>2|f) 5 Kb, B ((Z h)(Z ,h>|}') 5 (h,CR), (8.120)
1 1
! E (|<2* h>|2+5|]:> L 0, forsomee e (0,1) (8.121)
T3PFEIIp 1122 ; ; 1), :
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The last of the above results follows by making use of Lemma 2. Below we show the
first of the above convergences, with the second one belng established in analogous way.
Using the fact that both sequences {21 ]} 2, and {zgd} 2, are i.i.d, we have

Ny
E((Z7 02| F) = S22 > (ha(u, ko g1, ko). h(w) & 1, (k2 1)
j=2

. (8.122)
+ 72870 (e, ko1, k) (W)€ g (k1 ja),

=2

and using assumption A6 for the observation errors, Lemma 2 and the restriction o > 1/2,
we have for [ = 1,2:

N

Y (el kg1, ki g), (W) & o (R g —1)

=2

~ —2
= S (halu ko kug), h(w) €,y (krj—1)OF 4y (ki j—1) + Op(T. Ty A%/,
FEL2 N\ JF
(8.123)

—92 .
where gt,l(li) = %gt%l(khj) + %gil(kld—l) + %ff’l(kl,j-‘rl)a for j = 2,...,N; — 1, and
gfl(kl N,) = Zfl(kl Ni—1), and J* is defined in (4.4). Note that vVA/T{/* — 0, and

hence O, (T} 5/4A5/2) = p(T3/2A) From here, we can use the fact that S” 5 Ve 1
for [ = 1,2 from Lemma 4 and the local umform convergence result in (4. 12) and then
proceed exactly as in the proof of Lemma 5 to show (8.120).

8.6. Proof of Theorem 3

In the proof, we will assume that ¢ > t* — e and To < infiepe_. 4+ t —t, with € and ¢

being the ones in Lemmas 1 and 2. Throughout the proof, C; will denote an f,g(o)-adapted
random variable satisfying the conditions in the statement of Lemmas 1 and 2, and it
can further change from line to line.

Using Lemma 3, we have

i ()| + Inf 3 (w)] < Colw? A1) (A\/e*“‘(‘E‘VE)) : (8.124)

Furthermore, using assumptions A5 and A6 for the mesh of the log-strike grid and the
structure of the observation error and Lemma 3 we have

E (Inﬁ}%(U) 2
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Combining these results with the bound in (8.15) of Lemma 1, we get altogether
L0z (w) = £ )] = 0 (VAN e 2EVR\/VT). (8.126)

From assumption A4, we further have
124 (w) = £L*w)ll = 0, (VT). (8.127)

The results in (8.126)-(8.127) imply the first result of the theorem.
Next, with the notation for n§4%(u) in the proof of Theorem 2, exactly as for nng)(u)

above, we can show

E (nﬁ%(uw

]-"> < Cy(u* Vv 1)A. (8.128)
Therefore, since by Lemma 4, §t7l = 0,(1), for I = 1,2, we have

15 () = Lo (w)]] = O,(VA), (8.129)

and from here the second result of the theorem follows.

8.7. Proof of Corollary 4.1

We start with the result under the null hypothesis. By Theorem 2 and an application

~

of portmanteau theorem, we have Uy 3 cvy, with cv, denoting the F (0).

1
conditional (1 — a)-quantile of || Z|| and Z being the limit variable in Theorem 1, because
Z has FO-conditional continuous distribution. From Theorem 1, we have that P(Wl’Q >
v |Q) converges to «, and this convergence holds locally uniformly in o as P(Wl,g >
cv4|Qp) is a monotone function of «. From here, the result to be proved under the null
hypothesis follows.

We turn next to showing the result under the alternative. We denote the set U, =
{u : |L54u) — 1| < €}, for some € € (0,1). This set is of positive Lebesgue measure,
since £{(u) is continuous and converges to zero as |u| approaches infinity by Riemann-
Lebesgue lemma. Then, using the bounds (8.124)-(8.125) as well as Lemma 1, we have

—~ o~ 2 —~ 2
/ 2o () — By ()| wledu B |29 w) 1| w(ydu > 0, (8130)
uEU,

uEU,
if Th < t* and

~ -~ 2
|2 ) — £ )

w(u)du > 0,
(8.131)

if t* > T3. This together with the order of magnitude of /Wl*2 derived in Theorem 3 (which

means that év, = O,(V/A)) implies the result of the corollary under the alternative
hypothesis.

R R 2
/ ’ELTQ (u) — L (u)T’ w(u)du L
u€eU, ueU,
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8.8. Proof of Theorem 4

Applying the Plancherel’s identity, we can write

/R (ét () — G~ (x))2 dx
1

T or

(8.132)

~ 2 1
u|>un

lul<un

whee f@t* and FGy- are the Fourier transforms of ét* and Gy, respectively. By as-
sumption A7, the first term on the right-hand side of the above decomposition is of order
O(uy"").

We continue with the second term in that decomposition. First, we note that regardless
of whether t* < t+T} or t* > t+ T4, we have that ||L; 1, — 1|| converges in probability to
a strictly positive number. Also, HEt,Tz - Et,TlH = Hzt,Tz —1|| + 0,(1) in the asymptotic
setup with t* > t+77 and HEAME 72t7T1|| = 0, (1) in the asymptotic setup with t* < ¢+17.
These results follow from the bounds in (8.124)-(8.125). Therefore,

T |Lez, — Lenll v, { 71 > 1, nthe asymp. setup with % 2 £+ 73, g | 4q)

T—1 H'Et,Tz — 1| 0, in the asymp. setup with ¢* <t +T7.

This implies that on a set with probability approaching one ﬁ% < 1 will
t, Ty —
correctly identify the setup with t* < ¢ + T and similarl . Neer,—Leny || > 1 will
y y p Y 712 1]
t, Ty —
correctly identify the setup with ¢t* > t+4T7. Hence, we can proceed in the proof assuming
that this is the case.
Taking into account that ¢ = O,(1) and u3T1 — 0, we have for T} sufficiently small

on a set with probability approaching one and for |u| < upy:

1 1
Biw) 1| = [(1 - (uxeTh)) \4 (1= (7~ 1)%@1))1/(7_1)} (8.134)
x |By(u) - 1],
1 1 .
gg(u) —l=G |:1 — u?\[’c\T2 \/ |1 —U%V’C\T1|T:| |B2(u) - 1|7 (8.135)

for some variable C; that depends only on a;, o, and F;. We further have for T} sufficiently
small on a set with probability approaching one

1B;(u) — 1] < Cu®eTy, j=1,2, (8.136)

for some positive constant C. From here, we need to study only the distance between the
second term in £{%(u) (i.e., Ly, (u) or Lyq,(u)) and £{*(u). Its analysis follows from

the bounds for the terms {ng’]%(u)}j:u”g as well as (8.127) in the proof of Theorem 3.
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