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This paper studies the efficient estimation of betas from high-frequency return data

on a fixed time interval. Under an assumption of equal diffusive and jump betas, we

derive the semiparametric efficiency bound for estimating the common beta and de-

velop an adaptive estimator that attains the efficiency bound. We further propose a

Hausman type test for deciding whether the common beta assumption is true from
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1 Introduction

In this paper we study the problem of efficient estimation of asset betas from high-

frequency return data on a fixed time interval. The estimation of factor loadings, or betas,

is of central importance for practical risk management. This estimation constitutes also a

critical step in evaluating the ability of asset pricing models to explain the cross-sectional

behavior of asset prices.1 If betas stay constant over a (short) period of time, then one

can use high-frequency records of the factors and the asset prices within the time interval

to estimate the betas. The goal of this paper is to derive efficient methods for doing so

when betas associated with continuous and discontinuous moves in the factors are imposed

to be the same, and to further develop tests for this assumption. More specifically, we are

interested in the following continuous-time regression:

Yt = Bt + βcZc
t + βdZd

t + εct + εdt , t ∈ [0, T ], (1)

where Y is the asset price, B is a continuous process of finite variation (i.e., the drift), Zc and

Zd are the continuous and the discontinuous local martingale components of the discretely

observed factor Z, and εc and εd are the residual continuous and discontinuous martingale

components of Y which are orthogonal to Zc and Zd in a martingale sense, that is, their

quadratic covariations with the factors are zero (this is formally defined in the main text).

There has been a lot of work on the estimation of betas using high-frequency data. Most

of the existing work is about the estimation of the diffusive beta, βc, with jumps either

not allowed in the model setup or the inference being robust to their presence; see, for

example, Bollerslev and Zhang (2003), Barndorff-Nielsen and Shephard (2004a), Andersen

et al. (2006), Mykland and Zhang (2006, 2009), Todorov and Bollerslev (2010), Gobbi and

Mancini (2012), Patton and Verardo (2012), Kalnina (2012) and Li et al. (2017a) among

many others. In particular, Li et al. (2017a) propose an adaptive estimator that attains the

semiparametric efficiency bound for recovering βc. That is, the adaptive estimator attains the

same asymptotic variance as that of the infeasible estimator with all nonparametric nuisance

(e.g., the stochastic volatility of the factor process and the jumps of all processes) known.

There is much less work on the estimation of the jump beta, βd. Todorov and Bollerslev

(2010) propose estimators based on higher-order power variation while Li et al. (2017b)

consider semiparametrically efficient estimation based on estimates of the jump (co)variation

by optimally weighting the information in the detected jumps in order to account for the

1Indeed, the error in recovering betas can carry over to the second stage cross-sectional regressions of

the Fama-Macbeth procedures for estimating risk premia; see, for example, Shanken (1992), Jaganathan and

Wang (1998), Kan and Zhang (1999), Gospodinov et al. (2009) and Kleibergen (2009).

2



heteroskedasticity present in the data. In contrast to the adaptive estimation result for the

diffusive beta, the efficient estimation of jump beta is shown to be generally not adaptive

with respect to the sizes of jumps in Z.

In the existing work to date, typically the discontinuous (resp. continuous) part of the

asset price is treated as a nuisance component when estimating the continuous (resp. discon-

tinuous) beta. In this paper, we study a “common beta” restriction βc ≡ βd and explore the

efficiency gains such an assumption may provide for making inference for asset betas. More

specifically, our goal is to address three related theoretical questions that have not yet been

studied in the aforementioned literature: (i) What is the semiparametric efficiency bound for

beta estimation under the common beta restriction? (ii) Is this bound an adaptive one with

respect to nonparametric nuisances? (iii) Is the efficiency bound attainable by a feasible

estimator? In doing so, we aim to provide a more complete theoretical understanding on the

issue of efficient beta estimation.

The theoretical contribution of this paper is to provide positive answers to the above

questions. We establish the semiparametric efficiency bound for beta estimation under the

common beta restriction, verify that it is in fact adaptive, and propose a (feasible) estimator

that attains this efficiency bound. Specifically, to show the adaptiveness of the proposed esti-

mator, we establish the local asymptotic mixed normality (LAMN) property in the infeasible

model (with nonparametric nuisance known), which then allows us to derive the Cramer–

Rao efficiency bound for estimating the common beta by using the convolution theorem. We

then show that the bound can be attained by the proposed estimator. Hence, a fortiori,

the efficiency bound is sharp and the proposed estimator is adaptive (consequently, semi-

parametrically efficient). This adaptiveness result in the common beta model is somewhat

surprising because the semiparametrically efficient estimator of the jump beta is generally

not adaptive to the sizes of jumps in Z. The interesting finding here is that adaptiveness is

“recovered” under the common beta restriction.

The proposed adaptive estimator belongs to a class of weighted estimators for the (com-

mon) beta coefficient, and is constructed by optimally choosing the weight functions for both

the continuous and jump returns, taking into consideration the heteroskedasticity in the data.

Under general regularity conditions, we derive a feasible limit theory for this class of estima-

tors. This class also nests various existing estimators by appropriately choosing the weight

functions. For example, the “realized regression” beta estimator of Barndorff-Nielsen and

Shephard (2004a) (see also Todorov and Bollerslev (2010) and Gobbi and Mancini (2012)),

the block-based estimator of Mykland and Zhang (2009), the optimally weighted diffusive

beta estimator, and the optimally weighted jump beta estimator in Li et al. (2017a,b) all

fall into this framework as special cases.
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As a by-product of the efficiency result, we propose a Hausman-type specification test

(Hausman (1978)). The test compares two estimators for the common beta: the efficient

adaptive estimator and an inefficient one from the existing literature. Under the common

beta null hypothesis, the difference of these estimators is asymptotically centered mixed

Gaussian with variance given by the difference between those of the inefficient and the

efficient estimators. The test has power against alternatives under which the weighted inte-

grated beta functionals associated with these two estimators are different. Note that under

the alternative, the two estimators are no longer comparable, and they are consistent for

their own integrated beta functionals.

We document satisfactory performance of the proposed estimation and inference tech-

niques developed in the paper on simulated data from realistically calibrated models. In an

empirical application, we illustrate the efficiency gain of the adaptive estimator relative to

the commonly used estimator proposed by Barndorff-Nielsen and Shephard (2004a).

The rest of the paper is organized as follows. Section 2 presents the formal setup. Sec-

tion 3 introduces our estimator and establishes the adaptive estimation result for the common

beta. Section 4 contains a Monte Carlo study and Section 5 provides an empirical illustra-

tion. We conclude in Section 6. All proofs are given in Section 7. Additional robustness

checks for our numerical results are provided in the supplemental appendix.

2 Setup

We start with introducing some notation that will be used throughout. We denote with
P−→,

L−→ and
L-s−→ convergence in probability, convergence in law, and stable convergence in

law, respectively. All limits are for n → ∞, and the asymptotics is of infill type on a fixed

time interval [0, T ].

The set of real numbers is R and R∗ = R \ {0}. We denote byMd the space of all d× d
positive semidefinite matrices. The Euclidean norm of a finite-dimensional vector space is

‖·‖. The integer part of x ∈ R is [x]. We write x∧y to denote the smaller number of x and y.

For a matrix A, its transpose is denoted by A>, and its (j, k) element is Ajk, while vec(·) is

the column vectorization operator. For matrix differentiation, if f is a generic differentiable

function defined on Md, then ∂jkf(A) ≡ ∂f(A)/∂Ajk and ∂2
jk,lmf(A) ≡ ∂2f(A)/∂Ajk∂Alm.

Finally, we write an � bn if for some constant C ≥ 1, we have an/C ≤ bn ≤ Can.
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2.1 The underlying processes

We start with some regularity conditions for the processes Z and Y . These processes

are defined on a filtered probability space (Ω,F , (Ft)t≥0,P). We denote X = (Z, Y )> and

assume that X is an Itô semimartingale of the form

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt, Jt ≡
∑
s≤t

∆Xs, (2)

where bt takes value in R2, the volatility process σt takes value in M2, and W is a 2-

dimensional standard Brownian motion. The jump of X at time t is denoted by ∆Xt ≡
Xt−Xt−, where Xt− ≡ lims↑tXs. The process Jt = (JZ,t, JY,t)

> can be alternatively written

as
∫ t

0

∫
R δ(ω, s, u)µ(ds, du), where δ : Ω× R+ × R→ R2 is a predictable function and µ is a

Poisson random measure on R+×R with its deterministic compensator ν(dt, du) = dt⊗λ(du)

for some σ-finite measure λ on R. The spot covariance matrix of X at time t is defined by

ct ≡ σtσ
>
t =

(
cZZ,t cZY,t

cZY,t cY Y,t

)
. (3)

Assumption 1 (a) The process b is locally bounded; (b) ν ([0, T ]× R) < ∞; (c) ct is non-

singular for t ∈ [0, T ] and it is an Itô semimartingale of the form

vec(ct) = vec(c0) +

∫ t

0

b̃sds+

∫ t

0

σ̃sdW̃s

+

∫ t

0

∫
R
δ̃(s, z)1{‖δ̃(s,z)‖≤1}(µ̃− ν̃)(ds, dz)

+

∫ t

0

∫
R
δ̃(s, z)1{‖δ̃(s,z)‖>1}µ̃(ds, dz), (4)

where the processes b̃ and σ̃ are locally bounded and take values respectively in R4 and R4⊗4,

W̃ is a 4-dimensional Brownian motion that may depend on W , δ̃ : Ω × R+ × R → R4 is

a predictable function and µ̃ is a Poisson random measure with compensator ν̃ of the form

λ̃(dt, du) = dt ⊗ λ̃(du) for some σ-finite measure λ̃. Moreover, there exists a sequence of

stopping times (Tm)m≥1 increasing to infinity and λ̃-integrable functions (Γ̃m)m≥1, such that

‖δ̃(ω, t, u)‖2 ∧ 1 ≤ Γ̃m(u) for all ω ∈ Ω, t ≤ Tm, and u ∈ R.

Assumption 1 is quite standard for the analysis of high-frequency data. We note that

part (b) requires the jumps in X to be of finite activity. In the context of the current

paper, we extract jump information only through “large” enough jumps in our analysis on

efficient estimation; we thus impose this assumption to simplify the exposition, although it

may be further relaxed. Assumption 1(c) allows for the so-called “leverage effect,” that is,

correlation between W and W̃ . Moreover, we allow for volatility jumps and do not restrict

their activity and dependence with the price jumps.
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2.2 The common beta model

We now introduce formally the continuous-time regression model. Let Y be decomposed

as in equation (1). First, the orthogonality conditions between the diffusive and jump com-

ponents in Y can be formally stated as

〈Zc, εc〉t = 0, [Zd, εd]t =
∑
s≤t

∆Zd
s∆εds = 0, for t ∈ [0, T ], (5)

where 〈·, ·〉 denotes the quadratic covariation of two continuous local martingales and [·, ·]
denotes the quadratic covariation in general. Under the “common beta” assumption, namely

βc = βd, we can write (1) more succinctly as

Yt = Bt + β(Zc
t + Zd

t ) + (εct + εdt ), (6)

where the common beta β is the parameter of interest and the residual εt = εct + εdt is a

jump-diffusion process that is orthogonal to (Zt)t≥0, namely,

[Z, ε]t = 0, for t ∈ [0, T ]. (7)

Equivalently, we can write the continuous-time regression model in (6) more explicitly as{
dZt = bZ,tdt+

√
cZZ,tdWZ,t + dJZ,t,

dYt = bY,tdt+ β
√
cZZ,tdWZ,t +

√
ςtdWε,t + βdJZ,t + dJε,t,

(8)

where WZ and Wε are univariate independent Brownian motions, Jε is a pure jump process

that contains the Y -specific jumps, and ς is the spot idiosyncratic variance of Y . It is easy

to see that the processes in (2) and (8) are connected in the following way

bt =

(
bZ,t

bY,t

)
, σt =

( √
cZZ,t 0

β
√
cZZ,t

√
ςt

)
, Wt =

(
WZ,t

Wε,t

)
, Jt =

(
JZ,t

βJZ,t + Jε,t

)
. (9)

Moreover, a simple calculation implies β = cZY,t/cZZ,t, and the spot idiosyncratic variance

ςt is connected with ct via

ςt ≡ cY Y,t − c2
ZY,t/cZZ,t. (10)

The common beta model in (6) can be trivially extended to the more general setting

where Z is multidimensional. Such an extension is important from an empirical point of

view in light of existing evidence for multiple risk factors in asset prices and it importantly

can make an assumption of time-invariant beta weaker. In addition, the interval [0, T ] for

which the common beta model is assumed to hold can be trivially replaced with any finite

union of disjoint time intervals. We do not consider these extensions in the analysis that

follows as they are trivial from a theoretical point of view and make notation somewhat

cumbersome.
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3 Adaptive estimation of the common beta

3.1 Asymptotic properties of weighted estimators

In this subsection, we introduce a class of weighted estimators for the common beta

and establish their asymptotic properties. The issue of efficiency and adaptiveness will be

addressed in Section 3.2 below. We denote the true value of the common beta as β0 and use

β as a generic reference for it.

Our inference is done on the basis of high-frequency data on the fixed interval [0, T ].

More specifically, the vector X is discretely observed at times i∆n, for 1 ≤ i ≤ [T/∆n] with

a discretization mesh ∆n ≡ 1/n going to 0 asymptotically. The increments of X are denoted

by

∆n
iX ≡ Xi∆n −X(i−1)∆n , for i = 1, 2, ..., [T/∆n].

Since we are going to exploit the information about β from both the diffusive and jump

moves, but in distinct ways, we first need to identify high-frequency intervals that contain

jumps of Z. We collect the jump times of Z in the set T ≡ {τp : p ∈ P}, where P ≡ {p ≥
1 : τp ≤ T} denotes the indices of the jumps. Both sets are finite almost surely since Z has

finite-activity jumps. To identify jumps from the high-frequency data, we use the (standard)

truncation method based on a real sequence (un)n≥1 of truncation thresholds, which satisfies

the following assumption:

Assumption 2 For some $ ∈ (0, 1/2), un � ∆$
n .

For each p ∈ P , we denote by i(p) the unique random index i such that τp ∈ ((i −
1)∆n, i∆n]. Let In ≡ {i : 1 ≤ i ≤ [T/∆n], |∆n

i Z| > un} and I ≡ {i(p) : p ∈ P}. Proposition

1 of Li et al. (2017b) shows that In = I with probability approaching one. That is, in the

limit, we can use In to consistently disentangle jumps from the continuous moves using this

truncation methodology.2

For the inference on the common beta, we also need to estimate the path of the spot

covariance matrix of X. To do this, we pick an integer sequence (kn)n≥1 of local window

sizes, which eventually goes to infinity, and a sequence of R2-valued truncation thresholds

(u′n)n≥1.3 These two sequences satisfy the following condition:

2Since this result holds with probability approaching one, the detection error has no asymptotic effect

on the subsequent asymptotic analysis.
3The truncation sequences un and u′n satisfy the same assumptions. Theoretically speaking, one could

set the components of u′n simply to be un. By distinguishing these two sequences, we allow the truncation
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Assumption 3 For some ρ ∈ (0, 1), and $ ∈ (0, 1/2), kn � ∆−ρn and u′n � ∆$
n .

The spot covariance matrix at time i∆n can then be recovered locally using returns over

the time interval [i∆n, (i+ kn) ∆n], for 0 ≤ i ≤ [T/∆n]− kn, through a truncated variation

estimator due to Mancini (2001):

ĉn,i ≡
1

kn∆n

kn∑
j=1

∆n
i+jX∆n

i+jX
>1{−u′n≤∆n

i+jX≤u′n}. (11)

When a jump is detected, we also define a pre-jump covariance estimator in a similar way:

ĉn,i− ≡
1

kn∆n

kn−1∑
j=0

∆n
i−kn+jX∆n

i−kn+jX
>1{−u′n≤∆n

i−kn+jX≤u′n}, for i ∈ I ′n, (12)

where I ′n ≡ {i ∈ In : kn + 1 ≤ i ≤ [T/kn]− kn}. We note that I ′n differs from the index set

In only due to its exclusion of the boundary terms that are needed for the spot estimation.

But this difference is asymptotically negligible for the subsequent analysis.

We are now ready to construct a class of weighted estimators for the common beta.

It turns out that, in order to obtain the (efficient) adaptive estimator, we need to weight

diffusive and jump returns in distinct ways. Hence, we consider two weight functions v :

M2 7→ (0,∞) and w :M2×M2×R 7→ (0,∞) for the diffusive and jump parts, respectively,

such that the following assumption holds:

Assumption 4 (a) There is a sequence (Tm)m≥1 of stopping times increasing to infinity

and a sequence of convex compact subsets Km ⊂M2 such that ct ∈ Km for t ≤ Tm and v(·)
is three-time continuously differentiable on an ε-enlargement about Km for some ε > 0; (b)

w(·) is continuous at (c−, c, β0) for any c−, c ∈M2.4

Assumption 4(a) is used to relax the polynomial growth condition on test functions

imposed by Jacod and Rosenbaum (2013) for estimating integrated volatility functionals,

and is easy to verify in typical applications. Assumption 4(b) is needed for using a continuous

mapping argument.

For any twice continuously differentiable function g (·), we set S(g) ≡
∫ T

0
g(cs)ds and

define its bias-corrected estimator as

Ŝn(g) ≡ ∆n

[T/∆n]−kn∑
i=0

(
g (ĉn,i)−

1

kn
Bg (ĉn,i)

)
(13)

used in spot volatility estimation to be different from that for detecting jumps, and (possibly) different across

assets.
4The ε-enlargement of Km is defined as the collection of points whose Euclidean distance from the set

Km is less than ε.
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where the function Bg(·) in the bias-correction term is defined as

Bg(c) ≡ 1

2

2∑
j,k,l,m=1

∂2
jk,lmg(c)(cjlckm + cjmckl). (14)

This bias-correction term is needed for correcting a nonlinearity bias in the estimation of

integrated volatility functionals as in, for example, Jacod and Rosenbaum (2013).

We consider a class of weighted estimators for the common beta constructed as

β̂n(v, w) ≡
Ŝn (vgb) +

∑
i∈I′n

w
(
ĉn,i−, ĉn,i, β̆n

)
∆n
i Z∆n

i Y

Ŝn (v) +
∑

i∈I′n
w
(
ĉn,i−, ĉn,i, β̆n

)
(∆n

i Z)2
, (15)

where the function gb(c) ≡ cZY /cZZ and β̆n ≡
∑

i∈I′n
∆n
i Z∆n

i Y/
∑

i∈I′n
(∆n

i Z)2 is a pilot

estimator of β using only jump returns. The estimator β̂n essentially combines the weighted

diffusive beta of Li et al. (2017a)

β̂
c

n (v) ≡ Ŝn (vgb)

Ŝn (v)
, (16)

and the weighted jump beta of Li et al. (2017b)

β̂
J

n (w) ≡

∑
i∈I′n

w
(
ĉn,i−, ĉn,i, β̆n

)
∆n
i Z∆n

i Y∑
i∈I′n

w
(
ĉn,i−, ĉn,i, β̆n

)
(∆n

i Z)2
. (17)

While optimally weighted β̂
c

n and β̂
J

n have been shown by these prior work to be semipara-

metrically efficient for the diffusive beta and the jump beta, respectively, it is intuitively

clear that they cannot be efficient when the common beta assumption holds, in that neither

of them exploits the full information from all observed data.5

We now describe precisely the optimally weighted estimator for the common beta, which

is actually adaptive as shown in Section 3.2 below. This adaptive estimator is given by

β̂
?

n ≡

(
1− 3

kn

)
∆n

∑[T/∆n]−kn
i=0

ĉZY,n,i
ς̂n,i

+
∑

i∈I′n
∆n
i Z∆n

i Y

ς̂n,i(
1− 3

kn

)
∆n

∑[T/∆n]−kn
i=0

ĉZZ,n,i
ς̂n,i

+
∑

i∈I′n
(∆n

i Z)
2

ς̂n,i

, (18)

5Although the number of jump returns is, asymptotically speaking, “much smaller” than the number

of diffusive returns, the information content of the former is not negligible relative to the latter; this is

because the jump returns carry a “much higher” signal-to-noise ratio compared to the diffusive ones at high

frequency.
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where ς̂n,i ≡ ĉY Y,n,i−ĉ2
ZY,n,i/ĉZZ,n,i is the spot estimator for the diffusive idiosyncratic variance

ςi∆n of Y (recall the definition (10)). Note that β̂
?

n is a special case of β̂n, corresponding to

weight functions6

v?(c) =
cZZ

cY Y − c2
ZY /cZZ

, w?(c−, c, β) =
1

cY Y − c2
ZY /cZZ

.

Theorem 1, below, characterizes the asymptotic properties of the general weighted es-

timator β̂n and shows the optimality of the adaptive estimator β̂
?

n within this class. To

simplify notation, we set

Qn,ZZ(w) ≡
∑
i∈I′n

w(ĉn,i−, ĉn,i, β̆n) (∆n
i Z)2 , QZZ(w) ≡

∑
τ∈T

w(cτ−, cτ , β0) (∆Zτ )
2 .

We also assume the following.

Assumption 5 ς and Z do not jump at the same times almost surely.

Assumption 5 says that the idiosyncratic variance ς of the individual stock price Y does

not co-jump with the factor Z. Although the asymptotic distribution of β̂n can be derived

without this assumption, we impose it nonetheless so that the limiting distribution of β̂n

is F -conditionally mixed Gaussian; otherwise, the limiting distribution would be “doubly”

mixed Gaussian with an extra layer of mixing due to the indeterminancy of the exact jump

time within the corresponding sampling interval. We note that this assumption does not

rule out the co-jump between the prices and volatilities of Y and Z, as it only concerns the

idiosyncratic variance of Y .

Theorem 1 Suppose Assumptions 1–5 hold and kn � ∆−ρn such that ρ ∈ (1/3, 1/2) and

(1− ρ)/2 < $ < 1/2. Then,

(a) ∆
−1/2
n (β̂n(v, w)− β0)

L-s−→MN (0,Σ(v, w)), where

Σ(v, w) ≡

∫ T
0
v(cs)

2 ςs
cZZ,s

ds+
∑

τ∈T w(cτ−, cτ , β0)2 (∆Zτ )
2 ςτ

(S(v) +QZZ(w))2 ;

(b) ∆
−1/2
n (β̂

?

n − β0)
L-s−→MN (0, V ?) where

V ? ≡
(∫ T

0

d[Z,Z]s
ςs

)−1

;

moreover, V ? ≤ Σ(v, w) and the equality is attained if and only if v(c) = ϕcZZ/ς and

w(cτ ) = ϕ/ςτ for all τ ∈ T and some constant ϕ > 0;

(c) V ? can be consistently estimated by V̂ ?
n ≡ (Ŝn(v?) +Qn,ZZ(w?))−1.

6We note that the 3/kn factor in the definition of β̂
?

n corresponds to the bias-correction term Bg (·) /kn,

and is obtained from direct calculation.
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Comments. (i) Part (a) of Theorem 1 establishes the asymptotic mixed normality of β̂n.

This result can be regarded as a generalization of both the limit theory for the diffusive

beta estimator presented in Proposition 1 of Li et al. (2017a) and that for the jump beta

estimator shown in Theorem 2 of Li et al. (2017b).

(ii) More importantly, part (b) shows that β̂
?

n attains the smallest asymptotic variance

among all weighted estimators. In particular, the asymptotic variance V ? is strictly smaller

than both the semiparametric efficiency bound for estimating the constant jump beta in

Li et al. (2017b) and the adaptive bound for estimating the constant diffusive beta in Li

et al. (2017a). From here, we see clearly that exploiting both the diffusive and the jump

dependence will provide an efficiency gain. In Section 3.2, below, we show that V ? is indeed

the adaptive efficiency bound.

(iii) Part (c) shows that V̂ ?
n is a consistent estimator for V ?, which can be used to make

feasible inference.

(iv) In general, if the common beta assumption does not hold, then the estimator β̂
?

n

converges to a weighted mixture of the diffusive and jump betas; see Lemma 3 in the appendix

for details. �

3.2 Efficiency bound and adaptive estimation

In this subsection, we show that the optimally weighted estimator β̂
?

n is indeed adaptive

in the presence of the nonparametric nuisance components (b, cZZ , ς, JZ , ε).
7 We proceed as

follows. We first derive the efficiency bound for estimating β in a parametric submodel of (6)

in which the only unknown parameter is β, whereas the nonparametric nuisance components

(b, cZZ , ς, JZ , ε) are observed, which can be equivalently thought as augmenting the original

data with the observation of these nuisance processes. We prove the LAMN property for this

submodel and establish the efficiency bound by invoking the conditional convolution theorem

(Jeganathan (1982, 1983)). The resulting efficiency bound coincides with the F -conditional

asymptotic variance of β̂
?

n. Since the estimator β̂
?

n only depends on the original data (instead

of the augmented data), we conclude that it attains the adaptive efficiency bound a fortiori.

It is instructive to recall the LAMN property. Compared with the commonly used lo-

cal asymptotic normality (LAN) property, the LAMN property is more general because it

allows the information matrix to be random. In the sequel, we use P n
β to denote the joint

distribution of the data sequence (∆n
iX)1≤i≤[T/∆n] in a parametric model with an unknown

7We recall that an estimator is adaptive in the presence of a nuisance component if the estimator attains

the efficiency bound in any submodel in which the nuisance is known. See Section 2.4 of Bickel et al. (1998)

for additional background on adaptive estimation and, in particular, Definition 1 there.
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parameter β. We say that the sequence (P n
β ) satisfies the LAMN property at β = β0 if there

exist a sequence Γn of nonnegative random variables and a sequence ψn of random variables,

such that for any h ∈ R,

log
dP n

β0+∆
1/2
n h

dP n
β0

= hΓ1/2
n ψn −

1

2
Γnh

2 + op(1),

and

(ψn,Γn)
L−→ (ψ,Γ) ,

where the information Γ is a positive F -measurable random variable and ψ is a standard

normal variable independent of Γ.

To establish the asymptotic behavior of the log likelihood ratio, we maintain the following

assumption in this subsection.

Assumption 6 We have Assumption 1 and the processes (bt)t≥0, (σt)t≥0 and (Jt)t≥0 are

independent of (Wt)t≥0, and the joint law of (b, cZZ , ς, JZ , ε) does not depend on β.

Note that Assumption 6 is only needed in this subsection for getting a closed-form expres-

sion for the likelihood ratio in the derivation of the efficiency bound for estimating β. Our

estimation and inference methods work under far more general settings. Theorem 2, below,

shows that the aforementioned submodel satisfies the LAMN property and characterizes the

information for the estimation of β.

Theorem 2 Under Assumptions 5 and 6, the sequence (P n
β : β ∈ R) satisfies the LAMN

property at β = β0 with information
∫ T

0
(1/ςs) d [Z,Z]s, where β0 is the true value of β.

Comments. (i) Theorem 2 reveals that the “local” information bound for estimating beta

is (1/ςs) d [Z,Z]s, which is exactly the local signal-to-noise ratio between the instantaneous

local quadratic variation of Z and the idiosyncratic variance ς.

(ii) The information in Theorem 2 can be decomposed as∫ T

0

d [Z,Z]s
ςs

=

∫ T

0

d 〈Zc, Zc〉s
ςs

+

∫ T

0

d
[
Zd, Zd

]
s

ςs

=

∫ T

0

cZZ,s
ςs

ds+
∑
τ∈T

(∆Zτ )
2

ςτ
.

The two terms on the right-hand side of the above display are exactly the information bounds

for separately estimating the diffusive beta and the jump beta; see Theorem 1 in Li et al.

(2017a) and Theorem 2 in Li et al. (2017b).8 �

8Note that if the common beta assumption does not hold, the idiosyncratic variance ς appearing in the

information bound of the continuous beta and that of the jump beta would be defined differently using the

corresponding betas.
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From Theorem 2 and the conditional convolution theorem (see Jeganathan (1982, 1983)),

we deduce that the efficiency bound for estimating β0 in the adaptive case is given by the

inverse of the information, that is,(∫ T

0

d[Z,Z]s
ςs

)−1

.

This efficiency bound coincides exactly with the F -conditional asymptotic variance of β̂
?

n,

and hence, β̂
?

n is an (efficient) adaptive estimator as claimed above.

Finally, we provide some intuition on why the common beta can be estimated adaptively.

From Li et al. (2017a) and Li et al. (2017b), we know that the diffusive beta admits adaptive

estimation, while the jump beta is generally not adaptive with respect to the presence of

unknown jump size of Z. To see how the common beta restriction resolves the latter issue, we

consider a stripped-down scenario in which Z has only one jump at time τ ∈ ((i− 1) ∆n, i∆n]

for some integer i. In this case the jump beta estimator is simply ∆n
i Y/∆

n
i Z, which has the

following expansion

∆−1/2
n

(
∆n
i Y

∆n
i Z
− βd

)
≈

∆
−1/2
n

(
∆n
i Y − βd∆n

i Z
)

∆Zτ

=
∆
−1/2
n

(
∆n
i Y

c − βd∆n
i Z

c
)

∆Zτ

where we recall that Y c and Zc are the diffusive parts of Y and Z. Meanwhile, the jump

size ∆Zτ is estimated by ∆n
i Z, for which we have

∆−1/2
n (∆n

i Z −∆Zτ ) ≈ ∆−1/2
n ∆n

i Z
c.

Whether the estimation of βd is adaptive to the presence of the unknown ∆Zτ depends on

whether their “residuals” are orthogonal. This does not hold in general. But, if βd = βc, then

∆n
i Y

c−βd∆n
i Z

c = ∆n
i Y

c−βc∆n
i Z

c is orthogonal to ∆n
i Z

c due to the diffusive orthogonality

condition. In this case, the estimation of Z’s jumps does not have an asymptotic effect on

the estimation of the jump beta. From Li et al. (2017a), we also know that it does not affect

the estimation of the diffusive beta, either. We thus have the adaptive estimation result for

the common beta.

3.3 A Hausman test for common beta

The theory above says that the β̂
?

n estimator is efficient in two senses: Theorem 1 shows

that it is the most efficient estimator among all weighted estimators under general conditions,

and Theorem 2 shows that it is semiparametrically efficient provided that the submodel
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satisfies the LAMN property. As recognized by Hausman (1978), a useful by-product of

efficient estimation is to test the underlying model restriction by examining whether the

efficient estimator and an inefficient estimator are statistically different. The Hausman test

has a very convenient feature: as a consequence of efficiency, the asymptotic variance of

the difference between the two estimators is the difference of their asymptotic variances. In

the present context, we can test the common beta hypothesis by comparing the efficient

estimator and other inefficient ones.

We now illustrate how to implement the Hausman test in an example. For concreteness,

we take the inefficient estimator as:

β̂
BNS

n =
∆n

∑[T/∆n]−kn
i=0 ĉZY,n,i +

∑
i∈I′n

∆n
i Z∆n

i Y

∆n

∑[T/∆n]−kn
i=0 ĉZZ,n,i +

∑
i∈I′n

(∆n
i Z)2

. (19)

This estimator is an interesting benchmark because it is essentially the same as the realized

regression estimator proposed by Barndorff-Nielsen and Shephard (2004a).9 Like the efficient

estimator, this estimator relies on both diffusive and jump returns and is a special case of

the weighted estimator β̂n(·, ·) with weight functions vBNS(c) = cZZ and wBNS(·) = 1.

Under the common beta null hypothesis, the diffusive and jump betas equal to the same

constant β0. Consequently, both β̂
BNS

n and β̂
?

n are consistent estimators of β0 and the latter

is efficient. To precisely state the alternative hypothesis for the Hausman test, we consider

a general data generating process with time-varying diffusive and jump betas (denoted by

βct and βdt respectively) with the form:

Yt = Bt + βctZ
c
t + βdt Z

d
t + εct + εdt (20)

such that the orthogonality condition (5) holds, which amounts to setting βct = cY Z,t/cZZ,t

for all t and βdτ = ∆Yτ/∆Zτ for each jump time τ of Z. In this general case, β̂
BNS

n and β̂
?

n

9The estimator of Barndorff-Nielsen and Shephard (2004a) is defined as the ratio between the realized

versions of [Y, Z]T and [Z,Z]T , where we remind the reader that [·, ·] denotes the quadratic covariation opera-

tor. In the general setting with time-varying beta, β̂
BNS

n converges to exactly the same limit [Y,Z]T /[Z,Z]T

in probability. We note that Barndorff-Nielsen and Shephard (2004a) originally consider a setting without

jumps, and in that case, the difference between their estimator and β̂
BNS

n defined in (19) arises only from

boundary effects, which are asymptotically negligible also on the second order. In the more general case

with jumps, the asymptotic distribution of Barndorff-Nielsen and Shephard’s original estimator can be de-

rived using Theorem 5.4.2 in Jacod and Protter (2012), which provides the stable convergence in law for

the quadratic covariation matrix. In that case, β̂
BNS

n still has the same limiting distribution as Barndorff-

Nielsen and Shephard’s original estimator when Y does not contain idiosyncratic jumps. When Y contains

idiosyncratic jumps, Barndorff-Nielsen and Shephard’s original estimator is less efficient than β̂
BNS

n , because

the former involves an additional source of sampling variability (which is F-conditionally independent of the

other limiting components) stemming from the interaction between the idiosyncratic jumps of Y and the

contemporaneous Brownian shocks in Z.
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converge to different integrated functionals of the βct and βdt processes. Specifically, Lemma

3 in the appendix shows that

β̂
BNS

n
P−→ β̄

BNS ≡

(∫ T

0

d〈Zc, Zc〉sβcs +
∑
τ∈T

(∆Zτ )
2 βdτ

)/∫ T

0

d [Z,Z]s ,

β̂
?

n
P−→ β̄

? ≡

(∫ T

0

d〈Zc, Zc〉sβcs
ςs

+
∑
τ∈T

(∆Zτ )
2 βdτ

ςτ

)/∫ T

0

d [Z,Z]s
ςs

,

(21)

where we intentionally represent the limits as integrated weighted beta functionals for the

ease of comparison.10 From here, it is easy to see that the Hausman test will have power

against alternatives under which β̄
BNS 6= β̄

?
. We can thus formally represent the null and

alternative hypotheses for the Hausman test respectively using the following events:

Ω0 ≡ {βct = βdt = β0 for some β0 ∈ R and all t ∈ [0, T ]}, Ωa ≡ {β̄
BNS 6= β̄

?}.

We carry out the test by examining whether the difference β̂
?

n−β̂
BNS

n is statistically

different from zero. Due to the efficiency of β̂
?

n, the asymptotic variance of ∆
−1/2
n (β̂

?

n− β̂
BNS

n )

is simply Ξ ≡ V BNS − V ? where

V BNS ≡
∫ T

0
cZZ,sςsds+

∑
τ∈T (∆Zτ )

2ςτ(∫ T
0
cZZ,sds+

∑
τ∈T (∆Zτ )2

)2 . (22)

We can consistently estimate Ξ using a sample analogue estimator Ξ̂n = V̂ BNS
n − V̂ ?

n , where

V̂ BNS
n ≡

Ŝn(gΞ) +
∑

i∈I′n
(∆n

i Z)2 ς̂n,i(
Ŝn(vBNS) +Qn,ZZ(wBNS)

)2 , for gΞ(c) = cZZ
(
cY Y − c2

ZY /cZZ
)
.

The t-statistic for the Hausman test is then defined as

T̂n ≡
∆
−1/2
n

(
β̂
?

n−β̂
BNS

n

)
√

Ξ̂n

.

Proposition 1, below, describes the asymptotic properties of the Hausman test, where we

use zq to denote the q-quantile of the standard normal distribution.

Proposition 1 Suppose that the conditions in Theorem 1 hold and Ξ > 0 almost surely.

Then, (a) in restriction to Ω0, T̂n converges stably in law to a standard normal distribution;

(b) at significance level α ∈ (0, 1), the test with critical region {|T̂n| > z1−α/2} has asymptotic

level α under the null hypothesis and asymptotic power one under the alternative, that is,

P (Cn|Ω0)→ α and P (Cn|Ωa)→ 1.

10The limit of β̂
BNS

n can be written more concisely as β̄
BNS

= [Y,Z]T / [Z,Z]T .
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In applications, we recommend using this Hausman test as a post-estimation diagnostic

tool to evaluate the plausibility of the common beta assumption. We stress that the test

should not be used as a pre-test for choosing between β̂
?

n and β̂
BNS

n (or any other beta

estimators). In fact, even if one is willing to do so, it is not clear what would be the choice

when the test rejects, because in that scenario, the two estimators simply converge to two

different weighted integrated beta functionals and are generally not comparable.11

3.4 Practical considerations

We finish with some remarks regarding the use of the theoretical results derived above.

The theoretical contribution of the paper is to provide the most efficient estimator for em-

pirical researchers who are willing to make the assumption of common beta (as is often

implicitly done in empirical work). In other words, we characterize a new point on the

frontier of the “assumption versus efficiency” trade-off. This trade-off is the most relevant

for beta estimation within short estimation periods, for which the common beta hypothe-

sis is more plausible. Our numerical work below is designed to illustrate this point more

concretely.

Our practical recommendation is as follows. If the empirical researcher is willing to as-

sume that beta is constant for all returns (i.e., common beta) within a certain period (say,

e.g., a week), then we unambiguously recommend the proposed estimator on the ground

of statistical efficiency. On the other hand, if the empiricist is concerned with the issue of

heterogeneous beta within the time window, we still recommend reporting the proposed esti-

mator in the analysis, accompanied with a careful interpretation. In this situation, different

beta estimators converge to different weighted integrated functionals of the time-varying beta

process, and it is generally difficult to argue why one weighted functional should be more

relevant than the other. The potential advantage of using the proposed estimator is that it is

likely to be statistically more accurate (i.e., with smaller standard error) if the common beta

hypothesis “almost” holds in the data. A “free” diagnostic tool after the efficient estimation

is the Hausman test, which can also be used to assess the extent to which heterogeneous

11By analogy, we note the Hausman test in the current context should be used in the same way as the

over-identification test in the classical GMM. The GMM problem share three fundamental similarities with

what we study here. First, if the model is correctly specified, any weighting matrix produces a consistent

estimator, but the optimally weighted GMM is efficient. Second, if the moment equality model is misspecified,

then GMM estimators with different weighting matrices will converge to different pseudo-true parameters,

and are generally not comparable. Third, the over-identification test is a by-product of the efficient GMM

estimation; it is used to examine whether the moment restrictions are correctly specified, but not for deciding

whether the optimal weighting matrix should be used in the first place.
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beta is a concern in the empiricist’s specific application.

4 Monte Carlo study

We continue with evaluating our inference procedures developed above on simulated data.

4.1 The data generating process

The unit of time is one business day, consisting of 6.5 trading hours. We simulate the

factor process Z according to

dZt = σtdLt,

where L is a Lévy process with characteristic triplet (0, 1, ν1) and ν1(dx) = (1/16)e−|x|dx.

Following Bollerslev and Todorov (2011), we simulate the stochastic volatility σt process

from a two-factor affine diffusion model, that is, σ2
t = V1,t + V2,t, where

dV1,t = 0.0116 (0.5− V1,t) dt+ 0.1023
√
V1,tdW1,t,

dV2,t = 0.6930 (0.5− V2,t) dt+ 0.7909
√
V2,tdW2,t,

and (W1,W2) is a two-dimensional Brownian motion that is independent of L. The param-

eters chosen in this model imply that V1 is a highly persistent process with half-life of 60

days, and V2 is a fast mean-reverting process with half-life of 1 day. The residual process is

simulated using

dεt = σtdL̃t,

where L̃ is another Lévy process, independent of (L,W1,W2), with characteristic triplet

(0, 1/
√

2, ν2) and ν2(dx) = (1/90)e−|x|dx. Finally, we simulate Y as

dYt = dZt + dεt. (23)

under which the common beta restriction holds with β0 = 1.

In this specification, the continuous parts in the driving Lévy processes L and L̃ are

Brownian diffusions with constant volatility and the jump parts are compound Poisson pro-

cesses with jump size following double-exponential distributions. In particular, the Z process

has jump activity of one jump every 8 days. The frequency and size of jumps are calibrated

to match roughly those observed in real data. All subsequent calculations are based on 1,000

Monte Carlo trials.
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4.2 Efficiency comparison

We first demonstrate numerically the efficiency gain of the efficient β̂
?

n estimator relative

to other estimators in our Monte Carlo experiment. In this exercise, we aim to illustrate

when the efficiency gain is large/small, and provide some intuitive explanation for it based

on our theory. Recall that V ? denotes the conditional asymptotic variance of the efficient

estimator β̂
?

n.

We compare the performance of β̂
?

n with that of the following four benchmarks: the

adaptive diffusive beta estimator β̂
c

n of Li et al. (2017a), the optimal jump beta estimator β̂
J

n

of Li et al. (2017b), the realized regression estimator β̂
BNS

n and its truncated version β̂
BNS,c

n .

We note that the truncated BNS estimator β̂
BNS,c

n only relies on diffusive returns, and it is

included here for completeness because Barndorff-Nielsen and Shephard (2004a) originally

consider a setting without jumps (but the estimator includes all returns). Recall that β̂
BNS

n

is defined by (19) and the other three estimators are defined as

β̂
c

n ≡
∑

i ĉZY,n,i/ς̂n,i∑
i ĉZZ,n,i/ς̂n,i

, β̂
J

n ≡
∑

i∈I′n
∆n
i Z∆n

i Y/ς̂n,i∑
i∈I′n

(∆n
i Z)2/ς̂n,i

, β̂
BNS,c

n ≡
∑

i ĉZY,n,i∑
i ĉZZ,n,i

.

Since these estimators are all special cases of the weighted estimator β̂n (v, w), we can com-

pute their F -conditional asymptotic variances using part (a) of Theorem 1. We denote these

quantities as V c, V J , V BNS and V BNS,c, respectively. We can measure the relative efficiency

of the estimators using the ratio of their asymptotic standard deviations with respect to that

of the efficient estimator β̂
?

n. For example, a larger
√
V BNS/

√
V ? ratio indicates a higher

efficiency gain for the efficient estimator β̂
?

n relative to β̂
BNS

n . We remind the reader that the

conditional asymptotic variances are random in the present non-ergodic setting. As a result,

the values of the corresponding relative efficiency measures vary across Monte Carlo trials,

depending on the realized paths of the stochastic volatility and the jump processes.

Before diving into the numerical results, we briefly summarize predictions from the

asymptotic theory to guide intuition. From our theoretical results, the relative efficiency

measures should be greater than 1 on all sample paths. However, the magnitude of the

efficiency gain varies among different estimators and scenarios, as explained below:

� Case β̂
c

n versus β̂
?

n: Compared with β̂
c

n, β̂
?

n gains efficiency by exploiting the additional

information from jump returns. Other things being equal, we expect to see higher

efficiency gain (i.e., larger value of
√
V c/
√
V ?) when there are more jumps per unit of

time (i.e., higher jump intensity). In the boundary case with no jumps, these estimators

are asymptotically identical.
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� Case β̂
J

n versus β̂
?

n: The β̂
?

n estimator gains efficiency over the jump beta estimator

β̂
J

n by incorporating diffusive returns. When jumps arrive more frequently, the relative

contribution of using the diffusive returns is smaller, yielding less efficiency gain. In

the calculation of efficiency gains, the effect of jumps on β̂
J

n is thus opposite to their

effect on β̂
c

n.

� Case β̂
BNS

n versus β̂
?

n : The comparison between β̂
BNS

n and β̂
?

n is slightly more subtle,

because both estimators make use of all jump and diffusive returns. In this case, the

efficiency gain stems from the fact that β̂
?

n employs an optimal weighting scheme that

is inversely proportional to the stochastic spot idiosyncratic variance ςt, to which β̂
BNS

n

is insensitive. Hence, using β̂
?

n will result in a larger efficiency gain if the idiosyncratic

variance process ςt exhibits more temporal heterogeneity in its sample path. In our

simulation design, this effect is captured by both volatility factors, with the degree of

variation in volatility depending on the distance of the current values of the volatility

factors from their unconditional means, the speeds of mean reversion as well as the

volatility of volatility parameters. In particular, at the longer horizon of T = 10

days, the idiosyncratic variance process tends to vary more, and hence, leads to more

efficiency gain from using efficient weighting.

� Case β̂
BNS,c

n versus β̂
?

n: The β̂
BNS,c

n estimator only uses diffusive returns (like β̂
c

n) and

employs sub-optimal weighting (like β̂
BNS

n ). This leads to two sources of efficiency

gains as explained in the two cases related to β̂
c

n and β̂
BNS

n , respectively.

We now proceed to the numerical results. As is evident from the discussion above, when

no jump occurs, the jump beta cannot be identified and the β̂
c

n estimator would be identical

to β̂
?

n. To avoid this uninteresting degenerate situation, we report the relative efficiency for

paths on which Z has exactly one jump over the [0, T ] horizon. In doing so, we can directly

examine the effect of realized jump intensity by varying T from 2 to 10 days (with the T = 2

case corresponding to the high-intensity scenario). As explained above, having more jumps

per unit of time will lead to more (resp. less) efficiency gain in β̂
?

n relative to the β̂
c

n (resp.

β̂
J

n) estimator, which would have the effect as shortening the sample span.

Table 1 reports the empirical quantiles of the (random) relative efficiency measure. Over-

all, the observed pattern is exactly as discussed above. The relative efficiency measures are

all greater than unity, which confirms the efficiency gain offered by the efficient estimator.

More specifically, we observe from the first column that the efficiency gain relative to the

diffusive beta estimator β̂
c

n has a median of 12%, and it reaches a nontrivial 43% at the 75%

quantile when the horizon is T = 2. This shows that in a short estimation window, opti-

mally including even one jump return (if it occurs) in the beta estimation can improve the
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estimation precision by a notable amount. As T increases, the realized jump intensity drops

(as we restrict the calculation to paths with exactly one jump in the estimation window),

and the efficiency gain becomes smaller as expected.

Looking at the second column of Table 1, we see substantial efficiency gain relative to the

jump beta estimator β̂
J

n. This is not surprising because the jump information is very scarce

in this numerical experiment. At longer horizons, the efficient gain becomes even higher; this

pattern is opposite to what we see in the first column, which is consistent with the intuition

discussed above.

Finally, we turn attention to the two versions of the BNS estimators. The β̂
BNS

n estimator,

which pools information from both diffusive and jump returns, has impressive performance,

albeit it is still less efficient than β̂
?

n. In terms of median, the efficiency gain grows from 2%

in the 2-day case to 6% in the 10-day case.12 While the efficiency gain apparently grows

with the sample horizon, we remind the reader that the driving factor here is not the length

of the time span of the sample per se. Instead, the efficiency gain stems from the temporal

heterogeneity in the stochastic idiosyncratic variance process, which tends to increase with

T in this numerical experiment. We finally note that the truncated version β̂
BNS,c

n is much

less efficient.

All in all, the numerical comparison in Table 1 provides a more concrete illustration of

our efficiency theory. Obviously, this specific numerical experiment cannot possibly exhaust

all the scenarios that one may encounter in empirical work. That being said, the afore-

mentioned intuition—backed by our asymptotic theory—should be useful more broadly for

understanding efficiency issues in high-frequency beta estimation.

4.3 Finite-sample performance of inference methods

In this subsection, we examine the finite-sample performance of the proposed inference

methods. This analysis includes two parts: the first concerns the asymptotic mixed Gaussian

approximation for the efficient estimator β̂
?

n (see Theorem 1), and the second is for the size

and power properties of the Hausman test discussed in Section 3.3. We fix the sample span

at T = 5 days.13

We consider two sampling schemes with ∆n = 1 minute and 5 minutes, respectively.

In addition, we employ a range of local window sizes (i.e., kn) to examine the robustness

12In our empirical example below, the efficiency gain from using the optimal estimator instead of β̂
BNS

n

is much larger. This suggests more high-frequency idiosyncratic volatility moves than those implied by our

model in the Monte Carlo.
13We have also conducted the same experiments for T = 2 and 10 days, yielding very similar results. For

brevity, we collect these additional simulation results in the supplemental appendix.
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Table 1: Relative Efficiency of Alternative Beta Estimators in Monte Carlo.

Horizon Quantile
√
V c/
√
V ?

√
V J/
√
V ?

√
V BNS/

√
V ?

√
V BNS,c/

√
V ?

25% 1.02 1.40 1.01 1.06

2 days 50% 1.12 2.21 1.02 1.25

75% 1.43 4.70 1.03 1.47

25% 1.01 1.91 1.03 1.06

5 days 50% 1.06 3.26 1.04 1.12

75% 1.17 7.63 1.06 1.23

25% 1.01 2.42 1.04 1.07

10 days 50% 1.03 4.47 1.06 1.11

75% 1.10 9.80 1.09 1.19

Note: The table reports the Monte Carlo quantiles of the relative efficiency measures of

β̂
c

n, β̂
J

n, β̂
BNS

n , and β̂
BNS,c

n , respectively in four columns. For each estimator, the relative

efficiency measure is defined as the ratio of its conditional asymptotic standard deviation

with respect to that of the efficient estimator β̂
?

n. The relative efficiency measure is random,

and we summarize its distributional features using quantiles at 25%, 50%, and 75% levels.

of the inference method with respect to this tuning parameter. Specifically, we consider

kn ∈ {70, 85, 100} for 1-minute sampling and kn ∈ {20, 24, 28} for 5-minute sampling. Note

that in each case, the largest value of kn is about 40% larger than the smallest, providing a

reasonably wide range for checking robustness.

We also need to set the truncation threshold un that satisfies un � ∆$
n (recall Theorem

1). While the formal asymptotic theory is valid with un = C∆$
n for any constant C > 0, we

set un more specifically at

un = 3.5×
√
γiBVt ×∆0.49

n , (24)

which roughly corresponds to a 3.5-standard-deviation rule with the local standard deviation

being approximated by
√
γiBVt. Here, BVt is the bipower variation (see Barndorff-Nielsen

and Shephard (2004b)) measuring the average volatility on day t and is given by

BVt ≡
π

2

n

n− 1

tn∑
i=(t−1)n+2

|∆n
i−1Z||∆n

i Z|,
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Table 2: Monte Carlo Coverage Rates of Efficient Confidence Intervals

∆n = 1 minute ∆n = 5 minutes

Level kn = 70 kn = 85 kn = 100 kn = 20 kn = 24 kn = 28

90% 87.60 87.90 88.40 86.60 86.90 87.20

95% 93.20 93.10 93.00 92.40 93.20 93.10

99% 98.30 98.50 98.80 98.00 98.10 98.00

Note: The table reports the Monte Carlo coverage rates (%) of confidence intervals associated

with the efficient adaptive estimator β̂
?

n. The confidence intervals are two-sided symmetric

and are constructed based on Theorem 1 at nominal levels 90%, 95%, and 99%. Two sampling

frequencies (i.e., ∆n) and a range of local window sizes (i.e., kn) are considered. The sample

span is fixed at T = 5 days. There are 1,000 Monte Carlo trials.

and γi is a time-of-day adjustment for the intraday seasonality pattern of volatility given by

γi ≡ bi/((1/n)
∑n

j=1 bj), with bi ≡ T−1
∑T

t=1 |∆n
(t−1)n+i−1Z||∆n

(t−1)n+iZ| for i = 2, ..., n and

b1 = b2, for observation i in day t. We stress that the specific choice of the truncation thresh-

old un in (24) is motivated only by finite-sample considerations, but has no asymptotic effect

on the beta estimators, provided that the scaling factor
√
γiBVt is of constant asymptotic

order.14 Additional robustness checks regarding different choices of truncation threshold are

reported in the supplemental appendix.

Table 2 reports the convergence rates of two-sided symmetric confidence intervals (CI)

constructed using the efficient β̂
?

n estimator based on Theorem 1 at nominal levels 90%, 95%,

and 99%. Overall, we see that the finite-sample converge rates are close to the corresponding

nominal levels, albeit with slight under-coverage. The results are robust to perturbations in

the local window size.

Next, we examine the size and power properties of the Hausman test described in Sec-

tion 3.3. We recall that the null hypothesis of common beta is imposed by equation (23)

with common beta β0 = 1. To examine the power property of the test, we consider two

14This statement can be formalized as follows. Suppose that maxi γiBVt is of sharp order Op(1). If γi is

generated as f (i∆n) for a continuous positive function f (·) on [0, 1], then this condition is satisfied because

f(·) is uniformly bounded on the unit interval and the bipower variation BVt is of sharp Op(1) order. Recall

from Theorem 1 that $ ∈ ((1 − ρ)/2, 1/2). Hence, there exists $− and $+ in ((1 − ρ)/2, 1/2) such that

$− < $ < $+. Then with probability approaching 1, un defined in (24) falls in between ∆
$−
n and ∆

$+
n ,

which is sufficient for the truncation technique to work in the proofs. Also see Li et al. (2013) for a similar

analysis using data-driven truncation.
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alternatives. The first is given by

dYt = dZc
t + 0.75dJZ,t + dεt.

This alternative violates the common beta restriction by imposing distinct diffusive and jump

betas that take values 1 and 0.75, respectively. The second alternative features time-varying

diffusive beta and is given by:

dYt = βctdZ
c
t + dJZ,t + dεt, where βct = 1 + 0.3× sin(0.6t).

Under this alternative, the diffusive beta βct is time-varying whereas the jump beta is fixed

at 1. In both cases, β̄
? 6= β̄

BNS
holds almost surely, and we expect the Hausman test to

have asymptotic power one.

Table 3 reports the rejection rate of Hausman test under the common beta null hypothesis

and the aforementioned two alternatives in panels A, B, and C, respectively. From panel A,

we see that the test’s null rejection rates are close to the corresponding nominal significance

levels. The size control for the coarser 5-minute sampling is slightly worse than the 1-minute

case. Panels B and C of the table show that the test has reasonable power against these

alternatives. As expected, the power is higher in the larger sample with ∆n = 1 minute.

Overall, these results are supportive of our asymptotic theory regarding the Hausman test

and the efficient estimator.

5 Empirical illustration

We now illustrate the performance of the proposed efficient estimator β̂
?

n in an empirical

example. We consider beta estimation with relatively short horizons, that is, T ∈ {2, 5, 10}
days, as studied in the numerical experiments. This setting is ideal for illustrating the use-

fulness of the efficient estimator for two reasons. The first one is theoretical: the common

beta assumption is more plausible within shorter samples, so that we are close to the the-

oretical “laboratory” setting, providing a more direct link between the empirical findings

and theoretical insights. The other reason is practical: short estimation horizon represents

a data-scarce environment, and this is exactly the situation in which an empirical researcher

values statistical efficiency the most. Short estimation windows are often seen in event

studies.

In this exercise, we estimate market betas of three large-cap stocks: JPMorgan (JPM),

Walmart (WMT), and Johnson & Johnson (JNJ). Our proxy for the market portfolio is
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Table 3: Finite-sample Size and Power Properties of Hausman Test

∆n = 1 min ∆n = 5 min

Level kn = 70 kn = 85 kn = 100 kn = 20 kn = 24 kn = 28

Panel A: Null Hypothesis

1% 1.30 1.20 1.10 1.40 1.30 1.40

5% 4.80 5.10 5.30 5.60 4.60 4.90

10% 10.00 10.50 10.50 11.00 9.70 9.10

Panel B: Alternative with Unequal Diffusive and Jump Betas

1% 56.00 55.10 55.60 22.90 20.90 20.60

5% 69.60 64.60 67.40 36.40 36.50 33.00

10% 73.50 73.40 73.00 43.90 44.50 42.20

Panel C: Alternative with Time-varying Beta

1% 50.60 52.40 52.70 23.90 24.70 25.50

5% 62.00 62.80 62.50 38.30 39.20 39.70

10% 66.90 67.50 67.80 47.00 47.10 48.90

Note: The table reports the Monte Carlo rejection rates of the Hausman test described in

Section 3.3. Panel A reports the size property, and Panels B and C report powers under

two alternative hypotheses. Two sampling frequencies (i.e., ∆n) and a range of local window

sizes (i.e., kn) are considered. The sample span is fixed at T = 5. There are 1,000 Monte

Carlo trials.
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Table 4: Relative Efficiency Comparison

JPM JNJ WMT

Horizon Q0.25 Q0.50 Q0.75 Q0.25 Q0.50 Q0.75 Q0.25 Q0.50 Q0.75

2 days 1.11 1.16 1.24 1.10 1.15 1.23 1.11 1.16 1.24

5 days 1.16 1.21 1.26 1.13 1.19 1.24 1.15 1.20 1.26

10 days 1.19 1.23 1.30 1.16 1.20 1.25 1.18 1.21 1.29

Note: This table compares the relative efficiency between the efficient estimator β̂
?

n and

realized regression estimator β̂
BNS

n . The relative efficiency measure is defined as the ratio of

the estimated standard errors of these estimators, that is,

√
V̂ BNS
n /

√
V̂ ?
n . For each horizon

T ∈ {2, 5, 10}, we divide the entire 8-year sample into non-overlapping blocks with length

T , and compute the relative efficiency measure separately on each block. Their values are

summarized via their empirical quantiles (denotedQq) computed across all estimations blocks

at level q = 0.25, 0.5, and 0.75.

the S&P 500 ETF (SPY).15 High-frequency transaction price data is obtained from the

Trade and Quote (TAQ) database from 2007 to 2014. We sample the prices at the 5-minute

frequency, which results in 78 price observations per asset on each day. Since the assets

under consideration are quite liquid, the 5-minute sparse sampling is typically considered

coarse enough to sufficiently mitigate complications related to various microstructure issues.

As in the simulations, we set the local window to kn = 24.16 The truncation threshold is

also calculated in the same way as in the simulation study.

In the present literature, arguably the most commonly used beta estimator in the high-

frequency setting is the realized regression estimator of Barndorff-Nielsen and Shephard

(2004a). It is thus of great empirical interest to examine whether—and to which extent—

we can improve the estimation accuracy by using the efficient estimator relative to this

influential benchmark.

Table 4 compares the relative efficiency of β̂
?

n and β̂
BNS

n in our sample. We measure the

relative efficiency using the ratio of the estimated standard errors of these estimators, that

15JPMorgan is major bank in the US with a relatively high beta. Walmart and Johnson & Johnson are

representatives of the consumers and health care sectors, and they have much less sensitivity towards the

market index.
16Additional robustness checks regarding the choices of the local window size kn and the truncation

threshold un are collected in the supplemental appendix and show similar results.
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is,

Relative Efficiency =

√
V̂ BNS
n /

√
V̂ ?
n .

This is analogous to the asymptotic relative efficiency measure used in Table 1, but with the

asymptotic variances replaced with their consistent estimators.17 For each given horizon T ,

we divide the entire 8-year sample into non-overlapping estimation periods with length T .

We compute the relative efficiency measure separately for each estimation period, and then

summarize these numbers using empirical quantiles across all estimation periods in Table 4.

Each stock is treated on its own. From the table, we see clearly that the efficient estimator

provides sizable efficiency gain relative the benchmark β̂
BNS

n . Specifically, the efficiency gain

is roughly 16% for the short 2-day estimation window on the median. The gain becomes

larger as T increases. Recall that the latter effect is also seen in the numerical example, for

which the theoretical intuition is that the stochastic idiosyncratic variance process tends to

vary more in longer samples.

The efficiency gain documented in Table 4 should be connected with our efficient esti-

mation theory with care. Unlike the “laboratory” setting in the numerical example, where

the common beta assumption is imposed by design, the econometrician cannot know with

certainty whether this assumption holds or not in the data (any statistical test is still sub-

ject to type 1 and type 2 errors). The findings thus need to be interpreted differently in

two scenarios. The first is when the common beta assumption holds. In this scenario, both

β̂
?

n and β̂
BNS

n (as well as other beta estimators) converge to the true beta and our efficient

estimation theory provides a definitive explanation for why the former should always have a

smaller asymptotic variance than the latter. In the alternative (more complicated) scenario

with heterogeneous beta, these estimators instead converge to their associated integrated

beta functionals (recall equation (21)). The asymptotic variance of β̂
?

n is no longer guar-

anteed to be smaller than that of β̂
BNS

n , and hence, our theory cannot fully explain why

V̂ BNS
n > V̂ ?

n as we see in the empirical table. The theory nevertheless provides a partial

answer: to the extent that the common beta hypothesis “almost” captures the more compli-

cated reality—particularly in short samples—our theory on efficiency can “approximately”

account for the efficiency gain shown in Table 4.

The Hausman test described in Section 3.3 provides a more direct statistical answer on

whether the common beta hypothesis holds. In Table 5, we report the proportion of T -day

estimation periods for which the Hausman test rejects the common beta hypothesis at the

5% significance level. We clarify that these tests are implement separately, and we report the

17We remind the reader that a higher ratio indicates a larger efficiency gain from using the efficient

estimator β̂
?

n.

26



Table 5: Rejection Rates of the Hausman test.

Horizon JPM JNJ WMT

2 days 8.17% 6.35% 5.24%

5 days 13.89% 12.63% 12.12%

10 days 32.32% 18.18% 17.17%

Note: This table reports the rejection rates of the Hausman test across all estimation blocks.

The test is implemented by comparing β̂
?

n with β̂
BNS

n .

rejection proportion as a summary statistic of the individual testing results, with no intention

to make formal statement on the joint testing.18 From the table, we see that the common

beta hypothesis is rejected for slightly more than 5% of all 2-day estimation periods. Since

the test is implemented at the 5% significance level, we expect to see 5% rejections even if

the null hypothesis is true, so these empirical rejection rates should be considered to be low.

Obviously, it would be naive to use this finding to argue that the common beta hypothesis

actually “holds.” After all, as in any scientific model, such an assumption is meant to be used

as an approximation of the complicated reality. That said, our finding does suggests that

such an approximation is empirically plausible, particularly at short horizons. As discussed

in the previous paragraph, this is consistent with the large efficiency gain delivered by the

efficient β̂
?

n estimator reported in Table 4. Finally, we also note that the rejection rates

increase, but remain moderate, when increasing the horizon from 2 to 5 days. When T = 10,

we see that the common beta hypothesis is rejected considerably more often, especially for

the financial firm (JPM). JPM’s high rejection rate may be explained by the fact that the

bank can change its exposure to various sectors/firms in the economy more rapidly by trading

in the financial market. Since the betas of different sectors/firms are generally different, the

bank’s beta can vary a lot very quickly due to the changes in its asset holdings, even if the

betas of underlying assets do not change individually.

In summary, this empirical example shows that the β̂
?

n estimator has smaller standard

errors than the benchmark estimator β̂
BNS

n . Our asymptotic theory provides a definitive

explanation for this finding if one is willing to assume common beta. Otherwise, the theory

18A formal joint test can be implemented as follows. Under the null hypothesis of common beta, the Haus-

man t-statistics for individual (non-overlapping) estimation blocks are asymptotically independent standard

normal. One can construct a sup-t statistic as the maximum of the absolute value of individual t-statistics.

The critical value is given by the quantile of maxj ξj for i.i.d. standard normal variables ξj , with the

maximum taken over all blocks (indexed by j).

27



offers a partial explanation by treating the common beta hypothesis as an approximation

of a more complicated reality. The Hausman test can be conveniently implemented as a

by-product after the efficient estimation. Empirically, the test suggests that the common

beta hypothesis is plausible for short samples.

6 Concluding remarks

In this paper, we study the common beta assumption—that is, the beta is constant for all

returns (diffusive returns and jumps)—in the context of efficient beta estimation. We propose

an optimally weighted estimator that fully exploits the information content of this model

restriction. We show that the proposed estimator is the most efficient among a large class of

weighted estimators under general conditions. Moreover, under additional regularities that

ensures the LAMN property, we establish the semiparametric efficiency bound for estimating

the common beta, and show that the proposed estimator is semiparametrically efficient.

Interestingly, this efficient estimator is actually adaptive with respect to the presence of

nonparametric nuisances such as the stochastic volatility of both the factor process and

the idiosyncratic component, and the jumps in the factor process. To our knowledge, the

efficiency bound, the adaptiveness result, and the efficient estimator are all new results to

the literature. As a by-product of the efficient estimator, we propose a Hausman test for the

common beta null hypothesis. We demonstrate the efficiency gain of the proposed estimator

both in a numerical experiment and in an empirical example.

7 Appendix: Proofs

We first introduce some notation that will be used in the proofs. Let (κp, ξp−, ξp+)p≥1

be a collection of mutually independent random variables which are also independent of

F , such that κp is uniformly distributed on the unit interval and both ξp− and ξp+ are

bivariate standard normal variables. For each p ≥ 1, we define a 2-dimensional vector Rp as

Rp ≡
√
κpστp−ξp− +

√
1− κpστpξp+ and ρp ≡ (−β0, 1)Rp. If Assumption 5 holds, ρp has an

F -conditionally centered mixed Gaussian distribution with variance ςτp .

We also need a preliminary lemma, which is a straightforward extension of Theorem 4

in Li et al. (2017a), except that we consider estimators for integrated volatility functionals

using overlapping windows.

Lemma 1 Suppose (i) Assumptions 1 and 3 hold; (ii) there exist a sequence (Tm)m≥1 of

stopping times increasing to infinity, a sequence of convex compact subsets Km ⊂ M2 such
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that ct ∈ Km for t ≤ Tm and g (·) is a three-time continuously differentiable function on an

ε-enlargement of Km for some ε > 0; (iii)

1

3
< ρ <

1

2
,

1− ρ
2
≤ $ <

1

2
.

Then, ∆
−1/2
n (Ŝn(g)− S(g))

L-s−→MN (0, V (g)), where

V (g) ≡
∑

j,k,l,m=1

∫ T

0

∂jkg(cs)∂lmg(cs)
> (cs,jlcs,km + cs,jmcs,kl) ds.

Proof of Lemma 1. By Lemma 2 of Li and Xiu (2016), sup0≤i≤[T/∆n]−kn ‖ĉn,i − c̄n,i‖ =

op(1), where c̄n,i ≡ (kn∆n)−1
∫ i∆n+kn∆n

i∆n
csds. This uniform approximation result allows us

to use the spatial localization technique as in the proof of Theorem 2 in Li et al. (2017a). In

particular, we can assume that g (·) has bounded derivatives up to the third order without

loss of generality. The assertion of the theorem then follows from Theorem 3.2 in Jacod and

Rosenbaum (2013). Q.E.D.

7.1 Proof of Theorem 1.

Proof of Theorem 1. (a) We set Qn,ZY (w) ≡
∑

i∈I′n
w(ĉn,i−, ĉn,i, β̆n)∆n

i Z∆n
i Y , so that we

can rewrite

β̂n (v, w) =
Ŝn(vgb) +Qn,ZY (w)

Ŝn(v) +Qn,ZZ(w)
.

Hence,

∆−1/2
n

(
β̂n (v, w)− β0

)
=

∆
−1/2
n

(
Ŝn(vgb)− β0Ŝn(v)

)
+ ∆

−1/2
n (Qn,ZY (w)− β0Qn,ZZ(w))

Ŝn(v) +Qn,ZZ(w)
.

Define g(c) ≡ v(c)gb(c)−β0v(c) and note that S(g) = 0. Applying Lemma 1 and simplifying

the form of asymptotic variance with direct calculation, we deduce

∆−1/2
n Ŝn(g)

L-s−→MN
(

0,

∫ T

0

v(cs)
2 ςs
cZZ,s

ds

)
. (25)

In addition, since I ′n = I with probability approaching one, we have

∆−1/2
n (Qn,ZY (w)− β0Qn,ZZ(w)) =

∑
p∈P

w(ĉn,i(p)−, ĉn,i(p), β̆n)∆n
i(p)Zρn,p,

where ρn,p ≡ (−β0, 1)Rn,p and Rn,p ≡ ∆
−1/2
n (∆n

i(p)X −∆Xτp). Theorem 9.3.2 in Jacod and

Protter (2012) implies that ĉn,i(p)− = cτp− + op(1) and ĉn,i(p) = cτp + op(1) for each p ≥ 1.
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Proposition 1(b) in Li et al. (2017b) implies ∆n
i(p)Z = ∆Zτp + op(1). Since β̆n = β0 + op(1),

we can apply the continuous mapping theorem to deduce

w(ĉn,i(p)−, ĉn,i(p), β̆n)
P−→ w

(
cτp−, cτp , β0

)
.

By Proposition 4.4.10 in Jacod and Protter (2012), (Rn,p)p≥1 converges stably in law to

(Rp)p≥1 and, hence, (ρn,p)p≥1 converges stably in law to (ρp)p≥1. Note that the variables

(ρp)p≥1 are F -conditionally independent and, under Assumption 5, are F -conditionally cen-

tered mixed Gaussian with variance ςτp . Since the set P is finite almost surely, we have

∆−1/2
n (Qn,ZY (w)− β0Qn,ZZ(w))

L-s−→MN

(
0,
∑
p∈P

w(cτp−, cτp , β0)2
(
∆Zτp

)2
ςτp

)
. (26)

By a standard argument, we can show that the convergences in (25) and (26) hold

jointly with F -conditionally independent limits. Moreover, it is easy to show that Ŝn(v) =

S(v) + op(1) and Qn,ZZ(w) = QZZ(w) + op(1). Hence,

∆−1/2
n

(
β̂n (v, w)− β0

)
L-s−→MN (0,Σ (v, w)) ,

where

Σ (v, w) =

∫ T
0
v(cs)

2 ςs
cZZ,s

ds+
∑

τ∈T w(cτ−, cτ , β0)2 (∆Zτ )
2 ςτ

(S(v) +QZZ(w))2 .

(b) Since β̂
?

n is a special case of β̂n (v, w), the asserted convergence follows readily from

part (a). It remains to solve the minimization of Σ (v, w). We consider two generic weight

functions v and w. Below, we write vs = v (cs) and wτ = w(cτ−, cτ , β0) for notational

simplicity. Observe that

Σ (v, w)

V ?
=

(∫ T
0

v2s ςs
cZZ,s

ds+
∑

τ∈T w
2
τ (∆Zτ )

2 ςτ

)(∫ T
0

cZZ,s
ςs
ds+

∑
τ∈T

(∆Zτ )2

ςτ

)
(S(v) +QZZ(w))2

≥

(∫ T
0

v2s ςs
cZZ,s

ds
)(∫ T

0

cZZ,s
ςs
ds
)

+
(∑

τ∈T w
2
τ (∆Zτ )

2 ςτ
) (∑

τ∈T
(∆Zτ )2

ςτ

)
(S(v) +QZZ(w))2

+

2

√(∫ T
0

v2s ςs
cZZ,s

ds
)(∫ T

0

cZZ,s
ςs
ds
) (∑

τ∈T w
2
τ (∆Zτ )

2 ςτ
) (∑

τ∈T
(∆Zτ )2

ςτ

)
(S(v) +QZZ(w))2

≥

(∫ T
0
vsds

)2

+
(∑

τ∈T wτ (∆Zτ )
2)2

+ 2
(∫ T

0
vsds

) (∑
τ∈T wτ (∆Zτ )

2)
(S(v) +QZZ(w))2

= 1
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where the first inequality is due to a simple quadratic inequality and the equality is attained

if and only if(∫ T

0

v2
sςs

cZZ,s
ds

)(∑
τ∈T

(∆Zτ )
2

ςτ

)
=

(∫ T

0

cZZ,s
ςs

ds

)(∑
τ∈T

w2
τ (∆Zτ )

2 ςτ

)
;

the second inequality is due to the Cauchy–Schwarz inequality and the equality holds if and

only if v(c) is a multiple of cZZ/ς and w(cτ ) is a multiple of 1/ςτ . Taking these estimates

together, we deduce that V ? ≤ Σ (v, w) in general and the equality holds if and only if

v(c) = ϕcZZ/ς and w(cτ ) = ϕ/ςτ for some constant ϕ > 0 (recall that v and w are strictly

positive functions).

(c) By Theorem 3 of Li et al. (2017a), Ŝn(v?) =
∫ T

0
(cZZ,s/ςs)ds+op(1). A similar argument

to part (a) yields Qn,ZZ(w?) = QZZ(w?) + op(1). The assertion of part (c) readily follows

from the convergence results. Q.E.D.

7.2 Proof of Theorem 2.

Proof of Theorem 2. We consider a sequence Ωn of events defined by

Ωn =

{
For every 1 ≤ i ≤ [T/∆n], ((i− 1)∆n, i∆n]

contains at most one jump of Z.

}
.

Under the maintained assumptions, the process Z has finitely active jumps. Hence, P(Ωn)→
1 and we can restrict our calculation below on Ωn without loss of generality.

We denote the log likelihood ratio by

Ln(h) ≡ log
dP n

β0+∆
1/2
n h

dP n
β0

, h ∈ R.

Let G denote the σ-field generated by the processes (b, cZZ , ς, JZ , ε). Given the maintained

assumptions, we see that, under the law P n
β , the observed returns (∆n

iX)i≥0 are indepen-

dently normally distributed conditional on G. Using this fact, we can obtain an explicit

expression for Ln(h). For notational simplicity, we denote

zn,i ≡ ∆−1/2
n

∫ i∆n

(i−1)∆n

√
cZZ,sdWZ,s, yn,i ≡ ∆−1/2

n

∫ i∆n

(i−1)∆n

√
ςsdWε,s,

c̄n,i ≡ ∆−1
n

∫ i∆n

(i−1)∆n

cZZ,sds, ς̄n,i ≡ ∆−1
n

∫ i∆n

(i−1)∆n

ςsds.

Some straightforward (although somewhat cumbersome) algebra yields

Ln(h) = hψ̃n −
h2

2
Γn, (27)
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where

ψ̃n ≡
[T/∆n]∑
i=1

yn,i

(
∆n
i JZ + ∆

1/2
n zn,i

)
ς̄n,i

, Γn ≡
[T/∆n]∑
i=1

(
∆n
i JZ + ∆

1/2
n zn,i

)2

ς̄n,i
.

It remains to analyze the asymptotic properties of ψ̃n and Γn. We decompose ψ̃n = ψ̃
′
n+ ψ̃

′′
n,

where ψ̃
′
n and ψ̃

′′
n are sums over the subset {i : ∆n

i JZ 6= 0} and its complement, respectively.

Similarly, we decompose Γn = Γ′n + Γ′′n.

We now proceed to derive the joint convergence in law of (ψ̃
′
n, ψ̃

′′
n) under the G-conditional

probability. We note that ∆n
i JZ and ς̄n,i are G-measurable, and (zn,i, yn,i) are G-conditionally

independent with conditional distributions given by

zn,i|G ∼ MN (0, c̄n,i) , yn,i|G ∼ MN (0, ς̄n,i) .

In particular, ψ̃
′
n and ψ̃

′′
n are G-conditionally independent, so it is enough to derive the

marginal convergence of each sequence. Since the jumps are finitely active, it is easy to see

that

ψ̃
′
n =

∑
i:∆n

i JZ 6=0

yn,i∆
n
i JZ

ς̄n,i
+ op(1), ψ̃

′′
n = ∆1/2

n

[T/∆n]∑
i=1

yn,izn,i
ς̄n,i

+ op(1).

By applying the Lindeberg–Lévy central limit theorem under the G-conditional probability,

we deduce the following G-conditional convergence in law

ψ̃
′
n
L−→MN

(
0,
∑
τ∈T

∆Z2
τ

ςτ

)
, ψ̃

′′
n
L−→ MN

(
0,

∫ T

0

cZZ,s
ςs

ds

)
.

From here, we deduce the following convergence under the G-conditional probability,

ψ̃n
L−→ ψ̃ ∼MN

(
0,

∫ T

0

d[Z,Z]s
ςs

)
. (28)

Similarly, we can derive the convergence in probability for Γn:

Γn
P−→ Γ ≡

∫ T

0

d[Z,Z]s
ςs

. (29)

Since Γn is G-measurable, (28) and (29) imply that (ψ̃n,Γn) converges in law to (ψ̃,Γ). From

here, the assertion of the theorem readily follows (recall (27)). Q.E.D.
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7.3 Proof of Proposition 1.

The proof of Proposition 1 relies on two auxiliary lemmas. Lemma 2 describes the joint

convergence for a generic weighted common beta estimator and the adaptive estimator. In

particular, this lemma shows clearly that β̂n (v, w)− β̂
?

n is asymptotically orthogonal to β̂
?

n.

Lemma 3 establishes the probability limit of β̂
?

n under the alternative hypothesis (i.e., the

common beta assumption does not hold).

Lemma 2 Suppose that the conditions in Theorem 1 hold. Then, in restriction to Ω0, we

have

∆−1/2
n

(
β̂n (v, w)− β0, β̂

?

n − β0

)
L-s−→MN

(
0,

(
Σ (v, w) V ?

V ? V ?

))
. (30)

Proof of Lemma 2. Recall that Ŝn (v) = S (v) + op(1) and Qn,ZZ (w) = QZZ (w) + op(1).

Hence, the left-hand side of (30) has the asymptotic representation ζn,1 + ζn,2 + op(1), where

ζn,1 ≡

(
∆
−1/2
n Ŝn (vgb − β0v)

S (v) +QZZ (w)
,
∆
−1/2
n Ŝn (v?gb − β0v

?)

S (v?) +QZZ (w?)

)>
,

ζn,2 ≡

(
∆
−1/2
n (Qn,ZY (w)− β0Qn,ZZ (w))

S (v) +QZZ (w)
,
∆
−1/2
n (Qn,ZY (w?)− β0Qn,ZZ (w?))

S (v?) +QZZ (w?)

)>
.

Next, we proceed to derive the joint stable convergence in law for ζn,1 and ζn,2. Since the

central limit theorem for ζn,2 is driven completely by the Brownian motion in finitely many

jump intervals, a usual argument implies that ζn,1 and ζn,2 are asymptotically F -conditionally

independent. Hence, it suffices to derive the marginal convergence of ζn,1 and ζn,2.

We set g (·) = (v (·) gb (·)− β0v (·) , v? (·) gb (·)− β0v
? (·))>. In restriction to Ω0, S(g) = 0.

By Lemma 1,

∆−1/2
n Ŝn(g)

L-s−→MN (0, V (g)) ,

where the asymptotic covariance matrix is given by (after some straightforward algebra)

V (g) =

(∫ T
0
v(cs)

2 ςs
cZZ,s

ds
∫ T

0
v(cs)ds∫ T

0
v(cs)ds

∫ T
0

cZZ,s
ςs
ds

)
.

From here, we deduce

ζn,1
L-s−→MN (0,Σ1) , (31)
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where

Σ1 =


∫ T
0 v(cs)2

ςs
cZZ,s

ds

(S(v)+QZZ(w))2
S(v)

(S(v?)+QZZ(w?))(S(v)+QZZ(w))

S(v)
(S(v?)+QZZ(w?))(S(v)+QZZ(w))

∫ T
0

cZZ,s
ςs

ds

(S(v?)+QZZ(w?))2

 .

Turning to ζn,2, we note that with probability approaching one,

ζn,2 =
∑
p∈P

w(ĉn,i(p)−,ĉn,i(p),β̆n)
S(v)+QZZ(w)

1/ς̂n,i(p)
S(v?)+QZZ(w?)

∆n
i(p)Zρn,p.

Recall from the proof of Theorem 1 that w(ĉni(p)−, ĉ
n
i(p), β̆n)

P−→ w(cτp−, cτp , β0) and (ρn,p)p≥1

converges stably in law to (ρp)p≥1, where (ρp)p≥1 are F -conditionally independent. Since P
is finite almost surely, we deduce from the property of stable convergence in law that

ζn,2
L-s−→

∑
p∈P

 w(cτp−,cτp ,β0)
S(v)+QZZ(w)

1/ςτp
S(v?)+QZZ(w?)

∆Zτpρp.

Under Assumption 5, ρp is conditionally centered mixed Gaussian with variance ςτp for each

p ∈ P . Hence,

ζn,2
L-s−→MN (0,Σ2) , (32)

where

Σ2 ≡


∑
p∈P w(cτp−,cτp ,β0)

2
(∆Zτp)

2
ςτp

(S(v)+QZZ(w))2
QZZ(w)

(S(v?)+QZZ(w?))(S(v)+QZZ(w))

QZZ(w)
(S(v?)+QZZ(w?))(S(v)+QZZ(w))

∑
p∈P(∆Zτp)

2
/ςτp

(S(v?)+QZZ(w?))2

 .

Finally, we note that V ? = (S (v?) +QZZ (w?))−1. The assertion of the lemma readily

follows from (31) and (32). Q.E.D.

Lemma 3 Suppose that the conditions in Theorem 1 hold. Then, in the general case without

imposing the common beta hypothesis,

β̂
?

n
P−→ β̄

? ≡

(∫ T

0

d〈Zc, Zc〉s
ςs

βcs +
∑
τ∈T

(∆Zτ )
2

ςτ
βdτ

)/∫ T

0

d [Z,Z]s
ςs

,

β̂
BNS

n
P−→ β̄

BNS ≡

(∫ T

0

d〈Zc, Zc〉sβcs +
∑
τ∈T

(∆Zτ )
2 βdτ

)/∫ T

0

d [Z,Z]s =
[Y, Z]T
[Z,Z]T

,

where βcs = cZY,s/cZZ,s and βdτ ≡ ∆Yτ/∆Zτ , τ ∈ T .
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Proof of Lemma 3. For each p ≥ 1, let βn,i(p) ≡ ∆n
i(p)Y/∆

n
i(p)Z. With probability ap-

proaching one, we have

β̂
?

n =
Ŝn(v?gb) +

∑
p∈P βn,i(p)

(
∆n
i(p)Z

)2

/ς̂n,i(p)

Ŝn(v?) +Qn,ZZ(w?)
.

Note that the following convergence holds on the entire space

Ŝn(v?gb)
P−→ S (v?gb) , Ŝn(v?)

P−→ S (v?) , ς̂n,i(p)
P−→ ςτp ,

Qn,ZZ(w?)
P−→
∑
τ∈T

(∆Zτ )
2 /ςτ , ∆n

i(p)Z
P−→ ∆Zτp , βn,i(p)

P−→ βτp .

In addition, note that βcs = gb (cs). The first assertion readily follows from these convergence

results. The second convergence follows from almost the same argument. Q.E.D.

Proof of Proposition 1. (a) Note that β̂
BNS

n is a special case of β̂n (v, w) with v (c) = cZZ

and w (·) = 1. Applying Lemma 2, we get

∆−1/2
n

(
β̂
BNS

n − β0, β̂
?

n − β0

)
L-s−→MN

(
0,

(
V BNS V ?

V ? V ?

))
,

where V BNS is defined in (22). This further implies that (recalling Ξ = V BNS − V ?),

∆−1/2
n

(
β̂
?

n−β̂
BNS

n

)
L-s−→MN (0,Ξ) .

Similar to the proof of Theorem 1(c), we can show that

V̂ BNS
n

P−→ V BNS,

and hence, Ξ̂n
P−→ Ξ. The assertion of part (a) then follows from these convergence results.

(b) The size property is implied by part (a). We note that Ξ̂n
P−→ Ξ holds over the whole

sample space. By Lemma 3, the |T̂n| diverges in probability to +∞ whenever β̄
BNS 6= β̄

?
.

The power statement then readily follows. Q.E.D.
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