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Abstract

The volatility of financial asset returns displays pronounced variation over the trading
day. Our goal is nonparametric inference for the average intraday volatility pattern,
viewed as a function of time-of-day. The functional inference is based on a long
span of high-frequency return data. Our setup allows for general forms of volatil-
ity dynamics, including time-variation in the intraday pattern. The estimation is
based on forming local volatility estimates from the high-frequency returns over over-
lapping blocks of asymptotically shrinking size, and then averaging these estimates
across days in the sample. The block-based estimation of volatility renders the error
in the estimation due to the martingale return innovation asymptotically negligible.
As a result, the centered and scaled calendar volatility effect estimator converges to
a Gaussian process determined by the empirical process error associated with esti-
mating average volatility across the trading day. Feasible inference is obtained by
consistently estimating the limiting covariance operator. Simulation results corrob-
orate our theoretical findings. In an application to S&P 500 futures data, we find
evidence for a shift in the intraday volatility pattern over time, including a more pro-
nounced role for volatility outside U.S. trading hours in the latter part of the sample.
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1 Introduction

Time-varying volatility is a ubiquitous feature of financial data and a large body of work has

developed parametric and nonparametric techniques for studying volatility dynamics. The

primary focus of the earlier literature was on daily and lower frequency volatility variation.

However, volatility exhibits systematic and dramatic intraday changes too, with volatility

at the market open and close being significant higher, on average, than in the middle of the

trading day, see, e.g., [2] and the references therein. Given these pronounced intraday, or

diurnal, volatility patterns and their importance for inference from high-frequency return

data, our goal is functional inference for average volatility, viewed as a function of time-

of-day. Our analysis is conducted in a general setting accommodating, in particular, time-

varying intraday periodicity in volatility, evidence for which is provided in [5].

Conducting functional inference for volatility is intricate because volatility is not directly

observable. We use high-frequency returns to form estimates of the volatility process which,

in turn, can be used to study the calendar effects. In particular, exploiting that volatility

remains approximately constant over short intervals, with high probability, we form local

volatility estimates from blocks of high-frequency returns of asymptotically shrinking time

span. We then take time-series averages of the recovered volatility process for the trading

days within the sample to form an estimate of the average intraday volatility function.

We derive the asymptotic behavior of our statistic in the space of L2 functions over

time-of-the-day. This reflects a joint asymptotic setting: the mesh of the observation time

grid shrinks jointly with the increase in the time span of the data. We assume initially that,

while the intraday volatility pattern may change stochastically over time, it does so in a

stationary and ergodic way. In this scenario, our estimate of the average intraday volatility

function is consistent and asymptotically normal. The limiting process is Gaussian and
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determined by the empirical process error associated with measuring average volatility

over the trading day from a sample of daily observations of the intraday volatility process.

We further extend the above analysis to a setting in which the intraday periodic com-

ponent of volatility shifts gradually over time in a nonstationary way. In this case, our

intraday volatility calendar effect estimator recovers a mixture of intraday periodic func-

tions, with the weights assigned to the different periodic functions being determined by the

fractions of the sample corresponding to the different intraday periodic volatility regimes.

Consequently, the limit distribution of our estimator in this nonstationary setup provides

a natural generalization of the one described above in the stationary case.

The error associated with measuring volatility from local blocks of high-frequency in-

crements is asymptotically negligible, provided the time span of the data grows at a slower

rate than the square of the sampling frequency (the number of times we sample during a

trading day). There are two leading components for the error associated with the recovery

of volatility from returns. One is a bias due to the fact that the latent volatility process

can change over the local window used for its estimation. The second is a centered error

associated with the martingale component of the price. We show that the length of the

local window controls the size of these two types of error, with a bias-variance tradeoff

determining the optimal window length for forming local volatility estimates. This window

size is smaller than the optimal one for estimating spot volatility, see e.g., [21]. This is due

to the current long-span asymptotic setting, which reduces the size of the centered error

component in measuring volatility in our inference procedures.

For conducting feasible inference, we develop a consistent estimator of the covariance

operator using the local volatility proxies. This allows us to quantify the precision in

estimating the intraday volatility function and construct associated confidence intervals.

Importantly, the newly developed limit theory also enables us to check for nonstationary
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trends in the intraday volatility pattern by testing for equality of the intraday volatility

functions recovered from non-overlapping subsamples (each of asymptotically increasing

time span). Such tests feature a non-standard infinite mixture of independent chi-squared

random variables. We develop an easy-to-implement simulation-based method to evaluate

corresponding critical test values using our estimate of the covariance operator for the

limiting distribution of the statistics. Extensive Monte Carlo simulations corroborate our

theoretical results and document good finite-sample size and power of the test.

We go on to estimate the average intraday volatility function and associated pointwise

confidence bands using round-the-clock high-frequency return observations for the e-mini

S&P 500 futures contract over 2005–2020. In addition, we test for nonstationarity of the

intraday calendar effects across the early, middle and later parts of the sample. The average

intraday volatility curve is generally obtained with good precision, but the estimation errors

tend to rise in concert with the intraday level of volatility. Our test for a stationary intraday

volatility calendar effect is rejected, providing strong indication of a shift over time towards

a proportionally larger contribution to overall volatility from regions outside the regular

U.S. trading day, and especially the Asian zone. Furthermore, there is evidence of enhanced

asymmetry during active U.S. trading, with volatility spiking even more dramatically going

into the market close in recent years than early in the sample. We reiterate that our

null hypothesis accommodates (stationary) variability in the intraday volatility calendar

effect. Hence, this represents new formal evidence for a nonstationary shift in the volatility

calendar effect that is conceptually distinct from mere stochasticity in the latter.

The current paper is related to several strands of existing work. There is a large body

of work documenting calendar volatility effects and testing various features of it. Early

empirical studies documenting a U-shaped diurnal pattern in volatility can be found in

[34], [17], [28] and [6]. [2] and [32] model the intraday volatility pattern parametrically via
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a multiplicative specification of the volatility process as a deterministic function of time-

of-day and a standard stationary volatility component. [10] examine various parametric

and nonparametric calendar-effect estimation methods in a setting with price jumps and

show that their use improves jump detection. [13] test whether a constant deterministic

function of time-of-day can explain all variation of volatility across the trading day, while

[5] test whether the intraday volatility pattern is time varying but stationary. Contrary to

the above-cited work, we develop functional limit results for the average intraday volatility

curve without imposing parametric assumptions or assuming constancy of the intraday

volatility pattern across time. Thus, unlike existing work, our approach enables us to test

for genuine nonstationarity of the intraday calendar effect in volatility.

More broadly, our work relates to the problem of nonparametric measurement of re-

alized return variation. Within an in-fill asymptotic setting, formal inference procedures

have been developed for the components of the return process, including diffusive volatility,

jump arrival and jump sizes along with the associated microstructure noise process, see,

e.g., [8], [23], [1], [26], and [15], as well as [30] for an overview. However, the pronounced

(and nonstationary) volatility calendar effects require a different approach, as a non-trivial

(asymptotically increasing) time span is necessary for identification of such recurrent pat-

terns in the data. Providing such estimators is important because the economic origins

of the periodic and nonperiodic volatility components are distinct, motivating the desire

to estimate them separately, see, e.g., [7]. In addition, for problems like identification of

jumps from high-frequency returns, accounting for the intraday volatility periodicity can

provide nontrivial finite-sample improvements, see e.g., [10]. As such, we fill a notable gap

in the literature by developing inference for the intraday volatility curves via formal joint

in-fill and long-span asymptotic methods.

Finally, our paper relates to a large and growing literature dealing with functional time
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series, see, e.g., [9], [18], [19] for a review of the existing statistical methods and [11], [12],

[22], [24], among others, for various applications. The major difference between our paper

and this strand of work is that our process of interest, the intraday volatility curve, is

latent and has to be inferred from the high-frequency return data. [27] consider functional

data analysis of intraday volatility from high-frequency returns, but their inference relies on

repeated sampling of the volatility process, while we rely on one realization of the volatility

path for estimation. Moreover, [27] require a Lipschitz-continuous volatility process, while

we work in the far more general assumption of a jump-diffusive volatility process. The

latter is the commonly adopted setting for modern arbitrage-free asset pricing.

The rest of the paper is organized as follows. We introduce the setup and assumptions in

Section 2, and define our calendar-effect estimator in Section 3.1. The functional asymptotic

theory and a formal test for nonstationarity of the intraday volatility curve are developed

in Sections 3.2-3.4. The asymptotic behavior of the estimator in a nonstationary setting

is analysed in Section 3.5. Feasible inference methods are provided in Section 4. A finite-

sample bias-variance tradeoff analysis is presented in Section 5. Section 6 contains our

empirical analysis. Auxiliary results, a simulation study and all proofs are provided in a

Supplementary Appendix.

2 Setup and Assumptions

We assume all processes and random variables are defined on a common filtered probabil-

ity space (Ω,F , (F (t))0≤t≤T , P ), with the log price process X(t) of the financial asset of

interest being governed by an Itô semimartingale of the form,

X(t) = X(0) +

∫ t

0

µ(s) ds +

∫ t

0

σ(s) dW (s) +

∫ t

0

∫
R
x ν(ds, dx), (1)
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where µ(t) and σ(t) are adapted càdlàg processes, W (t) is a standard Brownian motion, ν

is an integer-valued random measure counting the jumps in X with compensator χ(t) dt⊗

F (dx), χ(t) is an adapted càglàd process and F is a measure on R. The stochastic volatility

σ(t) follows another Itô semimartingale,

σ2(t) = σ2(0) +

∫ t

0

µ̃(s) ds +

∫ t

0

σ̌(s) dW (s) +

∫ t

0

σ̃(s) dW̃ (s) +

∫ t

0

∫
R
x ν̃(ds, dx), (2)

where µ̃(t), σ̃(t) and σ̌(t) are adapted càdlàg processes, W̃ (t) is a standard Brownian motion

independent from W (t). Moreover, ν̃ is the counting jump measure of σ2 with compensator

χ̃(t) dt⊗ F̃ (dx), where χ̃(t) is an adapted càglàd process, and F̃ is a measure on R.

Most models used in applied work are covered by the volatility specification in (2), with

the notable exception of volatility models driven by fractional Brownian motion and/or

infinite activity jumps. In the Supplementary Appendix, we extend our analysis to cover

such much more general volatility specifications.

Our focus is on the calendar effect in volatility. We assume that,

E
(
σ2(t)

)
= g (t− btc) ,

for some positive bounded function g on [0, 1] with g(0) = g(1). Hence, the volatility

process may be nonstationary due to “calendar” effects. Our goal is to estimate,

f(κ) =
g(κ)∫ 1

0
g(u)du

, for κ ∈ [0, 1], (3)

which we henceforth refer to as the volatility calendar effect. We define η :=
∫ 1

0
g(u)du

for later use. The standard approach of modeling calendar effects in volatility is through

a decomposition, σ2(t) = c(t − btc) σ̆2(t), where c(t − btc) is a deterministic function and
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σ̆2(t) a stationary process. However, this rules out time variation in the calendar effect,

which is documented in [5]. Our general setup accommodates such time variation.

We now turn to our assumptions, starting with one concerning the existence of moments.

Assumption I. (i) The drift term µ(t) satisfies E |µ(t)− µ(s)|2 ≤ C |t− s|, for any

s, t ∈ [0,∞) and some positive constant C that does not depend on s and t.

(ii) supt∈R+
Ee|µ(t)| + supt∈R+

Ee|σ(t)| + supt∈R+
Ee|χ(t)| < ∞. Moreover, F (R) < ∞,

F̃ (R) <∞,
∫
R |x|

2F̃ (dx) <∞, and,

sup
t∈R+

E |µ̃(t)|8 + sup
t∈R+

E |σ̌(t)|8 + sup
t∈R+

E |σ̃(t)|8 + sup
t∈R+

E |χ̃(t)|8 <∞.

Assumption I(i) is a weak assumption that is satisfied if the drift itself is an Itô semi-

martingale. In Assumption I(ii), we assume that jumps in price and volatility are of finite

activity. This is imposed mainly for simplicity, but still covers a lot of popular models in

applied work. This assumption is further relaxed in the Supplementary Appendix. The

moment conditions in Assumption I(ii) are stronger than required, but streamline the ex-

position of our theoretical results. In this regard, note that X(t) is the log-price. Hence,

the existence of exponential moments in Assumption I(ii) is a relatively weak condition

that typically is satisfied for exponentially-affine models.

Our next assumption concerns stationarity and ergodicity of the volatility process.

Assumption II. For any positive integer i and κ ∈ [0, 1), σ2 (i− 1 + κ) is a function

(depending on κ) of Y (i − 1 + κ), where {Y (t)}t∈R+ is a (multivariate) Markov process,

which is stationary, ergodic and α-mixing with coefficient αs = O(s−q−ι) for some q > 0,

positive constant ι (which can be arbitrarily close to zero), where for Gt = σ (Y (u), u ≤ t),
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G t = σ (Y (u), u ≥ t) and s > 0, we denote,

αs = sup
t≥0

sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ Gt, B ∈ G t+s

}
.

Assumption II covers a wide range of scenarios including, for instance, the case where

the volatility takes the following mixture form,

σ2(t) = f1(t− btc) σ̆2
1(t) + f2(t− btc) σ̆2

2(t),

for σ̆2
1(t) and σ̆2

2(t) being stationary processes and some deterministic functions f1(κ) and

f2(κ), defined on [0, 1]. This setup can accommodate the situation in which the calendar

effect in volatility can vary over time, e.g., as a function of the current level of volatility.

3 Estimation and Inference

3.1 Estimating the Intraday Volatility Calendar Effect

We now present our estimator for the volatility calendar effect function f(κ) defined in

equation (3). We assume that log price process X(t) is discretely observed and observation

times are equally spaced over [0, T ]. In each period [i− 1, i], i = 1, 2, ..., T , there are n+ 1

observation times (ti,j)0≤j≤n with i− 1 ≡ ti,0 < ti,1 < . . . < ti,j < . . . < ti,n ≡ i, and,

ti,j = i− 1 + j/n with ∆ = ti,j − ti,j−1 = 1/n, for j = 1, 2, ..., n.

Note that in the notation above, ti,n = ti+1,0. We further adopt the convention that ti,k =

ti−1,n+k for i ≥ 2 and −n ≤ k ≤ 0. To approximate spot volatilities, using observations

within a local window of some time-of-period κ ∈ [0, 1], we consider intervals of the form
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[ti,jκ−`, ti,jκ ], where ` is an integer and,

jκ = bκnc .

We define the high-frequency log returns as follows,

∆n
i,jX = X (ti,j)−X (ti,j−1) , for i = 1, 2, . . . , T , j = −n+ 1, . . . , n and ti,j−1 ≥ 0.

In all cases except for i = 1 and κ ∈ [0, `∆), the following quantities are used to approximate

the spot volatility σ2(i− 1 + κ) and the mean of the integrated volatility, respectively,

σ̂2
i,κ =

1

`∆

jκ∑
k=jκ−`+1

(
∆n
i,kX

)2
1{|∆n

i,kX|≤un}, η̂ =
1

T

T∑
i=1

n∑
j=1

(
∆n
i,jX

)2
1{|∆n

i,jX|≤un}, (4)

where un = β∆$, for some $ ∈ (0, 1/2) and constant β > 0. For initialization, we simply

set σ̂2
1,κ ≡ σ̂2

1,`∆ for κ ∈ [0, `∆). Based on these quantities, we propose a general estimator

of the volatility calendar effect as follows,

f̂(κ) =
1

T

T∑
i=1

σ̂2
i,κ

/
η̂ . (5)

We shall establish asymptotic theory that takes place in the Hilbert space L2,

L2 =

{
k : [0, 1]→ R

∣∣∣∣∫
[0,1]

k(u)2du <∞
}
.

We denote the inner product and the norm on L2 by 〈·, ·〉 and ‖ · ‖, respectively. Through-

out the paper, we adopt the convention that xn � yn means 1/C ≤ xn/yn ≤ C for some

positive constant C.
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3.2 Consistency

We start by showing consistency of f̂(κ). Unlike the existing literature, the consistency is

established in a functional sense rather than pointwise.

Theorem 1. Assume that Assumptions I(ii) and II with q = 1 hold. Let ` → ∞ with

`∆→ 0, and moreover, suppose T � nb and ` � nc, for some nonnegative exponents b and

c, which satisfy the following condition,

b+ c > 1− 4$ , (6)

where 0 < $ < 1/2. Then, we have, as n→∞,

‖ f̂(κ)− f(κ) ‖ P−→ 0 .

The lower bound condition (6) is imposed on b + c to ensure that the squared difference

between the spot volatility approximation with price-jump-truncation and that based on

the continuous part of the price process without price-jump-truncation is asymptotically

negligible. This condition is very weak and trivially satisfied, when $ is greater than 1/4.

3.3 Convergence in Distribution

We require additional notation to state our formal functional CLT result. First, we define,

Ai (κ) = σ2 (i− 1 + κ) − f(κ)

∫ i

i−1

σ2(t) dt, κ ∈ [0, 1], i = 1, 2, . . . , T. (7)

We then set,

C(κ, κ′) = 1/η2

∞∑
h=−∞

φκ,κ′(h), κ, κ′ ∈ [0, 1] , (8)
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where η =
∫ 1

0
g(u)du, φκ,κ′(h) = Cov (A1(κ), A1+h(κ

′)), if h is a nonnegative integer; and

φκ,κ′(h) = φκ′,κ(−h), if h is a negative integer.

Theorem 2. Suppose ` → ∞ with `∆ → 0 and Assumptions I and II with q = 3 hold.

Moreover, let T � nb and ` � nc, for some nonnegative exponents b and c, which satisfy

the following conditions,

0 < b < 4$ and 1− 4$ < c < 1− b/2, (9)

where 0 < $ < 1/2. Then, as n→∞,

√
T
(
f̂(κ)− f(κ)

)
d−→ GK in L2,

where GK is an L2-valued zero-mean Gaussian process with covariance operator K defined

through the kernel C(κ, κ′) in (8) as follows,

K y(κ′) =

∫
[0,1]

C(κ, κ′) y(κ) dκ, ∀y ∈ L2 .

The convergence rate for f̂(κ) is naturally determined by the time span of the data. Con-

dition (9) imposes restrictions on the asymptotic order of n relative to T . In evaluating

the severity of this condition, we recall that $ – determining the truncation threshold for

removing price jumps – is optimally set to a value close to 1/2, see e.g., [16]. In this case,

b may take any value in (0, 2), implying Theorem 2 imposes very weak restrictions on the

rate at which we sample intraday relative to the time span of the data. For example, n may

grow at a rate slower or faster than T . This robustness to the size of n and T is contrary

to related joint in-fill and long-span asymptotic results, which require T/n → 0, see e.g.,

[33]. We discuss the optimal choice of ` in Section 5.

The covariance kernel C(κ, κ′) includes autocovariances of all lags in order to accom-
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modate the time-series persistence in volatility. We note, however, that the asymptotic

variance of f̂(κ) is determined by that of sample averages of Ai(κ), which only depend on

changes in volatility over unit time intervals (trading days). Hence, even if σ2(t) is very

persistent, Ai(κ) typically displays limited dependence over time. As a result, one can

estimate C(κ, κ′) well using only a small number of lags.

The following corollary derives the limiting distribution of the norm ‖ f̂(κ)− f(κ) ‖.

Corollary 3. If all Assumptions in Theorem 2 hold, then as n→∞,

T ‖ f̂(κ)− f(κ) ‖2 d−→ Z,

where Z =‖ GK ‖2 is a weighted sum of independent χ2(1) variables, defined on an extension

of the original probability space and independent from F . The weights are given by the

eigenvalues (πi)i≥1 of the covariance operator K in Theorem 2.

3.4 Testing for Nonstationary Intraday Volatility Periodicity

We now develop a formal test for nonstationarity in the intraday calendar effect. Specifi-

cally, it is a test for equality of the estimated intraday volatility curve versus the alternative

of a shift in the calendar functional across two separate time periods, using the theory de-

tailed in Section 3.3. Letting fP(κ) and fP′(κ) denote the true intraday calendar effects for

the non-overlapping periods P and P′, the null and alternative hypotheses take the form,

H0 : ‖ fP(κ)− fP′(κ) ‖= 0 vs. H1 : ‖ fP(κ)− fP′(κ) ‖> 0. (10)

We denote the number of trading days within P and P′ as T and T ′, respectively. In

what follows, we further assume, for r ∈ (0,∞), that, T
T ′
→ r. Motivated by Corollary
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3, we introduce the test statistic, T ‖ f̂P(κ) − f̂P′(κ) ‖2, where f̂P(κ) and f̂P′(κ) denote

the calendar effect estimators for time periods P and P′. Because we split data into seg-

ments over non-overlapping time periods,
√
T (f̂P(κ) − fP(κ)) and

√
T ′ (f̂P′(κ) − fP′(κ))

are asymptotically independent. Therefore, under the null hypothesis, the test statistic

T ‖ f̂P(κ)− f̂P′(κ) ‖2 has the following limiting distribution,

M = ‖ GK(κ)−
√
r G ′K(κ) ‖2,

where GK and G ′K are independent Gaussian processes with the identical covariance operator

K defined in Theorem 2. We summarize the above results formally in the following theorem.

Theorem 4. Suppose that all Assumptions in Theorem 2 hold for non-overlapping time pe-

riods P and P′ with numbers of trading days T and T ′, respectively. Moreover, let T
T ′
→ r,

for some r ∈ (0,∞). Then, under the null hypothesis that ‖ fP(κ)− fP′(κ) ‖= 0, we have

T ‖ f̂P(κ)− f̂P′(κ) ‖2 d−→ M,

whereM =‖ GK(κ)−
√
r G ′K(κ) ‖2 and GK and G ′K are independent Gaussian processes with

the identical covariance operator K defined in Theorem 2.

Now, testing H0 versus H1 is easy. Letting C1−α denote a consistent estimate of the

1−α quantile ofM, which is asymptotically bounded under the alternative, we define the

rejection region as,

R =
{
T ‖ f̂P(κ)− f̂P′(κ) ‖2 ≥ C1−α

}
. (11)

The construction of C1−α is provided in Section 4.

Given Theorem 4, we have,

P (R|H0) → α and P (R|H1) → 1.
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3.5 Limit Behavior of the Estimator in a Nonstationary Setting

What happens with our estimator f̂(κ) when the intraday volatility calendar effect is

nonstationary? In this section, we answer this question for a type of nonstationarity which

we think is most relevant from an empirical point of view. Mainly, one in which the

intraday periodic component of volatility shifts gradually over time. To this end, we make

the following assumption for the latent volatility process.

Assumption I-NS. Assume that the price process follows (1) and satisfies Assumption I.

The latent volatility process σ2(t) follows

σ2(t) = gdte(t− btc)σ̆2(t), (12)

where σ̆2(t) satisfies (2) and Assumptions I and II (with σ2(t) in (2) and Assumptions I

and II being replaced with σ̆2(t)) and

gdte(t− btc) := g(t− btc) + γ(t− btc)hτ,n (dte/T ) , (13)

where hτ,n(u) is a bounded and continuous function on [0, 1] satisfying

hτ,n(u) =

 0 when u ∈ [0, τ − εn],

1 when u ∈ [τ + εn, 1],

for some 0 < τ < 1, [τ−εn, τ+εn] ⊂ [0, 1] and
√
Tεn → 0, g and γ are defined on [0, 1] such

that g̃(t) := g(t−btc) and γ̃(t) := γ(t−btc) are differentiable with bounded first derivatives

on [0,∞). Without loss of generality, we further assume that Eσ̆2(t) ≡ 1.

In this setting the intraday volatility periodic component, gdte(t−btc) is nonstationary,
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with dynamics similar to that of [20]. We note that hτ,n(u)→ hτ (u) := 1{u>τ} everywhere

excluding the point u = τ as n → ∞. While hτ (u) corresponds to the change point

alternative of [20], hτ,n(u) allows for a smooth change of the diurnal pattern in volatility.

We shall derive an asymptotic theory for the calendar effect estimator f̂(κ) defined in

equation (5) under the nonstationarity setup (12) and (13) for the latent volatility process.

Under the above nonstationarity setup, we need to redefine f(κ) as follows,

f(κ) :=
g(κ) + (1− τ)γ(κ)

η
, for κ ∈ [0, 1], (14)

where η is redefined as η :=
∫ 1

0
g(u)du + (1 − τ)

∫ 1

0
γ(u)du. That is, our estimator now

estimates a mixture of g and g + γ.

In order to present the asymptotic theory in the nonstationary setting, we need some

additional notation. First, we redefine Ai(κ) as,

Ai(κ) := g(κ) (σ̆2(i− 1 + κ)− 1)− f(κ)

∫ i

i−1

g(t− btc)(σ̆2(t)− 1) dt, (15)

and define Bi(κ) as,

Bi(κ) := gs(κ) (σ̆2(i− 1 + κ)− 1)− f(κ)

∫ i

i−1

gs(t− btc)(σ̆2(t)− 1) dt, (16)

with the shorthand notation gs(κ) = g(κ) + γ(κ). We then redefine C(κ, κ′) as,

C(κ, κ′) := τ CA(κ, κ′) + (1− τ)CB(κ, κ′), (17)
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where,

CA(κ, κ′) :=
1

η2

(
EA1(κ)A1(κ′) +

∞∑
h=1

(EA1(κ)A1+h(κ
′) + EA1+h(κ)A1(κ′))

)
,

and

CB(κ, κ′) :=
1

η2

(
EB1(κ)B1(κ′) +

∞∑
h=1

(EB1(κ)B1+h(κ
′) + EB1+h(κ)B1(κ′))

)
.

We are now ready to present the asymptotic theory for our calendar effect estimator under

Assumption I-NS.

Theorem 5. Assume that Assumption I-NS with q = 3 holds. Moreover, let T � nb and

` � nc, for some nonnegative exponents b and c, which satisfy the following conditions,

0 < b < 4$ and 1− 4$ < c < 1− b/2,

where 0 < $ < 1/2. Then, as n→∞,

√
T
(
f̂(κ)− f(κ)

)
d−→ GK in L2,

where f is given in (14), GK is an L2-valued zero-mean Gaussian process with covariance

operator K defined through the kernel C(κ, κ′) in (17) as follows,

K y(κ′) =

∫
[0,1]

C(κ, κ′) y(κ) dκ, ∀y ∈ L2 .

4 Feasible Inference

To render Theorem 2, and hence Corollary 3 as well as the test in Section 3.4 feasible,

we need to estimate the covariance operator K. Towards this end, for each κ ∈ (0, 1] and
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i ∈ {1, 2, ..., T}, we denote,

Âi(κ) = σ̂2
i,κ − f̂(κ)

n∑
j=1

(
∆n
i,jX

)2
1{|∆n

i,jX|≤un}.

Notice that the covariance operator K is defined through the covariance kernel C(κ, κ′) in

equation (8), which is the autocovariance function of the limiting Gaussian process GK in

Theorem 2. Hence, we estimate K by estimating C(κ, κ′). To do this, notice further that

from equation (8), we can rewrite C(κ, κ′) as follows,

C(κ, κ′) =
1

η2

∞∑
h=−∞

Cov (A1(κ), A1+h(κ
′)) .

We have already provided a consistent estimator of η in equation (4). It remains to

find consistent estimators of the covariances {Cov (A1(κ), A1+h(κ
′))}h∈Z for the sequences

(Ai(κ))i≥1 and (Ai(κ
′))i≥1, that are stationary under Assumption II.

It is natural to estimate {Cov (A1(κ), A1+h(κ
′))}h∈Z via their sample counterparts. Since

Ai(κ) and Ai(κ
′) are unobserved, we proceed by substituting Âi(κ) and Âi(κ

′) for Ai(κ) and

Ai(κ
′) in the sample covariance estimators. Using this approach, we obtain the following

estimator of the kernel C(κ, κ′),

Ĉ(κ, κ′) =
1

η̂ 2

{
1

T

T∑
i=1

Âi(κ)Âi(κ
′) +

Ln∑
h=1

1

T − h

T∑
i=1

[
Âi(κ)

(
Âi+h(κ

′) + Âi−h(κ
′)
)]}

(18)

where Âi(κ) = Âi(κ
′) = 0, if i ≤ 0 or i > T , and the integer Ln diverges as specified in

Theorem 6. Thus, an estimator K̂ of the covariance operator K is naturally given by,

K̂ y(κ′) =

∫
[0,1]

Ĉ(κ, κ′) y(κ) dκ, ∀y ∈ L2 . (19)
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Now let GK̂ be an F -conditional L2-valued zero-mean Gaussian process with the co-

variance operator K̂ defined in equation (19). The next theorem shows that GK̂ converges

in distribution to GK in L2.

Theorem 6. Suppose that all Assumptions in Theorem 2, Assumption II with q = 4,

b+ c > 1− 16$/7 and c > (3− 8$)/3 hold. Moreover,
∫
R |x|

8F̃ (dx) <∞ and Ln � n%

for some strictly positive exponent %, which satisfies the following condition,

% < min

{
c/2, (1− c)/4, 2$ − 3(1− c)/4, b/2, 2$ − 7/8 + 7(b+ c)/8

}
. (20)

Then,
GK̂

d−→ GK in L2.

Compared with Theorem 2, Theorem 6 imposes two additional constraints on the rate

parameters, c > (3−8$)/3 and b+c > 1−16$/7, but they remain weak. The requirement

of c > (3−8$)/3 is stronger than c > 1−4$ in Theorem 2, because (3−8$)/3 > 1−4$.

Nonetheless, if one chooses $ ≥ 3/8, the condition c > (3− 8$)/3 is trivially satisfied. A

similar comment applies to the requirement b+ c > 1− 16$/7.

Armed with Theorem 6, we can now approximate the distribution of the limiting variable

Z = ‖ GK ‖2, and hence of T ‖ f̂(κ) − f(κ) ‖2, in Corollary 3 by that of ‖ GK̂ ‖2. The

distribution of ‖ GK̂ ‖2, in turn, is readily obtained by simulation. We first partition the

interval [0,1] into 100 equal subintervals. Define κi = i
100

for i = 1, 2, . . . , 100, and,

Ẑ =
1

100

100∑
i=1

GK̂ (κi)
2 d

=
1

100

100∑
i=1

π̂iX 2
i , (21)

where (GK̂ (κ1) , . . . ,GK̂ (κ100)) is, conditionally on F , a multivariate normal random vector

with conditional covariance matrix (Ĉ(κi, κj))1≤i,j≤100, the X 2
i are independent and χ2(1)
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distributed, defined on an extension of the original probability space and independent from

F , and π̂i’s are eigenvalues of the matrix (Ĉ(κi, κj))1≤i,j≤100 . In practice, the matrix

(Ĉ(κi, κj))1≤i,j≤100 may occasionally produce negative eigenvalues. If this occurs, we retain

only the terms with positive eigenvalues in equation (21). Our simulation evidence confirms

that this approach generates negligible approximation errors. Finally, we note that Ẑ is

just a Riemann sum associated with ‖ GK̂ ‖2 =
∫ 1

0
GK̂ (κ)2 dκ.

We can similarly approximate the limiting distribution of the test in Section 3.4. Let GK̂
and G ′K̂, conditionally on F , be independent Gaussian processes with common covariance

operator K̂ defined in equation (19). As above, we approximate the limiting distribution

of T ‖ f̂P(κ)− f̂P′(κ) ‖2 under the null hypothesis by that of,

M̂ =
1

100

100∑
i=1

(
GK̂(κi)−

√
T/T ′ G ′K̂(κi)

)2 d
=

1

100

100∑
i=1

π̂iX 2
i (22)

where κi = i/100 for i = 1, 2, . . . , 100, π̂i’s are eigenvalues of the estimated limiting co-

variance matrix {(1 + T/T ′) Ĉ(κi, κj)}1≤i,j≤100 , whose entries are defined in equation (18)

and computed from pooled data across the periods P and P′, while the X 2
i are iid χ2(1),

defined on an extension of the original probability space independent of F . We retain only

the terms with positive eigenvalues, noting again that the simulation evidence in Section

A.3 confirms the finite-sample bias associated with this approach is negligible. Hence, the

distribution of M̂ may be approximated by the empirical distribution of a large number of

iid copies generated from (X 2
1 , . . . ,X 2

100). As a result, C1−α in equation (11) is the (1−α)th

quantile of the distribution of M̂.

We conclude this section with a corollary enabling pointwise feasible inference.
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Corollary 7. In the setting of Theorem 6, we have

√
T
(
f̂(κ)− f(κ)

)
√
Ĉ(κ, κ)

d−→ N(0, 1), as n→∞.

We may also construct uniform confidence bounds based on our functional limit theory,

but the analysis is fairly involved and it is relegated to the Supplementary Appendix.

5 A Finite-Sample Bias-Variance Tradeoff for `

There is a bias-variance tradeoff in picking `, which we review in this section. The following

analysis adopts a pointwise perspective. From equations (C.3) and (C.6) in Section C.1 of

the Supplementary Appendix, for a fixed κ, the error in the calendar-effect estimation has

the following decomposition,

f̂(κ)− f(κ) =
1

η̂

(
1

T

T∑
i=1

σ2(i− 1 + κ)− f(κ)

T

T∑
i=1

∫ i

i−1

σ2(t) dt

)
︸ ︷︷ ︸

term I =OP

(
1√
T

)
+

1

η̂ T `∆

T∑
i=1

jκ∑
k=jκ−`+1


[∫ ti,k

ti,k−1

σ(t)dW (t)

]2

−
∫ ti,k

ti,k−1

σ2(t) dt

︸ ︷︷ ︸
term II =OP

(
1√
T`

)
+

1

η̂ T `∆

T∑
i=1

jκ∑
k=jκ−`+1

∫ ti,k

ti,k−1

[
σ2(t)− σ2(i− 1 + κ)

]
dt︸ ︷︷ ︸

term III =OP

(
`
n
∨
√

`
nT

)
+ `-independent terms of order oP

(
1√
T

)
+ higher-order terms.
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Under the assumptions of Theorem 2, terms II and III are of smaller order than term I, so

only the latter contributes to the central limit theorem. However, in finite samples, terms

II and III do matter. In fact, they are the only relevant terms involving `, so they govern

the associated tradeoff. Close inspection reveals that term II constitutes a martingale

innovation that generates finite-sample variation for the calendar-effect estimator, while

term III is a bias term arising from treating volatility as constant over the local window.

This type of decomposition arises also in other high-frequency asymptotic settings, see e.g.,

Theorem 1 in [29] and also Theorem 2 in [31].

Given that T � nb and ` � nc, we may now provide guidance on a suitable choice for

the order of `, for predetermined values of $ and b ∈ (0, 4$) (see equation (9)) in terms

of minimizing the order of the sum of the terms II and III. We define,

cL = max {1− 4$, 0} , and cU = 1− b

2
.

The optimal choice of c, denoted copt , depends on the specific configuration of $ and b. It

may be shown to take the following form (see Section C.8 of the Supplementary Appendix),

copt =


2−b

3
, when b ≥ 1/2 ,

1
2
, when b < 1/2 and cL < 1/2,

cL+, when b < 1/2 and cL ≥ 1/2,

where cL+ denotes a value exceeding cL by an arbitrary small amount. In the standard

case, $ > 1/4 and n � T (i.e., b = 1), the optimal choice implies ` � n1/3. This order is

smaller than the optimal window for spot volatility estimation, which is
√
n, see, e.g., [21].

The reason is that our current setting involves T asymptotically increasing. This reduces
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the impact of the variance component associated with term II, rendering it beneficial to

employ a smaller sized local window.

6 Empirical Analysis

In this section, we apply the general calendar-effect estimator and the associated infer-

ence techniques to high-frequency transaction prices of e-mini S&P 500 futures (e-mini

for short), a stock market index futures contract traded on the CME Group’s electronic

trading platform Globex. We investigate the diurnal pattern across different time periods.

6.1 Data

Our e-mini transaction price data are provided by Tick Data. We first construct a fifteen-

year record of thirty-second transaction prices from November 30, 2005, through November

30, 2020, based on the most active futures contracts. We note that the calendar-effect

estimator (5) is affected by microstructure noise in the same way that standard estimators

of integrated volatility are impacted. For the average daily realized volatility calculated

from thirty-second returns, the impact of microstructure noise on volatility/calendar-effect

estimation is near negligible, consistent with the evidence for only a limited autocorrelation

in the noise process, see [14] and [25]. The e-mini contract trades from Sunday to Friday

5:00pm–4:00pm Chicago Time (CT) with a 15-minute trading halt from 3:15–3:30pm CT,

and a daily maintenance period from 4:00–5:00pm CT. Hence, one regular trading week

consists of five trading days and each complete trading day consists of 22.75 trading hours.

We eliminate the price jumps arising from the roll-over between futures contracts via the

forward ratio adjustment method, as detailed in the TickWrite manual developed by Tick

Data. Likewise, we discard all returns that cover time gaps in the price series stemming
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from faulty price dissemination, trading halts, daily maintenance periods, weekends and

holidays. This leaves us with a sample of 3,379 trading days for a total of 9,224,671 thirty-

second trade price observations.

6.2 The S&P 500 Futures Intraday Volatility Curve

In this section, we provide our estimate for the intraday volatility curve based on the full

sample, and then examine subsamples to gauge whether the volatility calendar effect may

be changing over time. To this end, we split the sample into five-year segments, November

30, 2005–November 29, 2010, November 30, 2010–November 29, 2015, and November 30,

2015–November 30, 2020. For simplicity, we refer to these periods as 2005–2010, 2010–

2015 and 2015–2020. Accounting for trading halts and holidays, this leaves us with a

sample of T = 991, 1,140 and 1,248 days for a total of 2,705,431, 3,112,201 and 3,407,041

thirty-second transaction prices, respectively, for 2005–2010, 2010–2015 and 2015–2020.

We estimate f(κ) using ` = 10 over a grid of 100 equidistant points within [0, 1]. In the

top panel of Figure 1, we depict the estimated intraday volatility curve for the full sample.

The first, second and fourth dashed vertical lines separate regimes associated with active

trading in Asia (left), Europe (middle) and American (right), see [4]. It is evident that U-

shape style patterns exist for all three trading regimes, while the magnitude of the diurnal

effect varies dramatically across regions, increasing manyfold as we move from the Asian to

the American regime. Moreover, there is a notable difference between the present e-mini

volatility pattern and the one for exchange rates documented in [3]. The latter finds the

Deutsche mark–U.S. dollar volatility to decline monotonically in the hours leading up to

the close of regular trading in the U.S. This suggests that the intraday pattern for exchange

rates is determined, in large part, by the overlap in trading activity across global financial

centers while, in contrast, the calendar effects for the e-mini are aligned with the regular
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Figure 1. Estimates of the intraday calendar effect in volatility. Top panel: The
volatility curve estimated from thirty-second e-mini transaction prices over the full sample.
The dashed lines at 2:00 CT, 8:30 CT, 15:15 CT and 16:00 CT, separate regular trading
hours in Asia (left), Europe (middle), and America (right), and the trading halt from 15:15–
15:30 CT. Bottom panel: Intraday volatility curves for the e-mini over subsamples. The
shaded areas indicate 95% confidence intervals constructed using Corollary 7 with Ln = 7.
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trading hours of the individual regions. Specifically, the volatility rises up towards the U.S.

equity market close at 15:00 CT, but drops off rapidly prior to the halt in futures trading

at 15:15 CT, indicated by the third vertical dashed line. Finally, the volatility keeps tailing

off during the final short 15:30–16:00 CT trading interval.

The bottom panel of Figure 1 plots the estimated volatility curve for each subsample. In

addition, we superimpose 95% pointwise confidence intervals (shaded), based on the feasible

CLT in Corollary 7. Evidently, the estimation uncertainty increases with the general level

of intraday volatility. In the first two subsamples, the confidence bands are clearly visible

only in parts of the American region, but they become notable across the entire trading

day over the last period, indicating increased variability in the diurnal pattern. Comparing

across subsamples, one notes a relative increase in volatility during the Asian regime and,

possibly, some distortions to the U-shape in the American zone. However, the associated

estimation uncertainty is also elevated, rendering firm conclusions premature.

6.3 Testing for a Shift in the Volatility Curve over Time

Motivated by these findings, we turn to the formal test for equality in the intraday calendar

effect between two separate time periods introduced in Section 3.4. Table 1 reports p-values

for the test of identical volatility curves across all possible pairings of subsamples. The test

firmly rejects the null that the intraday patterns are equal in the L2 sense for the pairs

(2005-2010, 2010-2015) and (2005-2010, 2015-2020) at the 1% level. However, the evidence

against the null is only significant at the 10% level for (2010-2015, 2015-2020). Hence, we

have strong indication of a shift in the diurnal pattern after 2010, but only weak evidence

that it also changed between 2010-2015 and 2015-2020.
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Table 1. Test for changes in the intraday volatility curve. The table provides
p-values for the test of the null hypothesis in equation (10), where the non-overlapping
subsamples are 2005–2010, 2010–2015, and 2015–2020. The reported p-values equal the
percentage of copies from M̂ that exceeds the realization of the test statistic. The p-values
significant at the 1% level are in bold font.

P\P′ 2005–2010 2010–2015 2015-2020

2005–2010 0.0001 0.0025
2010–2015 0.0001 0.0992
2015–2020 0.0025 0.0992

6.4 Testing for a Shift in the Regional Volatility Curve

In the preceding section, we found evidence in favor of a shift in the diurnal pattern across

time. We now explore whether such a change may be attributed, at least in part, to a shift

in the configuration of the diurnal pattern within any particular region of the trading day.

To test this hypothesis, we must eliminate the impact of any shift in the relative level of

volatility across the regional trading zones. We do this by estimating the volatility calendar

effect for each time period separately over each region, thus effectively treating each region,

in turn, as comprising the full trading day. That is, we simply perform the test from the

preceding section for the Asian, European and American trading regimes separately.

Table 2 reports p-values of the test for pairings of our five-year periods within each

trading zone. For the Asian regime, the difference in the diurnal effect is only significant

for 2005-2010 versus 2010-2015 at the 5% level, and for 2005-2010 versus 2015-2020 at the

10% level. Likewise, the evidence for the European regime is relatively weak, with the test

only being significant for 2005-2010 versus 2010-2015 at the 10% level, and for 2005-2010

versus 2015-2020 at the 5% level. In contrast, for the American regime, the test firmly
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Table 2. Test for a shift in the regional intraday volatility pattern. The table
provides p-values for the test of the null hypothesis in equation (10) with non-overlapping
subsamples 2005–2010, 2010–2015, and 2015–2020. The test is identical to the one described
in Section 6.2 and Table 1, but is now applied only within the individual regional zones,
Asia, Europe and America. The values that are significant at the 1% level are in bold font.

Trading regimes Asia Europe America

P\P′ 05-10 10-15 15-20 05-10 10-15 15-20 05-10 10-15 15-20

05-10 0.0358 0.0856 0.0846 0.0402 0.0004 0.0027
10-15 0.0358 0.3735 0.0846 0.3310 0.0004 0.0845
15-20 0.0856 0.3735 0.0402 0.3310 0.0027 0.0845

rejects the null of no difference in the diurnal pattern for the pairs (2005-2010, 2010-2015)

and (2005-2010, 2015-2020) at the 1% significance level. Meanwhile, the test can only reject

the null hypothesis for 2010-2015 versus 2015-2020 at the 10% level.

In summary, the empirical results point to two separate origins behind the shift in the

diurnal volatility pattern over our sample period. The first is a shift in the level of volatility

across regions, with the relative share of volatility rising during the Asian trading hours, as

suggested by the evidence in Section 6.2. The second is the change in the diurnal volatility

pattern during the American region, which seems to reflect a shift away from volatility

in the middle and towards the close of the regular U.S. trading hours. Interestingly, our

findings suggest that the rise in importance of Asian trading – and presumably also for its

role in global price discovery for the U.S. equity index – is not associated with any major

shift in the qualitative shape of the diurnal pattern within that region.
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7 Conclusion

We propose a general estimator of intraday calendar effects in volatility using high-frequency

data. Within a general semimartingale setup, we establish the associated functional asymp-

totic theory in the L2 metric. To the best of our knowledge, this is the first functional

inference theory built for volatility calendar effect estimation using high-frequency data in

such a general setup. Both feasible pointwise and functional inference techniques are pro-

vided through consistent estimation of the asymptotic covariance operator. Additionally,

we provide a finite-sample bias-variance tradeoff analysis for the size of the local window

used for volatility estimation. Simulation results corroborate our theoretical findings.

We apply our general estimation procedure to transaction data for the e-mini S&P 500

futures. We find the volatility of the e-mini to exhibit pronounced U-shaped patterns within

the Asian, European and American trading regimes. Based on the feasible inference theory,

we then test for shifts in the intraday calendar effects across subsamples. The results firmly

reject the null of invariance over time, with an elevation in the relative volatility over the

Asian regime and a steepening of the U-shape towards the close of regular trading in the

U.S. over the recent years being particularly striking.
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