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Preface

This text is the distillation of material I teach to doctoral students

at Northwestern University as part of an advanced introduction to the

theoretical foundations of what is traditionally known as “asset pric-

ing.” The focus is on the modeling of competitive financial markets,

encompassing arbitrage and equilibrium pricing of financial contracts,

as well as optimal consumption and portfolio choice. I have relied on

lectures for broader context and on this text for a self-contained state-

ment of a theory with classical roots in Walrasian competitive analysis,

extended by Arrow and Debreu to include time and uncertainty and fur-

ther developed in Finance to emphasize the role of arbitrage arguments

and the tools of modern stochastic analysis. The presentation places

equal emphasis on sound economics and well-motivated methodology.

Readers with an economics focus can use this text to build analytical

foundations for a significant component of the economics of financial

markets, while readers with a mathematics focus can use the text as

a well-motivated introduction to basic tools of stochastic analysis and

convex analysis. Despite its introductory orientation, the book includes

results I could only find in research papers, or are refined versions of

original results of my last monograph.

The progression of topics can be thought of as increasing in scope

and decreasing in realism. Arbitrage arguments are presented first, fol-

lowed by characterizations of optimality and competitive equilibrium.

Arbitrage arguments utilize the assumption that the market does not

allow incremental cash flows that are desirable in the narrow sense of

arbitrage. Optimality is then introduced as a refinement of the no-

arbitrage assumption. The notion of a desirable cash flow is enlarged

through preferences and the idea of an arbitrage is extended to allow

for multi-agent transactions through profitable market-making oppor-

tunities. The exclusion of such market-making opportunities refines the
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PREFACE 5

traditional concept of Pareto optimality and leads to a version of clas-

sical competitive welfare analysis that is better suited to financial mar-

kets, emphasizing endogenous forces for market creation. Restrictions

on preferences are initially minimal, reflecting the fact that competitive

equilibrium notions are robust to preference structure, and are gradu-

ally strengthened in order to express ideas of how market prices and

optimal consumption/portfolio choice relate to preferences for smooth-

ing across time and states of the world. The auxiliary Appendix A on

additive utility forms and risk aversion presents some fundamental but

not well-known arguments, drawing on material that, to my knowledge,

has only been buried in research papers.

On the methodological side, a self-contained introduction to proba-

bilistic methods starts with a rigorous treatment on a finite information

tree and concludes with an introduction to the continuous-time theory,

which omits several technical details but leverages the thorough un-

derstanding of the tools on a finite tree. In an approximate numerical

sense, the continuous-time model is presented as a simplified special

case of a high-frequency finite-information model. Tools like martin-

gale representations, Girsanov change-of-measure arguments, the Ito

calculus, forward and backward stochastic differential equations are

hopefully demystified in this way, providing an entry point to a litera-

ture which is typically obfuscated by the requirements of set-theoretic

rigor. The optimality and equilibrium theory emphasizes a unified

geometric viewpoint and convex analysis methods, making this course

complementary to a macroeconomics course emphasizing dynamic pro-

graming methods. Appendix B provides a succinct rigorous statement

of the background convex analysis, which can also be thought of as

an introductory mini course on the functional analytic approach to

optimization theory.

I have been using this text in a class of mostly second-year doc-

toral students taking a Finance course for the first time. I emphasize

to my students that the text organizes foundational insights that are

essential but far from sufficient for understanding actual financial mar-

kets. Class discussion can touch on topics such as the role of collateral,

limits to arbitrage, and the inadequacy of consumption-based asset

pricing. I have resisted the temptation to include such discussions in
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the text, which is intended only for core material in a state of com-

pletion meant to last. It should be up to the instructor and follow-up

courses to offer broader perspective and avenues to research, depending

on the interests of the audience. Although the material is formally self-

contained, a background on basic linear algebra is essential and some

prior exposure to probability theory and graduate-level introductory

economics is helpful. I ask students to read Appendix B on convex

analysis as preparation for my class, with emphasis on geometric un-

derstanding. I recommend two books to complement this one: Back

[2017] on the more elementary side (but including topics not covered

here), and Duffie [2001] for more on the continuous-time theory in a

language and notation that will look familiar to readers of this book.

This text is consistent in approach with my older book (Skiadas

[2009]), but differs in some significant ways (as well as in numerous

smaller improvements that would take too long to list here). The treat-

ment has been simplified around a central conceptual development, but

also extended to include an introduction to continuous-time method-

ology, a section on preferences with habit formation or durability of

consumption, as well as several other smaller additions, such as an

explanation that certain multiple-prior utility forms are equivalent to

more familiar recursive utility forms. The result is a more compact,

panoramic and cohesive book. Some formal structures, such as those

underlying the discussion of optimality, have been simplified and more

efficiently presented. Several results and proofs are improved in this

text or are missing from the older book. The material is directly pre-

sented in a dynamic setting, as opposed to the traditional practice of

first considering the static theory. The probabilistic foundations are

pedagogically interweaved into the main material, as opposed to a dis-

connected appendix. Some of the older book’s material that is not

essential to the main narrative has been converted into exercises or

omitted. The exercises are now better integrated with the main text

and classroom tested, with detailed solutions available to instructors.

Some of the peripheral theory on additive utility structures has been

significantly refined and extended, and pulled into Appendix A. The

convex analysis of Appendix B has also been significantly improved

and extended.
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CHAPTER 1

Market and Arbitrage Pricing

An arbitrage is a trade that results in a positive incremental cash

flow, that is, some inflow at some time in some contingency, but no

possible outflow. This chapter introduces a formal notion of a market

and associated constructs, and lays the foundations for pricing argu-

ments based on the assumption of the lack of arbitrage opportunities.

Throughout the text, ≡ stands for “equal by definition” and terms in

boldface are being defined.

1.1. Uncertainty and information

We begin with a formal representation of uncertainty and a com-

mon information stream that is available to market participants over a

finite time horizon. Throughout this text, we use set-theoretic notation

common in graduate-level mathematics.

A time is an element of the set {0, 1, . . . , T}, for a positive integer

T that is fixed throughout. One of a finite number of possible states

of the world, or contingencies, is realized by the terminal time T .

These states are represented by the elements of a finite set Ω, the

state space. We are not yet concerned with the likelihood of any one

state occurring, but every contingency represented by a state in Ω is

possible and every relevant contingency is represented by a state in

Ω. The subsets of Ω are called events. Time-t information is repre-

sented by a partition F0
t of Ω, defined as a set of mutually exclusive

nonempty events whose union is Ω. All that is known at time t is what

element of F0
t contains the state realized at time T . At time 0 it is

only known that the state to be revealed at time T is an element of Ω

and therefore F0
0 = {Ω}. At time T the state is revealed and therefore

F0
T = {{ω} | ω ∈ Ω}. We assume perfect recall: If at some time the

state is known to belong to a partition element, the same remains true

at all subsequent times. More formally, we assume that if u > t, the

10



1.1. UNCERTAINTY AND INFORMATION 11

partition F0
u is a refinement of the partition F0

t , meaning that every

event in F0
t is the union of events in F0

u .

Example 1.1.1. Information is generated by observing the outcome

of a coin toss at each time t = 1, 2, . . . , T . Let us encode heads with

1 and tails with −1. A state is a finite sequence ω = (ω1, . . . , ωT ),

where ωt ∈ {1,−1}, and the state space is the cartesian product Ω ≡
{1,−1}T . At time t > 0 the first t coin toss outcomes ω̄1, . . . , ω̄t ∈
{1,−1} have been observed and it is therefore known that the state is

an element of the event {ω ∈ Ω | ω1 = ω̄1, . . . , ωt = ω̄t}. The partition

F0
t is the set of all these events as (ω̄1, . . . , ω̄t) ranges over {1,−1}t. ♦

It is mathematically convenient to also define the sets

(1.1.1) Ft =
{

F | F is a union of elements of F0
t

}

, t = 0, . . . , T.

An event F belongs to Ft if and only if at time t it is known whether

F contains the state to be revealed at time T .

Example 1.1.2. Let Ω ≡ {1, 2, 3, 4} and F0
1 ≡ {{1, 2} , {3} , {4}}.

Then F1 = {∅, {1, 2} , {3} , {4} , {1, 2, 3} , {1, 2, 4} , {3, 4} ,Ω}. Suppose

state 1 is realized at time T ≡ 2. At time 1 it is known that the state

is either 1 or 2. From that it can be inferred whether every one of the

events in F1 contains 1 or not, and these are all the events about which

such a claim can be made. ♦

Every Ft is an algebra of events, meaning that it contains ∅ and

Ω, and it is closed relative to the formation of Boolean set opera-

tions: For all A,B ∈ Ft, the union A ∪ B ≡ {ω | ω ∈ A or ω ∈ B},

intersection A ∩ B ≡ {ω | ω ∈ A and ω ∈ B}, and set difference

A \ B ≡ {ω | ω ∈ A and ω /∈ B} are all elements of Ft. In particular,

for all F ∈ Ft, the complement F c ≡ Ω \F is an element of Ft. This

definition of an algebra is of course redundant. For example, since

A ∩ B = (Ac ∪ Bc)c and A \ B = A ∩ Bc, an algebra (of events) is

any nonempty set of events that is closed with respect to the formation

of unions and complements. Besides providing convenient notation,

algebras are key in formulating this text’s theory in ways that can be

interpreted in infinite state-space extensions, where algebras are not
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(Ω, 0)

({ω3, ω4}, 1)

({ω1, ω2}, 1)

state ω4

state ω3

state ω2

state ω1

Figure 1.1.1. Information tree of Example 1.1.1 with
T = 2. Each state ωi can be identified with the terminal
spot ({ωi} , 2).

generated by partitions. Here we will take full advantage of the par-

tition representation, even though most results will be stated in ways

that are amenable to generalization.

The intersection of an arbitrary collection of algebras is also an

algebra. (The reader can construct a simple example showing that

the union of two algebras is not necessarily an algebra.) The algebra

σ (S) generated by a set of events S is the intersection of all algebras

that include S. It is straightforward to verify that Ft = σ(F0
t ) for

all t. Conversely, F0
t can be recovered from Ft as the set of nonempty

elements of Ft that do not have a nonempty proper subset in Ft. Note

that F0
u is a refinement of F0

t if and only if Ft ⊆ Fu. This motivates the

definition of a filtration as a time-indexed sequence (F0,F1, . . . ,FT )

of algebras of events, abbreviated to {Ft}, such that t < u implies Ft ⊆
Fu. We can therefore equivalently specify the information primitive of

our model as a filtration {Ft} satisfying

(1.1.2) F0 = {∅,Ω} and FT = 2Ω (the set of all subsets of Ω) .

As illustrated in Figure 1.1.1, a filtration {Ft} can be thought

of as an information tree, whose nodes correspond to what we call

“spots.” Formally, a spot of the filtration {Ft} is a pair (F, t) where

t ∈ {0, . . . , T} and F ∈ F0
t . The root of the information tree corre-

sponds to the initial spot (Ω, 0). A terminal spot takes the form

({ω} , T ), where ω ∈ Ω, and can therefore be identified with the state

ω as well as the unique path on the information tree from the ini-

tial spot to the given terminal spot. A nonterminal spot (F, t− 1),
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t ∈ {1, . . . , T}, has immediate successor spots (F0, t) , . . . , (Fd, t),

where F0, . . . , Fd are the elements of F0
t whose union is F .

We represent economic quantities, such as cash flows and prices,

by stochastic processes, which are time-indexed sequences of random

variables that are consistent with the information structure just intro-

duced. We now formalize these notions and introduce related notation.

A random variable is a function of the form x : Ω → R. A sto-

chastic process, or simply process, can equivalently be defined as

a time-indexed sequence (x0, x1, . . . , xT ) of random variables or as a

function of the form x : Ω × {0, 1, . . . , T} → R, where xt (ω) = x (ω, t)

for ω ∈ Ω and t ∈ {0, . . . , T}. On occasion we write x (t) instead of

xt. The function x (ω, ·) : {0, . . . , T} → R, for any fixed ω ∈ Ω, is a

path of the process x. As is common in probability theory, we identify

a scalar α and the process that is identically equal to α. For example,

x + α denotes the process that takes the value x (ω, t) + α at state ω

and time t. Sums and products of processes are defined point-wise:

(x+ yz) (ω, t) ≡ x (ω, t) + y (ω, t) z (ω, t). We write x ≤ y to mean

x (ω, t) ≤ y (ω, t) for all (ω, t), and analogously for any other relation.

A process is said to be strictly positive if it is valued in (0,∞). Anal-

ogous conventions apply to random variables (which can after all be

viewed as processes with T = 0). Random variables are often used to

define events in terms of predicates, as in {ω ∈ Ω | x (ω) ≤ α}. In such

cases, we simplify the notation by eliminating the state variable, as

in {x ≤ α}. Another useful piece of notation is that of an indicator

function 1A of a set A, which takes the value 1 on A and 0 on the

complement of A in the implied domain. If A is an event, then 1A is

the random variable

1A (ω) =







1 if ω ∈ A,

0 if ω /∈ A.

If A ⊆ Ω × {0, . . . , T}, the same expression, but with (ω, t) in place of

ω, defines the process 1A.

Throughout this text, we take as given an underlying filtration

{Ft} on Ω satisfying (1.1.2). If a process is to represent an observed

quantity, it cannot reveal more information than implied by the pos-

tulated filtration. For example, if T = 1 and Ω = {0, 1}, the process

x0 (ω) = x1 (ω) = ω is not consistent with the information structure,
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because observation of the realization of x0 at time zero reveals the

state ω. To formalize this type of informational constraint, we intro-

duce the key notion of measurability with respect to an algebra. A

random variable x is said to be measurable with respect to an al-

gebra A, or A-measurable, if {x ≤ α} ∈ A for all α ∈ R. If A is

generated by the partition A0 = {A1, . . . , An}, then x is A-measurable

if and only if it can be expressed as x =
∑n
i=1 αi1Ai

, where αi ∈ R

is a constant value x takes on Ai. The set of A-measurable random

variables, which we denote by L (A), is a linear subspace of RΩ that

is also closed relative to nonlinear combinations of its elements in the

following sense, where f (x1, . . . , xn) denotes the random variable that

maps ω to f (x1 (ω) , . . . , xn (ω)).

Proposition 1.1.3. If x1, . . . , xn ∈ L (A) then f (x1, . . . , xn) ∈
L (A) for all f : Rn → R, and {(x1, . . . , xn) ∈ S} ∈ A for all S ⊆ R

n.

Proof. If each xi is constant over every element of A0, then so is

f (x1, . . . , xn). Letting f (x1, . . . , xn) = 2 × 1{(x1,...,xn)∈Sc} shows that

{(x1, . . . , xn) ∈ S} = {f (x1, . . . , xn) ≤ 1} ∈ A. �

We formalize the requirement that a process respects the given

information structure with the notion of adaptedness. The process

x is said to be adapted (to the underlying filtration) if xt ∈ L (Ft)

for every time t. Since F0 = {∅,Ω} and FT = 2Ω, the initial value

of an adapted process is constant, while its terminal value can be any

random variable. The space of all adapted processes, which we denote

by L, can be identified with the Euclidean space R
1+N , where 1 +N is

the total number of spots. To see how, consider any adapted process x.

For any spot (F, t) , the random variable xt is constant over F, taking

a value that we denote by x (F, t) (that is, x (ω, t) = x (F, t) for all

ω ∈ F ). If F0
t = {F1, . . . , Fn} , then xt =

∑n
i=1 x (Fi, t) 1Fi

. One can

therefore regard x as an assignment of a real number to every spot of

the information tree. The set of strictly positive adapted processes is

denoted by L++ and is identified with R
1+N
++ .

Related to the notion of an adapted process is that of a stopping

time defined as a function of the form τ : Ω → {0, 1, . . . , T} ∪ {∞},

provided that {τ ≤ t} ∈ Ft for every time t. The last restriction is

equivalent to the adaptedness of the indicator process 1{τ≤t}, which
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takes the value zero prior to the (random) time τ , and the value one

from time τ on (which on the event {τ = ∞} is never). By eliminating

all spots where 1{τ≤t} takes the value one, the stopping time τ can

be visualized as a pruning of the information tree. A stopping time,

or corresponding indicator process, announces the (first) arrival of an

event which is consistent with the information stream encoded in the

underlying filtration. For example, if x is an adapted process, then the

first time that xt ≥ 1 defines a stopping time (with the value ∞ being

assigned on the event that x remains valued below one). On the other

hand, the first time that x reaches its path maximum is not generally

a stopping time. For any process x and stopping time τ , the random

variable xτ or x (τ) is defined by letting xτ (ω) = x (ω, τ (ω)), with the

convention x (ω,∞) = 0.

In applications, it is common to specify the filtration {Ft} as the

information revealed, or generated, by given processes representing ob-

servable quantities. The algebra generated by a set S of random

variables is the intersection of all algebras relative to which every

x ∈ S is measurable, and is denoted by σ (S). If S = {x1, . . . , xn},

σ (x1, . . . , xn) ≡ σ (S) is the same as the algebra generated by the par-

tition of all nonempty events of the form {(x1, . . . , xn) = α}, where

α ∈ R
n. We interpret σ (x1, . . . , xn) as the information that can be in-

ferred by observing the realization of the random variables x1, . . . , xn.

Any other variable whose realization is revealed by this information

must be determined as a function of the realization of (x1, . . . , xn):

Proposition 1.1.4. Given any random variables x1, . . . , xn, a ran-

dom variable y is σ (x1, . . . , xn)-measurable if and only if there exists a

function f : Rn → R such that y = f (x1, . . . , xn).

Proof. That f (x1, . . . , xn) is σ (x1, . . . , xn)-measurable follows from

Proposition 1.1.3. Conversely, suppose y is σ (x1, . . . , xn)-measurable

and let {(x1 (ω) , . . . , xn (ω)) | ω ∈ Ω} = {α1, . . . , αm} ⊆ R
n. The al-

gebra σ (x1, . . . , xn) is generated by the partition {A1, . . . , Am}, where

Ai ≡ {(x1, . . . , xn) = αi}. Let y =
∑m
i=1 βi1Ai

, where βi is the con-

stant value of y on Ai. Selecting any function f : Rn → R such that

βi = f (αi) results in y = f (x1, . . . , xn). �
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A filtration is said to be generated by the processes B1, . . . , Bd,

where each Bi
0 is a constant, if for all t, Ft = σ

(

{B1
s , . . . , B

d
s | s ≤ t}

)

.

Writing B =
(

B1, . . . , Bd
)′

, it follows from Proposition 1.1.4 that in

this case a process x is adapted if and only if x0 is constant and for

every time t > 0, there exists a function f (t, ·) : Rd×t → R such that

x (ω, t) = f (t, B (ω, 1) , . . . , B (ω, t)) for all ω ∈ Ω. In other words, xt

is a function of the path of B up to time t.

1.2. Market and arbitrage

The fundamental role of financial markets is to reallocate resources

across time and contingencies in a way that is beneficial to all mar-

ket participants. Abstracting away from important implementation

details, such as the need for appropriate collateral arrangements, we

represent a financial market as a set of net incremental cash flows that

are generated by trading financial contracts such as bonds, stocks, fu-

tures, options and swaps. For example, the purchase of a share of a

stock at some spot generates the cash flow consisting of minus the stock

price at the given spot followed by the dividend stream resulting from

holding the share on the information subtree rooted at the given spot.

Effectively, a market facilitates the exchange of funds across spots, be it

saving, borrowing, hedging or speculation, or some combination thereof

that cannot be cleanly categorized.

We implicitly assume that the terms of market exchanges are set

competitively, meaning that there is a large number of market partic-

ipants each of whom has negligible bargaining power, but who collec-

tively influence market-clearing prices. A more formal definition of a

market and related concepts follows. Recall that an underlying filtra-

tion {Ft} on Ω satisfying (1.1.2) is taken as given throughout.

Definition 1.2.1. A cash flow is any adapted process. A market

is any linear subspace X of the space L of all cash flows. A cash flow x

is said to be traded in X if x ∈ X. A cash flow c is an arbitrage if

0 6= c ≥ 0. A market X is arbitrage-free if it contains no arbitrage

cash flow.

All cash flows are specified in some implicit unit of account that

is fixed throughout. A market X represents the set of all net incre-

mental cash flows that are available to market participants, typically
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by following some trading strategy over time, a notion that is formally

defined later in this chapter. From the perspective of time zero, an

agent can use the market X to modify a cash flow c to c + x for any

x ∈ X. Of course, the agent will add a traded cash flow x to c only if

c+x is preferred to c. An arbitrage cash flow x satisfies x (F, t) ≥ 0 for

every spot (F, t), and x (F, t) > 0 for some spot (F, t). An agent who

prefers more to less prefers c + x to c, for every c and every arbitrage

cash flow x. If X contains an arbitrage, such an agent cannot find

any c optimal given X. In a competitive equilibrium, to be defined

formally in Chapter 3, agents follow optimal plans and therefore the

market cannot contain arbitrage opportunities.

The assumption that a market is a linear subspace reflects the un-

derlying assumption of perfect competition with no transaction costs or

trading constraints. Traded cash flows can be reversed, scaled arbitrar-

ily and combined. The discussion of market equilibrium in Chapter 3

provides an argument as to why market forces work to relax binding

market constraints. Yet, frictions such as moral hazard, asymmetric in-

formation, search or information processing costs, concentrated market

power and phenomena of market panics and runs can work to impede

this process of increasingly complete markets, limiting the scope of

the definition of traded cash flows as a linear subspace.1 This being a

first course, we will mostly confine ourselves to the case of linear mar-

kets, which is why linearity is part of a market’s definition. Besides

its pedagogical value, the perfect case is of practical value as an ap-

proximation in thinking about highly liquid and competitive markets

in standardized financial contracts as long as the limitations of such an

approximation are well recognized.

Fixing a reference market X in the background, we make a technical

distinction between traded cash flows, which are the elements of X,

and marketed cash flows, which are cash flows that can be obtained in

the market given sufficient time-zero cash. Recall that 1Ω×{0} denotes

the process that takes the value one at spot zero and the value zero

everywhere else on the information tree.

1This text’s conceptual framework and several of its arguments extend to allow
for exogenous trading constraints, resulting in shapes of X that are not linear
subspaces. The more interesting aspect of trading constraints, however, is their
endogenous source in equilibrium.
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Definition 1.2.2. The cash flow c is marketed (in the market

X at time zero) if c − α1Ω×{0} ∈ X for some α ∈ R. The market is

complete if every cash flow is marketed.

A marketed cash flow c can be expressed as c = α1Ω×{0} + x for

some traded cash flow x. The scalar α represents a time-zero price of c,

which is unique if and only if 1Ω×{0} /∈ X, a condition known as the

law of one price. Clearly, an arbitrage-free market satisfies the law

of one price but the converse is not generally true. For expositional

simplicity, we will assume that the market is arbitrage-free, even where

the law of one price would suffice.

Definition 1.2.3. Assuming the market is arbitrage-free, the (time-

zero) present value of a marketed cash flow c is the unique scalar α

such that c− α1Ω×{0} ∈ X.

Proceeding under the assumption that X is arbitrage-free, note

that the set of marketed cash flows is the linear span of X and 1Ω×{0},

whose dimension is one more than that of X. The function that maps

every marketed cash flow to its present value is linear and positive,

where positivity means that the present value of every arbitrage cash

flow is (strictly) positive. The set X is the kernel of this function,

that is, the set of marketed cash flows of zero present value. If the

market is complete, every cash flow is marketed and therefore has a

uniquely defined present value. The dimension of X in this case is N ,

where 1 + N is the total number of spots on the information tree. In

the following section we will show that if the market is not complete,

then the present-value function on the set of marketed cash flows can

be extended to all of L while retaining linearity and positivity, which

leads to some useful mathematical representations of the present-value

function. Such an extension is not unique, however.

We have defined the market from the perspective of time zero. A

market XF,t can also be defined analogously from the perspective of

any other spot (F, t) as a subset of

LF,t ≡
{

x ∈ L | x = x1F×{t,...,T}

}

,

which is the set of cash flows that can only take non-zero values on

the subtree rooted at spot (F, t). The following proposition introduces
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assumptions that allow us to construct XF,t in terms of the time-zero

market X. Extending Definition 1.2.2, we say that a cash flow c is

marketed at spot (F, t) in XF,t if c1F×{t,...,T} − α1F×{t} ∈ XF,t for

some α ∈ R.

Proposition 1.2.4. Suppose that the (time-zero) market X is arbitrage-

free, and for some spot (F, t), the set XF,t satisfies:

(1) (adaptedness) XF,t ⊆ LF,t.

(2) (dynamic consistency) XF,t ⊆ X.

(3) (liquidity) Every x ∈ X is marketed at (F, t) in XF,t.

Then XF,t = X ∩ LF,t.

Proof. By adaptedness and dynamic consistency, XF,t ⊆ X∩LF,t.

To show the reverse inclusion, suppose that x ∈ X ∩ LF,t. By liquidity,

there exist y ∈ XF,t and α ∈ R such that x = x1F×{t,...,T} = α1F×{t} +y.

By dynamic consistency, y ∈ X and therefore α1F×{t} = x − y ∈ X.

Since X is arbitrage-free, α = 0 and x = y, and therefore x ∈ XF,t. �

The assumptions of Proposition 1.2.4 have simple interpretations.

The elements of XF,t represent cash flows available to a market partici-

pant at spot (F, t) through trading over the information subtree rooted

at (F, t). Such cash flows are naturally viewed as elements of LF,t. The

idea behind dynamic consistency is that at time zero a trader can have

any cash flow x in XF,t by making a contingent plan to carry out the

transactions that result in x if (F, t) materializes. The cash flow x is ef-

fectively also available to the agent at time zero, and must therefore be

an element of the time-zero market X. Finally, liquidity, in the narrow

technical sense used here, means that if at time zero the agent starts

following a plan generating the cash flow x ∈ X, then at any future

spot the agent can liquidate all positions and cancel all remaining cash

flows. For example, suppose there is no uncertainty, T = 2 and at time

zero the agent buys a bond for 99 (units of account) that pays 100 at

time two, thus generating the cash flow x = (−99, 0, 100). In a liquid

market, the cash flow (0, p,−100) is traded at time one for some price

p, in other words, the same bond continues to be traded at some price.

Making adaptedness and dynamic consistency part of the definition,

a dynamic market specifies a market XF,t ⊆ X ∩ LF,t for every spot

(F, t), with X = XΩ,0 being the time-zero market. The dynamic market
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is liquid if it satisfies the third condition of Proposition 1.2.4, and

therefore XF,t = X ∩ LF,t and X specifies the entire liquid dynamic

market. Not every time-zero market is consistent with a liquid dynamic

market, however, which motivates the following definition.

Definition 1.2.5. The market X is liquid if for every spot (F, t),

every x ∈ X is marketed at spot (F, t) in the market X ∩ LF,t.

This definition abuses terminology in the interest of simplicity, since

liquidity is really a property of a dynamic market. It is entirely consis-

tent to consider a dynamic market {XF,t}, where XΩ,0 = X is a mar-

ket satisfying the property of Definition 1.2.5, while for some non-zero

spot (F, t), XF,t violates the liquidity property of Proposition 1.2.4,

for example, XF,t = {0}. Whenever we specify a liquid market X,

however, we implicitly assume that at each spot (F, t), the market

XF,t ≡ X ∩ LF,t is available, and therefore a corresponding liquid dy-

namic market {XF,t} is specified by X.

Liquidity requires that an initially marketed cash flow continues

to be marketed, but it does not require that every cash flow is mar-

keted. On the other hand, the following simple proposition shows that

a time-zero arbitrage-free complete market stays complete as uncer-

tainty unfolds and in particular is liquid (or, more precisely, implies a

liquid dynamic market).

Proposition 1.2.6. Suppose X is an arbitrage-free complete mar-

ket. Then for every spot (F, t), all cash flows are marketed at (F, t) in

X ∩ LF,t.

Proof. Consider any cash flow c. Using the assumption that X

is complete, pick scalars α and β such that c1F×{t,...,T} − α1Ω×{0} ∈ X

and 1F×{t} − β1Ω×{0} ∈ X. Since X is arbitrage-free, β > 0. Linearity

of X then implies that

c1F×{t,...,T} − (α/β) 1F×{t} ∈ X.

Therefore, c is marketed at (F, t) in X ∩ LF,t. �

1.3. Trading and pricing of financial contracts

While market participants are ultimately interested in the incremental

cash flows of the market X, they must undertake certain actions to
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generate these cash flows. In theory, every traded cash flow could be

implemented as a buy-and-hold portfolio in contracts generating cash

flows that form a linear basis of X. If there are 1 +N spots and every

nonterminal spot has at least two immediate successors, then the di-

mension of a complete market is N ≥ 2T+1, rendering the assumption

of competitively traded basic contracts unrealistic, even for moderate

values of T . A key insight is that a small number of contracts can

implement a high-dimensional market provided these same contracts

can be traded at every spot of the filtration. Postponing a more formal

explanation of this claim, in this section we define contracts and we

discuss their relationship to a market and some straightforward impli-

cations of the no-arbitrage assumption for contract pricing.

We use the term “contract” in a narrow formal sense to mean a

dividend stream together with a price process indicating at what price

the dividend stream can be traded at every spot.

Definition 1.3.1. A contract is a pair (δ, V ) of adapted processes

satisfying the convention

(1.3.1) δ0 ≡ 0 and δT ≡ VT .

The process δ is the contract’s dividend process and V is the con-

tract’s value process or cum-dividend price process. The con-

tract’s ex-dividend price process is S ≡ V − δ.

We use the word “dividend” in a generalized sense to mean any cash

flow that is the result of holding a long position in the contract up to

time T and liquidating at time T . In applications, such payments may

correspond to coupon payments and a face-value payment at maturity

in the case of a bond, dividends prior to time T and the sale price cum

dividend at time T in the case of a stock (whose actual dividend stream

can extend beyond time T ), net cash settlements in the case of a swap,

and so on. A contract entitles the owner (or long position) to a single

dividend stream. An extension to include options, where the owner

can select from a set of dividend streams, is discussed in Section 1.5.

The owner of a contract (δ, V ) receives the dividend payment δt at

time t. If the contract is bought at time t, either the buyer pays the

seller Vt and receives the time-t dividend δt, or the buyer pays the seller

the ex-dividend price St and the time-t dividend goes to the seller. The
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dividend convention (1.3.1) is made for notational simplicity and entails

no loss of generality within the scope of the model presented here. One

can think of the condition δT = VT as reflecting the implicit assumption

that the contract is liquidated at the terminal date T , resulting in the

payment VT = ST + δT . It makes no difference within the model how

the value VT is split between ST and δT or how V0 is split between S0

and δ0; for simplicity, we set ST = 0 and δ0 = 0.

Definition 1.3.2. A contract (δ, V ) is traded at spot (F, t) in X

if

(1.3.2) x ≡ −V 1F×{t} + δ1F×{t,...,T} ∈ X.

The cash flow x is generated by buying the contract at spot (F, t),

while −x is generated by selling the contract at the same spot. The

contract (δ, V ) is traded (in X) if it is traded at every spot.

We proceed in the context of a given reference arbitrage-free market

X. When we say that a contract is traded (at some spot), it is implied

that the contract is traded in the reference market X. Note that a cash

flow δ, where δ0 = 0, is marketed in X if and only if there is a contract

(δ, V ) that is traded at time zero, in which case V0 is the present value

of δ. This claim relies critically on the convention δT ≡ VT ; V0 is

the present value of the dividend stream δ1, . . . , δT−1 plus the present

value of the terminal payment VT resulting from selling the contract

at time T . Clearly, a model on the given filtration cannot make any

predictions on how VT relates to dividends paid after T .

Remark 1.3.3. The trades generating an arbitrage as a conse-

quence of the violation of a claimed arbitrage pricing relationship are

instructive in that they suggest potential ways in which the pricing re-

lationship can be violated in realistic applications due to frictions left

out of the formal model. For example, suppose the contracts (δ, V ) and

(δ, V ′) are both traded, but V0 > V ′
0 . The arbitrage (V0 − V ′

0) 1Ω×{0}

results by selling the first contract and buying the second one. Suppose

the former represents a special security that can be used for the pur-

pose of posting collateral, thus facilitating other trades. If collateral

in this sense is scarce in equilibrium, the value V0 may well exceed the

present value of δ. In the presence of a well-functioning competitive
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lease market in the security, V0 equals the present value of the equi-

librium lease payments resulting from lending out the security. The

extent to which these lease payments exceed the dividends δ reflects

the equilibrium value of holding an additional unit of inventory. ♦

The preceding observations can be applied from the perspective of

any other spot. Thus, in an arbitrage-free market, any two traded

contracts (δ, V ) and (δ, V ′) with a common dividend process δ (and

therefore common terminal value) must have a common value process:

V = V ′. Buying the contract (δ, V ) at spot (F, t− 1) and selling it at

each of its immediate successor spots generates the cash flow

(1.3.3) −S1F×{t−1} + V 1F×{t},

where S ≡ V − δ. Therefore, if the contracts (δ1, V 1) and (δ2, V 2) are

traded and V 1
t = V 2

t on some F ∈ Ft−1, then S1
t−1 = S2

t−1 on F . As a

corollary, if (δ1, V 1) and (δ2, V 2) are traded in an arbitrage-free market

and V 1
t = V 2

t for all t > 0, then the two contracts are identical.

We have defined what it means for a contract to be traded in a given

market. Conversely, trading in a given set of contracts implements a

market, which can be succinctly defined as follows.

Definition 1.3.4. The market implemented by a set of contracts

is the smallest market (relative to inclusion) in which all contracts in

the given set are traded.

Suppose C is a set of contracts and let X0 be the set of all cash

flows of the form (1.3.2) for every (δ, V ) ∈ C and spot (F, t). The set

span(X0) of all finite linear combinations of elements of X0 is a market

in which all contracts in C are traded, and every market with this

property must include X0 and therefore span(X0). This shows that

X ≡ span(X0) is the set implemented by C. This construction also

makes it clear that X is liquid. An element of span(X0) can be thought

of as a contingent plan to buy or sell contracts at various spots, in other

words, a trading strategy. Assuming X is arbitrage-free, a contract

that is not in C but is traded in X is synthetic in C, meaning that it is

generated by a trading strategy in contracts in C. Section 1.7 discusses

trading strategies, synthetic contracts and associated budget equations

more systematically. In the following chapter, we will see that the
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minimum number of contracts implementing a complete market is equal

to the maximum number of immediate successor spots to each spot.

1.4. Present-value functions

Taking a reference market X as given, in this section we discuss

more systematically the dual notion of a present value function. Recall

that a linear functional on a vector space is a real-valued linear

function whose domain is the entire vector space. Given a convention

of what it means for a vector to be positive, a linear functional is said

to be positive if it assigns a (strictly) positive value to every positive

vector. For cash flows, positive and arbitrage are synonyms: the cash

flow x is positive if and only if 0 6= x ≥ 0.

Definition 1.4.1. A (time-zero) present-value function (for the

market X) is a positive linear functional Π on L such that Π (x) ≤ 0

for all x ∈ X and Π(1Ω×{0}) = 1.

A present-value function Π specifies a time-zero value for every

cash flow c, marketed or not. Given linearity, the requirement that Π

is positive is equivalent to the monotonicity condition: Π (b) > Π (a)

for all cash flows a, b such that b − a is an arbitrage. The essential

restriction that Π is nonpositive on X is equivalent to Π (x) = 0 for

all x ∈ X, since X is a linear subspace. (In extensions with trading

constraints, X is no longer a linear subspace, but Definition 1.4.1 is

still valid, and the present value of a traded cash flow can be strictly

negative.) The requirement Π(1Ω×{0}) = 1 is merely a normalization.

The properties of a present-value function Π combine to determine

the value Π (c) of a marketed cash flow c as the present value of c

in the sense of Definition 1.2.3. Suppose the scalar α is such that

c − α1Ω×{0} ∈ X. The existence of Π implies that X is arbitrage-free

and therefore α is unique. The fact that Π vanishes on X implies

that Π
(

c− α1Ω×{0}

)

= 0. The linearity of Π implies that Π (c) =

αΠ(1Ω×{0}). Finally, the normalization assumption results in Π (c) = α.

Another way of stating this conclusion is that if the contract (δ, V ) is

traded at time zero and Π is a present-value function, then V0 = Π (δ).

If the market X is arbitrage-free and complete, letting Π (c) equal

the (unique) present value of c defines a function Π: L → R that

is easily confirmed to be a present-value function. Therefore, every
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complete arbitrage-free market admits a unique present-value function.

Conversely, every present-value function Π for X defines a unique com-

plete market for which Π is a present value function; it is the kernel

of Π, that is, the set {c ∈ L | Π (c) = 0}. If X is complete, then the

kernel of Π is equal to X. If X is incomplete, then the kernel of Π

is a proper superset of X and can be thought of as an arbitrage-free

completion of X.

Recall that, since an adapted process x is an assignment of a scalar

x (F, t) to every spot (F, t), the set L of adapted processes can be

identified with R
1+N , where 1 +N is the total number of spots on the

information tree. Using this identification, we endow L with the usual

Euclidean inner product in R
1+N , denoted

x · y ≡
∑

all spots (F,t)

x (F, t) y (F, t) .

Definition 1.4.2. A state-price process is any adapted process

p with p0 > 0 such that

Π (c) ≡ p · c
p0

, c ∈ L,

defines a present-value function Π. In this case, we say that p rep-

resents Π. An Arrow cash flow2 is a cash flow of the form 1F×{t},

where (F, t) is a spot.

Every cash flow is a linear combination of the 1 + N Arrow cash

flows, reflecting the identification of L and R
1+N . If Π is a present-value

function and we define p (F, t) = Π(1F×{t}) for every spot (F, t), then

Π (c) = p · c for all c ∈ L. Therefore, every present-value function can

be represented by a state-price process. (In mathematical terms, the

Arrow cash flows are a linear basis of L and p is the Riesz representation

of Π.) If p is a state-price process representing the present-value func-

tion Π, then p (F, t) = p0Π(1F×{t}) for every spot (F, t), and therefore

p is strictly positive, it is uniquely determined by Π up to a positive

2The term, which is not entirely standard, is in recognition of Arrow [1953] (trans-
lated to English in Arrow [1964]), who together with Debreu [1959] provided the
modern conceptual framework for incorporating uncertainty in classical competi-
tive equilibrium theory. The more common term “Arrow-Debreu security” refers
to a claim to an Arrow cash flow. The (relative) time-zero prices of Arrow-Debreu
securities are also known as Arrow-Debreu prices, corresponding to the notion of a
state-price process here.
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spot 0

spot 1

m
arket X

p or Π

Figure 1.4.1. Example of a market and present-value
function with N = 1. The shaded region, including the
axes but not the origin, is the set of arbitrage cash flows.
The market X does not cut into the shaded region if and
only if the half line defined by the orthogonal vector p
lies in the interior of the shaded region.

scaling factor, and it represents relative present value of Arrow cash

flows: For all spots (F, t), (G, s),

p (F, t)

p (G, s)
=

Π(1F×{t})

Π(1G×{s})
.

For a geometric interpretation of a state-price process p representing

Π, note that, since Π (x) = 0 for all x ∈ X, p is orthogonal to X, and

since Π is positive, p lies in R
1+N
++ (the interior of the positive orthant

of R
1+N ). The set of all state-price processes representing Π can be

identified with a directed half line in R
1+N
++ . Inspection of Figure 1.4.1

suggests that such a direction exists if and only if X ∩ R
1+N
+ = {0},

which is another way of saying that X is arbitrage-free. If, as in Fig-

ure 1.4.1, X is complete and therefore N -dimensional, there is only

one orthogonal-to-X line within R
1+N , and therefore the correspond-

ing present-value function must be unique. If X is incomplete, the

dimension of X is at most N − 1, leaving at least one dimension along

which p can be rotated within R
1+N
++ while maintaining orthogonality to

X, which suggests that an incomplete market admits multiple present-

value functions. For an example, extend Figure 1.4.1 by introducing a



1.4. PRESENT-VALUE FUNCTIONS 27

spot-2 orthogonal axis, while maintaining the market X as a line. Ro-

tating the orthogonal-to-X vector p around X while staying within the

interior of the positive orthant traces out all present-value functions

relative to X. A rigorous proof of these informal insights follows.

Theorem 1.4.3. A present-value function exists if and only if3 X

is arbitrage-free; and is unique if and only if the market X is complete.

Proof. We fix an enumeration 0, 1, . . . , N of all spots, where (Ω, 0)

is spot zero, and write x = (x0, x1, . . . , xN ) for the element of R
1+N

corresponding to the adapted process x. In other words, xi ≡ x (F, t),

where (F, t) is the ith spot. The conflicting notation xt, where t is a

time, is not used in this proof.

(Existence) The only-if part is immediate. Conversely, suppose X

is arbitrage-free. For reasons explained in Remark 1.4.5 below, we will

show the existence of a present-value function assuming only that X is

a closed convex cone of cash flows. The idea is to define a state-price

process p by separating the disjoint convex sets X and R
1+N
+ \ {0}.

This ensures that p ·x ≤ 0 for all x ∈ X and p ≥ 0, but we need pn > 0

for all n. To ensure strict positivity, we instead strictly separate X and

the compact convex set

∆ ≡
{

x ∈ R
1+N
+ |

∑

n

xn = 1

}

.

Let p ≡ ȳ − x̄, where (x̄, ȳ) ∈ X × ∆ minimizes ‖x− y‖ over all

(x, y) ∈ X × ∆. Assuming (x̄, ȳ) exists, let us first confirm that p is a

state-price process. Since x̄ and ȳ are the projection of each other on

X and ∆, respectively, the first part of the Projection Theorem B.5.1

implies the support inequalities p · (x− x̄) ≤ 0 for all x ∈ X and

p · (y − ȳ) ≥ 0 for all y ∈ ∆. Since X is a cone, the first inequality

3The equivalence of the lack of arbitrage opportunities and the existence of a
present-value function is an example of the so-called theorems of the alternative
in convex analysis, exposited in Chapter 1 of Stoer and Witzgall [1970]. In the
current finite-dimensional financial market context, the result is due to Ross [1978].
It was extended to infinite-dimensional spaces by Yan [1980] and Kreps [1981]. In
general, under infinitely many states, the result requires the exclusion of a stronger
notion of arbitrage opportunities than mere positivity. A notable exception is
the case of a market generated by finitely many assets in discrete time, as shown
by Dalang et al. [1990], with simplified proofs given by Schachermayer [1992] and
Kabanov and Kramkov [1994]. Extensions to models with continuous-time trading
are reviewed by Delbaen and Schachermayer [2006].
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implies p · x ≤ p · x̄ = 0 for all x ∈ X. Given that p · x̄ = 0, the second

support inequality implies p · y ≥ p · ȳ = p · p > 0 for all y ∈ ∆, and

therefore pn > 0 for all n, completing the proof that p is a state-price

process. Finally, to show the existence of the pair (x̄, ȳ), we apply

the remaining parts of Theorem B.5.1 to conclude that the function

mapping each point of ∆ to its projection on X is well-defined and

continuous. Since norms are continuous, the function that maps each

point of ∆ to its least distance from X is also continuous (as well as

convex) and therefore achieves a minimum over ∆ by Proposition B.3.7

(or Proposition B.4.3).

(Uniqueness) Suppose Π is a present-value function and let M de-

note the set of marketed cash flows. We have already shown that

X uniquely determines Π (c) for all c ∈ M . If X is complete, then

M = R
1+N and Π is uniquely determined. Suppose instead that X

is incomplete, and fix any c̄ ∈ R
1+N \ M . Taking an orthogonal pro-

jection, let c̄ = m + z, where m ∈ M and z 6= 0 is orthogonal to

M and therefore also to X and (1, 0, . . . , 0) (the vector correspond-

ing to 1Ω×{0}). Let p ∈ R
1+N
++ be the Riesz representation of Π, so

Π (c) = p · c for all c ∈ R
1+N . Consider any scalar α 6= 0 such that

pα ≡ p + αz ∈ R
1+N
++ . Since z is orthogonal to X and (1, 0, . . . , 0),

pα · x = p · x for all x ∈ X and pα · (1, 0, . . . , 0) = p0 = 1, and therefore

Πα (c) = pα · c defines a present-value function, which is not equal to

Π, since Πα (c̄) = Π (c̄) + αz · z 6= Π (c̄). �

Remark 1.4.4. The uniqueness argument just given shows that the

value a present-value function assigns to a non-marketed cash flow c̄

is constrained only by the requirement that a present-value function is

positive. Had we not required positivity of pα, the parameter α could

be chosen arbitrarily and Πα (c̄) could take any value. ♦

Remark 1.4.5. The preceding proof shows the existence of a present-

value function assuming only that X is a closed convex cone, not

necessarily a linear subspace. This generality is utilized in our later

discussion of dominant choice. It also allows an easy extension of The-

orem 1.4.3 to a constrained market X, which we define as a closed

convex set of cash flows such that 0 ∈ X and there exists ε > 0 such

that for all x ∈ X, 0 < ‖x‖ < ε implies (ε/‖x‖)x ∈ X. In words,
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every trade that is small in the sense that its norm is no more than

ε can be scaled up so that its norm is ε. This allows for large po-

sition limits as well as short-sale constraints (since x ∈ X need not

imply −x ∈ X). We show that a constrained market X is arbitrage-

free if and only if a present-value function exists. First note that X is

arbitrage-free if and only if the cone C ≡ {sx | s ∈ R+, x ∈ X} gener-

ated by X is arbitrage-free. Since C is a closed convex cone, the proof

of Theorem 1.4.3 applies. That C is convex is immediate. That C

is closed follows from the assumption that trades smaller than ε can

be scaled up to have norm ε. The interested reader can prove this

by confirming that C and X have the same (closed) intersection with
{

x ∈ R
1+N | ‖x‖ ≤ ε

}

. ♦

We have so far defined present-value functions from the perspective

of time zero. A present-value function can be defined analogously from

the perspective of every other spot (F, t). Suppose XF,t ⊆ LF,t is the set

of traded cash flows from the perspective of spot (F, t), and the dynamic

consistency assumption XF,t ⊆ X is satisfied (as in Proposition 1.2.4).

Then the restriction of a time-zero present-value function Π to LF,t is

a positive linear functional on LF,t satisfying Π (x) ≤ 0 for all x ∈ XF,t.

After normalization so that ΠF,t(1F×{t}) = 1, we obtain the spot-(F, t)

conditional present-value function

(1.4.1) ΠF,t (c) ≡
Π
(

c1F×{t,...,T}

)

Π
(

1F×{t}

) , c ∈ L.

Note that we have defined ΠF,t over the entire domain L, while only its

restriction ΠF,t : LF,t → R is meaningful as a spot-(F, t) present-value

function. This is merely a convenience. The following proposition

shows that for an arbitrage-free liquid market the preceding definition

covers all spot-(F, t) present-value functions.

Proposition 1.4.6. Given an arbitrage-free liquid market X, sup-

pose Φ: LF,t → R is a positive linear functional satisfying Φ (x) ≤ 0

for all x ∈ X ∩LF,t and Φ(1F×{t}) = 1. Then there exists a (time-zero)

present-value function Π such that Φ (c) = ΠF,t (c) for all c ∈ LF,t.

Proof. Fix any time-zero present-value function Π̃ and define the

function Π: L → R by letting Π (c) = Π̃ (c̃), where c̃ is the cash flow
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obtained from c after replacing the restriction of c on F × {t, . . . , T}
with a single payment at spot (F, t) equal to Φ (c) ≡ Φ

(

c1F×{t,...,T}

)

,

that is, c̃ ≡ c − c1F×{t,...,T} + Φ (c) 1F×{t}. Then Π is a positive linear

functional that satisfies Π(1Ω×{0}) = 1. We now show that Π vanishes

on X and is therefore a present-value function whose conditional is

Φ. Given any x ∈ X, the liquidity assumption allows us to find y ∈
X ∩ LF,t such that (x− y) 1F×{t+1,...,T} = 0 and therefore Π (x− y) =

Π̃ (x− y) = 0. Since y ∈ LF,t and Φ (y) = 0, we also have Π (y) =

Π̃ (0) = 0. Therefore, Π (x) = Π (x− y) + Π (y) = 0. �

An exercise in applying the conditioning formula (1.4.1) shows that

if spot (F, t) has immediate successors (F0, t+ 1) , . . . , (Fd, t+ 1), then

for every cash flow c,

(1.4.2) ΠF,t (c) = c (F, t) + ΠF,t

(

d
∑

i=0

ΠFi,t+1 (c) 1Fi×{t+1}

)

.

These equations represent a recursion that determines the time-zero

present value Π (c), starting with the terminal values ΠF×{T} (c) =

c (F, T ) and proceeding backward on the information tree.

We conclude this section with some observations on the relationship

between present-value functions and contract pricing.

Definition 1.4.7. The positive linear functional Π: L → R is said

to price the contract (δ, V ) if for every spot (F, t),

(1.4.3) V (F, t) = ΠF,t (δ) .

Proposition 1.4.8. A present-value function prices all traded con-

tracts. Conversely, a positive linear functional on L that prices all con-

tracts implementing the market and assigns the value one to 1Ω×{0} is

a present-value function.

Proof. To show the first claim, set to zero the present value of

the cash flow (1.3.2) resulting from buying a traded contract at a given

spot. To show the converse, let X0 be the set of all cash flows of the

form (1.3.2). As discussed in last section’s last paragraph, span(X0)

is the market implemented by the given contracts. A positive linear

functional vanishes on span(X0) if and only if it vanishes on X0 if and

only if it prices every contract defining X0. �
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Letting S ≡ V − δ, equations (1.4.3) are equivalent to backward

recursion

(1.4.4) S (F, t) = ΠF,t

(

V 1F×{t+1}

)

, VT = δT .

This pricing equation follows either as an application of recursion (1.4.2)

or by setting to zero the present value of the traded cash flow generated

by buying the contract at spot (F, t) and selling it a period later. Con-

versely, given δ, V is uniquely determined by the backward recursion

and must therefore satisfy 30.

1.5. Options and dominant choice

An option generalizes our earlier notion of a contract by allowing

the owner to choose any dividend process within a specified set of

cash flows O. For example, suppose O represents the possible cash

flows resulting from a finite opportunity set of projects available to

a firm. Shareholder owners of the firm may disagree on what is the

best project to undertake. Assuming shareholders only care about the

cash flow generated by a project and every cash flow in O can be sold

in a complete market, then shareholders who would disagree absent

a market can agree on a project that is assigned the highest price by

the market. Extending this idea, we will see that a choice maximizes

every present-value function if and only if it is dominant in that it is

optimal given the market for every decision maker who is not averse to

arbitrage cash flows. Moreover, assuming the market is liquid, a choice

that is dominant at time zero remains dominant as uncertainty unfolds

and therefore there is no incentive to deviate from an initially selected

dominant choice. The existence of a dominant choice in turn leads

to the pricing of a traded option. An important application of these

arguments is to standardized traded financial options such as American

call and put options.

We assume throughout that a market X is available and that O is

a nonempty set of cash flows.

Definition 1.5.1. A cash flow δ∗ ∈ O is dominant in O if given

any δ ∈ O, there exists a trade x ∈ X such that δ∗ + x ≥ δ.

A dominant choice is optimal for everyone who can trade in X and is

not averse to an incremental arbitrage cash flow. An agent who would
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have preferred δ in the absence of a market prefers receiving δ∗ and

simultaneously entering a trade x such that δ∗ + x ≥ δ. While the

trade x is agent specific, the dominance of δ∗ is agent independent.

Theorem 1.5.2. Suppose the market X is arbitrage-free and O is

a nonempty set of cash flows. Then δ∗ ∈ O is dominant in O if and

only if for every present-value function Π for X,

(1.5.1) Π (δ∗) = max {Π (δ) | δ ∈ O} .

Proof. Suppose δ∗ is dominant. For all δ ∈ O, we can write

δ∗ + x ≥ δ for some x ∈ X, and therefore Π (δ∗) = Π (δ∗ + x) ≥ Π (δ)

for every present-value function Π.

For the converse, it is instructive, although formally redundant, to

first consider a simple argument for a complete market X. Suppose

δ∗ ∈ O maximizes the unique present-value function Π over O. Given

any δ ∈ O, we have δ∗ = Π (δ∗) 1Ω×{0} + x∗ and δ = Π (δ) 1Ω×{0} + x

for some x∗, x ∈ X, and therefore

δ∗ − x∗ + x = Π (δ∗) 1Ω×{0} + x ≥ Π (δ) 1Ω×{0} + x = δ,

which proves the dominance of δ∗.

Suppose now that X is not necessarily complete and δ∗ ∈ O is not

dominant. We will show that there exists some present-value function

that δ∗ does not maximize. As in the proof of Theorem 1.4.3, we

identify L with R
1+N . Since δ∗ is not dominant, there exists δ ∈ O

such that {δ∗ − δ + x | x ∈ X} ∩ R
1+N
+ = ∅. Then ∆ ≡ δ∗ − δ /∈ X

and the set X∗ ≡ {x+ α∆ | x ∈ X, α ∈ R+} is an arbitrage-free closed

convex cone. By Remark 1.4.5, there exists p ∈ R
1+N
++ such that p·x ≤ 0

for all x ∈ X∗. Such a vector p is a state-price process that satisfies

p · ∆ ≤ 0. To ensure the latter is a strict inequality, we perturb p

while maintaining the state-price property as follows. Let ∆ = x̄ + z,

where x̄ ∈ X and z is non-zero and orthogonal to X. Pick ε > 0 small

enough so that p − εz is strictly positive and let Π (x) ≡ (p− εz) · x
for all x ∈ R

1+N . For x ∈ X, z · x = 0 and therefore Π (x) = p · x ≤ 0.

Moreover,

Π (∆) = p · ∆ − εz · ∆ ≤ −εz · (x̄+ z) = −εz · z < 0.

Therefore Π is a present-value function such that Π (δ∗) < Π (δ). �
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Corollary 1.5.3. Suppose the market is arbitrage-free, the set of

cash flows O is compact (for example, finite), and every element of O

is marketed. Then a dominant choice in O exists.

If a compact option contains non-marketed cash flows, there may

not be a dominant choice. For a simple example, assume T = 1, there

is no uncertainty, O = {(0, 1) , (1, 0)} and X = {0}. Neither choice of

O is dominant and each maximizes some present-value function.

Suppose now that the option holder does not have to commit to an

initial option selection. Will there be an incentive to deviate from a

previously made dominant selection in the face of new information? To

address this issue we refine the definition of an option to incorporate the

idea that the option holder can deviate from a previous cash flow choice

at any time. As before, let O represent a set of cash flows available to

the option holder at time zero. For every δ ∈ O and spot (F, t), the

set of cash flows in O that are equal to δ up to but not including spot

(F, t) is

(1.5.2) OF,t (δ) ≡
{

δ̃ ∈ O | δ̃ = δ on F × {0, . . . , t− 1}
}

.

Selecting δ ∈ OΩ,0 ≡ O at time zero and switching to δ̃ ∈ OF,t (δ)

at spot (F, t) is equivalent to selecting δ + (δ̃ − δ)1F×{t,...,T} at time

zero, which must therefore also belong to O if the option holder does

not have to commit at time zero. This motivates the following formal

definition.

Definition 1.5.4. An option is a set O ⊆ L such that for every

spot (F, t), δ ∈ O and δ̃ ∈ OF,t (δ) implies δ + (δ̃ − δ)1F×{t,...,T} ∈ O.

Example 1.5.5. (American call) Fixing a maturity date τ̄ ∈
{1, . . . , T − 1}, let T denote the set of all stopping times that are val-

ued in {0, . . . , τ̄} ∪ {∞}. For τ ∈ T , let 1[τ ] denote the process whose

value at (ω, t) is one if τ (ω) = t and zero otherwise. An American

option with payoff process D ∈ L is the option

O ≡
{

D1[τ ] | τ ∈ T
}

, where D∞ ≡ 0.

The option owner who selects the cash flow D1[τ ] is said to exercise

the American option at time τ . The event {τ = ∞} corresponds to

never exercising the option and thus receiving no payoff. In other

words, along any path on the information tree, the option holder can
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choose at most one spot (F, t) where to collect D (F, t), receiving zero

if no spot is selected. An American call on some underlying traded

contract with ex-dividend price process S is the American option with

payoff process D ≡ S − K, where the scalar K is the strike. (Note

that we have assumed τ̄ < T in order to avoid our earlier simplifying

convention that ST = 0.)

Suppose that the underlying contract, which we henceforth refer to

as the stock, does not pay any dividends up to the maturity date τ̄ .

Suppose also that for every time prior to τ̄ there is a way to save K

(units of account) and have K for sure at time τ̄ plus potentially some

non-negative interest. (Section 1.8 defines more formally a money-

market account that can implement such savings, provided the interest

rate process is non-negative.) In this case, it is a dominant choice to not

exercise the American call prior to maturity. To see why, suppose the

option holder is considering exercising the option at some spot (F, t)

with t < τ̄ . The option holder is at least as well off keeping the option

alive to maturity, shorting the stock and saving K. Exercising at spot

(F, t) results in an inflow S (F, t) − K and nothing thereafter. The

alternative strategy also results in an inflow S (F, t) −K at spot (F, t),

but now the option holder still has the call option, a saved amount that

is sufficient to pay the strike at maturity, and a short position on the

underlying stock. At maturity, if the stock is worth more than K, the

option holder can spend K from savings, exercise the call option and

close out the short position. If on the other hand the stock price is

less than K at maturity, the option holder ends up with K − Sτ̄ plus

any additional interest on savings. Put together, relative to exercising

at spot (F, t), the alternative strategy results in the additional time-

τ̄ payoff of max {K − Sτ̄ , 0} (which is the payoff of a European put

option) plus any interest on the strike.

The argument fails if the stock pays sufficiently high dividends.

Since dividend payouts reduce the stock value but do not affect the

strike K, the benefit of collecting dividends can outweigh the cost of

early exercise. This tension between immediate payoff and the benefit

of waiting in order to condition actions on future information is typical

of an American option. ♦
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We have defined dominance from the perspective of time zero. Dom-

inance at every other spot is defined similarly, relative to a dynamic

market that assigns a set of traded cash flows XF,t ⊆ X ∩ LF,t to every

spot (F, t).

Definition 1.5.6. A cash flow δ∗ ∈ O is dominant at spot (F, t)

if given any δ ∈ OF,t (δ
∗), there exists a trade x ∈ XF,t such that

δ∗ + x ≥ δ on F × {t, . . . , T}.

We proceed under the assumption that the market is arbitrage-

free and liquid and therefore, by Proposition 1.2.4, XF,t = X ∩ LF,t.

The following proposition shows that ex-ante dominance implies ex-

post dominance and therefore an option holder who selects a cash flow

because it is dominant has no incentive to deviate from that choice

because of new information.

Proposition 1.5.7 (dynamic consistency of dominance). Given an

arbitrage-free liquid market, a cash flow δ∗ ∈ O that is dominant at time

zero is also dominant at every other spot.

Proof. Suppose δ∗ is dominant at time zero and (F, t) is any other

spot. Given δ ∈ OF,t (δ
∗), let δ̃ ≡ δ∗ + (δ − δ∗) 1F×{t,...,T} ∈ O and

choose x̃ ∈ X such that δ∗ + x̃ ≥ δ̃. By market liquidity, there exists a

scalar α such that x ≡ x̃1F×{t,...,T} − α1F,t ∈ XF,t ⊆ X, and therefore

x̃−x̃1F×{t,...,T}+α1F,t = x̃−x ∈ X. Since outside the set F×{t, . . . , T},

δ∗ + x̃ ≥ δ̃ = δ∗, we have x̃− x̃1F×{t,...,T} ≥ 0. Since X is arbitrage free,

α ≤ 0. Therefore, on the set F × {t, . . . , T}, δ∗ + x ≥ δ∗ + x̃ ≥ δ̃ = δ,

confirming the dominance of δ∗ at spot (F, t). �

The dynamic consistency of dominance is also reflected in the struc-

ture of conditional present-value functions. Recall that, by Proposi-

tion 1.4.6, every spot-(F, t) present-value function can be expressed as

the conditional ΠF,t of a corresponding time-zero present value func-

tion Π, as defined in (1.4.1). The argument of Theorem 1.5.2 applied

to XF,t = X ∩ LF,t, therefore, shows that δ∗ is dominant at spot (F, t)

if and only if for every present-value function Π,

(1.5.3) ΠF,t (δ
∗) = max {ΠF,t(δ) | δ ∈ OF,t (δ

∗)} .

To show dynamic consistency, suppose that ΠF,t (δ) > ΠF,t (δ
∗) for some

δ ∈ OF,t (δ
∗) and present-value function Π. As in our earlier proof, let
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δ̃ ≡ δ∗ +(δ − δ∗) 1F×{t,...,T} ∈ O. Using equation (1.4.1) with c = δ̃−δ∗,

it follows that Π(δ̃) > Π (δ∗). Therefore, if δ∗ is not dominant at (F, t)

it is also not dominant at spot (Ω, 0). The argument applies from the

perspective of any other spot, showing that if a cash flow is dominant

at a spot, then it is also dominant at every successor of the given spot.

Dynamic consistency is the key to the dynamic programming4 ap-

proach to present-value maximization. Associated with the maximiza-

tion problem (1.5.1) is a Bellman equation, which recursively spec-

ifies, for every spot (F, t), a function pF,t : O → R with the property:

δ∗ = δ on F × {0, . . . , t− 1} implies pF,t (δ
∗) = pF,t (δ). In other words,

just like the set OF,t (δ), the value pF,t (δ) depends on δ only through

its history prior to spot (F, t). In particular, p ≡ pΩ,0 (δ) does not de-

pend on the argument δ at all. In order to focus on the main ideas, we

assume throughout that all the maxima below exist, which, for exam-

ple, is true if O is finite. The recursion starts with the terminal-spot

functions

(1.5.4) pF,T (δ∗) = max {δ (F, T ) | δ ∈ OF,T (δ∗)} , δ∗ ∈ O,

and proceeds backward on the information tree. Suppose that at spot

(F, t), with immediate successor spots (F0, t+ 1) , . . . , (Fd, t+ 1), the

functions pFi,t+1 are already known. Then for all δ∗ ∈ O,

(1.5.5) pF,t (δ
∗) = max

δ∈OF,t(δ∗)
δ (F, t) + ΠF,t

(

d
∑

i=0

pFi,t+1 (δ) 1Fi×{t+1}

)

.

Note that pFi,t+1 (δ) depends on δ only through its history up to and

including spot (F, t) and the values of δ prior to (F, t) are fixed by δ∗.

The maximization in the Bellman equation is, therefore, over the scalar

δ (F, t), which represents a spot-(F, t) payment that is consistent with

prior selections by the option owner.

Proposition 1.5.8. The functions

pF,t (δ
∗) ≡ max {ΠF,t(δ) | δ ∈ OF,t (δ

∗)} , δ∗ ∈ O,

satisfy the Bellman equations (1.5.5) with terminal condition (1.5.4).

4Richard Bellman coined the term “dynamic programming” in 1950 at the RAND
corporation. Dreyfus [2002] recounts some colorful context.
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Proof. Recursion (1.4.2) with c = δ ∈ OF,t (δ
∗) implies that

ΠF,t (δ) ≤ δ (F, t) + ΠF,t

(

d
∑

i=0

pFi,t+1 (δ) 1Fi×{t+1}

)

.

Maximizing over all δ ∈ OF,t (δ
∗) shows (1.5.5) with inequality ≤ in

place of equality. We show equality by showing that the maximum is

achieved by any δ ∈ OF,t (δ
∗) such that ΠF,t (δ) = pF,t (δ

∗). In other

words, δ is dominant at spot (F, t) relative to the complete market with

the given present-value function. By dynamic consistency, for all i ∈
{0, . . . , d}, δ is also dominant at (Fi, t+ 1) and therefore pFi,t+1 (δ) =

ΠFi,t+1 (δ). Applying recursion (1.4.2) once again, we conclude that δ

achieves the maximum in (1.5.5). �

According to the dynamic programming approach, to maximize

time-zero present value we apply the Bellman equation backward on

the tree to find the functions pF,t, which in particular gives the max-

imum time-zero present value as the constant value p of pΩ,0 (δ). To

find a δ∗ ∈ O such that p = Π (δ∗), we start with the value δ∗
0 of δ (Ω, 0)

that achieves the maximum of the Bellman equation at the time-zero

spot. Given δ∗
0, we can then find values δ∗ (F, 1) that achieve the max-

imum of the Bellman equation at every time-one spot, thus defining

δ∗
1, and so on up to the terminal date, thus constructing a δ∗. Let

V ∗ (F, t) ≡ pF,t (δ
∗) and note that, by construction,

V ∗ (F, t) = δ∗ (F, t) + ΠF,t

(

V ∗1F×{t+1}

)

, V ∗
T = δ∗

T ,

which is the backward recursive way of expressing the fact that Π prices

the contract (δ∗, V ∗) and therefore p0 = V ∗
0 = Π (δ∗).

Given a small number of spots and option choices, the dynamic

programming method can be easily implemented, since at each spot the

possible values pF,t (δ) can be listed and stored. In some applications

it is simple to keep track of past option selections. For example, for

an American option, all one needs to know at each spot is whether

the option has been exercised or not. Even in this case, however,

one quickly runs into the curse of dimensionality, since the number

of spots increases exponentially with the number of periods. This issue

motivates the modeling idea of a Markov state, which is introduced in

the following chapter and is implicitly used in Exercise 1.9.9.
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1.6. Option pricing

Suppose that at time zero the option O can be bought or sold at a

price or premium p. An option buyer makes a time-zero payment p

to the option seller, who must then deliver the cash flow in O selected

by the buyer. We assume throughout that there exists a dominant

choice δ∗ in O that is marketed in the arbitrage-free market X, with

present value p∗. The option premium p = p∗ is consistent with the

absence of arbitrage opportunities. Buying the option, exercising it to

receive some δ ∈ O and entering a trade x ∈ X generates the cash flow

−p∗1Ω×{0} + δ + x, which cannot be an arbitrage, since every present-

value function assigns it a non-positive value. Similarly, selling the

option and entering any trade in X cannot guarantee an arbitrage—as

long as the option buyer selects δ∗, the generated cash flow has zero

present value and cannot be an arbitrage.

What if the option premium is not p∗? If p < p∗, then an arbi-

trageur can buy the option, exercise it to receive the dominant cash

flow δ∗, while selling δ∗ in the market X, netting the arbitrage cash

flow (p∗ − p) 1Ω×{0}. Suppose now that p > p∗. The obvious first trade

toward an arbitrage is to sell the option. If the arbitrageur knew in

advance the option buyer’s selection δ ∈ O, then the arbitrage would

be completed by buying δ∗ and entering a trade x ∈ X such that

δ∗ + x ≥ δ. But the option buyer does not have to commit to the

choice δ, so it is not clear what x should be. At spot (F, t) the arbi-

trageur observes δ up to spot (F, t), but the option buyer can continue

with any choice that is consistent with this initial part of δ. Assuming

OF,t (δ) contains a dominant choice, we will show that the arbitrageur

can hedge every possible choice by the option buyer, guaranteeing an

arbitrage.

More precisely, we assume the arbitrageur has access to a dynamic

market assigning a set of traded cash flows XF,t ⊆ X ∩ LF,t to each

spot (F, t). In order to hedge the short option position, the arbitrageur

follows an O-adapted strategy h, which is an assignment to each

nonterminal spot (F, t) of a function hF,t : O → XF,t such that δ = δ̃

on F×{0, . . . t} implies hF,t (δ) = hF,t(δ̃). At spot (F, t), the arbitrageur

observes that the option buyer selected δ up to (F, t) and enters the

incremental trade hF,t (δ) ∈ XF,t in order to hedge all possible future
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choices by the option buyer. We will see that this is possible because of

the assumption that OF,t (δ) contains a dominant choice at spot (F, t).

If δ and δ̃ are identical up to spot (F, t), the arbitrageur does not know

which cash flow the option buyer might continue with and therefore it

must be the case that hF,t (δ) = hF,t(δ̃). To simplify the notation, for

every δ ∈ O and time t < T , let the function ht (δ) : Ω → X be defined

by ht (δ) (ω) ≡ hF,t (δ) for all ω ∈ F . The arbitrageur sells the option,

receives the premium p at time zero and delivers whatever cash flow

δ in O is selected by the option buyer, while following the O-adapted

strategy h, resulting in the cash flow

(1.6.1) p1Ω×{0} − δ +
T−1
∑

t=0

ht (δ) .

The proof of the existence of an arbitrage of this form if p > p∗ follows.

Proposition 1.6.1. Suppose the market is arbitrage-free, δ∗ is a

marketed dominant cash flow in O with present value p∗, and for every

δ ∈ O and spot (F, t), there exists a cash flow in OF,t (δ) that is domi-

nant at (F, t). If p > p∗, then there exists a O-adapted strategy h such

that for all δ ∈ O, the cash flow (1.6.1) is an arbitrage.

Proof. Suppose p > p∗. Given δ ∈ O, select δ(F,t) ∈ OF,t (δ) to

be dominant at spot (F, t) and let δ(t) ≡ ∑n
i=1 δ

(Fi,t)1Fi×{0,...,T}, where

{F1, . . . , Fn} is the partition generating Ft. The definition of an option

implies that δ(t) ∈ OF,t (δ) for every spot (F, t). Select x ∈ X such that

δ∗ + x ≥ δ(1) and let h0 (δ) ≡ −p∗1Ω×{0} + δ∗ + x. Since δ(1), and hence

the choice of x, depends on δ only through the value δ0, so does h0 (δ),

as required by O-adaptedness. At time zero the arbitrageur sells the

option, buys the cash flow δ∗ and enters the trade x, which together

with δ∗ dominates δ(1). After paying δ0 = δ
(1)
0 to the option buyer, the

arbitrageur has generated the cash flow

c(0) ≡ p1Ω×{0} + h0 (δ) − δ1Ω×{0} ≥ (p− p∗) 1Ω×{0} + δ(1)1Ω×{1,...,T}.

Proceeding inductively, suppose after all transactions prior to time t ∈
{1, . . . , T − 1}, the arbitrageur faces an overall cash flow

(1.6.2) c(t−1) ≥ (p− p∗) 1Ω×{0} + δ(t)1Ω×{t,...,T}.
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Choose hF,t (δ) ∈ XF,t so that δ(t)1F×{t,.....T}+hF,t (δ) ≥ δ(t+1)1F×{t,.....T}.

The arbitrageur can identify δ(t+1)1F×{t,...,T}, and therefore hF,t (δ), hav-

ing observed only δ1F×{0,...,t}. At time t the arbitrageur enters the trade

ht (δ) and pays out δt to the option holder, resulting in the cash flow

c(t) ≡ c(t−1) + ht (δ) − δ1Ω×{t} ≥ (p− p∗) 1Ω×{0} + δ(t+1)1Ω×{t+1,...,T},

which is inequality (1.6.2) with t incremented by one. At time T the

arbitrageur pays out δT to the option holder, resulting in the overall

arbitrage cash flow c(T−1) − δ1Ω×{T} ≥ (p− p∗) 1Ω×{0}. The recursive

construction of the cash flows c(t) implies that c(T−1) − δ1Ω×{T} is equal

to (1.6.1), and we have therefore produced an O-adapted strategy h

such that (1.6.1) defines an arbitrage for all δ ∈ O. �

Under the last proposition’s assumptions, we have shown that in

an arbitrage-free market allowing time-zero trading of the option, the

time-zero option price is the present value of the marketed dominant

cash flow, even though an option seller cannot assume optimal exercise.

An analogous discussion applies from the perspective of every other

spot. Suppose, for simplicity, that every cash flow in O is marketed. If

prior to spot (F, t) the option buyer has selected the cash flow δ ∈ O,

the arbitrage-free price pF,t (δ) of the remaining option OF,t (δ) is equal

to the present value of a dominant cash flow in OF,t (δ). If at spot

(F, t) the option buyer selects a payment that is not consistent with

any dominant cash flow in OF,t (δ), then effectively the option buyer

has gifted an arbitrage cash flow to the option seller. This creates an

incentive to market complex options to inattentive or unsophisticated

buyers with the expectation of suboptimal exercise.

1.7. Trading strategies

As we saw in Section 1.2, the market implemented by given con-

tracts can be described as the set of cash flows generated by trading

strategies specifying contingent trades at every spot of the information

tree. This section provides a more systematic discussion of trading

strategies and associated notation and terminology, which is tailored

to the probabilistic methods introduced in the following chapter.

Throughout this section, we take as given the contracts

(1.7.1)
(

δ1, V 1
)

, . . . ,
(

δJ , V J
)

,
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with corresponding ex-dividend price processes Sj = V j − δj. Trading

strategies in these contracts are time-indexed sequences of portfolios

representing positions over each period. Period t ∈ {1, . . . , T} is the

time interval whose beginning is time t− 1 and whose end is time t. A

period-t portfolio
(

θ1
t , . . . , θ

J
t

)

is formed at the beginning of period t,

with θjt representing a number of shares in contract j. By convention,

we set θj0 = 0. It is important to keep track of what quantities are

known at the beginning of a period and what quantities are only known

at the end of the period. To emphasize this distinction, we define a

process x to be predictable if xt is Ft−1-measurable, for every time

t > 0, and x0 is constant. Thus if x is adapted, we can only claim that

xt is known at the end of period t, while if x is predictable, we know

that xt is revealed at the beginning of period t. Throughout this text,

P denotes the set of all predictable processes and

P0 ≡ {x ∈ P | x0 = 0} .

Definition 1.7.1. A trading strategy in contracts (1.7.1) is a J-

dimensional row matrix whose entries are elements of P0. The trading

strategy
(

θ1, . . . , θJ
)

generates the cash flow x, where

(1.7.2) xt =
J
∑

j=1

θjtV
j
t − θjt+1S

j
t , t < T ; xT =

J
∑

j=1

θjTV
j
T .

In the budget equation (1.7.2), xt is the net of the time-t value
∑

j θ
j
tV

j
t of the period-t portfolio and the time-t cost

∑

j θ
j
t+1S

j
t of form-

ing the period-(t+ 1) portfolio. Since θ0 = 0, x0 = −∑

j θ
j
1S

j
0 is the

initial payment required to commence the strategy. The final payment

xT equals the portfolio’s time-T liquidation value.

Proposition 1.7.2. The market implemented by contracts (1.7.1)

is the set of all cash flows generated by trading strategies in these con-

tracts.

Proof. Let X be the market implemented by contracts (1.7.1)

and let X ′ be the set of all cash flows generated by trading strategies

in these contracts. In the closing paragraph of Section 1.3 we saw that

X = span (X0), where X0 is the set of all −V j1F×{t} + δj1F×{t,...,T},

where (F, t) is a spot and j ∈ {1, . . . , J}. One can easily check that

X0 ⊂ X ′. Since X ′ is a linear subspace, this shows that X ⊆ X ′.
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Conversely, suppose that x ∈ X ′ is generated by a trading strategy
(

θ1, . . . , θJ
)

. Note that x =
∑

j x
j , where xjt = θjtV

j
t − θjt+1S

j
t for t < T

and xjT = θjTV
j
T . An induction in the number of trades of θj , defined as

the number of spots where θj changes value, shows that xj ∈ span (X0)

for all j, and therefore x ∈ X. �

The budget equation (1.7.2) is more conveniently expressed using

a process transform operator which directly corresponds to stochastic

integrals in continuous-time extensions and facilitates the application of

martingale methods introduced in the following chapter. To state this

form of the budget equation, we first introduce some more generally

useful notation.

For any process x, the lagged process x− is defined by

x− (0) ≡ x (0) , x− (t) ≡ x (t− 1) , t = 1, . . . , T,

The increments process of x is the process ∆x ≡ x− x−, that is,

∆x0 ≡ 0, ∆xt ≡ xt − xt−1, t = 1, . . . , T.

The integral5 x • y of x with respect to the process y is the process

(x • y)0 ≡ 0, (x • y)t ≡
t
∑

s=1

xs∆ys, t = 1, . . . , T.

We denote by t the process that counts time: t (t) ≡ t. Thus

(x • t)0 = 0, (x • t)t =
t
∑

s=1

xs, t = 1, . . . , T.

The gain process Gj of contract (δj , V j) is defined by

Gj
t ≡ V j

t +
∑

s<t

δjs = Sjt +
∑

s≤t

δjs, t = 0, . . . , T.

For times t > s, the increment Gj
t − Gj

s represents the total gain re-

sulting from purchasing contract j at time s and selling it at time t.

If
(

θ1, . . . , θJ
)

is a trading strategy, then θj •Gj represents total gains

from trading contract j up to time t.

5The bullet notation for an integral is more commonly found in the more advanced
literature on stochastic analysis. See, for example, Jacod and Shiryaev [2003].
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Proposition 1.7.3. The trading strategy
(

θ1, . . . , θJ
)

generates the

cash flow x if and only if

(1.7.3)
J
∑

j=1

θjV j = −x− • t +
J
∑

j=1

θj •Gj ,
J
∑

j=1

θjTV
j
T = xT .

Proof. Let W ≡ ∑

j θ
jV j. Since ∆Gj

t = V j
t − Sjt−1, the budget

equation (1.7.2) can be written as ∆Wt = −xt−1+
∑

j θ
j
t∆G

j
t , WT = xT ,

which is equivalent to (1.7.3). �

Matrix notation helps us simplify expressions such as (1.7.3), so let

us take a moment to introduce some associated conventions. For any

set Z, we write Zm×n for the set of m-by-n matrices whose entries

are elements of Z. For example, trading strategies are elements of

P1×J
0 . Unless explicitly specified otherwise, vectors of processes are

assumed to be column vectors and we write Zn rather than Zn×1. If

Z is the set of all (adapted, predictable) processes, then Zn is the set

of n-dimensional (adapted, predictable) processes. If Z is a set of

processes, we typically use superscripts to index vectors and matrices.

For x ∈ Ln×m and y ∈ Lm×l, the process x • y ∈ Ln×l is defined by the

analog of the usual matrix multiplication formula:

(x • y)ij ≡
m
∑

k=1

xik • ykj.

With these conventions in place, we define as elements of LJ :

(1.7.4) δ ≡











δ1

...

δJ











and V ≡











V 1

...

V J











,

as well as

(1.7.5) S ≡ V − δ and G ≡ S + δ • t = V + δ− • t.

The budget equation (1.7.3) can be restated more succinctly as

(1.7.6) θV = −x− • t + θ •G, θTVT = xT .

Other versions of the budget equation are obtained by a change of

the unit of account (also known as a change of numeraire). Suppose

the strictly positive adapted process π represents a unit conversion

factor at every spot. A cash flow or price process x expressed in the
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original unit of account becomes πx in the new unit of account. The

gain process G in the new units becomes

Gπ ≡ πV + (πδ)− • t.

A change of units should not affect the validity of a budget equation,

resulting in the following version, whose proof is a simple exercise.

Proposition 1.7.4. For all π ∈ L++, the trading strategy θ gener-

ates the cash flow x if and only if

(1.7.7) θ (πV ) = − (πx)− • t + θ •Gπ, θT (πTVT ) = πTxT .

Using the vector notation (1.7.4), we write (δ, V ) to refer to the

J contracts (1.7.1). A trading strategy θ in (δ, V ) defines a synthetic

contract, which can be thought of as a share in a fund following strat-

egy θ.

Definition 1.7.5. A trading strategy θ ∈ P1×J
0 , generating the

cash flow x, defines the synthetic contract
(

δθ, V θ
)

, where
(

δθ0, V
θ

0

)

≡ (0, θ1V0) ,
(

δθt , V
θ
t

)

≡ (xt, θtVt) , t = 1, . . . , T.

A contract is synthetic in (δ, V ) if it is of the form
(

δθ, V θ
)

for some

trading strategy θ.

Note that the ex-dividend price process Sθ ≡ V θ − δθ is given by

(1.7.8) Sθt−1 = θtSt−1, t = 1, . . . , T ; SθT = 0,

and the gain process of the contract (δθ, V θ) is given by

(1.7.9) Gθ ≡ V θ + δθ− • t = V θ
0 + θ •G,

as can be seen by rearranging the budget equation (1.7.6).

Consider now the trading strategies θ1, . . . , θm in the original con-

tracts (1.7.1) and let α be a trading strategy in the synthetic contracts
(

δθi, V θi

)

, generating the cash flow x. One can think of α as a trading

strategy in m funds, where fund i follows trading strategy θi. The same

cash flow x can be generated by the trading strategy θ ≡ ∑m
i=1 α

iθi in

the original contracts (δ, V ). This argument justifies the following ob-

servations, where X (δ, V ) denotes the market implemented by (δ, V ).
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Proposition 1.7.6. The market implemented by any synthetic con-

tracts in (δ, V ) is a subset of X (δ, V ). The market implemented by

(δ, V ) and any number of synthetic contracts in (δ, V ) is X (δ, V ).

Dividend processes of synthetic contracts correspond to the cash

flows that are marketed in X (δ, V ):

Proposition 1.7.7. A cash flow c is marketed in X (δ, V ) if and

only if there exists a trading strategy θ in (δ, V ) such that

(1.7.10) ct = δθt , t = 1, . . . , T.

In particular, the market X (δ, V ) is complete if and only if every cash

flow c with c0 = 0 is the dividend process of some contract that is

synthetic in (δ, V ).

Proof. Note that c is marketed in X (δ, V ) if and only if there

exists x ∈ X (δ, V ) such that ct = xt for t > 0. By Proposition 1.7.2 and

the definition of a synthetic contract, the latter condition is equivalent

to the existence of a trading strategy θ in (δ, V ) satisfying (1.7.10). �

Finally, we relate synthetic contracts to traded contracts. Note that

in order to conclude that a traded contract is synthetic, the assumption

that the market is arbitrage-free is essential (see Exercise 1.9.8).

Proposition 1.7.8. Every contract that is synthetic in (δ, V ) is

traded in X (δ, V ). Conversely, if the market X (δ, V ) is arbitrage-free,

every contract that is traded in X (δ, V ) is synthetic in (δ, V ).

Proof. Buying a contract (δ∗, V ∗) that is synthetic in (δ, V ) at any

spot generates a cash flow in X (δ∗, V ∗), which, by Proposition 1.7.6, is

a subset of X (δ, V ) . Therefore, a synthetic contract in (δ, V ) is traded

in X (δ, V ) .

Conversely, suppose that (δ∗, V ∗) is traded in X (δ, V ) and let x

be the cash flow generated by buying (δ∗, V ∗) at time zero. Since

x ∈ X (δ, V ), there exists a trading strategy θ in (δ, V ) that generates x.

Since the time-zero dividend of every contract is assumed to be zero by

convention, it follows that δ∗ = δθ. Assuming the market is arbitrage-

free, it must also be the case that V ∗ = V θ. �
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1.8. Money market account and returns

A special type of contract we call a money-market account im-

plements single-period default-free borrowing and lending: A unit of

account invested at time t− 1 pays 1 + rt at time t, where the interest

rate rt is determined at time t − 1 and is therefore Ft−1-measurable.

In practice, a loan can be made default-free by posting sufficient col-

lateral, an important aspect of real-world markets that is not modeled

here. The rate rt is often referred to in the literature as the (period-t)

risk-free rate, although it can vary randomly from period to period.

The rate rt applies to a loan over a single period and is therefore a

short-term interest rate. The predictable process r (with the conven-

tion r0 = 0) is a short-term interest rate process, a term we abbreviate

to short-rate process.

More precisely, we adopt the following terminology.

Definition 1.8.1. A money-market account (MMA) is a con-

tract (δ0, V 0), with ex-dividend price process S0 ≡ V 0 − δ0, such that

for some r ∈ P0,

S0
t−1 = 1 and V 0

t = 1 + rt, t = 1, . . . , T.

The predictable process r is the account’s (interest) rate process.

Given a reference market X, a process r ∈ P0 is a short-rate process

if r is the rate process of an MMA that is traded in X.

The following observations can be verified by the reader. We call

two contracts equivalent if each is synthetic in the other.

Proposition 1.8.2. Suppose the market is arbitrage-free and r is

a short-rate process. Then r is unique and 1 + r is strictly positive.

Moreover, every traded contract (δ0, V 0) whose value process V 0 is pre-

dictable and strictly positive is equivalent to an MMA and satisfies

(1.8.1)
V 0
t

S0
t−1

= 1 + rt, S0 ≡ V 0 − δ0, t = 1, . . . , T.

In applications where the market is implemented by a given finite

set of contracts, it is common to assume that one of these contracts

is an MMA. In all such applications, we label the contracts generating
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the market as

(1.8.2)
(

δ0, V 0
)

,
(

δ1, V 1
)

, . . . ,
(

δJ , V J
)

,

where contract zero is the MMA, with rate process r and gain process

G0. Since δ0
0 = r0 = 0, we have

(1.8.3) V 0 = 1 + r, δ0
− = r−, δ0

T = V 0
T , G0 = 1 + r • t.

Of course, all of last section’s results apply to this case after a

simple relabeling of the contracts, which affects the form of the budget

equation. We adopt the matrix notation (1.7.4) and (1.7.5), where

(δ, V ) and S and G refer to contracts 1, . . . , J and exclude contract

zero. A trading strategy in the 1 + J contracts (1.8.2) is denoted as
(

θ0, θ
)

∈ P × P1×J ,

where θ0
t represents the ex-dividend value in the MMA at the beginning

of period t > 0, and θ is a trading strategy in the remaining J contracts.

Adapting the budget equation (1.7.6) to this notation, it follows that

the trading strategy (θ0, θ) generates cash flow x if and only if

(1.8.4)
θ0V 0 + θV =

(

θ0r − x−

)

• t + θ •G,
θ0
TV

0
T + θTVT = xT .

In applications where portfolio values can be assumed to stay pos-

itive it is common to focus on returns rather than prices. The return

process Rj associated with contract j is defined by

(1.8.5) Rj
0 ≡ 1, Rj

t ≡ V j
t

Sjt−1

, t = 1, . . . , T,

provided Sjt−1 is nowhere zero, which we assume for the remainder of

this section. We refer to Rj
t as the period-t return of contract j. Note

that if r is the market’s short-rate process, then

R0 ≡ 1 + r.

The return process Rθ of a trading strategy (θ0, θ) is defined as

the return process of the corresponding synthetic contract, which we

denote by
(

δθ, V θ
)

. Letting Sθ ≡ V θ −δθ, the return process Rθ is well

defined provided the denominator in the following definition is nowhere
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zero:

Rθ
0 ≡ 1, Rθ

t ≡ V θ
t

Sθt−1

, t = 1, . . . , T.

The excess return process of the trading strategy (θ0, θ) is Rθ −R0.

Portfolio returns can be more parsimoniously represented in terms

of returns and portfolio weights, provided of course all relevant returns

are well defined. Consider any trading strategy (θ0, θ) such that the

time-(t− 1) ex-dividend portfolio value

Sθt−1 = θ0
t + θtSt−1

is nowhere zero. Associated with (θ0, θ) is a row vector

ψ =
(

ψ1, . . . , ψJ
)

∈ P1×J
0 ,

defined by

(1.8.6) ψj0 = 0, ψjt ≡ θjtS
j
t−1

Sθt−1

, t = 1, . . . , T.

At the beginning period t, which is time t − 1, ψjt represents the pro-

portion of the portfolio’s ex-dividend value Sθt−1 that is allocated to

contract j. The vector ψt omits the proportion allocated to the MMA,

which can be computed as ψ0
t ≡ 1 − ∑J

j=1 ψ
j
t . We will refer to ψt,

which can be any element of L (Ft−1)1×J , as a (period-t) portfolio al-

location, and to ψ, which can be any element of P1×J
0 , as a portfolio

allocation policy. The period-t return Rθ
t can be computed entirely

in terms of ψt and contract returns, which we therefore also denote,

abusing notation, by Rψ
t :

(1.8.7) Rθ
t ≡ Rψ

t ≡ R0
t +

J
∑

j=1

ψjt
(

Rj
t − R0

t

)

.

In the following chapters we will discuss notions of optimal portfolio

allocations.

1.9. Exercises

Exercise 1.9.1. (a) (forward pricing) Assume that there is a single

period (T = 1) and therefore the filtration consists of spot zero and

N time-one spots. In an arbitrage-free market X, you can trade a

stock with ex-dividend price process (S0, S1) and a dividend yield y,

where 1 + y > 0. (Note that S0 and y are scalars and S1 is a random
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variable or element of RN .) Buying a share of the stock at time zero

generates the cash flow (−S0, S1 (1 + y)) ∈ X and selling (or shorting)

the stock generates the cash flow (S0,−S1 (1 + y)) ∈ X. You can also

trade a money-market account (MMA) with interest rate (or dividend

yield) r. Investing a unit of account in the MMA generates the cash

flow (−1, 1 + r) ∈ X and borrowing a unit of account from the MMA

generates the cash flow (1,− (1 + r)) ∈ X. Note that, since the market

is arbitrage-free, 1 + r > 0.

A forward contract for delivery of the stock at time one is a

contract whose time-zero price is by definition zero and whose time-

one payoff takes the form S1 − K for a scalar K, which is the con-

tract’s delivery price. Entering a long contract generates the cash

flow (0, S1 −K) and entering a short contract generates the cash flow

(0, K − S1). The forward contract is traded in X if these cash flows

are in X, in which case K defines the stock’s forward price F . Notice

that the delivery price K is part of the forward contract’s specification.

The unique value of K such that (0, S1 −K) ∈ X defines F . How can

you create a synthetic forward contract using the stock and the MMA?

What is the implied relationship between S0 and F ? What is an explicit

arbitrage, assuming the forward is traded, if the claimed relationship

between S0 and F is violated?

(b) (leasing, convenience yield) Assume that the stock dividend

yield is zero and instead y represents a lease rate of one share of the

stock. That is, one can borrow a share at time zero and return 1 + y

shares at time one, or one can deliver one share at time zero and receive

back 1 + y shares at time one. In both cases, there is no possibility of

default (which in practice can be implemented by posting appropriate

collateral). In an ideal frictionless market, one would expect that y = 0,

since the stock pays no dividends and therefore lending it out for a

period should not have any consequences. In realistic situations, which

typically take us beyond this text’s formalism, there can be reasons

for the lease rate to be positive in a competitive lease market, despite

the fact that the stock pays no cash dividends over the term of the

lease (or if there is a cash dividend yield, y can be strictly higher

than that yield). For example, what we call a “stock” can be a US

treasury bond that can be used for the purpose of posting collateral
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in other transactions. In this case, the lease rate y is referred to as a

“convenience yield.” The term also applies in situations where what

we call a “stock” is some commodity, say heating oil, and there is an

immediacy value of carrying inventory, as in having quick availability

of heating oil in the winter months. In such contexts, how should your

formal analysis of part (a) be modified, if at all, and how should it be

interpreted?

Exercise 1.9.2. Complete Exercise 1.9.1 and assume the setting

of part (a). A trader entering a long forward position has the right

to receive a positive payoff on the event {S1 > K} and the obligation

to pay the negative payoff on the event {S1 < K}. A (European) call

option (on the stock), or just call, with strike K is defined by the

same payoff but without the obligation. The call’s payoff is therefore

(S1 −K)+ (where x+ ≡ max {x, 0}). Starting with a short forward

contract and removing the obligation part results in the definition of

the payoff (K − S1)
+ of a (European) put option (on the stock), or

just put, with strike K. A call or put option with payoff V is traded

in X if (−p, V ) ∈ X for a necessarily unique scalar p, which defines the

option’s price or premium. The cash flow (−p, V ) is generated by

buying or going long the option and the cash flow (p,−V ) is generated

by selling or going short or writing the option. Given a commitment

to pay S1 (resp. receive S1) at time one, buying the call (resp. put) is

a form of insurance, paying a premium p at time zero in return for the

right to pay K rather than S1 on the event {S1 > K} (resp. receive K

rather than S1 on the event {S1 < K}).

(a) (put-call parity) Suppose the call and the put, both with strike

K, are traded, with respective premia pcall and pput . (The strike need

not equal the stock’s forward price.) What is the relationship, known

as put-call parity, between pcall −pput and the stock price? Suppose the

relationship is violated. Provide an explicit arbitrage resulting from

trading the options, the stock and the MMA.

(b) (hard-to-short stock) As in Exercise 1.9.1(b), assume that the

stock dividend yield is zero but the stock can be leased at a rate y.

Sometimes demand for borrowing stock shares for the purpose of short-

ing them is high relative to the shares available for lending, pushing the

lease rate y up. (For example, aggressive sentiment-based trading by
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groups of traders can temporarily push prices to seemingly unreason-

able levels relative to fundamentals, causing high demand for shorting

by other traders who want to take advantage of the presumed reversion

of the stock price to more reasonable levels. The activity is risky, since

shorting requires the posting of collateral and further price increases

can force the closing of short positions at a loss, further fueling an up-

ward trend.) The short seller must borrow a share and pay a fee yS1

at time one. Conversely, a long position over the period can lease out

the position and collect this fee. How should your formal analysis of

part (a) be modified, if at all, and how should it be interpreted?

Exercise 1.9.3. (Simple binomial pricing6) This exercise intro-

duces the simplest version of the binomial pricing model, which will

be extended in other exercises. Specialize the setting of the Exer-

cise 1.9.1(a) by further assuming there are only two states (N = 2) cor-

responding to the time-one stock price S1 taking the values S0 (1 + u)

and S0 (1 + d), where u > d > −1. For simplicity, assume the stock

pays no dividends (y = 0). The market X is implemented by trading in

the stock and the MMA. What are necessary and sufficient conditions

on the parameters r, u and d for X to be arbitrage-free? Proceeding

under the assumption that X is arbitrage-free, show that X is com-

plete and compute the corresponding present-value function. Review

the definition of a (European) call option in Exercise 1.9.2. What is

the premium of a call according to this present-value function? Com-

pute a replicating portfolio, that is, a portfolio in the stock and the

MMA whose time-one payoff is the same as that of the call option.

Finally, confirm that the time-zero value of the replicating portfolio is

consistent with your earlier call premium calculation.

Exercise 1.9.4. Take as given a reference arbitrage-free market X.

(a) Suppose the market X is complete. Explain why for every cash

flow c, there is a unique scalar Π (c) such that c − Π (c) 1Ω×{0} ∈ X.

Then show that the function Π: L → R so defined is a present-value

function.

6The binomial model introduced in this exercise and further developed in Exer-
cises 1.9.9 and 2.9.6 originates in Cox et al. [1979], Rendleman, Jr. and Bartter
[1979] and Sharpe [1978].
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(b) Without assuming market completeness, show that a cash flow

is marketed if and only if it is assigned the same value by every present-

value function. As a corollary, show that a cash flow is traded if and

only if it is assigned the value zero by every present-value function.

Exercise 1.9.5. Show the present-value backward recursion (1.4.2)

using the conditional present-value definition (1.4.1).

Exercise 1.9.6. Fix a reference complete market with correspond-

ing present-value function Π. For every spot (F, t), Π defines a spot-

(F, t) conditional present-value function ΠF,t by equation (1.4.1). Con-

sider an American option with payout process D as defined in Exam-

ple 1.5.5, whose notation we use here. For every stopping time τ , let

δτ ≡ D1[τ ] and define the adapted process V τ by letting, for every spot

(F, t), V τ (F, t) ≡ ΠF,t (δ
τ ). Note that, by construction, Π prices the

contract (δτ , V τ ). Define the adapted process V ∗ by letting, for every

spot (F, t),

V ∗ (F, t) ≡ max {V τ (F, t) | τ ∈ T } .
Show that V ∗ uniquely solves the backward recursion

V ∗ (F, t) = max
{

D (F, t) ,ΠF,t

(

V ∗1F×{t+1}

)}

, V ∗
T = D+

T .

Label each spot (F, t) red if V ∗ (F, t) = D (F, t) and green otherwise.

A state ω corresponds to a path from spot zero to a terminal spot.

Define τ ∗ (ω) to be the time of the first red spot along the path ω, with

the convention τ ∗ (ω) = ∞ if ω is a sequence of green spots only. Show

that the stopping time τ ∗ so defined is dominant (in the sense that

D1[τ∗] is a dominant cash flow choice for the option).

Exercise 1.9.7. (a) Show that

x • (y • z) = (xy) • z, x, y, z ∈ L.

(This is sometimes called the associative property of stochastic integrals

and applies in more general stochastic settings.)

(b) Given contracts (δ, V ) ∈ LJ×2 , the trading strategies θ1, . . . , θm

define corresponding synthetic contracts
(

δθi , V θi

)

, i = 1, . . . , m.
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Let α = (α1, . . . , αm) be a trading strategy in them synthetic contracts,

generating cash flow x. Use part (a) and the budget equation

m
∑

i=1

αiV θi = −x− • t +
m
∑

i=1

αi •Gθi,

m
∑

i=1

αiTV
θi

T = xT ,

to verify that the cash flow x is also generated by the trading strategy

θ ≡ ∑m
i=1 α

iθi in the original contracts (δ, V ).

Exercise 1.9.8. Give an example of contracts (δ, V ) ∈ LJ×2 and

a contract (δ∗, V ∗) that is not a synthetic contract in (δ, V ), yet it is

traded in X (δ, V ).

Exercise 1.9.9 (multi-period binomial replication). This exercise

extends the replication argument of Exercise 1.9.3 to the multi-period

case, using the notation U ≡ 1 + u and D ≡ 1 + d, where U > D > 0.

The assumption of a zero dividend yield is also relaxed.

Suppose Ω = {0, 1}T and the filtration {Ft} is generated by the

process b, where b0 ≡ 0 and bt (ω) ≡ ωt for every time t > 0 and state

ω = (ω1, . . . , ωT ) ∈ Ω. The process Z is specified by a given initial

value Z0 ∈ (0,∞) and the recursion

Zt
Zt−1

≡ btU + (1 − bt)D, t = 1, . . . , T.

Note that the process Z also generates the filtration {Ft}, since (Z1, . . . , Zt)

and (b1, . . . , bt) are mutually uniquely determined path by path.

(a) The recombining tree is the graph whose nodes are all pos-

sible values of Zt/Z0, and whose arrows connect a value z of Zt−1/Z0 to

the corresponding possible values zU and zD of Zt/Z0. For example,

here is the recombining tree for T = 3:



1.9. EXERCISES 54

1

D

U

D2

DU

U2

D3

D2U

DU2

U3

Note that spots correspond to paths on the recombining tree. How

many nodes are there and how many spots? How do these numbers

increase with T ? What is their order of magnitude for T = 100?

(b) Assume that the market is arbitrage-free and is implemented by

two contracts: an MMA (δ0, V 0) with a constant rate process r > −1,

and a stock (δ, V ) with ex-dividend price process S ≡ V − δ, specified

in terms of a constant dividend yield y > −1 by

(1.9.1) St−1 ≡ Zt−1 and Vt ≡ (1 + y)Zt, t = 1, . . . T.

Explain why U (1 + y) > 1 + r > D (1 + y).

(c) Consider a contract (δ∗, V ∗) that pays no dividends prior to T ,

that is, δ∗
− = 0. Assume that the contract’s price can be expressed as

V ∗
t = ft (Zt) for some functions ft : Zt → (0,∞), where Zt denotes the

set of all possible values of Zt. Let (θ0, θ) be a trading strategy in the

contracts (δ0, V 0) and (δ, V ), defining the synthetic contract (δθ, V θ).

Show that if (δ∗, V ∗) = (δθ, V θ), then

θ0
t = gt (Zt−1) and θt = ht (Zt−1) , t = 1, . . . , T,

for functions gt, ht : Zt−1 → R, for which you should be able to give

explicit formulas in terms of ft and the model parameters. Finally,

provide a recursive algorithm for computing ft.



CHAPTER 2

Probabilistic Methods in Arbitrage Pricing

The arbitrage-pricing theory of Chapter 1 postulates an exhaus-

tive set of possible states but makes no use of any probabilities over

these states. This chapter introduces probabilistic representations of

valuation rules that are consistent with a given arbitrage-free market.

These are useful in developing theoretical and computational method-

ology and essential in empirical applications.

2.1. Probability basics

In this section we review some essential probabilistic concepts and

notation. To last chapter’s primitives of a finite state space Ω and a

filtration on this state space, we add a reference probability (measure)

on the subsets of Ω, that is, a function P : 2Ω → [0, 1] such that P (Ω) =

1 and for all events A and B,

A ∩B = ∅ =⇒ P (A ∪ B) = P (A) + P (B) .

We assume that P has full support: P (A) > 0 if A 6= ∅.

The expectation or mean of a random variable x (under P ) is

E [x] ≡
∑

ω∈Ω

x (ω)P ({ω}) =
∑

α∈{x(ω)|ω∈Ω}

αP ({x = α}) .

The function E : RΩ → R so defined is the expectation operator rela-

tive to P ; it is a linear functional on R
Ω that is positive (E [x] > 0 if 0 6=

x ≥ 0) and satisfies E [1A] = P (A) for every event A. We often omit

excessive parentheses, as in Ex = E [x] and P [x ≤ α] = P ({x ≤ α}).

We write x̂ for the demeaned version of a random variable x:

x̂ ≡ x− Ex.

The covariance of two random variables x, y is the scalar

(2.1.1) cov [x, y] ≡ E [x̂ŷ] = E [xy] − ExEy.

55
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We can then define the variance var [x] ≡ cov [x, x], the standard

deviation stdev [x] ≡
√

var [x], and provided x and y have positive

variance, the correlation coefficient

corr [x, y] ≡ cov [x, y]

stdev [x] stdev [y]
.

The random variables x and y are uncorrelated if cov [x, y] = 0.

Two uncorrelated random variables can be nontrivially determined by

the same random source. For example, if Ω = {−1, 0, 1} and each state

is assigned the same probability, then the identity random variable

x (ω) = ω is uncorrelated with its square x2 (ω) = |ω| . If f (x) and

g (y) are uncorrelated for all functions f, g : R → R, then the random

variables x, y are said to be stochastically independent, or just

independent where there is no risk of confusion with other types

of independence (like linear independence). By virtue of Proposition

1.1.4, the independence of x and y is really a property of the algebras

σ(x) and σ (y). Define two algebras A and B to be (stochastically)

independent if every random variable in L (A) is uncorrelated with

every random variable in L (B). Then x and y are independent if and

only if σ(x) and σ (y) are independent.

Proposition 2.1.1. For all algebras A and B and corresponding

partitions A0 and B0, the following are equivalent conditions.

(1) A and B are independent.

(2) P (A ∩B) = P (A)P (B) for all A ∈ A and B ∈ B.

(3) P (A ∩B) = P (A)P (B) for all A ∈ A0 and B ∈ B0.

Proof. Since the covariance operator is linear in each of its ar-

guments and every random variable is a linear combination of indi-

cator functions, A and B are independent if and only if 1A and 1B

are uncorrelated for all A ∈ A0 and B ∈ B0. Since cov (1A, 1B) =

P (A ∩ B) − P (A)P (B), this proves the equivalence of the first and

third conditions. The same argument with A,B in place of A0,B0

shows the equivalence between the first two conditions. �
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More generally, the random variables x1, . . . , xn are said to be (stochas-

tically) independent if for each i ∈ {1, . . . , n}, the algebras σ (xi) and

σ ({xj | j 6= i}) are independent.1

Proposition 2.1.2. For all random variables x1, . . . , xn, the fol-

lowing are equivalent conditions.

(1) x1, . . . , xn are stochastically independent.

(2) σ (x1, . . . , xi−1) and σ (xi) are independent for i = 2, . . . , n.

(3) E
∏n
i=1 fi (xi) =

∏n
i=1Efi (xi) for all f1, . . . , fn : R → R.

(4) P [
⋂n
i=1 {xi ∈ Si}] =

∏n
i=1P [xi ∈ Si] for all S1, . . . , Sn ⊆ R.

Proof. That (1) implies (2) is immediate. We show (3) assum-

ing (2) by induction in n. For n = 2, the claim is valid by definition.

Suppose it is true for n − 1 variables. For all fi : R → R, (2) im-

plies that
∏n−1
i=1 fi (xi) and fn (xn) are uncorrelated and therefore the

expectation of their product equals the product of their expectation,

which together with the inductive hypothesis gives (3). To show that

(3) implies (4), set fi (xi) = 1{xi∈Si}. Finally, we show (1) assuming

(4) holds. The partition generating σ (x1) is the set of all nonempty

events of the form A = {x1 = α1}, α1 ∈ R, and the partition gen-

erating σ (x2, . . . , xn) is the set of the nonempty events of the form

B = {x2 = α2, . . . , xn = αn}, α2, . . . , αn ∈ R. For such A and B,

(4) implies P (A ∩ B) =
∏n
i=1P [xi = αi] and P (B) =

∏n
i=2P [xi = αi].

Therefore P (A ∩B) = P (A)P (B). By Proposition 2.1.1, this proves

that σ (x1) is stochastically independent of σ (x2, . . . , xn). The same

argument applies for any permutation of the x1, . . . , xn, completing the

proof. �

Uncorrelatedness and stochastic independence can equivalently be

thought of as orthogonality conditions in the space L̂ =
{

x̂ | x ∈ R
Ω
}

of

zero-mean random variables, with the covariance inner product 〈x̂ | ŷ〉 =

cov[x, y] and induced norm ‖x̂‖ =
√

〈x̂ | x̂〉 = stdev [x]. The random

variables x, y are uncorrelated if and only if x̂ and ŷ are orthogonal

in L̂. Similarly, the algebras A and B are independent if and only if

1This is not the same as pairwise independence. For example, suppose x1 and x2

are independent random variables, each taking the values +1 and −1 with equal
probability. (As in Example 1.1.1 with T = 2, xi (ω) = ωi and equal probability
for each state.) Then the random variables x1, x2, x1x2 are not independent even
though any two of them are independent.
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L̂ (A) ≡ {x̂ | x ∈ L (A)} and L̂ (B) are orthogonal in L̂. The Cauchy-

Schwarz inequality in this context states that |corr [x, y]| ≤ 1 with

equality holding if and only if x̂ = αŷ or ŷ = αx̂ for some scalar α.

The conditional probability P (· | B) : 2Ω → [0, 1] given a positive

probability event B is defined by Bayes’ rule:

(2.1.2) P (A | B) =
P (A ∩B)

P (B)
.

The expectation operator corresponding to P (· | B) is denoted by

E [· | B] and is easily seen to satisfy

(2.1.3) E [x | B] =
E [x1B]

P (B)
, for all x ∈ R

Ω.

The conditional expectation operator (under P ) given the algebra

B generated by the partition {B1, . . . , Bn} is defined by

(2.1.4) E [x | B] =
n
∑

i=1

E [x | Bi] 1Bi
, for all x ∈ R

Ω.

The following proposition shows that the random variable E [x | B] is

the best estimate of x given information B, in the sense of minimizing

expected squared error.

Proposition 2.1.3. For all algebras B, and random variables x,

y, the following are equivalent conditions, provided y is B-measurable.

(1) y = E [x | B].

(2) E[(x− y)2] ≤ E[(x− z)2] for all z ∈ L (B).

(3) E [yz] = E [xz] for all z ∈ L (B).

(4) Ey = Ex and corr [x− y, z] = 0 for all z ∈ L (B).

(5) E [y1B] = E [x1B] for all B ∈ B.

Proof. Condition (2) is a norm-minimization problem in the vec-

tor space of random variables with the inner product 〈x | y〉 = E [xy].

The y ∈ L (B) satisfying condition (2) is the projection of x onto

L (B). By the orthogonal projection theorem (Corollary B.5.2), such a

y ∈ L (B) is equivalently characterized by the orthogonality condition

〈x− y | z〉 = 0 for all z ∈ L (B), which is condition (3). The equiva-

lence of (3) and (4) is immediate from the definitions. The equivalence

of (3) and (5) is also straightforward, given that every z ∈ L (B) is

a linear combination of indicator functions of events in B. Finally,
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let B0 ≡ {B1, . . . , Bn} denote the partition generating B. Since the

indicator of any B ∈ B is the sum of random variables of the form

1Bi
, condition (5) is equivalent to its version resulting after replacing

B with B0, whose equivalence to condition (1) follows easily from the

definitions. �

Remark 2.1.4. In infinite state space extensions of the theory, def-

inition (2.1.4) is not generally meaningful and a version of the last

proposition’s orthogonality condition forms the basis for the usual text-

book definition of a conditional expectation. The uniqueness claim in

the last proposition relies on the full-support assumption on P . In

general, any two random variables y and y′ that are conditional expec-

tations of x given B must satisfy P [y = y′] = 1 but can take arbitrary

values on any B ∈ B such that P (B) = 0. We will have no need

for this generality here, but the technicality becomes unavoidable in

infinite state-space extensions of the theory. ♦

Corollary 2.1.5. The algebras A and B are stochastically inde-

pendent if and only if E [x | B] = Ex for all x ∈ L (A).

Proof. Recall that A and B are independent if and only if L̂ (A)

and L̂ (B) are orthogonal in L̂ under the covariance inner product, a

condition that is in turn equivalent to the requirement that the projec-

tion of every x̂ ∈ L̂ (A) onto L̂ (B) is zero. By Proposition 2.1.3, the

last condition can be restated as E [x̂ | B] = 0 for all x̂ ∈ L̂ (A). �

The important law of iterated expectations states that

(2.1.5) B ⊆ A =⇒ E [E [x | A] | B] = E [x | B] ,

for every random variable x and algebras A and B. Indeed if B ⊆ A,

L (B) is a linear subspace of L (A), and therefore projecting x on L (B)

is equivalent to first projecting x on L (A) and then further projecting

on L (B), which translates to E [x | B] = E [E [x | A] | B].

Another important property of conditional expectations, stated be-

low, is an immediate consequence of identities (2.1.3) and (2.1.4) in the

current context. The following less direct proof is instructive, however,

in illustrating how the orthogonality characterization of expectations

can be used in ways that also apply in infinite state-space extensions

of the theory.
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Proposition 2.1.6. For every random x and algebra B, if b ∈
L (B), then E [bx | B] = bE [x | B].

Proof. Fix any b ∈ L (B) and let y = bE [x | B]. We use the

characterization of condition 3 of Proposition 2.1.3 twice, first to justify

the middle equality in

E [(bx) z] = E [x (bz)] = E [E [x | B] (bz)] = E [yz] for all z ∈ L (B) ,

and then to conclude that since y ∈ L (B), the above condition implies

y = E [bx | B]. �

The conditional expectation of a random variable x given the

random variables y1, . . . , yn is defined by

E [x | y1, . . . , yn] = E [x | σ (y1, . . . , yn)] ,

which is a function of (y1, . . . , yn) in the sense of Proposition 1.1.4.

Thus E [x | y1, . . . , yn] is the projection of x onto L (σ (y1, . . . , yn)),

which is the linear space of all random variables of the form f (y1, . . . , yn)

for arbitrary f : Rn → R. This contrasts with a simple linear regres-

sion,2 where x is projected on the smaller subspace of all random vari-

ables of the same form but with f restricted to be linear.

As in the last chapter, throughout this chapter we take as given

an underlying filtration (F0,F1, . . . ,FT ) on Ω, abbreviated to {Ft},

with F0 = {∅,Ω} and FT = 2Ω. We write Lt ≡ L (Ft) for the set of

all Ft-measurable random variables, Et [x] or Etx for the conditional

expectation E [x | Ft], and covt for the conditional covariance given Ft,

defined as in (2.1.1) but with Et in place of E. Conditional variances,

standard deviations and correlation coefficients given Ft are defined

and denoted analogously.

A martingale (under P ) is any adapted process M such that

Mt = EtMu for all u > t.

By the law of iterated expectations (2.1.5), an adapted process M is

a martingale if and only if Et−1 [∆Mt] = 0 for all t > 0 if and only

if Mt = EtMT for all t. We let M denote the set of all martingales

and M0 ≡ {M ∈ M | M0 = 0}, which is the set of all zero-mean

2A prominent case where the two projections coincide is when (x, y1, . . . , yn) has a
Gaussian distribution, the definition of which requires an infinite state space.
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martingales since a martingale M is in M0 if and only if EMt = 0

for all t.

The following simple observation has far-reaching implications for

finance interpretations as well as martingale theory in general, includ-

ing the extension of the theory of stochastic integrals in more general

settings.

Proposition 2.1.7. For every martingale M and predictable pro-

cess φ, the integral φ •M is a martingale.3

Proof. If φt ∈ Lt−1, then Et−1 [∆ (φ •M)t] = Et−1 [φt∆Mt] =

φtEt−1 [∆Mt] = 0. �

Example 2.1.8. In the context of Example 1.1.1, assume that P

represents a fair coin: P ({ω}) = 2−T for all ω ∈ Ω. A gambler bet-

ting on a coin toss gains a dollar if the outcome is heads and loses a

dollar otherwise. Contingent on state ω, a gambler betting on the first

t coin tosses gains (or loses if negative) Bt (ω) = ω1 + ω2 + · · · + ωt.

Letting B0 = 0, this defines an adapted process B whose increments

∆B1, . . . ,∆BT are stochastically independent and generate the under-

lying filtration. Since the algebra Ft−1 = σ (∆B1, . . . ,∆Bt−1) is inde-

pendent of (the algebra generated by) ∆Bt, Et−1∆Bt = E∆Bt = 0 and

therefore B ∈ M0. A gambler who starts betting at time t and quits at

a later time u can expect zero total gains: Et [Bu − Bt] = 0. A natural

question is whether the gambler could beat the odds by following some

clever strategy, wagering φt ∈ Lt dollars on the tth coin toss at time

t−1. With the convention φ0 = 0, such a strategy defines an element φ

of P0 and the process M = φ •B defines the corresponding cumulative

gains. By Proposition 2.1.7, M is also a zero-mean martingale. There-

fore, a gambler following strategy φ from time t up to a later time u

must again expected zero total gains: Et [Mu −Mt] = 0. In this sense,

the gambler cannot beat the odds. If on the other hand the gambler

were allowed to bet indefinitely, then the following doubling strategy

would beat the odds: Bet one dollar, if heads stop, otherwise bet two

dollars on a second coin toss, if heads stop, otherwise bet four dollars on

a third coin toss, and so on. If allowed to play indefinitely, eventually

3Note that it is not enough to assume that φ is adapted for φ • M to be a martin-
gale, a fact that is the main motivation behind the introduction of the notion of a
predictable process.
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heads is bound to show up resulting in a gain of one dollar. Of course,

losses can be staggering in the meantime and any finite borrowing limit

is enough to rule out the strategy. Here this type of doubling strat-

egy is ruled out by the finite number of periods, but it is something

one has to technically deal with in infinite-horizon or continuous-time

models. ♦

Every adapted process x has a unique Doob decomposition:

(2.1.6) x = x0 + xp +M, xp ∈ P0, M ∈ M0.

To see why, note that (2.1.6) implies ∆x = ∆xp + ∆M and therefore,

∆xpt = Et−1∆xt, t = 1, . . . , T.

Conversely, if xp is recursively defined by the last equation and xp0 = 0,

then xp ∈ P0 and x − xp is a martingale. The process xp is known as

the compensator of x.

2.2. Beta pricing and frontier returns

In Section 1.8 we defined excess returns as the difference between

the returns of a traded contract and that of a traded (default-free)

money market account (MMA). In this section we show that in an

arbitrage-free market expected excess returns are proportional to the

return’s covariance with a traded return that is characterized by the

property of minimizing variance given its expected value. The resulting

expression for expected returns is known as a beta pricing equation.

Beta pricing is a characterization of single-period traded cash flows;

it is not about the specific contracts implementing the market and

a version of the theory can be formulated with or without a traded

MMA. For expositional simplicity, however, we adopt the setting of

Section 1.8. We take as given an arbitrage-free market that is im-

plemented by the 1 + J contracts (1.8.2), where Sjt−1 6= 0 everywhere

(meaning at all states) and therefore returns are well-defined in (1.8.5).

Contract zero is an MMA with rate process r ∈ P0. The corresponding

period-t return is

R0
t = 1 + rt ∈ Lt−1.
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A period-t portfolio allocation ψt =
(

ψ1
t , . . . , ψ

J
t

)

∈ L1×J
t−1 results in the

portfolio return

Rψ
t ≡ R0

t +
J
∑

j=1

ψjt
(

Rj
t −R0

t

)

.

The set of period-t traded returns is

Rt ≡
{

Rψ
t | ψt ∈ L1×J

t−1

}

.

A key observation is that returns can be mixed: For all R1
t , R

2
t ∈ Rt and

αt ∈ Lt−1, (1 − αt)R
1
t + αtR

2
t ∈ Rt. To avoid trivialities, we assume

throughout that for every time t, there exists some Rt ∈ Rt such that

vart−1 [Rt] > 0 everywhere.

Definition 2.2.1. The traded return R∗
t ∈ Rt is a (minimum vari-

ance) frontier return if for all Rt ∈ Rt,

{Et−1Rt = Et−1R
∗
t} ⊆ {vart−1[Rt] ≥ vart−1[R

∗
t ]} .

The property of being a frontier return can also be defined spot by

spot: R∗
t ∈ Rt is a frontier return at spot (F, t− 1) if for all Rt ∈ Rt,

E [Rt | F ] = E [R∗
t | F ] =⇒ var [Rt | F ] ≥ var[R∗

t | F ].

Since for all F ∈ Ft−1, Rt, R
∗
t ∈ Rt implies Rt1F + R∗

t 1F c ∈ Rt, it

follows that R∗
t is a frontier return if and only if it is a frontier return

at every time-(t− 1) spot. Similarly, the following characterization of

frontier returns, as well as the entire discussion of the remainder of

this section, applies separately spot by spot and all the arguments are

encapsulated by the special case of a single period (T = 1).

Lemma 2.2.2. R∗
t ∈ Rt is a frontier return if and only if for all

Rt ∈ Rt, Et−1 [Rt − R∗
t ] = 0 implies covt−1 [Rt −R∗

t , R
∗
t ] = 0.

Proof. Fix any spot (F, t− 1) and let (Fi, t), i = 0, 1, . . . , d, de-

note its immediate successor spots. On R
1+d, we use the inner product

〈x | y〉 ≡
d
∑

i=0

xiyiP [Fi | F ] .

Let RF,t ≡ {(R (F0, t) , . . . , R (Fd, t)) | R ∈ Rt} and

z∗ ≡ (R∗ (F0, t) , . . . , R
∗ (Fd, t)) ,
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and define the linear manifold

M ≡
{

z ∈ RF,t |
d
∑

i=0

(zi − z∗
i )P [Fi | F ] = 0

}

.

Since R∗
t is a frontier return, ‖z‖ ≥ ‖z∗‖ for all z ∈ M . In other

words, z∗ is the orthogonal projection of the zero vector onto M . By

the orthogonal projection theorem (Corollary B.5.2), z∗ is character-

ized by the orthogonality condition 〈z − z∗ | z∗〉 = 0 for all z ∈ M ,

which can be restated as, for all Rt ∈ Rt, E [Rt −R∗
t | F ] = 0 implies

E [(Rt −R∗
t )R

∗
t | F ] = 0. The lemma’s claim follows. �

We can use the above lemma to determine all frontier allocations,

that is, all portfolio allocations generating frontier returns. Let

1 + µit ≡ Et−1R
i
t and Σij

t ≡ covt−1

[

Ri
t, R

j
t

]

, i, j = 1, . . . , J,

and define the column vector µt ≡
(

µ1
t , . . . , µ

J
t

)′
and the J × J sym-

metric matrix Σt ≡
[

Σij
t

]

, which is positive semidefinite (at every time-

(t− 1) spot). For simplicity, we assume that Σt is full rank and there-

fore positive definite. The assumption of a full-rank Σt is easily seen

to be equivalent to the assumption that the contracts are everywhere

non-redundant, meaning that conditionally on any spot (F, t− 1),

there is no j ∈ {0, 1, . . . , J} such that the return Rj
t on F can be gen-

erated by an allocation in the remaining contracts. By Lemma 2.2.2,

an allocation ψ∗
t generates a frontier return R∗

t if and only if for every

period-t allocation ψt,

(ψ − ψ∗
t ) (µt − rt) = 0 implies (ψ − ψ∗

t ) Σtψ
∗′
t = 0.

In other words, whenever ψt −ψ∗
t is orthogonal to µt − rt, it is also or-

thogonal to Σtψ
∗′
t (all conditionally on each time-(t− 1) spot). There-

fore, µt−rt is collinear to Σtψ
∗′
t in the sense that there exists αt ∈ Lt−1

such that αt (µt − rt) = Σtψ
∗′
t . Rearranging, we can parametrically

describe all frontier allocations by

(2.2.1) ψ∗
t = αt (µt − rt)

′ Σ−1
t , αt ∈ Lt−1.

Note that if ψ∗
t is any non-zero frontier allocation, then every other

frontier allocation takes the form αtψ
∗
t for some αt ∈ Lt−1, a fact

known as two-fund separation. The term reflects the idea that every

frontier return can be achieved by allocating a value proportion αt in a
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fund allocated according to ψ∗
t and the rest in a fund that is an MMA.

As we will see shortly, two-fund separation is valid even without the

assumption that the contracts are everywhere non-redundant.

The frontier returns other than the MMA return are exactly the

returns relative to which beta pricing is possible.

Proposition 2.2.3. For all R∗
t ∈ Rt such that vart−1 [R∗

t ] > 0

everywhere, the following two conditions are equivalent:

(1) R∗
t is a frontier return.

(2) For all Rt ∈ Rt,

(2.2.2) Et−1Rt − R0
t =

covt−1[R∗
t , Rt]

vart−1 [R∗
t ]

(

Et−1R
∗
t − R0

t

)

and for some Rt ∈ Rt, Et−1Rt 6= R0
t everywhere.

Proof. (1 =⇒ 2) Suppose R∗
t ∈ Rt is a frontier return and there-

fore 0 = vart−1 [R0
t ] ≥ vart−1 [R∗

t ] on the event {Et−1R
∗
t = R0

t }. Since,

vart−1 [R∗
t ] > 0 everywhere, the event {Et−1R

∗
t = R0

t} is empty.

Given any Rt ∈ Rt, define R̃t ∈ Rt by letting

R̃t ≡ R∗
t +Rt − R0

t on
{

Et−1Rt = R0
t

}

, and

R̃t ≡ R0
t +

Et−1R
∗
t − R0

t

Et−1Rt −R0
t

(Rt − R0
t ) on

{

Et−1Rt 6= R0
t

}

.

By construction, Et−1

[

R̃t − R∗
t

]

= 0 and therefore, by Lemma 2.2.2,

covt−1

[

R̃t − R∗
t , R

∗
t

]

= 0, which expands to equation (2.2.2).

(2 =⇒ 1) Conversely, suppose the second condition holds, which

clearly implies that Et−1R
∗
t 6= R0

t everywhere. We show that R∗
t is a

frontier return by verifying the orthogonality condition of Lemma 2.2.2.

Consider any Rt ∈ Rt such that Et−1 [Rt −R∗
t ] = 0. Applying the beta

pricing equation and canceling out the term Et−1R
∗
t −R0

t on each side,

we conclude that covt−1 [Rt −R∗
t , R

∗
t ] = 0. �

The so-called beta-pricing equation (2.2.2) has been of considerable

interest in empirical work, since it suggests that the slope coefficient

of a linear regression (commonly denoted by β) can be used to explain

expected excess returns. In practice, we can only identify a frontier

return with error. We therefore have to consider the beta pricing equa-

tion relative to some proxy return Rp
t = R∗

t + εt, where the error εt
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is judged to be small. It is an instructive exercise to show that an

arbitrarily small value of Et−1ε
2
t is consistent with the existence of a

traded return whose beta with respect to Rp
t is arbitrarily different from

its beta with respect to R∗
t . The basic idea is that leverage (that is,

borrowing from the MMA to invest in a risky portfolio) can arbitrar-

ily amplify any discrepancy between the two betas. This pitfall can

be avoided if we instead focus on excess returns normalized by their

standard deviation.

The time-(t− 1) Sharpe ratio of a period-t return Rt is the ratio

(2.2.3) St−1 [Rt] ≡ Et−1Rt − R0
t

stdevt−1 [Rt]
,

provided the denominator is nowhere zero. We adopt the convention

that St−1 [Rt] ≡ 0 on the event {vart−1 [Rt] = 0}. The beta-pricing

equation (2.2.2) can be restated in terms of Sharpe ratios as

(2.2.4) St−1 [Rt] = corrt−1 [R∗
t , Rt] St−1 [R∗

t ] .

This version of the beta-pricing equation is robust to replacing R∗
t with

a highly correlated proxy Rp
t , in the following sense.4

Proposition 2.2.4. For all R∗
t , R

p
t , Rt ∈ Rt, equation (2.2.4) im-

plies its approximate version:

(2.2.5) St−1 [Rt] = corrt−1 [Rp
t , Rt] St−1 [Rp

t ] + ǫt−1,

where

|ǫt−1| ≤
√

2 |St−1 [R∗
t ]|
√

1 − corrt−1 [R∗
t , R

p
t ].

Proof. We adopt the notation of the proof of Lemma 2.2.2, since

the argument relates to a single step of the information tree following

a given spot (F, t− 1). Analogously to z∗, let

z ≡ (R (F0, t) , . . . , R (Fd, t)) and zp ≡ (Rp (F0, t) , . . . , R
p (Fd, t)) .

We write S [z] for the value of St−1[Rt] on F , and analogously for S [z∗]

and S [zp]. The vectors z, z∗, zp can be thought of as random variables

on {0, 1, . . . , d}. For any such random variable x, we use the notation

x̃ ≡ x−∑

i xiP [Fi | F ]

stdev [x]
,

4While this section’s results are standard textbook material, to my knowledge,
Proposition 2.2.4 first appeared in Skiadas [2009].
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where the standard deviation is relative to the probability assigning

mass P [Fi | F ] to state i. Note that 〈x̃ | x̃〉 = 1 and 〈x̃ | ỹ〉 = corr [x, y].

Let 1 − δ ≡ 〈z̃∗ | z̃p〉, which is the value of corrt−1 [R∗
t , R

p
t ] on F , and

let ǫ ≡ S [z] − 〈z̃p | z̃〉 S [zp], which is the value of ǫt−1 on F , as defined

by (2.2.5). Condition (2.2.4) implies that S [z] = 〈z̃∗ | z̃〉 S [z∗] and

S [zp] = (1 − δ) S [z∗]. Therefore,

ǫ2

S [z∗]2
= 〈z̃∗ − (1 − δ) z̃p | z̃〉2

≤ 〈z̃∗ − (1 − δ) z̃p | z̃∗ − (1 − δ) z̃p〉 ,

where the last inequality follows by the Cauchy-Schwarz inequality.

Expanding the last term, we find that it equals 2δ − δ2. Therefore

ǫ2 ≤ S [z∗]2 2δ, which is the claimed bound. �

The set of frontier traded returns other than the MMA return are

the set of the traded returns of maximum absolute Sharpe ratio. We

state this claim more formally below, using the convention that inde-

terminate Sharpe ratios are assigned the value zero.

Proposition 2.2.5. The traded return R∗
t is a frontier return if

and only if |St−1 [R∗
t ]| ≥ |St−1 [Rt]| for all Rt ∈ Rt.

Proof. The “only if” part is a corollary of Proposition 2.2.3, as

can easily be seen by taking absolute values on both sides of equation

(2.2.4) and using the fact that the absolute correlation is less than

one. (Alternatively, one can show the claim more directly from the

definition of frontier returns.) The converse is immediate from the

definitions. �

Absolute Sharpe ratios are invariant to positions in the MMA. For

any αt ∈ Lt−1, a mix of αt in a portfolio allocation ψt and 1 − αt in

the MMA results in a return that has the same absolute Sharpe ratio

as Rψ
t :

(2.2.6)
∣

∣

∣St−1[R0
t + αt(R

ψ
t −R0

t )]
∣

∣

∣ =
∣

∣

∣St−1[Rψ
t ]
∣

∣

∣ .

Moreover, as we vary αt we trace out all (conditional) mean-standard

deviation pairs of traded returns that are consistent with the given

absolute Sharpe ratio value. In particular, if Rψ
t = R∗

t is a frontier

return other than the risk-free return R0
t , varying αt traces out all
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traded returns with maximum absolute Sharpe ratio, that is, all frontier

returns. We therefore obtain once again the two-fund separation result

introduced earlier, but without the non-redundancy assumption. If

the contracts are assumed to be everywhere non-redundant, we can

use expression (2.2.1) to compute the maximum squared Sharpe ratio

as

(2.2.7) St−1 [R∗
t ]

2 = (µt − rt)
′ Σ−1

t (µt − rt) .

The frontier returns with a positive (conditional) Sharpe ratio are

known as (conditionally) mean-variance efficient, since besides min-

imizing variance given an expected value, they also achieve a maximum

expected return given the variance of the return (all conditionally on

beginning-of-period information). Since the seminal contribution of

Markowitz [1952], mean-variance efficiency has played a prominent role

as a criterion for portfolio choice. The criterion is simplistic in that it

is myopic (only focuses on single-period returns) and uses variance as

a measure of portfolio risk (treating high and low returns symmetri-

cally). A more sophisticated theory of portfolio choice, albeit with its

own limitations, is developed in Chapter 3. Mean-variance efficiency

resurfaces as a building block of optimal portfolios in the more sophis-

ticated theory for a useful class of return dynamics and high trading

frequency. So the concept is in theory more robust than this section’s

discussion suggests. Its empirical implementation, however, has its own

serious limitations, which are beyond the scope of this text. Ultimately,

the theory of mean-variance efficiency serves mainly as a parsimonious

model that highlights the benefits of portfolio diversification.

2.3. State-price densities

A state price process was defined in Section 1.2 as a representation

of a present-value function. A state price density process is essentially

the same object, but with its values expressed as a density relative to

a given reference probability. This simple construct opens the door for

the use of probabilistic methods.

We continue to take as given a market X in the usual stochastic

setting, consisting of a filtration {Ft} on the finite state space Ω, where

F0 = {∅,Ω} and FT = 2Ω, and a full-support probability P on FT . A
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state-price density can be defined as an adapted process π such that a

state-price process p is well-defined by letting p (F, t) = π (F, t)P (F )

for every spot (F, t). The following equivalent definition bypasses refer-

ence to a state-price process and extends directly to infinite state-space

settings.

Definition 2.3.1. A state-price density process or SPD (rel-

ative to the probability P ) is any π in L++ such that a present-value

function Π: L → R is well-defined by

(2.3.1) Π (c) =
1

π0

E

[

T
∑

t=0

πtct

]

, c ∈ L.

In this case, π is said to represent Π.

Proposition 2.3.2. Every present-value function admits an SPD

representation, which is unique up to positive scaling.

Proof. Given a present-value function Π, let π denote its (unique)

Riesz representation in L with the inner product 〈x | y〉 ≡ E
∑

t xtyt.

The positivity of Π implies that π ∈ L++, and therefore π is an SPD

representing Π. Conversely, if π is an SPD representing Π, then π/π0

is the Riesz representation of Π. �

Recall that a time-zero present-value function Π defines a spot-(F, t)

conditional present-value function ΠF,t by equation (1.4.1). If the SPD

π represents Π, then

(2.3.2) ΠF,t (c) =
1

π (F, t)
E

[

T
∑

u=t

πucu | F
]

.

This link between conditional valuation and conditional expectation

turns out to be methodologically quite useful.

In Proposition 1.4.8 we saw that if Π is a present-value function

and (δ, V ) is a traded contract, then Π prices the contract:

V (F, t) = ΠF,t (δ) for every spot (F, t) .

If π is an SPD representing Π, then the same pricing condition can be

expressed as

(2.3.3) Vt =
1

πt
Et

[

T
∑

u=t

πuδu

]

, t = 0, . . . , T − 1.
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In this case we say that π prices the contract (δ, V ). The following

variant of the argument used in Proposition 1.4.8 shows the pricing

condition (2.3.3) directly in a way that extends to infinite state-space

settings, where expression (2.3.2) is not generally meaningful. Given

any time t and F ∈ Ft, set to zero the present value of the cash flow

(1.3.2) generated by buying the contract at time t on the event F and

holding it to time T to find

E [πtVt1F ] = E

[(

T
∑

u=t

πuδu

)

1F

]

.

Equation (2.3.3) follows after applying Proposition 2.1.3.

The second part of Proposition 1.4.8 can also be restated in terms

of SPDs:

Proposition 2.3.3. A process π ∈ L++ is an SPD for the market

implemented by a set of contracts if and only if it prices every contract

in the given set.

The following link of pricing to martingales plays a central method-

ological role, especially in technically more advanced incarnations of the

theory.

Proposition 2.3.4. A process π ∈ L++ prices the contract (δ, V )

if and only if Gπ ≡ πV + (πδ)− • t is a martingale.

Proof. Multiply equation (2.3.3) by πt and add
∑t−1
u=0 πuδu on both

sides to find Gπ
t = Et [G

π
T ]. This calculation can be reversed. �

Remark 2.3.5. The preceding martingale condition characterizes

an SPD for a market implemented by given contracts. Suppose that the

market X is implemented by contracts (δj , V j), j = 1, . . . , J , and let

δ =
(

δ1, . . . , δJ
)′

and V =
(

V 1, . . . , V J
)′

. Write G for the correspond-

ing column vector of gain processes. Then, by the last two propositions,

π ∈ L++ is an SPD if and only if Gπ is a martingale, meaning that

each Gjπ = πV j + (πδj)− • t is a martingale. For the synthetic con-

tract generated by a trading strategy θ, we have Gθπ = π0V
θ

0 + θ •Gπ,

which is a martingale if Gπ is a martingale, since θ is predictable. This

observation merely reflects the fact that an SPD prices every traded

contract, and every synthetic contract is traded. ♦
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Yet another useful way of expressing the fact that an SPD π prices

the contract (δ, V ) is in the recursive form

(2.3.4) St−1 = Et−1

[

πt
πt−1

Vt

]

, t = 1, . . . , T,

where S ≡ V − δ. The equivalence of this condition to (2.3.3) follows

from the law of iterated expectations (2.1.5). Alternatively, equation

(2.3.4) can be rearranged to Et−1 [∆Gπ
t ] = 0, which is one of the equiv-

alent ways of stating the martingale property of Gπ.

If St−1 6= 0 everywhere, then the return Rt = Vt/St−1 is well-defined

and recursion (2.3.4) implies

(2.3.5) 1 = Et−1

[

πt
πt−1

Rt

]

, t = 1, . . . , T.

Conversely, the validity of the pricing restriction (2.3.5) for every re-

turn R of a traded contract implies that π prices an arbitrary traded

contract (δ, V ), provided that at every nonterminal spot there exists

at least some traded contract with non-zero ex-dividend price. If the

event F ≡ {St−1 = 0} is empty, then clearly (2.3.5) with Rt = Vt/St−1

implies (2.3.4). What if F is nonempty? Equation (2.3.5) cannot be

applied directly to the contract (δ, V ). Instead, apply (2.3.5) twice—

once to any traded contract with a well-defined return on F , and once

to the return of a portfolio that holds this same contract as well as

the contract (δ, V ) whose ex-dividend price vanishes on F . Solving the

resulting pair of equations gives the desired pricing condition (2.3.4).

Applying the pricing equation (2.3.5) to a traded MMA with rate

process r results in an expression that gives r as a function of an SPD:

(2.3.6)
1

1 + rt
= Et−1

[

πt
πt−1

]

, t = 1, . . . , T.

This equation can be rearranged to

rt = −Et−1

[

∆πt
πt−1

]

+ εt, where εt ≡ r2
t

1 + rt
.

If a period in the model represents a sufficiently short time interval,

then εt is numerically negligible and the period-t risk-free interest rate

rt is approximately equal to minus the expected growth rate of the SPD

πt over the period, conditionally on the beginning-of-period informa-

tion. In this chapter’s final section we will see that this approximation
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becomes an exact relationship in continuous-time, where rt represents

a continuously compounded interest rate.

Suppose now that π is an SPD, an MMA is traded and therefore the

short-rate process r is given in terms of π as just described. The con-

tract (δ, V ) is said to be priced risk neutrally if St−1 = Et−1Vt/ (1 + rt),

a relationship that is valid for an MMA. For a general contract, the

ex-dividend price St−1 must be adjusted relative to the risk neutral

valuation to reflect the uncertainty of the end-of-period payoff Vt. The

appropriate risk adjustment can be written precisely by rearranging

equation (2.3.4) to

(2.3.7) St−1 − Et−1Vt
1 + rt

= covt−1

[

πt
πt−1

, Vt

]

= covt−1

[

∆πt
πt−1

, Vt

]

.

In words, the risk adjustment relative to the risk-neutral valuation is

equal to the covariance of the end-of-period value with the SPD growth

rate conditionally on the beginning-of-period information.

Assuming the return Rt = Vt/St−1 is well defined, the preceding

relationship is often expressed as a restriction on the excess return

Rt −R0
t , where R0 ≡ 1 + r. Using the definition of covariance and the

pricing restrictions (2.3.5) and (2.3.6), we find

(2.3.8) Et−1Rt − R0
t = −R0

t covt−1

[

πt
πt−1

, Rt

]

.

To make the connection to last section’s beta-pricing pricing notion,

we need to project πt/πt−1 to the space of traded returns. In the context

of Section 2.2, we can write

πt
πt−1

= R∗
t + ǫt,

where R∗
t is a period-t traded return and Et−1 [ǫtRt] = 0 for every

period-t traded return Rt (and therefore Et−1ǫt = 0). The existence

of a (unique) such decomposition follows by a simple projection argu-

ment conditionally at each time-(t− 1) spot, using the inner product

of the proof of Lemma 2.2.2. Substituting into equation (2.3.8) and

dividing the resulting equation by its special case with R∗ in place of

R (excluding a degenerate case), we obtain the beta pricing equation

Et−1Rt − R0
t =

covt−1 [R∗
t , Rt]

vart−1 [R∗
t ]

(

Et−1R
∗
t − R0

t

)

.
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The return R∗
t maximizes correlation with πt/πt−1 conditionally on

time-(t− 1) information among all period-t traded returns; a claim

that reduces to the Cauchy-Schwarz inequality in the geometry used

to define R∗
t and ǫt as the components of an orthogonal projection of

πt/πt−1.

Another noteworthy consequence of (2.3.8) is the inequality

(2.3.9) St−1[Rt]
2 ≤ (1 + rt)

2 vart−1

[

πt
πt−1

]

.

To show it, write the covt−1 of equation (2.3.8) in terms of corrt−1 and

use the fact that the latter is valued in [−1, 1]. Given the short rate rt,

the conditional variance of an SPD growth rate places an upper bound

on the maximum conditional squared Sharpe ratio of a traded return

(an expression for which was derived at the end of the last section).

This fact is known as the Hansen-Jagannathan bound.5

2.4. Equivalent martingale measures

Equivalent martingale measures give us another methodologically

useful way of representing present-value functions. Prior to introducing

the concept, let us fix, for the entire section, a reference arbitrage-free

market X and underlying full-support probability P . Suppose that π

is an SPD relative to these primitives, as defined in the last section.

Suppose also, for now, that an MMA is traded inX, with corresponding

short-rate process r. Consider any nonterminal spot (F, t− 1), with

immediate successor spots (Fi, t), i = 0, . . . , d, and define the positive

scalars Q (Fi | F ) by

(2.4.1)
π (Fi, t)

π (F, t− 1)
=

1

1 + r (F, t)

Q (Fi | F )

P (Fi | F )
, i = 0, . . . , d.

Pricing of the MMA, as in equation (2.3.6), gives

(2.4.2)
1

1 + r (F, t)
=

d
∑

i=0

π (Fi, t)

π (F, t− 1)
P (Fi | F ) ,

and therefore
∑

iQ (Fi | F ) = 1. In other words, Q (Fi | F ) can be

thought of as a positive transition probability from spot (F, t− 1) to

spot (Fi, t). For every path on the information tree, which corresponds

to a state revealed at the terminal date T , these transition probabilities

5Named after the contribution of Hansen and Jagannathan [1991].
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can be multiplied through, thus defining a full-support probability Q,

which is the equivalent martingale measure (EMM) corresponding to π.

In fact, this construction applies without the assumption that an MMA

is traded by taking equation (2.4.2) to be the definition of r (F, t).

We write E
Q for the expectation operator relative to Q, simplifying

the conditional expectation notation E
Q [x | Ft] to E

Q
t [x] or EQt x. Omit-

ting the superscript implies the default reference probability: E = E
P .

Identity (2.4.1) can be used to price any traded contract (δ, V ), with

S = V − δ, resulting in

(2.4.3) St−1 =
E
Q
t−1Vt

1 + rt
, t = 1, . . . , T.

This pricing relationship is often referred to as risk-neutral pricing,6

although the term is misleading in terms of economic content; the risk

associated with the payoff Vt is priced in equation (2.4.3) just as it

would by the SPD π. In fact, Q can be thought of as representing a

pure (conditional) price of risk over a single period in the sense that

if at spot (F, t− 1) one enters a forward contract to exchange a time-

t fixed payment fi,t for a contingent unit of account that is paid if

and only if spot (Fi, t) materializes, then fi,t = Q (Fi | F ). In other

words, Q (Fi | F ) is a spot-(F, t− 1) forward price of a unit payment

at spot (Fi, t). The following example shows the role of the conditional

expectation E
Q
t−1 as a one-period-ahead forward pricing operator more

formally.

Example 2.4.1. Apply the pricing equation (2.4.3) for an assumed

traded contract (δ, V ) = (D − f,D − f), where D is an adapted pro-

cess and f is a predictable process, with f0 = D0 = 0. For every

t > 0, we interpret Dt as the time-t value of some asset and ft as the

time-(t− 1) forward price of the asset for time-t delivery. Buying the

contract at time t − 1 and selling it at time t results in the net cash

flow x, where xu = 0 for u 6= t and xt = Dt − ft. From the perspective

of time t− 1, the trade is equivalent to entering a forward contract for

time-t delivery of the asset at the forward price ft, whose value is de-

termined at time t−1. The pricing equation (2.4.3) in this case reduces

6The idea of risk-neutral pricing already appears in Arrow [1971] and Drèze [1971],
and it is exploited in option pricing by Cox and Ross [1976]. The term “equivalent
martingale measure” is due to Harrison and Kreps [1979].
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to ft = E
Q
t−1Dt, t = 1, . . . , T . Note that this argument does not apply

in general if we extend the delivery of the asset to two or more periods,

since the interest r can vary stochastically from period to period. ♦

The development so far relies critically on the finite information tree

and the use of a state-price density. We now introduce an equivalent

but more direct EMM definition that extends readily to infinite state-

space versions of the theory. Q denotes the set of all full-support

probability measures on 2Ω.

Definition 2.4.2. A discount process is a predictable strictly

positive process ρ such that ρ0 = 1. An equivalent martingale mea-

sure7 (EMM) is a probability Q ∈ Q relative to which there exists

a predictable SPD. An EMM-discount pair is a (Q, ρ) ∈ Q × P
such that ρ is both a discount process and an SPD relative to Q. The

present-value function represented by this pair is defined by

Π (c) = E
Q

[

T
∑

t=0

ρtct

]

, c ∈ L.

Last section’s results on pricing using state-price densities all apply

to an EMM-discount pair (Q, ρ), with simplifications resulting from the

fact that ρ is predictable. For example, if an MMA with rate process r

is traded, then the pricing equation (2.3.6) with P replaced by Q and

π replaced by ρ results in 1/(1 + rt) = ρt/ρt−1 and therefore

(2.4.4) r = −∆ρ

ρ
and ρt =

t
∏

u=0

1

1 + ru
, t = 0, . . . , T.

In general, given a discount process ρ, we refer to the r ∈ P0 defined

by the first equation in (2.4.4) as the rate process implied by ρ,

and given r ∈ P0, we refer to the ρ defined by the second equation

in (2.4.4) as the discount process implied by r. The preceding

discussion shows the following claim.

7The terms “equivalent” and “martingale measure” have their origin in probability
theory. A probability (measure) Q is said to be equivalent to P if Q (A) = 0 ⇐⇒
P (A) = 0 for every event A. In our setting, for all P ∈ Q, the set of all equivalent-
to-P probabilities on 2Ω is Q. A martingale measure is a probability relative to
which a given set of processes is a set of martingales. In the current context, such
a set is that of the properly discounted gain processes of all traded contracts, as
discussed at the end of this section.
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Proposition 2.4.3. If r is the market’s short-rate process and

(Q, ρ) is an EMM-discount pair, then r is the rate process implied by ρ.

Whether an MMA is traded or not, an EMM-discount pair (Q, ρ)

prices a traded contract according to (2.4.3), where r is the rate process

implied by ρ, as can be seen by formally replacing P by Q and π by

ρ in equation (2.3.4). Last section’s other pricing relationships can

similarly be stated in terms of an EMM-discount pair.

Let us now establish a correspondence between SPDs relative to P

and EMM-discount pairs, defined by the requirement that they rep-

resent the same present-value function. Not surprisingly, this corre-

spondence is the same as that of equations (2.4.1) and (2.4.2), thus

establishing the equivalence of the EMM notion of Definition 2.4.2 and

that of this section’s opening discussion. As preparation, we review

two generally useful probabilistic constructs, starting with a change-

of-measure formula.

Associated with every probability Q ∈ Q is the density8 dQ/dP ,

which is the strictly positive unit-mean random variable

dQ

dP
(ω) =

Q ({ω})

P ({ω})
, ω ∈ Ω,

and the conditional density process

(2.4.5) ξt = Et

[

dQ

dP

]

, t = 0, 1, . . . , T.

Since FT = 2Ω, ξT = dQ/dP and therefore ξ determines Q and con-

versely. By the law of iterated expectations (2.1.5), ξ is a unit-mean

strictly positive martingale (under P ).

Lemma 2.4.4. For every Q ∈ Q and adapted process x,

(2.4.6) E
Q [xt] = E [ξtxt] , t = 0, . . . , T.

Proof. For every random variable z, we have

E
Qz =

∑

ω∈Ω

z (ω)Q ({ω}) =
∑

ω∈Ω

Q ({ω})

P ({ω})
z (ω)P ({ω}) = E

[

dQ

dP
z

]

.

8Also known as the Radon-Nikodym derivative of Q with respect to P .
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The law of iterated expectations and the fact that xt ∈ Lt can now be

used to argue that

E
Qxt = EEt

[

dQ

dP
xt

]

= E

[

Et

[

dQ

dP

]

xt

]

= E [ξtxt] .

�

Remark 2.4.5. For every spot (F, t), the last lemma with xt = 1F

implies that Q (F ) = E
Q1F = E [ξt1F ] = ξ (F, t)P (F ). The value

ξ (F, t) that ξt takes on the event F is, therefore, the likelihood ratio

Q (F ) /P (F ), which is the ratio of the Q-probability of the path on

the information tree leading from time zero to spot (F, t) to the P -

probability of the same path. The random variable ξT = dQ/dP has

the same interpretation for terminal spots. ♦

Remark 2.4.6. A Q ∈ Q defines the density dQ/dP, which is

strictly positive and satisfies E [dQ/dP ] = 1. Conversely, a strictly

positive random variable Z such that EZ = 1 defines a unique Q ∈ Q
such that Z = dQ/dP ; it is given by Q (F ) = E [Z1F ] for every event

A. ♦

The second probabilistic construction we need to relate SPDs to

EMMs is the following multiplicative version of the Doob decomposi-

tion. P++ denotes the set of all strictly positive predictable processes,

and M denotes the set of all martingales under P .

Lemma 2.4.7. Every strictly positive adapted process π admits a

unique decomposition of the form

(2.4.7) π = π0ρξ, ρ ∈ P++, ξ ∈ M, ξ0 = 1.

Proof. Given π ∈ L++, let ρ ∈ P++ be defined recursively by

(2.4.8) ρ0 = 1 and
ρt
ρt−1

=
Et−1πt
πt−1

, t = 1, . . . , T.

Define the process ξ so that π = π0ρξ and therefore ξ0 = 1. The

second equality in (2.4.8) is equivalent to ξt−1 = Et−1ξt. This proves

the existence of decomposition (2.4.7) and also its uniqueness, since the

martingale property of ξ implies that ρ must be given by (2.4.8). �

The last two lemmas together reveal the relationship between an

SPD π representing a present-value function Π and a corresponding
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EMM-discount pair (Q, ρ) also representing Π: If dQ/dP = ξT and ρ

and ξ are as in decomposition (2.4.7), then for every cash flow c,

Π (c) =
1

π0

E

[

T
∑

t=0

πtct

]

= E

[

T
∑

t=0

ρtξtct

]

= E
Q

[

T
∑

t=0

ρtct

]

.

Here is a more detailed statement of this conclusion.

Proposition 2.4.8. Suppose π is an SPD representing the present-

value function Π. Let ρ be defined by (2.4.8), and let

(2.4.9) Q (F ) = E [ξT1F ] , F ∈ FT , where ξT ≡ 1

ρT

πT
π0
.

Then (Q, ρ) is an EMM-discount pair representing Π. Conversely, sup-

pose (Q, ρ) is an EMM-discount pair representing the present-value

function Π. Let ξ denote the conditional density process of Q rela-

tive to P , and let π0 be an arbitrary positive scalar. Then π = π0ρξ is

an SPD representing Π.

Corollary 2.4.9. For every present-value function Π, there exists

a unique EMM-discount pair representing Π.

The relationship π = π0ρξ of the preceding proposition connects

the EMM notion of Definition 2.4.2 to the earlier construction of equa-

tions (2.4.1) and (2.4.2). To see how, consider any nonterminal spot

(F, t− 1) with immediate successor spots (Fi, t), i = 0, . . . , d. Bayes’

rule and Remark 2.4.5 imply

(2.4.10)
Q (Fi | F )

P (Fi | F )
=
Q (Fi) /Q (F )

P (Fi) /P (F )
=

ξ (Fi, t)

ξ (F, t− 1)
, i = 0, . . . , d.

Therefore, if r is the rate process implied by ρ, then equation (2.4.1)

applied to all nonterminal spots is the same as π/π− = (ρξ) / (ρξ)−,

which is an equivalent recursive expression of the condition π = π0ρξ.

At the heart of the connection between pricing in terms of an SPD

and pricing in terms of an EMM is a probabilistic change-of-measure

formula, such as Lemma 2.4.4. We now review two other versions of

the change-of-measure formula, each offering another insight on the

relationship between pricing in terms of SPDs and EMMs.

We have encountered the pricing of risk in terms of covariances in

equation (2.3.7), and in terms of an expectation under an EMM in

equation (2.4.3). The connection between the two is made directly by



2.4. EQUIVALENT MARTINGALE MEASURES 79

the following conditional change-of-measure formula, which on a finite

information tree is an immediate consequence of equations (2.4.10).

The result applies in more general stochastic settings, however, where

an expression like (2.4.10) is not meaningful. The following alternative

argument applies to such settings and offers a chance to practice formal

properties of conditional expectations.

Lemma 2.4.10. For every Q ∈ Q, V ∈ L and time t > 0,

(2.4.11) E
Q
t−1Vt = Et−1

[

ξt
ξt−1

Vt

]

= Et−1Vt + covt−1

[

ξt
ξt−1

, Vt

]

,

where ξ is the conditional density process of Q relative to P .

Proof. Let y = Et−1 [ξtVt] /ξt−1. For all z ∈ Lt−1, Lemma 2.4.4,

the law of iterated expectations, Proposition 2.1.6 and the fact that

yz ∈ Lt−1 imply

E
Q [yz] = E [ξtyz] = E [Et−1 [ξtyz]] = E [Et−1 [ξt] yz] = E [ξt−1yz]

= E [Et−1 [ξtVt] z] = E [Et−1 [ξtVtz]] = E [ξtVtz] = E
Q [Vtz] .

By Proposition 2.1.3, it follows that y = E
Q
t−1Vt. The second equation

in (2.4.11) follows from the definition of the conditional covariance and

the fact that Et−1ξt/ξt−1 = 1. �

Now insert the SPD factorization π = π0ρξ, where ρ is a discount

process with implied rate process r and ξ is a strictly positive unit-mean

martingale, in the pricing equation (2.3.7) to find

(2.4.12) St−1 =
1

1 + rt

(

Et−1Vt + covt−1

[

ξt
ξt−1

, Vt

])

.

This is the same as equation (2.4.3) if Q is the probability defined by

ξT = dQ/dP, since the term in parentheses is equal to E
Q
t−1Vt by the

Lemma just shown.

Yet another way in which state-pricing is expressed is through the

martingale property of properly discounted gain processes. The con-

nection between EMMs and SPDs in those terms is made through a

probabilistic result on the martingale property after a change of mea-

sure reviewed below. For simplicity, let us assume that the market X

is implemented by 1 + J contracts, where contract zero is an MMA, as

described in Section 1.8, whose notation we adopt here. Consider any
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π ∈ L++ with decomposition (2.4.7), where ξ is the conditional density

process of Q ∈ Q. As an SPD, π prices the MMA if and only if the

discount process ρ and the short-rate process r are related by (2.4.4),

a condition we henceforth assume. By Proposition 2.3.3, π is an SPD

if and only if it prices the remaining J contracts with underlying prob-

ability P , if and only if ρ prices the same J contracts with underlying

probability Q. Therefore, by Proposition 2.3.4, π is an SPD if and

only if Gπ ≡ πV + (πδ)− • t is a martingale (under P ); and Q is an

EMM if and only if9 Gρ ≡ ρV + (ρδ)− • t is a Q-martingale; that

is, a martingale under Q. The fact that π is an SPD if and only if Q

is an EMM corresponds to the purely probabilistic fact that Gπ is a

P -martingale if and only if Gρ is a Q-martingale, which can be shown

directly as a corollary of Lemma 2.4.10.

Example 2.4.11. (American call) This example uses some basic

facts from martingale theory to provide a dual argument showing the

American call late exercise result of Example 1.5.5. Throughout this

example, we restrict the time horizon to be the American call matu-

rity τ̄ (rather than T ), and we let T̄ denote the set of every stopping

time valued in {0, . . . , τ̄}. From Section 2.1, recall that every adapted

process has a unique Doob decomposition, whose predictable part de-

fines its compensator. A submartingale is an adapted process x with

an increasing compensator xp, meaning ∆xpt ≥ 0 or, equivalently,

Et−1∆xt ≥ 0 (at every state and time t > 0). We will use two basic

facts about a submartingale x.

Fact 1: τ ∈ T̄ implies Exτ̄ ≥ Exτ .

Proof. Define the martingale M ≡ x − xp and given any τ ∈ T̄ ,

the process φt = 1{τ<t≤τ̄} (with 1∅ ≡ 0). Since φ is predictable, φ•M is

a zero-mean martingale and 0 = E (φ •M)T = E [Mτ̄ −Mτ ]. Therefore

EMτ̄ = EMτ and, since xp is increasing, Exτ̄ ≥ E [Mτ̄ + xpτ ] = Exτ . �

Fact 2: Suppose the function f : R → R is increasing and convex.

Then f (x) is also a submartingale.

Proof. The submartingale property Et−1∆xt ≥ 0 and the assump-

tion that f is increasing imply f (Et−1xt) ≥ f (xt−1). The claim is

therefore a corollary of Jensen’s inequality Et−1f (xt) ≥ f (Et−1xt).

9It is this equivalence that justifies the term “martingale measure” for Q.
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Using only the convexity of f , note that the right derivative of f at

Et−1xt defines dt−1 ∈ Lt−1 as the slope of a supporting line of the graph

of f at Et−1xt and therefore f (xt) ≥ f (Et−1xt) + dt−1 (xt − Et−1xt).

Applying Et−1 on both sides results in Jensen’s inequality. �

Consider now the American call of Example 1.5.5 with the under-

lying stock paying no dividends up to τ̄ . Assume also that there is a

traded MMA with a non-negative interest rate process, which means

that the corresponding discount process ρ is decreasing (s > t implies

ρs ≤ ρt). For every EMM Q, we will show that τ̄ maximizes the corre-

sponding present value (using the notation x+ ≡ max {x, 0}):

E
Q
[

ρτ̄ (Sτ̄ −K)+
]

= max
τ∈T̄

E
Q
[

ρτ (Sτ −K)+
]

.

By Theorem 1.5.2, this proves that not exercising the call prior to ma-

turity is a dominant choice. Fixing the reference EMM Q, let us select

the underlying probability P to equal Q. The no-dividends assumption

implies that ρS is a martingale (up to the assumed time-horizon τ̄ ),

and since ρK is a predictable decreasing process, ρS − ρK is a sub-

martingale. The function that takes the positive part is convex and

increasing. By Fact 2, x ≡ ρ (S −K)+ is a submartingale, and by

Fact 1, Exτ̄ ≥ Exτ . ♦

2.5. Predictable representations

In linear algebra it is often convenient to introduce a linear basis

and refer to vectors by their representation relative to the reference

basis. In what is essentially the same idea applied at each node of the

information tree, in this section, we introduce processes representing

risk sources that span all uncertainty. We show how every adapted pro-

cess can be represented in terms of its exposure to these risk sources,

known as volatility, and we show how a present-value function implies a

relationship between expected excess returns and return volatility. The

resulting scaffolding is especially useful as we pass from high-frequency

models to the continuous-time limit. Unless otherwise indicated, ex-

pectations, variances, covariances and the martingale property are all

relative to a given underlying full-support probability P . Recall that

M0 denotes the set of zero-mean martingales and P0 denotes the set

of predictable processes that take the value zero at time zero.
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The essential idea behind predictable representations is easiest to

see in the one-period case, with a single time-zero spot and 1 + d time-

one spots. A random variable in this case is any vector in R
1+d and

the linear space of zero-mean random variables has dimension d. Let

the column vector b = (b1, . . . , bd)′ list the elements of an orthonormal

basis of the space of all zero-mean random variables with the covariance

inner product. By construction, the bi are uncorrelated to each other

and they each have zero mean and unit variance. In this simple case,

an M ∈ M0 can be represented as M1 = ∆M1 = σb for some row

vector σ ∈ R
1×d, necessarily given by σ = E [∆M1b

′].

The same construction can be applied over the single period fol-

lowing a nonterminal spot, for any time horizon T . For simplicity,

we assume that every nonterminal spot has exactly 1 + d immediate

successor spots. Focusing on any nonterminal spot (F, t− 1) and its

immediate successor spots (Fi, t), i = 0, . . . , d, we apply the earlier

single-period construction conditionally on F . Adding the subscript

F, t, we end up with the vector bF,t =
(

b1
F,t, . . . , b

d
F,t

)′
, where the biF,t

are random variables taking the value zero outside F and such that

(2.5.1) E

[

biF,t | F
]

= 0 and E

[

biF,tb
j
F,t | F

]

=







1 if i = j,

0 if i 6= j.

For all M ∈ M0, ∆Mt1F = σF,tbF,t, where σF,t = E

[

∆Mtb
′
F,t | F

]

.

The bases bF,t are conveniently stitched together by defining the

process B =
(

B1, . . . , Bd
)′

, where Bi
0 = 0 and ∆Bi

t1F = biF,t for ev-

ery nonterminal spot (F, t− 1). Condition (2.5.1) is equivalent to the

requirement that B ∈ Md
0 and

(2.5.2) Et−1

[

∆Bi
t∆B

j
t

]

=







1 if i = j,

0 if i 6= j,
t = 1, . . . , T.

The spot-by-spot representations of the increments of a martingale

M ∈ M0 become

(2.5.3) M = σ •B, σ ∈ P1×d
0 ,

where σt = Et−1 [∆Mt∆B
′
t].

We call a B ∈ Md
0 satisfying (2.5.2) and such that every M ∈ M0

admits a representation of the form (2.5.3) a dynamically orthonor-

mal basis.
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Proposition 2.5.1. The underlying filtration is generated by a dy-

namically orthonormal basis B ∈ Md
0 if and only if every nonterminal

spot has 1 +d immediate successors. In this case every adapted process

x can be uniquely represented in the form

(2.5.4) x = x0 + µ • t + σ •B, µ ∈ P0, σ ∈ P1×d
0 .

The processes µ and σ can be computed in terms of x by

(2.5.5) µt = Et−1 [∆xt] and σt = Et−1 [∆xt∆B
′
t] , t = 1, . . . , T.

Proof. Suppose every nonterminal spot has 1 + d immediate suc-

cessors. We have already shown the existence of a dynamically or-

thonormal basis B ∈ Md
0. Representation (2.5.4) follows from the

Doob decomposition (2.1.6) of x with µ = ∆xp. To show that B gen-

erates the underlying filtration, we use induction in t to show that the

realization of B1, . . . , Bt reveals the realized time-t spot. For t = 0, the

claim is vacuously true. Suppose it is true for t−1 and ω is the realized

state, corresponding to spots (F, t− 1) and (G, t), where ω ∈ G ⊆ F .

The inductive hypothesis means that (F, t− 1) is the unique spot that

is consistent with Bs (ω) for s < t. Let x be the adapted process that

takes the value zero everywhere except for x (G, t) = 1. By represen-

tation (2.5.4) of x, we can write ∆xt = µt + σt∆Bt, where µt and σt

take a constant value on F , revealed by Bs (ω) for s < t. If in addition

we know B (G, t), then the value x (G, t) is also revealed, and hence

the identity of the spot (G, t). This completes the inductive step. The

necessity of the condition that each nonterminal spot has exactly d+ 1

immediate successor spots follows by a dimensionality argument that

is left to the reader. �

We henceforth fix a reference dynamically orthonormal basis B ∈
Md

0 generating the underlying filtration. We refer to (2.5.4) as the

predictable representation or the dynamics of x (relative to B).

The processes µ and σ are, respectively, the drift and volatility of x.

Turning our attention back to an arbitrage-free market X, consider

a state price density π (relative to P ) and corresponding decomposition

π = π0ρξ, where ρ is a (predictable) discount process and ξ is the

conditional density process of the EMM Q associated with π. We are

interested in the predictable representation of π, how it relates to the
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dynamics of ρ and ξ, and finally how it can be used to price a traded

contract.

We saw in the last section that if there is a traded MMA then

the short-rate process is r = −∆ρ/ρ. Let r ∈ P0 be defined by this

equation, whether an MMA is traded or not. Simple algebra shows

that
∆π

π−
=

ρ

ρ−

(

∆ρ

ρ
+

∆ξ

ξ−

)

= − 1

1 + r

(

r − ∆ξ

ξ−

)

.

The last term leads us to the process (1/ξ−) • ξ, which is a zero-mean

martingale. Define the process η by the corresponding unique pre-

dictable representation:

(2.5.6)
1

ξ−
• ξ = −η′ •B, η ∈ Pd

0 .

The state-price dynamics can then be expressed as

(2.5.7)
∆π

π−
= − 1

1 + r
(r + η′∆B) .

By Proposition 2.5.1 and Lemma 2.4.10,

(2.5.8) ηt = −Et−1

[

ξt
ξt−1

∆Bt

]

= −E
Q
t−1 [∆Bt] .

Equivalently,

(2.5.9) B + η • t is a Q-martingale.

Conversely, the process η determines the probability Q, since rep-

resentation (2.5.6) can be restated as the recursion

(2.5.10)
ξt
ξt−1

= 1 − η′
t∆Bt, ξ0 = 1,

which can be multiplied through to obtain

(2.5.11) ξt =
t
∏

s=0

(1 − η′
s∆Bs) , t = 0, 1, . . . , T.

In particular, η determines ξT = dQ/dP and hence Q. Not every

η ∈ Pd
0 defines a Q ∈ Q in this manner, however, since ξ must be

strictly positive. In fact, the preceding correspondence between η and

Q defines a bijection between Q and the set

(2.5.12) H =
{

η ∈ Pd
0 | 1 − η′∆B ∈ L++

}

.



2.5. PREDICTABLE REPRESENTATIONS 85

In equations (2.4.4), we saw that every rate process r ∈ P0 implies

a unique discount process ρ (Definition 2.4.2) and vice versa. The

preceding construction shows that every Q ∈ Q defines a unique η ∈ H
by letting ηt = −E

Q
t−1 [∆Bt], and conversely, every η ∈ H defines a

Q ∈ Q where dQ/dP = ξT is defined by (2.5.11). With Q ∈ Q and

η ∈ H so related, we call η ∈ H a market-price-of-risk process if Q

is an EMM.

In the last two sections, we saw a number of equivalent expressions

of what it means for an SPD π or corresponding EMM-discount pair

(Q, ρ) to price a given contract (δ, V ). One of those is that Gρ ≡
ρV + (ρδ)− • t is a Q-martingale. Let us now formulate the same

condition in terms of the corresponding pair (η, r) ∈ H × P0 and the

gain process predictable representation

(2.5.13) G ≡ V + δ− • t ≡ V0 + µG • t + σG •B.

A direct calculation of the increment ∆Gρ shows that

Gρ =
(

ρ
(

µG − rS− − σGη
))

• t +
(

ρσG
)

• (B + η • t) .

By (2.5.9), Gρ is a Q-martingale if and only if the first term, which

is the drift of Gρ under Q, is zero. Summarizing, we have shown that

(Q, ρ) prices the contract (δ, V ) if and only if

(2.5.14) µG = rS− + σGη.

This argument has the advantage of generalizing to continuous-time

formulations, where we cannot refer to a single-period recursion. For a

more direct connection, substitute µGt = Et−1 [Vt] − St−1 and σGt =

Et−1 [Vt∆B
′
t] into (2.5.14), solve for St−1 and use (2.5.10) and the

change-of-measure formula (2.4.11) to recover the risk-neutral pricing

recursion (2.4.3).

Assuming St−1 is non-zero everywhere, pricing condition (2.5.14) is

often expressed in terms of the return dynamics

(2.5.15)
∆Gt

St−1

= µRt + σRt ∆Bt, µR ∈ P0, σR ∈ P1×d
0 .

In this case, equation (2.5.14) can be restated as

(2.5.16) µR − r = σRη,
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which can more directly be viewed as a corollary of the expected excess

returns expression (2.3.8) and the SPD dynamics (2.5.7). Thus condi-

tional expected excess returns relative to the risk-free rate over a single

period are explained by exposure to the risk sources ∆Bt as measured

by the return volatility σR. This type of pricing is also known as factor

pricing, with ∆Bt being the (risk) factors, the volatility representing

conditional factor loadings, and ηt representing the factor prices.

In applications it is common to assume that the market is imple-

mented by exogenously specified contracts. Let us adopt the setting of

Section 1.8, where X is implemented by 1 + J contracts, with contract

zero being an MMA defining the short-rate process r and implied dis-

count process ρ. Modifying our earlier notation, let δ =
(

δ1, . . . , δJ
)′

and define V,G ∈ LJ analogously, with G having dynamics (2.5.13),

where µG ∈ PJ
0 and σG ∈ PJ×d

0 . Given Q ∈ Q and corresponding

η ∈ H, Q is an EMM if and only if it prices contracts 1 through J , a

condition that is equivalent to η ∈ H satisfying equation (2.5.14).

Remark 2.5.2. The existence of some η ∈ P0 satisfying equa-

tion (2.5.14) does not exclude all arbitrage opportunities (the positivity

part of the definition of H is essential), and is instead equivalent to the

weaker condition of no MMA arbitrage:

(2.5.17) for all θ ∈ P1×J
0 , θσG = 0 =⇒ θ

(

µG − rS−

)

= 0.

An orthogonal decomposition at each spot gives

(2.5.18) µG − rS− = σGη + ε′, εσG = 0,

for some η ∈ Pd
0 and ε ∈ P1×J

0 . Applying (2.5.17) with θ = ε gives

ε
(

µG − rS−

)

= 0 and therefore ε
(

σGη + ε′
)

= 0. Since εσGη = 0, we

have εε′ = 0. This proves that ε = 0 and (2.5.18) reduces to (2.5.14).

The converse claim is immediate. ♦

For a typical arbitrage-pricing application, consider a market maker

who can trade in the 1 + J contracts implementing the arbitrage-free

market X, and sells contract (δ∗, V ∗) to a customer at time zero. We

assume that (δ∗, V ∗) is synthetic in X, that is, there exists a trading

strategy (θ0, θ) such that (δ∗, V ∗) =
(

δθ, V θ
)

. The customer could

in principle bypass the market maker by following trading strategy

(θ0, θ), but the idea is that the customer is less suited to carry out
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the necessary transactions. At time zero, the market maker charges

V ∗
0 for the contract plus whatever fee competition for market-making

activity allows and hedges the sale by purchasing the synthetic contract
(

δθ, V θ
)

, resulting in a net cash flow that is just the time-zero fee

charged. The hedge is perfect within the market maker’s model. (Of

course, there is always the risk that the model does not comply with

reality.)

The market maker’s pricing model consists of the short-rate pro-

cess r and the gain or return dynamics specified earlier, which imply a

market-price-of-risk process η and associated EMM Q. This data can

be used to recursively compute V ∗ as the present-value process of δ∗.

The requirement that (δ∗, V ∗) =
(

δθ, V θ
)

dictates, for all t > 0, the

MMA position θ0
t in terms of the positions θt in the remaining J con-

tracts by matching either cum-dividend values, V ∗
t = θ0

t (1 + rt) + θtVt,

or ex-dividend values, S∗
t−1 = θ0

t + θtSt−1, where S∗ ≡ V ∗ − δ∗ and

S ≡ V − δ. The MMA position is therefore given by

(2.5.19) θ0
t = S∗

t−1 − θtSt−1 =
V ∗
t − θtVt
1 + rt

, t > 0; θ0
0 = 0.

The trading strategy θ in the remaining J contracts is computed to

eliminate volatility period by period. To see why, define the gain-

process predictable representation

(2.5.20) G∗ ≡ V ∗ + δ∗
− • t ≡ V ∗

0 + µ∗ • t + σ∗ •B

and use the budget equation for θ to find

(2.5.21) V ∗ − θV = predictable term +
(

σ∗ − θσG
)

•B.

By (2.5.19), V ∗ − θV is predictable and therefore

(2.5.22) σ∗ = θσG,

which must have a solution in θ in order for (δ∗, V ∗) to be synthetic in

X. At time t − 1, the market maker enters the trade θt − θt−1 in the

J contracts, with the MMA acting as the clearing account, whose new

balance is dictated by the budget equation.
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Assuming the market is arbitrage-free, a corollary of this discussion

is that every synthetic contract is uniquely generated by a trading strat-

egy if and only if the rows of the J×d matrix σG (ω, t) are linearly inde-

pendent for all (ω, t) ∈ Ω × {1, . . . , T}. In this case, let us call the con-

tracts (δ1, V 1) , . . . ,
(

δJ , V J
)

dynamically independent. By Propo-

sition 1.7.7, another corollary is that the market is complete if and

only if the rank of σG (ω, t) is d for all (ω, t) ∈ Ω × {1, . . . , T}. In par-

ticular, the MMA (δ0, V 0) together with the dynamically independent

contracts (δ1, V 1) , . . . ,
(

δJ , V J
)

implement a complete market if and

only if J = d and σG (ω, t) is invertible for all (ω, t) ∈ Ω × {1, . . . , T}.

In this case, for every j ∈ {1, . . . , J}, the contract (δj, V j) is nec-

essarily everywhere risky, meaning that for every time t > 0 and

every nonempty event F ∈ Ft, the random variable V j
t 1F is not Ft−1-

measurable. The number of contracts required to implement a complete

market is dictated by the underlying filtration.

Theorem 2.5.3. Suppose that every nonterminal spot has 1 + d

immediate successors. An arbitrage-free market is complete if and only

if it can be implemented by a money-market account and d dynamically

independent everywhere risky contracts.

Proof. The “if” part follows from our earlier discussion. Con-

versely, suppose the market X is complete and arbitrage-free, and let

(Q, ρ) be the corresponding unique EMM-discount pair implying the

short-rate process r and market-price-of-risk process η. Market com-

pleteness implies that a contract is traded (in X) if and only if it is

priced by (Q, ρ). Define the MMA (δ0, V 0) through r in (1.8.3) and

the everywhere risky contracts (δ, V ) ∈ Ld×2 by letting δ− ≡ 0 and

Gρ = ρV ≡ B + η • t. By (2.5.9), Gρ is a Q-martingale and there-

fore, by Proposition 2.3.4, (Q, ρ) prices the contracts (δ, V ), which are

therefore traded. The market implemented by the contracts (δ0, V 0)

and (δ, V ) is included in X and is complete and is therefore equal

to X. �

2.6. Independent increments and the Markov property

Assuming every spot has at least two immediate successors, the

number of spots rises exponentially with the number of periods, ren-

dering intractable any method that requires spot-by-spot computation.
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Applications typically address this issue by relying on a so-called Mar-

kovian structure, where the entire history is summarized by a relatively

low-dimensional state vector.

We outline the basic idea in last section’s setting, where the under-

lying filtration is generated by the d-dimensional dynamically orthonor-

mal basis B relative to the full-support probability P . We further as-

sume, throughout this section, that B has independent increments

(relative to P ): For every time t > 0 and function f : Rd → R,

(2.6.1) Et−1 [f (∆Bt)] = E [f (∆Bt)] .

Note that by Proposition 1.1.4 and Corollary 2.1.5, B has independent

increments if and only if for every time t > 0, the algebras σ (∆Bt)

and Ft−1 = σ (∆B1, . . . ,∆Bt−1) are stochastically independent. While

condition (2.6.1) is all we need to apply the independent-increments

property in this section, Proposition 2.1.2 explains the terminology:

B has independent increments if and only if the random variables

∆B1, . . . ,∆BT are stochastically independent. Example 2.1.8 gives a

prototypical independent increments process. As in that example, an

independent increments process B such that E∆Bt = 0 for all t > 0

is necessarily a martingale, but an arbitrary martingale need not have

independent increments.

A time-t spot corresponds to a specific realization of one of the

(1 + d)t possible histories of B up to that spot. The idea is to hypoth-

esize that there is a k-dimensional random variable Zt whose value

summarizes all that is relevant of the history of B up to t, where k

is a computationally manageable positive integer. Fixing an initial

value Z0 ∈ R
k, we assume that Z is the k-dimensional adapted process

defined recursively by

(2.6.2) ∆Zt = at (Zt−1) + bt (Zt−1) ∆Bt, t = 1, . . . , T,

for given functions at : R
k → R

k and bt : R
k → R

k×d, and is therefore

a Markov process (relative to P ): for every time t > 0 and function

f : Rk → R,

(2.6.3) Et−1f (Zt) = E [f (Zt) | Zt−1] .

The Markov property (2.6.3), which is equivalent to the σ (Zt−1)-

measurability of Et−1f (Zt), formalizes the idea that every statistic of



2.6. INDEPENDENT INCREMENTS AND THE MARKOV PROPERTY 90

Zt can be calculated knowing only Zt−1 rather than the entire path of

B up to time t − 1. The claim that Z is a Markov process relative to

P is a corollary of the following more general result.

Lemma 2.6.1. Suppose B has independent increments relative to

P , and Q ∈ Q has a conditional density process ξt = Et [dQ/dP ] that

satisfies, for some ηt : R
k → R

d,

∆ξt
ξt−1

= −ηt (Zt−1)′ ∆Bt, t = 1, . . . T ; ξ0 = 1.

Then Z is a Markov process relative to Q.

Proof. Consider any time t > 0, vector z ∈ R
k and function

f : Rk → R. Using the conditional change of measure formula of

Lemma 2.4.10 and recursion (2.6.2) for Z, note that on the event

{Zt−1 = z} the conditional expectation E
Q
t−1 [f (Zt)] is equal to

Et−1

[(

1 − η (z)′
t ∆Bt

)

f (z + at (z) + bt (z) ∆Bt)
]

.

Since ∆Bt is independent of Ft−1, the above quantity is constant on

{Zt−1 = z} and therefore so is EQt−1 [f (Zt)]. This proves that EQt−1 [f (Zt)]

is σ (Zt−1)-measurable. �

Let Zt ≡ {Zt (ω) | ω ∈ Ω} denote the set of all possible time-t

Markov states. For x ∈ L, we abuse notation and write xt = xt (Zt)

to mean that there exists a function xt : Zt → R such that xt (ω) =

xt (Zt (ω)) for all ω ∈ Ω, or, equivalently, that xt is σ (Zt)-measurable.

Similarly, if x is a predictable process, we write xt = xt (Zt−1) to ex-

press the condition that there exists a function xt : Zt−1 → R such that

xt (ω) = xt (Zt−1 (ω)) for all ω ∈ Ω (a condition that is equivalent to

the σ (Zt−1)-measurability of xt). Even though xt denotes two separate

mathematical objects, the meaning is clear from the context.

With these conventions, suppose that the market is arbitrage-free

and is implemented by the MMA and J contracts, as specified in the

last section, with the additional restriction that for every time t > 0,
(

rt, δt, Vt, µ
G
t , σ

G
t

)

=
(

rt (Zt−1) , δt (Zt) , Vt (Zt) , µ
G
t (Zt−1) , σGt (Zt−1)

)

,

and therefore St ≡ Vt − δt = St (Zt). A market-price-of-risk process

η ∈ H, defining an EMM Q, is specified as a predictable solution to

equation (2.5.14) such that 1 − η′∆B is strictly positive. It is not hard
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to see that we can select η ∈ H to satisfy ηt = ηt (Zt−1) for all t > 0.

Assuming such a selection, it follows from Lemma 2.6.1 that Z is a

Markov process relative to Q, as well as P .

As in the last section, consider the pricing and replication of a

traded contract (δ∗, V ∗), with the added assumption that δ∗
t = δ∗

t (Zt)

for all t. Pricing the contract recursively using the EMM Q and the

Markov property of Z relative to Q gives

V ∗
t−1 = δ∗

t−1 (Zt−1) +
E
Q [V ∗

t (Zt) | Zt−1]

1 + rt (Zt−1)
= V ∗

t−1 (Zt−1) .

Since V ∗
T = δ∗

T (ZT ), it follows that V ∗
t = V ∗

t (Zt) for all t. Using

the notation (2.5.20) for the corresponding gain process, we also have

µ∗
t = µ∗

t (Zt−1) and σ∗
t = σ∗

t (Zt−1). A trading strategy that replicates

the contract (δ∗, V ∗) can be selected to have an analogous Markovian

structure thanks to equations (2.5.22) and (2.5.19).

This type of Markovian scaffolding extends to our earlier discussion

of option pricing. The following example illustrates the basic idea.

Example 2.6.2 (American call). Assuming the above Markovian

structure, we revisit the American call of Examples 1.5.5 and 2.4.11,

but with the underlying stock potentially paying dividends, so that

early exercise at some spot can be dominant. For simplicity, we assume

a complete market with EMM Q. The option’s value process and an

associated dominant exercise time can be determined by solving the

backward recursion

V ∗
t (z) = max







St (z) −K,
E
Q
[

V ∗
t+1 (Zt+1) | Zt = z

]

1 + rt+1 (z)







, V ∗
τ̄+1 (z) ≡ 0,

where z ranges over all possible values of the Markov state. The idea

is that at time t and Markov state z, assuming the option has not been

already exercised, it is optimal (in the sense of present-value maximiza-

tion) to exercise the option and collect St (z) − K if the maximum is

achieved by the first term and it is optimal to keep the option alive

if the maximum is achieved by the second term. Define the stopping

time

τ ∗ ≡ min
{

t | V ∗
t (Zt) = (St (Zt) −K)+

}

and for any stopping time τ ∈ T̄ , let V τ be the present value pro-

cess of the dividend process δτt ≡ (St −K)+ 1{τ=t}. It is left as an
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exercise to verify (using a backward-in-time inductive argument) that

V τ
t ≤ V ∗

t , with equality if τ = τ ∗. This confirms that τ ∗ maximizes

present value and V ∗ represents the option’s value process in the sense

of Section 1.5. ♦

2.7. A glimpse of the continuous-time theory

We have so far taken the unit of time to coincide with a period,

which implies that the time horizon T is the same as the number of

periods N . For this section, we fix the time horizon T in a given time

unit, which we call a year, and discuss approximations and associated

simplifications that arise as the number of periods N becomes very

large. Continuous-time models of interest are idealized representations

of such large discrete models in the sense that the quantitative pre-

dictions of the discrete and continuous models are very close provided

N is large enough. Theoretical support for this claim is provided by

limit theorems as N goes to infinity. The rigorous details of both

the continuous-time limiting model and arguments of convergence are

highly technical and well beyond the scope of this presentation. More-

over, infinite models bring into scope set-theoretic esoteric aspects of

the theory that are far removed from applications. An introduction

founded on this chapter’s finite information tree analysis should help

demystify some of the continuous-time tools, as well as provide a ba-

sis for prioritizing aspects of the continuous-time theory that are most

relevant for economic theory.

While one can embed an arbitrary sequence of discrete risks into

a continuous-time model, tractability benefits derive from the assump-

tion that uncertainty evolves as a sequence of risks that are in a sense

small or infinitesimal in the continuous-time limit. The fundamental

building blocks for constructing such high frequency sequences of small

risks are two types of stochastic process: Brownian motion and the

Poisson process. The incremental change of either type of process over

an infinitesimal time interval represents a small risk, but for opposing

reasons. For Brownian motion, a change is certain to happen, but the

magnitude of the change is infinitesimal. For a Poisson process, the

change is fixed at a unit amount, but the probability of change is in-

finitesimal. Mixing of Brownian motions and Poisson processes can be
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used to construct an arbitrary Lévy process,10 which can be thought of

as a representation of an arbitrary sequence of independent identically

distributed small risks in high frequency. Lévy processes generalize to

classes of so-called semimartingales,11 where the conditional moments

of each small risk can be time-varying and path dependent, presenting

a rich palette for formulating statistically testable stochastic models.

This being a pedagogical introduction, we focus on the one-dimensional

Brownian case.

The set of times for this section is {0, h, 2h, 3h, . . . , Nh}, where

h ≡ T/N represents the time length of each period in years. The idea

is to fix T and consider versions of the model as N goes to infinity and h

goes to zero. We proceed informally with a given value of N , but with

the understanding that N is big in the following sense. Suppose h =

10−6 years and we are only interested in computing quantities to a six-

decimal precision. We therefore think of h as small but not negligible

and quantities of higher order, like h1.5 = 10−9 and h2 = 10−12, as

negligible. On the other hand
√
h = 10−3 is 1000 times bigger than h

and definitely not negligible. Note that as h goes to zero,
√
h becomes

infinitely larger than h.

The underlying filtration {Fnh | n = 0, 1, . . . , N} is defined analo-

gously to Example 1.1.1, where information available at time t = nh

can be thought of as being the outcome of n consecutive coin tosses.

Equivalently, we assume that the underlying filtration is generated by

a process B, where B0 ≡ 0, and over every period the increment of

B can take one of two possible values. As in Section 2.5, we fix an

underlying full-support probability P , relative to which B is a zero-

mean martingale. Moreover, we assume that v ≡ Et

[

(Bt+h − Bt)
2
]

is

the same for all t = nh < T , and B is normalized so that E [B2
T ] = T .

Since BT =
∑

n ∆Bnh, where ∆Bnh ≡ Bnh − B(n−1)h,

E

[

B2
T

]

=
N
∑

n=1

E

[

(∆Bnh)
2
]

+ 2
∑

m<n

E [∆Bmh∆Bnh] .

10Cinlar [2010] provides a broad introduction to Probability theory that includes
Lévy processes. Applebaum [2004] provides an overview of Lévy processes with a
focus on stochastic integration.
11See Jacod and Shiryaev [2003] and Jacod and Protter [2012].
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For m < n, E [∆Bmh∆Bnh] = E [∆BmhEmh∆Bnh] = 0. Therefore

T = E [B2
T ] = Nv or v = T/N = h.

Another assumption we make requires that, loosely speaking, the

increment Bt+h − Bt is small, so that in the limit the paths of B are

continuous. For example, if the two scenarios following each spot are

equally likely,12 the fact that Bt+h − Bt has zero conditional mean

and conditional variance equal to h implies that Bt+h − Bt takes the

possible values ±
√
h, and therefore (Bt+h − Bt)

2 = h. More generally,

we assume that for every smooth function f : R → R, the following

(informally stated) second-order Taylor approximation is valid at all

states:

(2.7.1) f (Bt+h)−f (Bt) ≈ f ′ (Bt) (Bt+h −Bt)+
1

2
f ′′ (Bt) (Bt+h−Bt)

2.

Using this approximation, we can now compute the limiting distri-

bution of B (as N → ∞ with T fixed). We assume familiarity with

the normal (or Gaussian) distribution and its characteristic function

(or Fourier transform). Consider approximation (2.7.1) with

f (x) ≡ exp (iθx) ≡ cos (θx) + i sin (θx) , i ≡
√

−1.

The fact that f is complex-valued presents no problem, since the ap-

proximation can be applied on the real and imaginary parts sepa-

rately. Fixing any time s, we compute ms (t) ≡ Esf (Bt) for t ∈ [s, T ],

which defines the characteristic function of the distribution of Bt con-

ditionally on time-s information. By the law of iterated expectations,

Es [Bt+h −Bt] = 0 and Es [(Bt+h − Bt)
2] = h. Similarly, applying Es

on both sides of (2.7.1) and using the fact that f ′′ = −θ2f , we find

ms (t+ h) −ms (t)

h
≈ −θ2

2
ms (t) .

Letting h approach zero, we conclude that the derivative of log (ms (t))

with respect to t equals −θ2/2. Since ms (s) = f (Bs), we can integrate

12A probabilistically small risk we are excluding is one where Bt+h − Bt takes the
value 1 − h with probability h and the value −h with probability 1 − h. In this
case, the limiting process is Bt = Ct − t, where Ct is a Poisson process with unit
arrival rate.
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from s to t to find that in the limit13 as N → ∞,

Es exp (iθ (Bt −Bs)) = exp

(

−θ2

2
(t− s)

)

.

This is the characteristic function of a normal distribution with mean

zero and variance t − s. We are therefore led to the usual14 definition

of a (one-dimensional15) standard Brownian motion (SBM) as an

independent-increments stochastic process with continuous paths that

start at zero, whose increment over any time interval of length ∆ is

normally distributed with mean zero and variance ∆.

To get a sense of what Brownian paths look like, consider first the

finite filtration case with the probability P assigning equal mass to

every path of B, which as we noted, implies that over every period

the increment of B is ±
√
h, where h = T/N . The sum N

√
h of the

absolute value of all these increments along a path of B is known as

the path’s total variation, which in this case blows up as N → ∞.

On the other hand, the sum Nh of the square of the increments of B

along a path is known as the path’s quadratic variation, which in

this case is equal to T no matter how big N is. These observations are

reflected in properties of the paths of an SBM B. Every path of B is

continuous but has infinite total variation (and hence infinite length)

but quadratic variation equal to T . Omitting rigorous definitions, we

write the quadratic variation property as
∫ t

0 (dBs)
2 = t for all t ∈ [0, T ],

or (dBt)
2 = dt. Since t = var (Bt), the variance of Bt is perfectly

revealed by its time-series estimate along any path of B up to time t, no

matter how small t is. On the other hand, paths of B do not reveal the

mean of Bt, which can only be estimated in an infinite-horizon version

of the model through the law of large numbers: limt→∞ Bt/t = 0 with

13The heuristic argument just given can be converted to a rigorous version, but
omits an important sense in which the probability distribution of the paths of
what we call martingale bases converge to SBM. A rigorous statement and proof
of a more general convergence result for continuous martingales can be found in
the exposition of Whitt [2007], while more elaborate extensions to semimartingale
limits that allow for Poisson-type jumps is the subject of Jacod and Shiryaev [2003].
14Mörters and Peres [2010] and Revuz and Yor [1999] are some excellent accounts
of Brownian motion (or Wiener process) and its fascinating properties, some of
which are informally discussed in this section.
15If the number of immediate successor spots to each nonterminal spot were any
positive integer 1+d, the limiting version of a dynamically orthonormal basis would
be a d-dimensional vector of mutually stochastically independent SBMs.
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probability one. Brownian paths can also be shown to be nowhere

differentiable and have further intricate structure not covered here.

These properties may cause some suspicion as to whether Brownian

motion exists as a rigorous mathematical object. Its existence, however,

has been established in a variety of ways within the conventional set-

theoretic foundations of real analysis.

A key assumption in our heuristic derivation of the Brownian mo-

tion distribution has been that B is a zero-mean martingale satisfying

Et

[

(Bt+h − Bt)
2
]

= h or, equivalently, B2
t − t = Et

[

B2
t+h − (t+ h)

]

.

This insight is reflected in Lévy’s characterization of SBM: A pro-

cess B with continuous paths16 starting at zero is an SBM if and only

if both Bt and B2
t − t are martingales. In fact, for the “if” part, it

is sufficient to assume that Bt and B2
t − t are local martingales. The

distinction between a martingale and a local martingale is not present

in the finite information setting, but is essential in the continuous-time

limit. A martingale over the continuous time interval [0, T ] is an

adapted stochastic process M such that E |Mt| < ∞ for every time t,

and s < t implies EsMt = Ms. A local martingale is an adapted

process M for which there exists an increasing sequence of stopping

times τ1 ≤ τ2 ≤ · · · converging to T with probability one and such

that for every n, the process M is a martingale up to time τn (meaning

that the process that equals Mt on {t ≤ τn} and Mτn
on {t > τn} is a

martingale). On a three-date infinite state-space setting, an example17

of a local martingale that is not a martingale is any adapted process

M whose increment ∆ ≡ M2 −M1 satisfies E1 |∆| < ∞ and E1∆ = 0,

but E |∆| = ∞. This type of example fully encapsulates the distinction

between a martingale and a local martingale in discrete time,18 but the

issue is more subtle in the continuous-time limit.

The fact that the paths of an SBM B have infinite length implies

that an integral σ•B cannot be defined path by path in a conventional

16The continuity of paths is essential here. Suppose instead we applied an analogous
argument for a process Bt = Ct − t, where the paths of C are right-continuous and
constant except for jumps of size +1. Think of Ct as counting the number of arrivals
over [0, t]. Then the martingale property of B characterizes C as a Poisson process
with unit arrival rate. This is Watanabe’s characterization of Poisson processes.
17See Example 1.49 of Chapter 1 in Jacod and Shiryaev [2003].
18See Proposition 1.64 of Chapter 1 in Jacod and Shiryaev [2003].
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way, even if σ is assumed to be bounded. A key insight of Ito’s cal-

culus is that σ • B must be defined as a genuinely stochastic integral,

taking into account the entire filtration and the requirement that σ is

predictable. In the Brownian continuous-time limit, predictability of

σ can be thought of as the requirement that σ is adapted, since the

distinction between information at times t and t− dt is negligible. For

example, the SBM B is predictable. Where in discrete time we would

recursively express the relationship M = σ • B as ∆Mt = σt∆Bt, in

continuous time, we write dMt = σtdBt, where the differential nota-

tion dMt can be thought of as standing for the infinitesimal increment

Mt − Mt−dt, and analogously for dBt. We also write Mt =
∫ t

0 σsdBs,

t ∈ [0, T ]. Given that σ is predictable and B is a martingale, in the

finite state-space model σ • B is a martingale, but for an SBM B

we can only claim that σ • B is a local martingale. As the heuristic

(dMt)
2 = σ2

t (dBt)
2 = σ2

t dt suggests, in order for the process M ≡ σ•B
to be well-defined as a process of finite quadratic variation, it is neces-

sary that the process Qt ≡ ∫ t
0 σ

2
sds is well-defined and finite, in which

case, Q is the quadratic variation process of M .

Ito’s calculus corresponds to the limiting case of our earlier approx-

imations in terms of h, which can be stated as the exact relationships

(2.7.2) (dBt)
2 = dt and dBtdt = (dt)2 = 0,

while the Taylor approximation (2.7.1), for twice continuously differ-

entiable f : R → R, becomes

(2.7.3) df (Bt) = f ′ (Bt) dBt +
1

2
f ′′ (Bt) dt.

For example, for f (x) = x2, we find dB2
t = 2BtdBt + dt, or

(2.7.4) B2
t − t = 2

∫ t

0
BsdBs.

Since B is predictable, the above integral defines a local martingale.

For an SBM B, we already know that B2
t − t is a martingale. The

argument leading equation (2.7.4), however, applies to any local mar-

tingale B with continuous paths and quadratic variation (dBt)
2 = dt.

By Lévy’s characterization, any such local martingale starting at zero

must necessarily be an SBM.
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The preceding argument leads to an interesting insight on the re-

lationship between volatility and time. Consider the local martingale

Mt ≡ ∫ t
0 σsdBs, for predictable σ, defining the volatility of M . The pro-

cess M is close to being a Brownian motion—it is a local martingale

with continuous paths, but it does not necessarily have unit volatility:

(dMt)
2 = σ2

t dt. Imagine now that M appears in a movie. Think of t

as real time for the duration [0, T ] of the movie. Think of u as time

shown on a clock within the movie. At real time t, the clock in the

movie shows u =
∫ t

0 σ
2
sds, which is the quadratic variation of M up to

time t. With u and t so related, let Wu = Mt. For example, if W

represents a price process from the perspective of a character in the

movie, M represents the same price process from the perspective of

the viewer. The movie character observes that W is a local martingale

with continuous paths that satisfies (dWu)
2/du = (dMt)

2 / (σ2
t dt) = 1,

and can therefore correctly claim that W is an SBM.

To get a glimpse of phenomena that arise in the continuous-time

limit but are not present in a finite-tree model, suppose
∫ T

0 σ2
sds = ∞

(for example, σt = (T − t)−1/2). The movie is the complete biography

of an immortal god, who correctly argues that with probability one

W eventually hits the value one. One way to see this is through the

reflection principle for SBM. For each (continuous) path ω of W that

crosses 1 before time t, there is an equally likely path ω̃ that coincides

with ω up the first time t1 that ω hits 1, and thereafter it is the ver-

tical reflection of ω relative to the horizontal line through 1, that is,

for s > t1, ω̃s ≡ 1 − (ωs − 1). By construction, ω̃t < 1 if and only if

ωt > 1. Both ω and ω̃ have the property that they cross 1. Conversely,

every path that crosses 1 before time t belongs to such a pair {ω, ω̃}.

Therefore, the probability that W crosses 1 by time t is twice the prob-

ability of the event {Wt > 1} =
{

Wtt
−1/2 > t−1/2

}

, which converges to

one as t → ∞ since Wtt
−1/2 is normally distributed with zero mean

and unit variance. Equivalently, the stopping time τ̃ defined as the

first time that W takes the value one is finite with probability one.

But then the viewer of the movie must also conclude that there is a

[0, T ]-valued stopping time τ such that Mτ = 1 with probability one.

Doob’s optional stopping theorem states that if M is a zero-mean mar-

tingale, then EMτ = 0 for every stopping time τ that is bounded by
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some deterministic time. Within the movie, we have an example of a

zero-mean martingale W and a stopping time τ̃ such that EWτ̃ = 1,

which is consistent with Doob’s theorem, since τ̃ is not bounded—it

can take an arbitrarily long time for W to hit one. The movie viewer’s

stopping time τ , however, is bounded and therefore it must be the case

that M is a local martingale that is not a martingale.

In a market interpretation, we can think of σ as a trading strategy

in a contract with gain process B, while within the movie the god holds

one share in a contract whose gain process is W . The cumulative gains

of σ at real time t match the cumulative gains of the god’s strategy

at god time u =
∫ t

0 σ
2
sds. In a finite model, the expected gains from

trading a contract whose gain process is a zero-mean martingale are

zero. The god who holds the contract until W hits one is guaranteed

a unit expected gain. Likewise, the trading strategy σ can guarantee a

unit gain by time T . Both strategies are a form of arbitrage. Within the

movie, the arbitrage disappears if we place a bound on how negative

the god’s wealth can become before liquidation. Alternatively, the

arbitrage disappears if we assume the god has a finite expected lifetime

after all. In real time, an appropriate lower bound on wealth eliminates

the arbitrage, and that’s the modeling choice we will adopt in the

following section. Limiting the god’s expected horizon corresponds to

the square integrability condition E
∫ T

0 σ2
sds < ∞, which implies that

M ≡ σ•B is a zero-mean finite-variance martingale. Conversely, every

such martingale M can be represented as M ≡ σ • B for some square

integrable predictable σ.

In a Brownian model, we represent prices and budget equations in

terms of Ito processes. An Ito process is a process of the form

xt = x0 +
∫ t

0
µsds+

∫ t

0
σsdBs,

for adapted processes µ and σ, respectively referred to as the drift

and volatility of x, where the integrals
∫ T

0 |µt| dt and
∫ T

0 σ2
t dt are well

defined and finite with probability one. We alternatively denote Ito

processes in differential form:

dxt = µtdt+ σtdBt or dx = µdt+ σdB.
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The Ito decomposition into a drift and a volatility term is unique

(modulo zero-probability event technicalities we ignore). To see why,

suppose µdt + σdB = µ̃dt + σ̃dB. Take the square of (µ− µ̃) dt +

(σ − σ̃) dB = 0 and use (2.7.2) to find (σ − σ̃)2 dt = 0 and therefore

σ = σ̃ (essentially), which in turn implies µ = µ̃ (essentially). For any

adapted process θ, the integral θ • x can be expressed as
∫ t

0
θsdxs =

∫ t

0
θsµsds+

∫ t

0
θsσsdBs or θdx = θµdt+ θσdB,

provided
∫ T

0 |θtµt| dt and
∫ T

0 (θtσt)
2 dt are well defined and finite with

probability one.

The type of second-order Taylor approximation that led to identity

(2.7.3) applies to to any Ito process x and time-dependent function

f : [0, T ] × R → R that is continuously differentiable with respect to

time and twice continuously differentiable with respect to the second

argument:

(2.7.5) df (t, xt) =
∂f (t, xt)

∂t
dt+

∂f (t, xt)

∂x
dxt +

1

2

∂2f (t, xt)

∂x2
(dxt)

2 ,

where (dxt)
2 = σ2

t dt, according to the Ito multiplication rules (2.7.2).

This is known as Ito’s formula or lemma and extends to multidi-

mensional Ito processes (and beyond that, to general semimartingales).

We will not go further in this direction here, except state an important

special case, known as the integration by parts formula: If x and y

are Ito processes, then

d (xtyt) = ytdxt + xtdyt + dxtdyt.

By the Ito multiplication rules (2.7.2), if x and y have volatility σx and

σy, respectively, then dxtdyt = σxt σ
y
t dt. For example, for x = y = B,

we recover19 identity (2.7.4). For strictly positive x and y, the following

version of integration by parts is often more convenient to use:

d (xy)

xy
=
dx

x
+
dy

y
+
dx

x

dy

y
.

19Integration by parts can be used inductively to show that every polynomial in
(t, x) satisfies Ito’s formula, which can then form the basis for proving the Ito
formula as stated above. The idea is to stop the process x before it leaves a
compact interval and then uniformly approximate f and the relevant derivatives on
that interval by polynomials.
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We close this section with some comments on the interchange of

limits and expectations which will arise in our discussion of state pric-

ing in the following section. Consider first the example of the state

space Ω = (0, 1] with the underlying probability P being the uni-

form distribution: 0 < a < b ≤ 1 implies P ((a, b]) = b − a. The

sequence of random variables Xn (ω) ≡ n1{ω≤1/n} converges to 0 for

every ω ∈ Ω, yet EXn = 1 for all n. Unlike the finite Ω case, we

cannot freely interchange limits and expectation. An essential positive

result in this regard, which is not far from the way expectations are

defined, is the monotone convergence theorem: For all [0,∞)-

valued random variables X,X1, X2, . . . , if Xn ↑ X then EXn ↑ EX

(where Xn ↑ X means that, with probability one, Xn+1 ≥ Xn for all n,

and limn→∞Xn = X). The conclusion applies even if EX = ∞. The

monotone convergence theorem implies Fatou’s lemma.

Lemma 2.7.1 (Fatou). If Xn ≥ 0 for all n, then

lim inf
n

EXn ≥ E lim inf
n

Xn.

Proof. Let Yn = infk≥nXk and note that 0 ≤ Yn ↑ Y ≡ lim infnXn.

For all m ≥ n, EXm ≥ EYn and therefore infm≥n EXm ≥ EYn. Taking

the limit as n → ∞ and using the monotone convergence theorem, we

conclude that lim infn EXn ≥ EY . �

2.8. Brownian market example

As a simple example, in this section we discuss an arbitrage-free

market with the underlying filtration generated by an SBM B over

the continuous time interval [0, T ]. In other words, the information

available at time t is the realization of the path of B up to time t.

The process B is one-dimensional, which means that the filtration can

be thought of as a high-frequency limiting version of the binomial fil-

tration of Example 1.1.1. The extension to multi-dimensional B is

mainly a matter of notation and will not be given here. The argu-

ments that follow are for the most part similar to finite-information

counterparts we have encountered already, with simplifications result-

ing due to small-risk approximations which are codified as exact infin-

itesimal relationships by the Ito calculus. As in the last section, we

omit some mathematical details. For example, the mere definition of
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the information generated by the SBM B requires notions of σ-algebras

and measurability, as well as an underlying probability measure that

defines the expectation operator E. The hope is that once the main

economic arguments are established, and the formalities are tied to

finite-tree constructs, the more advanced literature that includes all

these mathematical details will make a lot more sense.

A general continuous-time cash flow on the given filtration can be

defined analogously to the way cumulative distribution functions are

used to specify probability distributions on the real line. This being

a simple introduction, we instead consider a special type of market in

which all cash flows consist of just two lump-sum payments at times 0

and T . More precisely, a cash flow is any pair (c0, cT ) ∈ R×L2, where

L2 is the set of every random variable z such that E [z2] < ∞ (with the

usual convention of identifying any two random variables x and y such

that E

[

(x− y)2
]

= 0). If x is a traded cash flow, the time-0 payment

x0 is used to purchase an initial portfolio of value −x0, which is then

updated through a trading strategy up to time T , when the terminal

portfolio value xT is liquidated. Every trading strategy is assumed to

be self-financing, meaning that no cash is generated or injected after

the initial purchase and prior to the terminal liquidation.

The market is implemented by two contracts: a money-market ac-

count and a stock. The money-market account (MMA) has a value

process identically equal to one unit of account, let’s call it a dollar, and

a continuously compounded constant interest rate r ∈ R. A dollar in

the MMA at time t generates interest rdt at time t+dt. Equivalently, a

dollar invested in the MMA at time zero, with all interest continuously

reinvested, results in a time-t account balance of ert dollars. The stock

has a price process S which follows geometric Brownian motion with

drift: For given constants a ∈ R and S0, σ ∈ (0,∞),

St = S0 exp (at+ σBt) .

The assumption that σ is positive is just a convention, since the im-

plications of the model are invariant to replacing B with the SBM

−B. The stock’s dividend yield is a constant y ∈ R, meaning that

a share purchased at time t pays ydt stock shares (or yStdt dollars) in

dividends at t + dt. Equivalently, if a share of the stock is purchased
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at time zero and all dividends are reinvested in the stock, then the

time-t stock position is eyt shares, which is worth eytSt dollars. (Note

that by this definition, we could have called r the dividend yield of

the MMA.) Since interest and dividends are paid out continuously, the

cum and ex-dividend price processes for each contract are the same.

Ito’s formula (2.7.5) implies that S is an Ito process satisfying

(2.8.1)
dSt
St

+ ydt = µdt+ σdBt, µ ≡ a+ y +
1

2
σ2.

A trading strategy takes the form of a pair of predictable processes

(θ0, θ), where θ0
t is the time-t dollar balance in the MMA and θt is the

the number of stock shares held at time t. The gain processes for the

two contracts are defined analogously to the finite case by

G0
t ≡ 1 + rt and Gt ≡ St +

∫ t

0
ySudu.

The trading strategy (θ0, θ) is self-financing if it satisfies the budget

equation expressing the fact that the portfolio value is equal to the

initial portfolio value plus accumulated gains from trading:

(2.8.2) θ0
t + θtSt = θ0

0 + θ0S0 +
∫ t

0
θ0
udG

0
u +

∫ t

0
θudGu.

Stated more simply, the self-financing condition is

d
(

θ0 + θS
)

= θ0rdt+ θ (dS + ySdt) .

The trading strategy (θ0, θ) is admissible if it is self-financing (im-

plying the integrals of the budget equation are well defined) and there

exist constants θ̄0 and θ̄ such that, with probability one, the following

solvency constraint is satisfied:

(2.8.3) θ̄0ert + θ̄eytSt + θ0
t + θtSt ≥ 0 for all t ∈ [0, T ] .

The constraint can be thought of as a simple form of a collateral re-

quirement. A brokerage carries out your trades, but must ensure that

at all times your total account balance can cover your trading losses. At

time zero, you are asked to deposit θ̄0 dollars in the MMA and θ̄ shares

of the stock, with interest and dividends reinvested in the respective

contracts. The solvency constraint requires that the net value of all

your positions with the brokerage remains positive. While redundant

in our earlier finite state-space model, it is needed here in some form in
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order to preclude arbitrage trades based on increasingly larger bets of

the type discussed in the last section. (As suggested by last section’s

discussion, a variant of this example replaces the solvency constraint

with a square integrability restriction on admissible trading strategies.

Either approach supports the example of Black-Scholes option pricing

and hedging presented below.)

The budget equation should be invariant relative to a change of the

unit of account implied by the strictly positive Ito process π. At time t

a dollar is the same as πt of the new unit of account. The corresponding

gain processes in the new unit are

G0π
t ≡ πt +

∫ t

0
rπudu and Gπ

t ≡ πtSt +
∫ t

0
yπuSudu.

The integration by parts formula implies that the budget equation (2.8.2)

is equivalent to

(2.8.4) θ0
t πt + θtπtSt = θ0

0π0 + θ0π0S0 +
∫ t

0
θ0
udG

0π
u +

∫ t

0
θudG

π
u.

The solvency constraint under the new units is inequality (2.8.3) mul-

tiplied through by πt, and is therefore also invariant under a change of

the unit of account.

We say that the cash flow x = (x0, xT ) is traded if there exists

an admissible trading strategy (θ0, θ) such that x0 = − (θ0
0 + θ0S0)

and xT = θ0
T + θTST . A state-price density (SPD) process in this

context is a strictly positive Ito process π such that πT ∈ L2 and for

every traded cash flow (x0, xT ),

(2.8.5) π0x0 + E [πTxT ] ≤ 0.

Note that the assumption xT , πT ∈ L2 ensures that E |πTxT | < ∞
thanks to the Cauchy-Schwarz inequality.

Based on the analysis for the finite case, we can guess the state

price dynamics in terms of the short-rate process r and the market-

price-of-risk process η, both of which are constant in this example:

(2.8.6)
dπt
πt

= −rdt− ηdBt, where η ≡ µ− r

σ
.

In integrated form, the proposed SPD is

(2.8.7) πt = π0e
−rtξt, ξt = exp

(

−η2

2
t− ηBt

)

.
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To confirm that this form of π indeed follows the claimed dynamics,

apply integration by parts and Ito’s formula, which implies that ξ solves

(2.8.8)
dξt
ξt

= −ηdBt, ξ0 = 1.

This Ito decomposition implies that ξ is a local martingale. Given

that η is a constant, the process ξ is in fact a martingale, which can

be confirmed using (2.8.7) and the fact that B has independent and

normally distributed increments.

As in the finite case, the coefficients of the Ito expansion of π are

determined by the requirement that G0π and Gπ are local martingales.

To see that, suppose dπ/π = adt+ bdB and use integration by parts:

dG0π

π
= (a + r) dt+ bdBt,

dGπ
t

πS
= (a + µ+ bσ) dt+ (b+ σ) dB.

Setting the drift term in the first equation to zero is equivalent to

setting a = −r, and given that, setting the drift term in the second

equation to zero is equivalent to setting b = −η. In the following

proposition we prove that π is a state-price density by showing that

the local martingale property of G0π and Gπ implies the state-price

density property of π.

Proposition 2.8.1. The process π defined in (2.8.7) is a state-price

density, for any choice of π0 ∈ (0,∞).

Proof. Suppose the cash flow (x0, xT ) is generated by the admis-

sible trading strategy (θ0
t , θt), satisfying the solvency constraint (2.8.3).

Let

W̄t ≡ θ̄0ert + θ̄eytSt and Wt ≡ W̄t + θ0
t + θtSt.

We remarked earlier that π0ξt = πte
rt is a martingale. Similarly, ap-

plying integration by parts to ζt ≡ πte
ytSt, we find that

dζt
ζt

= (σ − η) dBt,

which implies that ζ is a martingale (for the same reason that ξ is a

martingale). The local martingale property of G0π and Gπ, the budget

equation (2.8.4), and the fact that πW̄ is a martingale together imply

that πW is a local martingale. There exists, therefore, an increasing
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sequence of stopping times τn that converges to T with probability one

such that πW is a martingale up to time τn and therefore

(2.8.9) π0W0 = E [πτn
Wτn

] , n = 1, 2, . . .

By the solvency constraint, πW ≥ 0. By Fatou’s Lemma 2.7.1,

π0W0 = lim inf
n→∞

E [πτn
Wτn

] ≥ E

[

lim inf
n→∞

πτn
Wτn

]

= E [πTWT ] .

Subtracting the martingale identity π0W̄0 = E

[

πT W̄T

]

on both sides

and using the fact that W0 = W̄0 − x0 and WT = W̄T + xT , we obtain

the state pricing inequality (2.8.5). �

The relationship between an EMM Q and SPD π extends to the

current context as expected, with the added bonus of Girsanov’s theo-

rem. Let the probability Q be defined by Q (F ) = E [1F ξT ], F ∈ FT ,

which is possible since ξ is a strictly positive unit-mean martingale.

Equivalently, Q is characterized by the condition ξT = dQ/dP , the

density of Q with respect to P . Girsanov’s theorem states that

BQ
t ≡ Bt + ηt is a standard Brownian motion under Q.

To get a sense of why this is true, start with the counterpart of (2.5.9),

which is that BQ is a local martingale under Q. By the Ito multipli-

cation rules (2.7.2),
(

dBQ
)2

= dt and therefore BQ must be an SBM

under Q, as we saw in the last section.

Remark 2.8.2 (normal density). Girsanov’s theorem is closely re-

lated to the functional form of the standard normal density function φ.

Girsanov’s theorem implies
∫ x

−∞ φ (y) dy = Q
(

BQ
1 ≤ x

)

. The change

of measure formula E
Qz = E [zξ1], for any F1-measurable bounded

random variable z, and (2.8.7) imply

Q
(

BQ
1 ≤ x

)

= E

[

1{BQ
1

≤x}ξ1

]

=
∫ x

−∞
φ (y − η) e− η2

2
−η(y−η)dy.

Therefore, φ (y) = φ (y − η) exp (η2/2 − ηy). For η = y, this gives the

standard normal density as φ (y) = φ (0) exp (−y2/2), where φ (0) is set

to (2π)−1/2 so that
∫∞

−∞ φ (y) dy = 1. Conversely, the functional form

of φ can be used to show that under Q, for all s > t, BQ
s − BQ

t has a

normal distribution of zero mean and variance s − t, independently of

Ft, and therefore BQ is an SBM under Q. ♦
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The stock price dynamics (2.8.1) can be equivalently written as

(2.8.10)
dSt
St

+ ydt = rdt+ σdBQ
t .

Repeating the above analysis with Q as the underlying probability, BQ

in place of B, and r in place of µ results in the EMM-pricing condition

x0 + E
Q
[

e−rTxT
]

≤ 0 for every traded cash flow x. Alternatively, we

can reach this conclusion by applying Proposition 2.8.1 and the iden-

tity E [(πT /π0) xT ] = E
Q
[

e−rTxT
]

, which follows from the identities

E
QxT = E [(dQ/dP )xT ] and πT = π0e

−rTdQ/dP .

Remark 2.8.3. The reader should have no difficulty formally ex-

tending this section’s results to allow for stochastic and time-varying

market parameters r, µ, σ and η ≡ (µ− r) /σ. In such an extension,

the integrated version of the state-price density dynamics (2.8.6) is

πt = π0 exp
(

− ∫ t
0 rsds

)

ξt, where

(2.8.11) ξt ≡ exp
(

−1

2

∫ t

0
η2
sds−

∫ t

0
ηsdBs

)

,

which is the continuous-time counterpart20 of (2.5.11). One should

be cautioned, however, on the need for regularity conditions, beyond

what is obviously needed for integrals to make sense. For example, the

existence of an EMM Q and corresponding statement of Girsanov’s

theorem require a regularity condition on η. Even if η is such that

ξ is well defined by (2.8.11), it is not generally necessary that ξ is a

martingale. Since dξ/ξ = −ηdB, we know that ξ is a positive local

martingale, a property that implies (via Fatou’s Lemma 2.7.1) that

ξ is a supermartingale: s > t implies Etξs ≤ ξt. The process ξ is a

martingale if and only if EξT = 1, in which case dQ/dP ≡ ξT defines a

probability Q and Bt+
∫ t

0 ηsds is an SBM under Q. A sufficient, but not

necessary, condition for ξ to be a martingale is the Novikov condition:

E exp
(

1
2

∫ T
0 η2

sds
)

< ∞. ♦
Example 2.8.4 (forward pricing). Suppose a forward contract for

delivery of one share of the stock at time T is traded at time zero, with

corresponding forward price F0,T ∈ R. The cash flow (x0, xT ) gener-

ated by entering a long position in the forward contract is (0, ST − F0,T ).

20To heuristically see the correspondence, take logarithms on both sides of (2.5.11),
approximate each log (1 − ηs∆Bs) term on the right-hand side with a second-order

Taylor expansion, and use the quadratic variation formula (dBs)
2

= ds.
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The same traded cash flow can be generated by borrowing S0e
−yT from

the MMA to purchase e−yT stock shares at time zero, continuously

rolling over the loan and reinvesting all dividends. At time-T the re-

sult is a long position of one share of the stock and a short position of

−S0e
(r−y)T in the MMA. Barring arbitrage, it follows that

(2.8.12) F0,T = S0e
(r−y)T .

This expression can also be dually derived using the pricing restriction

x0 +E
Q
[

e−rTxT
]

= 0 with x0 = 0 and xT = ST −F0,T to conclude that

F0,T = E
QST (a conclusion which critically depends on the assumption

that r is constant). To show directly that the two expressions for F0,T

are consistent, suppose F0,T is given by (2.8.12) and note that

(2.8.13) ST = F0,T exp

(

−σ2

2
T + σBQ

T

)

.

The exponential factor has unit mean under Q for the same reason that

ξT as defined in (2.8.7) has unit mean under P . ♦

Remark 2.8.5 (stock price drift under EMM). The forward pric-

ing argument of the preceding example sheds light onto the form of

the stock price drift term of equation (2.8.10), which can be restated

heuristically as EQt St+dt−St = (r − y)Stdt. The price St represents the

time-t cash payment for immediate delivery of one share of the stock

at time t. The quantity E
Q
t St+dt represents the time-t forward price for

delivery of a share at time t + dt. In delaying the stock delivery and

payment from time t to time t+ dt, the long position forgoes the div-

idend payment yStdt but saves interest rStdt. The net (r − y)Stdt is

therefore the adjustment to the spot price St required to obtain the for-

ward price E
Q
t St+dt. Note that while the conclusions of Example 2.8.4

require constant r and y, the argument just given applies for stochastic

and time-varying parameters r and y (as well as µ and σ). ♦

The replication and arbitrage-pricing argument of Example 2.8.4

follows a line of reasoning that was introduced in Section 2.5 and ex-

tends as follows in the current context. For simplicity, we consider

a contract, we call the star contract, whose value process is V ∗ and

whose only dividend is a terminal lump-sum payment V ∗
T ∈ L2. (In
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Example 2.8.4, V ∗
T ≡ ST − F0,T .) Using the EMM Q, let

(2.8.14) V ∗
t ≡ E

Q
t

[

e−r(T−t)V ∗
T

]

,

which defines the Q-martingale V ∗
t e

−rt thanks to the law of iterated ex-

pectations. A martingale representation theorem implies the existence

of a predictable process σ∗ such that

V ∗
t e

−rt = E
Q
t

[

e−rTV ∗
T

]

= V ∗
0 +

∫ t

0
e−ruσ∗

udB
Q
u .

Integration by parts leads to the Ito decomposition

(2.8.15) dV ∗
t = rV ∗

t dt+ σ∗
t dB

Q
t = (rV ∗

t + σ∗
t η) dt+ σ∗

t dBt.

In our discussion of equation (2.5.14), we saw that on a finite informa-

tion tree the analogous relationship between the drift and volatility of

a gain process is equivalent to a backward recursion. Equation (2.8.15)

can be thought of as the continuous-time version of such a recursion,

applied dt by dt backward in time, starting with the given terminal

value V ∗
T . Mathematically, (2.8.15) is an example of a backward sto-

chastic differential equation (BSDE) to be solved jointly in V ∗ and σ∗

given the terminal value V ∗
T . The fact that the drift term in (2.8.15) is

linear in V ∗ and σ∗ makes this a linear BSDE, which allows a closed-

form solution for V ∗ in (2.8.14).

The star contract can be thought of as a synthetic contract, gener-

ated by the trading strategy (θ0, θ), where

(2.8.16) θ0 + θS = V ∗ and θSσ = σ∗.

The budget equation is satisfied, since, using (2.8.10) and (2.8.15),

θ0rdt+ θ (dS + ySdt) = rV ∗dt+ σ∗dBQ = dV ∗.

Unlike the finite information tree case of Section 2.5, we must further

verify the solvency constraint. Moreover, in order to arrive to an arbi-

trage pricing equation, as opposed to an inequality, we must confirm

that both ± (θ0, θ) are admissible. For instance, the condition is obvi-

ously satisfied for the forward contract of Example 2.8.4, as well as the

case of a European call reviewed below.

Example 2.8.6 (European call and the Black-Scholes formula).

Suppose the star contract is a European call option on the stock with

strike K ∈ (0,∞) and maturity T , which means that V ∗
T ≡ (ST −K)+.
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The solvency constraint can be satisfied for both the long and short

position and therefore the time-zero option price, or premium, is V ∗
0 =

e−rT
E
Q
[

(ST −K)+
]

. By identity (2.8.13), the latter can be written as

the following expression for the forward call premium per unit strike:

(2.8.17) p ≡ V ∗
0 e

rT

K
= E

Q





(

exp

(

m− v2

2
+ v

BQ
T√
T

)

− 1

)+


 ,

where, with the stock forward price F0,T given in (2.8.12),

m ≡ log
(

F0,T

K

)

and v ≡ σ
√
T .

Let Φ (x) ≡ (2π)−1/2 ∫ x
−∞ exp (−y2/2) dy denote the standard normal

cumulative distribution function. Using the fact that the latter is the

distribution of BQ/
√
T under Q, the expectation in (2.8.17) can be

calculated to be

p = emΦ
(

m

v
+
v

2

)

− Φ
(

m

v
− v

2

)

.

This is the Black and Scholes [1973] formula for pricing the European

call. One can think of pK as a marginal forward cost of insurance

against a future price rise of the stock that, for example, someone

who will buy the stock at T may demand. The quantity m, known

as the option’s moneyness, represents the amount of insurance, while

v ≡ σ
√
T quantifies the total risk to maturity. Another way of looking

at the Black-Scholes formula is as an adjustment to the present value

S0e
−yT − Ke−rT of a forward contract to exchange one share of the

stock for K dollars at time T :

(2.8.18) V ∗
0 = S0e

−yTΦ
(

m

v
+
v

2

)

−Ke−rTΦ
(

m

v
− v

2

)

.

♦

Remark 2.8.7. Continuing Remark 2.8.3, the reader can formally

extend this analysis to allow for non-constant market parameters and

a star contract that at each time t pays out dividends at a rate δ∗
t .

Reversing our earlier line of reasoning, if the star contract is the syn-

thetic contract generated by the trading strategy (θ0, θ), then the repli-

cation condition (2.8.16) must hold along with the budget equation

dV ∗ = (θ0r − δ∗) dt + θ (dS + ySdt), which together with the stock



2.8. BROWNIAN MARKET EXAMPLE 111

price dynamics (2.8.10) implies that (V ∗, σ∗) solves the linear BSDE

dV ∗
t = − (δ∗

t − rtV
∗
t − σ∗

t ηt) dt+ σ∗
t dBt, given V ∗

T .

The corresponding solution for V ∗ is

V ∗
t = E

Q
t

[

∫ T

t
exp

(

−
∫ s

t
rudu

)

δ∗
s ds+ exp

(

−
∫ T

t
rudu

)

V ∗
T

]

,

but only under regularity assumptions that we have avoided so far

thanks to our constant-parameter assumptions. If (θ0, θ) is value-

destroying, analogous to a reverse doubling strategy that guarantees

a loss, the BSDE still holds, but V ∗
t must be strictly greater than the

present value of the generated dividends. We will return to this discus-

sion in the following chapter, in the context of optimal consumption

and portfolio choice. ♦

The Markovian structure introduced in Section 2.6 is also present

in the current market model, with the stock price being the Markov

state. The more general analog of the forward recursion (2.6.2) is a

(forward) stochastic differential equation

dZt = a (t, Zt) dt+ b (t, Zt) dBt, given Z0 ∈ R,

with the functions a, b : [0, T ] × R → R appropriately restricted to

ensure a unique solution, specifying a Markov process Z. Here Z = S,

a (t, Z) = (µ− y)Z and b (t, Z) = σZ.

We henceforth assume that V ∗
T = fT (ST ) for given fT : R+ → R.

Suppose the (suitably regular) function f : [0, T ] × R+ → R solves the

partial differential equation (PDE)

(2.8.19)
∂f

∂t
+ (r − y)S

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf, f (T, ·) = fT .

By Ito’s lemma, it follows that

V ∗
t = f (t, St) and σ∗

t =
∂f (t, St)

∂S
Stσ

defines a solution to the linear BSDE (2.8.15). Conversely, the linear

BSDE solution corresponding to the present-value expression (2.8.14)

defines a solution to the above PDE, a solution that is sometimes re-

ferred to as a Feynman-Kac formula. (The reader can provide the gen-

eralization of PDE (2.8.19) and corresponding Feynman-Kac formula
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in the context of Remark 2.8.7 and more general Markovian formula-

tions.) This is an illustration of a close connection between BSDEs

and corresponding PDEs, which allows one to leverage the rich theo-

retical and computational insights of the PDE literature. For exam-

ple, PDE (2.8.19) can be transformed to the classical heat equation in

Physics. Conversely, probabilistic arguments in the BSDE literature

can help shed light on the corresponding PDEs.

Given f , we can write the trading strategy defined in (2.8.16) as a

function of the Markov state: θ0
t = θ0 (t, St) and θt = θ (t, St), where

(2.8.20) θ (t, S) =
∂f (t, S)

∂S
, θ0 (t, S) = f (t, S) − θ (t, S)S.

Example 2.8.8 (European call replication). Suppose the star con-

tract is the European call option of Example 2.8.6 and therefore fT (S) ≡
(S −K)+. Expressing the Black-Scholes equation (2.8.18) in the form

V ∗
0 = f (0, S0) results in an expression for f (0, ·). By the Markov

property, an expression for f (t, ·) is obtained from that for f (0, ·) by

substituting T − t for T . Using the notation

m (t, S) ≡ log

(

Se(r−y)(T−t)

K

)

, v (t) ≡ σ
√
T − t,

the result is f (t, S) = θ0 (t, S) + θ (t, S)S, where

θ0 (t, S) = −e−r(T−t)KΦ

(

m (t, S)

v (t)
− v (t)

2

)

,

θ (t, S) = e−y(T−t)Φ

(

m (t, S)

v (t)
+
v (t)

2

)

.

These two functions satisfy (2.8.20) and therefore define the trading

strategy that implements the European call as a synthetic contract in

the MMA and the stock.21 ♦

Market practitioners use the notation

Θ ≡ ∂f

∂t
, ∆ ≡ ∂f

∂S
, Γ ≡ ∂2f

∂S2
.

A market maker (or arbitrageur) who sells the star contract can use f

to price the contract, and buy ∆ stock shares to hedge the position,

an activity known as delta hedging. Γ quantifies how aggressively the

21The derivation of the Black-Scholes formula through the computation of a repli-
cating trading strategy using Ito’s calculus is due to Merton [1973].



2.9. EXERCISES 113

market maker must trade to maintain the hedging position as a con-

sequence of changes in the underlying stock price. By Ito’s lemma,

(Θ,∆,Γ) encapsulates a snapshot of the value

V ∗
t+dt = V ∗

t + Θdt+ ∆dSt +
Γ

2
(dSt)

2

a short time interval in the future as a function of the stock price

change, and PDE (2.8.19) expresses the fact that V ∗
t = e−rdt

E
Q
t V

∗
t+dt.

Notice that ∆ represents a directional exposure that delta hedging

seeks to cancel out, while Γ represents an exposure to volatility that

can be a source of error in the delta hedging strategy. In theory, trad-

ing sufficiently frequently makes the error negligible, but in practice

the market maker faces transaction costs and may wish to control the

overall Γ to reduce the need for frequent rebalancing, a practice known

as gamma hedging. Moreover, what we called the star contract, may be

a portfolio of contracts with the same Markov structure, for example,

various options with different characteristics on the same stock. Since

the derivatives defining Θ, ∆ and Γ are linear, these parameters can

be added up across portfolio positions, allowing the market maker to

easily assess the effect of new trades on the current portfolio.

2.9. Exercises

Exercise 2.9.1. Consider the setting of Section 2.2 with T = 1.

Since there is only one period, we drop all time subscripts. The model

can be thought of as a single period on the information tree condi-

tional on a given beginning-of-period spot. Recall that the market is

arbitrage-free, R is the set of all traded returns, and R0 ∈ R is the

(zero-variance) MMA return. Assume that the market is not priced

risk neutrally: There exists some R ∈ R such that ER 6= R0. Finally,

assume that the positive-variance return R∗ ∈ R maximizes the Sharpe

ratio (relative to R0) over R.

(a) Give a direct argument showing that R∗ must be a minimum

variance frontier return.

(b) Fix any R ∈ R such that var [R] > 0 and cov [R− R∗, R∗] 6= 0.

On the plane, consider the locus

H ≡ {(stdev [(1 − w)R∗ + wR] , E [(1 − w)R∗ + wR]) | w ∈ R}
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as well as the line L that connects h∗ ≡ (stdev [R∗] ,ER∗) to (0, R0).

For every point (s,m) ∈ H with s > 0, the slope of the line that

connects (0, R0) to (s,m) is the Sharpe ratio (m− R0) /s of the cor-

responding return. Since the latter is maximized by R∗ over all of R
and h∗ lies on H , it follows that H lies below L on the plane and it

touches L at h∗. Since H is smooth, it must then be the case that H

is tangent to L at h∗. Compute the slope of the tangent of H at h∗

and show that the tangency condition is equivalent to the beta pricing

equation (2.2.2) (with time subscripts omitted, since T = 1).

(c) How would the arguments of parts (a) and (b) change if R∗ were

instead assumed to minimize the Sharpe ratio over all traded returns?

Finally, explain why the minimum Sharpe ratio case applied to R∗ is

essentially the same as the maximum Sharpe ratio case applied to a

suitably defined symmetric traded return.

Exercise 2.9.2. This exercise outlines a version of the theory of

beta pricing without a traded money-market account. As in Section 2.2,

the argument applies separately over a single period conditionally on

each nonterminal spot. To simplify notation, and without loss of gener-

ality, we assume there is a single period (T = 1), so every cash flow x is a

pair of a scalar x0 and a random variable x1. We fix throughout a refer-

ence market, which is arbitrage-free and therefore every marketed cash

flow has a uniquely defined present value. Call the random variable x a

marketed payoff if (0, x) is a marketed cash flow, in which case Π (x)

denotes the present value of the cash flow (0, x). This defines a linear

functional Π on the set of marketed payoffs. In terms of the present-

value notation of Chapter 1, Π (x) can be thought of as shorthand for

Π ((0, x)). The market is implemented by J ≥ 2 contracts with well

defined and linearly independent returns R1, . . . , RJ . Fixing an under-

lying full-support probability, let Σ = [Σij ] denote the return variance-

covariance matrix: Σij ≡ cov (Ri, Rj), i, j ∈ {1, . . . , J}. A portfolio

allocation is any ψ = (ψ1, . . . , ψJ) ∈ R
J such that

∑

j ψ
j = 1, gen-

erating the return Rψ ≡ ∑

j ψ
jRj. The set of traded returns is the

linear manifold R ≡
{

Rψ | ψ ∈ R
J
}

. Assume throughout that there is

no traded money-market account: var [R] > 0 for all R ∈ R. Let LR

denote the linear span of R.
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(a) Explain why LR equals the set of marketed payoffs, and x/Π (x) ∈
R for every x ∈ LR such that Π (x) 6= 0.

(b) Verify that covariance defines an inner product for the vector

space LR. Treat LR as an inner product space with the covariance

inner product for the remainder of this exercise.

(c) Let xΠ denote the Riesz representation of the present-value func-

tional Π in LR:

xΠ ∈ LR and Π (x) = cov
[

xΠ, x
]

for all x ∈ LR.

Explain why Π
(

xΠ
)

> 0 and therefore RΠ is well defined by

RΠ ≡ xΠ

Π (xΠ)
∈ R.

Use Proposition B.2.6 to derive closed-form expressions, in terms of Σ,

for the portfolio allocation that generates RΠ and the variance of RΠ.

(d) Show that var
[

RΠ
]

= min {var [R] | R ∈ R} by using an orthog-

onal projection argument to argue that the minimum exists, is unique

and is characterized by the orthogonality condition RΠ ⊥ R − RΠ for

all R ∈ R, or equivalently,

for all R ∈ R, cov
[

RΠ, R
]

= var
[

RΠ
]

.

Verify that RΠ satisfies this condition and is therefore the traded return

of least variance.

(e) The return R∗ ∈ R is a frontier return if

var [R∗] = min {var [R] | ER = ER∗, R ∈ R} .

Give a geometric interpretation of the property as an orthogonal pro-

jection and briefly explain why R∗ ∈ R is a frontier return if and only

if R∗ ⊥ R − R∗ for every traded return R such that ER = ER∗. Call

the market degenerate if all traded returns have the same mean, that

is, there exists an m such that ER = m for all R ∈ R. What is the set

of frontier returns if the market is degenerate? Show that if the market

is not degenerate, then the set of frontier returns is a line in LR that

contains and is orthogonal to RΠ.

Hint: The idea is to show that given a frontier return R∗ 6= RΠ and

any given mean m, there is a point on the line through R∗ and RΠ that

is the projection of zero to the linear manifold {R ∈ R | ER = m}. The
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requisite orthogonality condition should follow from the corresponding

orthogonality condition for R∗ and the fact that RΠ is orthogonal to

R.

(f) Let xE be the Riesz representation of E restricted to LR, defined

by the requirements:

xE ∈ LR and Ex = cov
[

xE, x
]

for all x ∈ LR.

Use Proposition B.2.6 to derive closed-form expressions, in terms of Σ

and
(

ER1, . . . ,ERJ
)

, for the row vector βE such that xE =
∑

j β
E

j R
j as

well as Π
(

xE
)

.

(g) Prove that the market is degenerate if and only if there ex-

ists a scalar m such that xE = mxΠ. Assume that the market is not

degenerate for the remainder of this exercise.

(h) Show that R∗ ∈ R is a frontier return if and only if it takes the

form αxΠ +βxE for scalars α and β. Use this fact to give another proof

that the set of frontier returns is a line in LR.

(i) Fix an arbitrary frontier return R∗ other than RΠ and show that

there exists a unique frontier return R0 that is uncorrelated with R∗.

Give a geometric interpretation of this result. How is R0 positioned

relative to RΠ and R∗ on the frontier line? How does R0 behave as R∗

approaches RΠ?

(j) Suppose that R∗ is a frontier return and R0 is the unique frontier

return that is uncorrelated with R∗. Show that

E

[

R− R0
]

=
cov [R∗, R]

var [R∗]
E

[

R∗ − R0
]

, R ∈ R.

Conversely, show that if this beta pricing equation holds for some

R∗, R0 ∈ R, then R∗ and R0 are uncorrelated, R∗ is necessarily a

frontier return, and R0 can always be selected to be a frontier return.

Exercise 2.9.3. Assume the setting of Section 2.2 with a single

period (T = 1). The (arbitrage-free) market is implemented by 1 + J

linearly independent contracts: an MMA with return R0 ≡ 1 + r and

J risky contracts with returns R1, . . . , RJ . Define

1 + µj ≡ ERj and Σij ≡ cov
[

Ri, Rj
]

,

and write µ ≡
(

µ1, . . . , µJ
)

, a row vector, and Σ ≡ [Σij ], a J × J

matrix. A portfolio allocation is any ψ =
(

ψ1, . . . , ψJ
)

∈ R
J , which
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generates the return Rψ ≡ R0 +
∑

j ψ
j (Rj −R0). The set of traded

returns is the linear manifold R ≡
{

Rψ | ψ ∈ R
J
}

. As in Exercise 2,

the set of marketed payoffs is LR ≡ span (R) and for every x ∈ LR, we

write Π (x), rather than Π ((0, x)), for the present value of x. Moreover,

by the argument of Exercise 2(a), x/Π (x) ∈ R for every x ∈ LR such

that Π (x) 6= 0.

(a) Explain why covariance is not an inner product in LR. Instead,

for the remainder of this exercise assume LR is an inner product space

with the inner product 〈x | y〉 ≡ E [xy].

(b) Let xΠ denote the Riesz representation of Π in LR:

xΠ ∈ LR and Π (x) = E

[

xΠx
]

for all x ∈ LR.

Define the corresponding return

RΠ ≡ xΠ

Π (xΠ)
∈ R.

Use Proposition B.2.6 to derive closed-form expressions, in terms of r,

µ and Σ, for the portfolio allocation that generates RΠ.

Hint: Note that xΠ −ExΠ is the Riesz representation of the present-

value functional in the linear subspace
{

x− Ex | x ∈ LR
}

.

(c) Use an orthogonal projection argument to show that

E

(

RΠ
)2

= min
{

ER2 | R ∈ R
}

.

What is the associated orthogonality condition satisfied by RΠ?

(d) Show that the set of frontier returns is
{

αR0 + (1 − α)RΠ | α ∈ R

}

.

(e) Call the market degenerate if all traded returns have the same

mean. Show that the set of frontier returns is a point if and only if the

market is degenerate, and otherwise it is a line.

(f) Arguing directly from the definition of frontier returns, show

that the set of frontier returns other than R0 is exactly the set of

traded returns of maximum absolute Sharpe ratio.

(g) The locus of all pairs (stdev [R∗] ,ER∗) as R∗ ranges over all

frontier returns is known as the minimum-variance frontier. De-

scribe and plot the minimum-variance frontier, and specify geometri-

cally the location of the point
(

stdev
[

RΠ
]

,ERΠ
)

.
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Exercise 2.9.4. Consider the setting of Section 2.2. To simplify

notation, assume there is a single period (T = 1), which entails no loss

of generality since the argument of this exercise can be made over a sin-

gle period conditionally on any nonterminal spot. In Proposition 2.2.3

we encountered the beta of a traded return R with respect to the

traded return R∗:

β ≡ cov [R∗, R]

var [R∗]
.

Suppose that in an empirical implementation of the beta-pricing equa-

tion of Proposition 2.2.3, a proxy R∗ + ε is used instead of a frontier

return R∗, where the error ε is judged to be small. The corresponding

beta is

βε ≡ cov [R∗ + ε, R]

var [R∗ + ε]
.

Give a simple example illustrating the claim that an arbitrarily small

value of Eε2 is consistent with an arbitrarily large value of |βε − β|.

Exercise 2.9.5. (a) Show that an adapted process M is a mar-

tingale if and only if M0 = EMτ for every stopping time τ : Ω →
{0, . . . , T}. (Note that τ is not allowed the value ∞.)

(b) Suppose that the market is implemented by the contracts (δ, V ) ∈
LJ × LJ . Show that a strictly positive adapted process π is an SPD if

and only if for every finite stopping time τ : Ω → {0, . . . , T},

V0 =
1

π0

E

[

τ−1
∑

t=0

πtδt + πτVτ

]

.

Exercise 2.9.6 (binomial pricing). This is a continuation of Exer-

cise 1.9.9, whose setting and notation is assumed here. The condition

of part (b) of Exercise 1.9.9, which is implied by the no-arbitrage as-

sumption, is equivalent to

(2.9.1) q ≡
1+r
1+y

−D

U −D
∈ (0, 1) .

Assume that this condition holds for the remainder of this exercise.

(a) Compute all EMM-discount pairs for the given market. Is the

market complete, and why? Show that for the market to be arbitrage-

free, it is sufficient that 1 + r ∈ (0,∞) and condition (2.9.1) holds.

(b) For the remainder of this exercise, assume that (Q, ρ) is an

EMM-discount pair. Is Z a Markov process under Q, and why?
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(c) Consider a contract (δ∗, V ∗) that is specified in terms of the

payoff function fT : ZT → R by

δ∗
T = V ∗

T = fT (ZT ) and δ∗
− = 0.

Use an EMM to show a pricing relationship of the form V ∗
t = ft (Zt),

where the functions ft : Zt → (0,∞) are computed recursively, back-

ward in time, starting with the known terminal function fT . Confirm

that your result is consistent with that of Exercise 1.9.9.

(d) What is the order of magnitude of the number of operations

needed to compute V ∗
0 in part (c)? How does that compare to the

number of spots on the information tree? What key assumptions make

this type of computational efficiency possible?

(e) Postulate an underlying probability P that is defined in terms

of the constant p ∈ (0, 1) by

P ({ω}) = pN(ω) (1 − p)T−N(ω) , ω ∈ Ω,

where N ≡ ∑T
t=1 bt. The process B is defined recursively by

B0 = 0, ∆Bt = bt

√

1 − p

p
− (1 − bt)

√

p

1 − p
, t = 1, . . . , T.

Verify that B is a dynamic orthonormal basis under P , and specify the

set of all dynamically orthonormal bases in terms of B.

(f) Compute coefficients α and β so that

∆Z

Z−
= α + β∆B.

Be as specific as you can, given the primitives of the model.

(g) Define the processes µR and σR by the return representation

∆G

S−
= µR + σR∆B, µR ∈ P0, σR ∈ P1×d

0 .

Derive formulas for µR and σR in terms of α, β and y.

(h) Assume that Q is an EMM with corresponding market-price-

of-risk process η ∈ H. Compute E
Q
t−1 [∆Gt/St−1] and use the fact that

η = −E
Q
t−1∆Bt to conclude that

η =
µR − r

σR
.
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Give an expression for η in terms of p and q, and use it together with

the definition of ∆B to confirm that

1 − η∆B =
q

p
b+

1 − q

1 − p
(1 − b) ,

and that the conditional density process ξt = Et [dQ/dP ] is given by

ξt =

(

q

p

)Nt
(

1 − q

1 − p

)t−Nt

, Nt ≡
t
∑

u=0

bu.

How can you use this result to recover the EMM expression you derived

in part (a)?

Exercise 2.9.7. Assume the stochastic setting of Section 2.8.

(a) Suppose xt = x0 + αt + βBt, for constant α, β ∈ R. Using

Ito’s lemma to derive the Ito decomposition of exp (xt), and then use

this decomposition to compute E exp (xt). You can use without proof

the facts that in this context, the expectation E and integral
∫ t

0 can

be interchanged, and the local martingale part in the Ito expansion

of exp (xt) is in fact a martingale. Jensen’s inequality requires that

the ratio E exp (xt) / exp (Ext) is greater than one. Explain how your

calculation quantifies this ratio.

(b) Suppose xt is a strictly positive Ito process and α ∈ R. Use

Ito’s calculus to give expressions for d log xt and dxαt /x
α
t as a function

of dxt/xt. Show how these expressions simplify when x is geometric

Brownian motion with drift: dxt/xt = µdt+σdBt for constant µ and σ.

Exercise 2.9.8. Use integration by parts to show the equivalence

of the budget equation (2.8.2) and the budget equation (2.8.4) after the

change of unit of account implied by the strictly positive Ito process π.

Exercise 2.9.9. This exercise provides some insight on the re-

lationship between the Brownian model of Section 2.8 and a high-

frequency version of the binomial model of Exercises 1.9.9 and 2.9.6.

(a) As preparation, you will prove a special version of the strong

law of large numbers. Suppose xn,N , n = 1, 2, . . .N ; N = 1, 2, . . . , are

i.i.d. (that is, identically distributed and stochastically independent)

random variables. These are defined on a common state space with a

given probability measure P and corresponding expectation operator

E. Assume that for all n,N , Exn,N = 0 and E

[

x2
n,N

]

= 1. Moreover,

assume that there exists a constant C such that for all n,N , |xn,N | ≤ C
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everywhere. (The argument you are about to give applies if the last

assumption is weakened to E

[

x4
n,N

]

< ∞, but we do not need this

generality here.) Define the averages

x̄N ≡ 1

N

N
∑

n=1

xn,N , N = 1, 2, . . .

Prove that the random variable
∑∞
N=1 x̄

4
N has finite expectation and

explain why it must then be true that limN→∞ x̄N = 0 with probability

one. You can use the fact that E
∑∞
N=1 x̄

4
N =

∑∞
N=1 E [x̄4

N ], which is a

consequence of the monotone convergence theorem.

(b) For each N = 1, 2, . . . , consider a version of the model of Ex-

ercises 1.9.9 and 2.9.6, where instead of normalizing the time unit to

correspond to one period, we assume that T = 1 and there are N peri-

ods. The time length of each period is therefore 1/N . We wish to select

the remaining parameters so that the Brownian model of Section 2.8 is

approximated as N gets large (without actually proving a convergence

result). The transition probability p is the same for all N . Suppose

zn,N , n = 1, 2, . . . , N ; N = 1, 2, . . . are i.i.d. random variables (under

some given probability P on some common state space), and

p = P

[

zn,N =

√

1 − p

p

]

= 1 − P

[

zn,N = −
√

p

1 − p

]

.

The martingale basis for the N th model is BN , where

(2.9.2) BN
0 = 0, BN

n
N

− BN
n−1

N

=

√

1

N
zn,N , n = 1, . . . , N.

The stock return parameters µR and σR are specified in terms of con-

stants µ and σ by µR = µ/N and σR = σ/
√
N . The stock cumulative

return process RN is given by

(2.9.3) RN
n
N

− RN
n−1

N

≡
S n

N
e

y
N

Sn−1

N

− 1 = µ
1

N
+ σ

√

1

N
zn,N , RN

0 ≡ 1.

The interest rate process of the MMA of the N th model is analogously

scaled, so that one dollar invested in the account at time (n− 1) /N

becomes 1 + r/N at time n/N . The constant parameters (r, µ, σ) do

not vary with N . Using part (a), show that with probability one,

lim
N→∞

N
∑

n=1

(

RN
n
N

− RN
n−1

N

)2

= σ2.
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This shows that no matter what the probability p ∈ (0, 1) is, and given

any required level of precision, we can take N large enough so that the

quadratic variation of RN equals σ2 up to the required precision. In the

continuous-time limit, where R is an Ito process, this fact corresponds

to the quadratic variation calculation (dRt)
2 = σ2dt.

(c) Explain why in the finite binomial model the choice of the pa-

rameter p ∈ (0,∞) is irrelevant for the pricing of the European call

option. Also explain why in the Brownian model, the value of a (or µ)

is irrelevant for the pricing of the European call option. (The absence

of µ in the Black-Scholes formula reflects this fact. Here you are asked

to provide a deeper reason for this absence.)

(d) Given the insight of part (c), set p = 1/2. Recall that following

each nonterminal spot, the stock prices changes by a factor of either

U ≡ UN or D ≡ DN , where the superscript N has been added to

emphasize the dependence of these parameters on N . (Technically

speaking, the convention ST = 0 requires us to slightly modify this

statement, but the last period becomes infinitesimal in the limit and

does not matter.) What are suitable expressions for UN and DN in

terms of the parameters (r, y, σ) so that, as N → ∞, the binomial

model approximates the Brownian model of Section 2.8 with a = 0.

Provide a brief explanation of your claim, without proving anything

formal.



CHAPTER 3

Optimality and Equilibrium Pricing

We have so far discussed markets that contain no cash flows that

are desirable in the sense of arbitrage. In this chapter, we expand

the notion of a desirable cash flow by introducing preferences. The

absence of traded desirable cash flows defines optimality, which forms

the basis for this chapter’s treatment of equilibrium pricing and optimal

consumption-portfolio choice. As in previous chapters, ≡ stands for

“equal by definition” and terms in boldface are being defined.

3.1. Preferences and optimality

We adopt the setting of Chapter 1, with information unfolding over

times 0, . . . , T , as represented by a filtration defining 1 + N spots.

There is no information at time zero, corresponding to spot zero, and

the state is revealed at time T . A consumption plan is an adapted

process. The set of all consumption plans is therefore L, which can

be identified with R
1+N . A consumption plan represents an agent’s

total contingent consumption at each spot. A cash flow available in

a market can be incrementally added to a given consumption plan to

modify it to a preferred consumption plan. In reality, consumption

consists of bundles of multiple goods. By assuming that consumption

is one-dimensional at every spot, we are implicitly taking relative spot

prices of goods as given and we measure consumption in some unit of

account.

A consumption set is a set C of consumption plans such that

for all c ∈ C, if x is an arbitrage, then c + x ∈ C. Given c ∈ C, we

wish to specify a set D (c) with the interpretation that every x ∈ D (c)

represents a desirable cash flow in the sense that c+x is a consumption

plan that is strictly preferred to c from the perspective of time zero.

We impose some minimal requirements on preferences, listed below.

Further structure will be imposed as needed later on.

123
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Definition 3.1.1. A preference correspondence is a function

D whose domain, denoted dom (D), is a consumption set, and such

that for all c ∈ dom (D), D (c) is a set of cash flows with the following

properties.

• admissibility: x ∈ D (c) implies c+ x ∈ dom (D).

• irreflexivity: 0 /∈ D (c).

• continuity: D (c) is open.

• monotonicity: For every arbitrage cash flow y, if x = 0 or

x ∈ D (c) then x+ y ∈ D (c).

The first two properties state that c + x must be an admissible

consumption plan in order to be strictly preferred to c, and c cannot

be strictly preferred to itself. The third condition states that if c+x is

strictly preferred to c then there is a sufficiently small tolerance ǫ > 0

such that ‖x − x′‖ < ǫ implies that c + x′ is also strictly preferred to

c. Finally, the fourth condition means that the agent always strictly

prefers to increase consumption at some spot, provided consumption is

not reduced at any other spot.

We henceforth fix a reference market X, relative to which we for-

mulate notions of individual and allocational optimality.

Definition 3.1.2. A consumption plan c is optimal for the pref-

erence correspondence D given X if c ∈ dom (D) and X ∩ D (c) = ∅.

The first part of the optimality condition requires that c is an ad-

missible consumption plan, while the second part states that there is

no trade that results in a desirable incremental cash flow relative to c.

Since, by monotonicity, D (c) contains all arbitrage cash flows, opti-

mality of c implies the no-arbitrage condition X ∩ R
1+N
+ = {0}.

Individual optimality extends usefully to a notion of allocational

optimality. Fixing a positive integer I, we think of i ∈ {1, . . . , I}
as labeling agents representing potential market participants. A con-

sumption allocation is a tuple c =
(

c1, . . . , cI
)

, with the interpreta-

tion that ci is a consumption plan for agent i. A preference profile is

a preference correspondence tuple
(

D1, . . . ,DI
)

, with Di representing

the admissible consumption plans and preferences of agent i. The sum

of the Di is the correspondence D on dom (D) ≡ ∏I
i=1 dom (Di) defined
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by

(3.1.1) D (c) ≡
I
∑

i=1

Di
(

ci
)

≡
{

I
∑

i=1

xi | xi ∈ Di
(

ci
)

for all i

}

.

Definition 3.1.3. An allocation c =
(

c1, . . . , cI
)

is optimal for

the preference profile
(

D1, . . . ,DI
)

given the market X if c ∈ dom (D)

and X ∩ D (c) = ∅.

The existence of some x ∈ X∩D (c) can be thought of as a profitable

market-making opportunity. Suppose x =
∑I
i=1 x

i where xi ∈ Di (ci).

A market maker can offer xi to each agent i in exchange for some

positive amount, since agent i strictly prefers to add xi to ci. The

market maker can then simply trade away the aggregate cash flow x,

since x ∈ X. The net result is a positive profit for the market maker,

a type of arbitrage that is not in X but can be obtained by using

X and simultaneously contracting with the I agents in an incentive

compatible way. Optimality of the allocation c given X means there

are no market-making opportunities of this sort.

The monotonicity and continuity properties of preference corre-

spondences imply that the optimality of an allocation c is equivalent

to the apparently stronger condition of optimality of the allocation for

every subset of the agents.

Proposition 3.1.4. The allocation
(

c1, . . . , cI
)

is optimal for the

preference profile
(

D1, . . . ,DI
)

given X if and only if for all A ⊆
{1, . . . , I}, the allocation (ci)i∈A is optimal for (Di)i∈A given X.

Proof. Suppose x =
∑

i∈A x
i ∈ X, where xi ∈ Di (ci) for all i ∈

A ⊆ {1, . . . , I}. For i /∈ A let xi = 0. The idea is to increase every xi

at the expense of a single agent α ∈ A by a sufficiently small amount

so that agent α still finds the resulting incremental cash flow desirable.

More formally, let y be any arbitrage cash flow, say y = 1, and fix any

agent α ∈ A. Given that Dα (cα) is an open set, choose scalar ǫ > 0

small enough so that x̄α ≡ xα − (I − 1) ǫy ∈ Dα (cα), and for every

agent i 6= α let x̄i ≡ xi + ǫy. By preference monotonicity, x̄i ∈ D (ci)

for all i, and by construction
∑

i x̄
i = x ∈ X. Therefore,

(

c1, . . . , cI
)

is

not optimal given X. The converse is immediate. �
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Since individual optimality is the same as the degenerate case of

single-agent allocational optimality, it follows that allocational opti-

mality implies individual optimality.

Corollary 3.1.5. If
(

c1, . . . , cI
)

is optimal for
(

D1, . . . ,DI
)

given

X, then for all i ∈ {1, . . . , I}, ci is optimal for Di given X.

We proceed under the assumption that c represents either a con-

sumption plan of a single agent with preference correspondence D,

or an allocation c =
(

c1, . . . , cI
)

for I agents with preference profile
(

D1, . . . ,DI
)

. In the latter case, D denotes the sum of the Di as

specified in (3.1.1) with dom (D) ≡ ∏I
i=1 dom (Di). In the following

discussion, any statement of optimality of c is understood to be for D
if c is a consumption plan and for

(

D1, . . . ,DI
)

if c is an allocation.

With these conventions, we introduce a dual notion of optimality that

will be key in relating optimality given a market to optimality given a

budget constraint in terms of present values.

Definition 3.1.6. For any linear functional Π: L → R, the con-

sumption plan or allocation c is Π-optimal if c ∈ dom(D) and x ∈
D (c) implies Π (x) > 0.

Since D (c) contains all arbitrage cash flows, if c is Π-optimal, then

Π is necessarily positive (Π (x) > 0 if x is an arbitrage).

Lemma 3.1.7. For any positive linear functional Π: L → R, a con-

sumption plan or allocation is Π-optimal if and only if it is optimal

given the market XΠ ≡ {x ∈ L | Π (x) = 0}.

Proof. Suppose c is not Π-optimal and therefore Π (x) ≤ 0 for

some x ∈ D (c). Then the constant cash flow δ ≡ −Π (x) /Π (1) is

either zero or an arbitrage and therefore x + δ ∈ D (c) ∩ XΠ, which

implies c is not optimal given XΠ. The converse is immediate. �

The lemma allows us to apply Proposition 3.1.4 and its corollary to

Π optimality. Therefore, if an allocation c =
(

c1, . . . , cI
)

is Π-optimal,

then ci is Π-optimal for every agent i. The fact that the Π in this

statement is the same for every agent will be key.

The duality between optimality given a market and Π-optimality

for a present-value function Π has the geometric structure of the duality
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between an arbitrage-free market and a present-value function (Theo-

rem 1.4.3). The set D (c) enlarges the set of arbitrage cash flows and

the condition that Π (x) is positive for all x ∈ D (c) strengthens the

condition that Π is positive. A present-value function Π (strictly) sep-

arates the market from the set of arbitrage cash flows, while a present

value function Π such that c is Π-optimal separates the market from

D (c). This picture is the basis for the following proposition, where we

take the reference market X as given, and we say that the consump-

tion plan or allocation c is optimal to mean that c is optimal given

the market X. Note that the second part assumes convexity of D (c),

which in the multi-agent case is implied by the convexity of all Di (c).

Proposition 3.1.8. The following are true for all c ∈ dom(D).

(1) If c is Π-optimal for some present-value function Π, then c is

optimal.

(2) If c is optimal and D (c) is convex, then there exists a present-

value function Π such that c is Π-optimal.

(3) Suppose the market is complete and Π is the unique present-

value function. Then c is optimal if and only if it is Π-optimal.

Proof. (1) If x ∈ D (c), then Π (x) > 0 and therefore x /∈ X.

(2) Suppose c is optimal and D (c) is convex. Viewing the space

of adapted processes as R
1+N with the Euclidean inner product, the

separating hyperplane Theorem B.6.2 allows us to select a nonzero

p ∈ R
1+N such that x ∈ X implies p · x ≤ 0, and x ∈ D (c) implies

p ·x ≥ 0. Suppose that p ·x = 0 for some x ∈ D (c). Since D (c) is open,

there exists an ǫ > 0 such that x− ǫp ∈ D (c), leading to the absurdity

0 > p · (x− ǫp) ≥ 0. Therefore, p · x > 0 for all x ∈ D (c), which

implies that p is strictly positive (since D (c) contains every arbitrage).

It follows that Π (x) = p · x/p0 defines a present-value function such

that c is Π-optimal.

(3) This is Lemma 3.1.7 with X = XΠ. �

A preference correspondence D has been defined from the perspec-

tive of time zero. A preference correspondence DF,t can be analogously

defined from the perspective of spot (F, t), with DF,t (c) ⊆ LF,t for all

c ∈ C. Given a corresponding spot-(F, t) market XF,t ⊆ LF,t, a key

observation is that if XF,t ⊆ X and DF,t (c) ⊆ D (c), then X∩D (c) = ∅
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implies XF,t ∩ DF,t (c) = ∅. This condition states that if c is optimal

from the perspective of spot zero, then it is also optimal from the per-

spective of spot (F, t). The condition guarantees that an agent who

selects an optimal consumption plan c at time zero has no incentive to

deviate from that choice as uncertainty unfolds. In discussing Proposi-

tion 1.2.4, we saw that XF,t ⊆ X is a dynamic consistency assumption

on the market: If an incremental cash flow x is available in the market

at spot (F, t), then it is also available at time zero, since the agent can

make contingent plans to carry out whatever trades generate x if spot

(F, t) is realized. Analogously, DF,t (c) ⊆ D (c) is a dynamic con-

sistency assumption on preferences: If from the perspective of spot

(F, t), consumption plan c+ x is strictly preferred to c for some incre-

mental cash flow x ∈ LF,t, then the agent at time zero anticipates this

preference contingent on spot (F, t) and therefore decides that c+ x is

strictly preferred to c from the perspective of time zero as well.

A useful way of thinking about dynamic choice is as if the deci-

sion maker is multiple agents, one for every spot. Spot-(F, t) agent

has preferences represented by DF,t and selects trades in XF,t. It is

not hard to envision situations where dynamic consistency is violated.

For example, suppose that the time-zero copy of the agent considers a

contingent trade at spot (F, t) optimal, let’s say a trade to rebalance

into a falling stock market, yet, the spot-(F, t) copy of the same agent,

faced with immediate market losses, becomes afraid and stays out of

the market. (As former heavyweight world champion Mike Tyson put

it, “Everyone has a plan ’till they get punched in the mouth.”) Perhaps

the spot-zero agent has poor foresight and would have chosen differ-

ently given a better understanding of the future self. Alternatively, the

spot-zero agent may be well aware of the role of future temptations

and may therefore seek to commit1 to a plan at time zero in a way

that cannot be reversed at spot (F, t). The strategic interaction among

copies of the same agent can become complex (and interesting). Here

we bypass this complexity, by removing any conflict among copies of

the same agent. Dynamic consistency ensures that what is best for

the spot-zero copy of the agent is also best for the spot-(F, t) agent,

1The concept is discussed by Strotz [1957], who quotes from Homer’s Odyssey.
Odysseus, being well aware his future self cannot resist the song of the Sirens,
instructs his crew to tie him to the mast.
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and is therefore sufficient to only consider time-zero optimal decisions.

Analogous reasoning applies to the notions of allocational optimality

and equilibrium, which we therefore only discuss from the perspective

of time zero.

3.2. Equilibrium

In order to introduce a simple notion of (competitive) equilibrium,

we formally define an agent to be a pair of a preference correspondence

and a consumption plan, called the agent’s endowment. We take as

primitive the I agents

(3.2.1)
(

D1, e1
)

, . . . ,
(

DI , eI
)

.

The initial allocation
(

e1, . . . , eI
)

can be modified to a new allocation

c ≡
(

c1, . . . , cI
)

through access to a market X.

Definition 3.2.1. An allocation c is X-feasible if ci − ei ∈ X for

all i, and clears the market if
∑I
i=1 c

i = e, where e ≡ ∑I
i=1 e

i is the

aggregate endowment. An equilibrium is a pair (X, c), where X

is a market, c is an X-feasible allocation that clears the market, and

for all i, ci is optimal for Di given X.

Equilibrium is commonly formulated in the literature in terms of

contracts implementing the market, whose dividend processes are given

and whose prices are set in equilibrium. The following example out-

lines the relationship of this approach to the equilibrium notion just

introduced.

Example 3.2.2 (contract-market equilibrium). Consider J con-

tracts with given dividend processes δ ≡
(

δ1, . . . , δJ
)′

. A contract-

market equilibrium is a pair of value processes V ≡
(

V 1, . . . , V J
)′

and trading strategies θ ≡
(

θ1, . . . , θI
)

in the contracts (δ, V ) such

that
∑

i θ
i = 0 and θi generates a cash flow xi such that ci ≡ ei + xi ∈

dom (Di) and X (δ, V ) ∩ Di (ci) = ∅. Recall that X (δ, V ) denotes the

market implemented by (δ, V ). The last optimality condition, there-

fore, states that there is no trading strategy in (δ, V ) that agent i desires

to add to θi. If (V, θ) is a contract-market equilibrium, then
∑

i θ
i = 0

implies
∑

i x
i = 0, and therefore (X (δ, V ) , c) is an equilibrium. In the

converse direction, suppose that (X (δ, V ) , c) is an equilibrium and for
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each agent i, let θi be a trading strategy that finances ci, meaning

that θi generates a cash flow xi such that ci = ei + xi. While it is

clear that ci is optimal for agent i given the market X (δ, V ) and that
∑

i x
i = 0, it is not necessary that

∑

i θ
i = 0, since there are potentially

more than one trading strategies generating a given traded cash flow.

It is possible, however, to choose θ =
(

θ1, . . . , θI
)

so that
∑

i θ
i = 0,

and therefore so that (V, θ) is a contract-market equilibrium. The trick

is to pick θi to finance ci for i > 1, and then define θ1 = −∑

i>1 θ
i. The

fact that c clears the market implies that θ1 finances c1, and we have

the desired contract-market equilibrium. ♦

Market equilibrium as defined here is closely related to the classical2

notion of a competitive exchange equilibrium in the absence of time and

uncertainty. For example, given an initial allocation of bread and wine,

a competitive exchange equilibrium is a price for each good and a new

allocation that is resource feasible (no bread or wine is created) and

individually optimal (agents cannot do better by selling some wine to

buy more bread or vice versa). A key insight3 of Arrow and Debreu

was that the same notion can be applied in contexts with time and

uncertainty by reinterpreting the notion of a good, in the example

wine or bread, to be what we have called an Arrow cash flow. Bundles

of goods correspond to cash flows and prices of goods correspond to

state prices. A state price vector p can always be identified with the

corresponding linear functional Π (c) = p·c, which leads to the following

equilibrium notion.

Definition 3.2.3. An Arrow-Debreu equilibrium is a pair (Π, c)

of a linear functional Π: L → R and an allocation c ≡
(

c1, . . . , cI
)

such

that
∑I
i=1 c

i ≤ e and for all i, ci ∈ dom (Di), Π (ci) ≤ Π (ei) and

(3.2.2) xi ∈ Di
(

ci
)

implies Π
(

ci + xi
)

> Π
(

ei
)

.

The following equivalent form of this definition will be useful for

our purposes.

Lemma 3.2.4. The pair (Π, c) is an Arrow-Debreu equilibrium if and

only if Π: L → R is a positive linear functional, c clears the market,

and for all i, ci is Π-optimal for Di and Π (ci) = Π (ei).

2Walras [1874]
3Arrow [1953, 1964] and Debreu [1959].
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Proof. Suppose (Π, c) is an Arrow-Debreu equilibrium and x is

an arbitrage. For every scalar ǫ > 0, ǫx ∈ Di (ci) and therefore

Π
(

ci
)

+ ǫΠ (x) = Π
(

ci + ǫx
)

> Π
(

ei
)

≥ Π
(

ci
)

.

This implies that Π (x) > 0 and, since x can be any arbitrage, that Π

is positive. Letting ǫ ↓ 0, we conclude that Π (ci) = Π (ei) for all i.

The remaining claims are now immediate. �

A positive linear functional Π on L is, after positive scaling, the

present-value function for the complete market XΠ ≡ {x ∈ L | Π (x) = 0}.

By Proposition 3.1.8 (or Lemma 3.1.7) and Lemma 3.2.4, it follows that

(Π, c) is an Arrow-Debreu equilibrium if and only if (XΠ, c) is an equi-

librium. How does an equilibrium (X, c) relate to an Arrow-Debreu

equilibrium if X is not complete? By Proposition 3.1.8, assuming con-

vex preferences, individual optimality implies Π-optimality for some

present-value function Π, which need not be common among all agents,

unless the entire allocation c is optimal given the market.

Definition 3.2.5. An effectively complete market equilib-

rium is an equilibrium (X, c) with the property that the allocation c

is optimal for
(

D1, . . . ,DI
)

given the market X.

As in the last section, we define D ≡ ∑I
i=1 Di and note that D (c) is

convex if every Di (ci) is convex. The following claims are a consequence

of Proposition 3.1.8 and our earlier discussion.

Proposition 3.2.6. The following are true for any market X.

(1) If the allocation c is X-feasible and there exists a present-value

function Π for X such that (Π, c) is an Arrow-Debreu equilib-

rium, then (X, c) is an effectively complete market equilibrium.

(2) Suppose D (c) is convex. If (X, c) is an effectively complete-

market equilibrium, then there exists a present-value function

Π for X such that (Π, c) is an Arrow-Debreu equilibrium.

(3) Suppose the market X is complete with (necessarily unique)

present-value function Π. Then (X, c) is an equilibrium if and

only if (Π, c) is an Arrow-Debreu equilibrium.

Proof. (1) Suppose xi ∈ Di (ci) for all i and let x ≡ ∑

i x
i. By

Lemma 3.2.4, ci is Π-optimal and therefore Π (xi) > 0 for all i, which

implies Π (x) > 0. Since Π is a present-value function, x /∈ X.
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(2) Suppose (X, c) is an effectively complete market equilibrium.

By Proposition 3.1.8(2), there exists a present-value function Π such

that c is Π-optimal, and therefore ci is Π-optimal for every agent i. By

Lemma 3.2.4, (Π, c) as an Arrow-Debreu equilibrium.

(3) We saw the validity of this claim following Lemma 3.2.4. �

Corollary 3.2.7. Suppose (X, c) is an equilibrium. If there exists

a complete market X̄ ⊇ X such that
(

X̄, c
)

is an equilibrium, then

(X, c) is an effectively complete market equilibrium. The converse claim

is also true if D (c) is convex.

Remark 3.2.8. The corollary’s first part is equivalent to the claim:

If (X, c) is an equilibrium and X is a complete market, then the allo-

cation c is optimal given X. Here is a direct proof of this claim, which

does not rely on the use of a present-value function. Suppose (X, c)

is an equilibrium, X is a complete market, and xi ∈ Di (ci) for all i.

We assume that x ≡ ∑

i x
i ∈ X and reach a contradiction. Since X is

complete, there exist δi ∈ R and yi ∈ X such that xi = δi1Ω×{0} + yi.

If δi < 0 then, by preference monotonicity, yi ∈ Di (ci), contradicting

the optimality of ci for Di given X. Therefore δi ≥ 0 for all i, and

x = δ1Ω×{0} + y, where δ ≡ ∑

i δ
i ≥ 0 and y ≡ ∑

i y
i ∈ X. If δ > 0,

then x − y is an arbitrage, contradicting the fact that X is arbitrage-

free (by individual optimality and preference monotonicity). Therefore

δ = 0 and δi = 0 for all i. But then xi = yi ∈ Di (ci) ∩ X, again

contradicting individual optimality. ♦

We conclude this section with two highly stylized examples of (ef-

fectively complete) equilibrium pricing that have played an important

role in the early development of asset pricing theory. The first one

is a version of the CAPM4 (Capital Asset Pricing Model), which is a

4The CAPM, which first appeared in Sharpe [1964], Lintner [1965] and Mossin
[1966], has had a transformative impact on how the business and investing world
perceives market risk and risk premia. Early ambitions to use the CAPM as an
empirical tool were met with the realization that the CAPM is fundamentally
untestable, since the market portfolio is not observable. Nevertheless, proxies of
the overall market do explain a significant part of risk premia, the CAPM is still
part of business school curricula, and estimates of betas relative to market proxies
are widely reported.
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myopic, single-period model in which covariance with the market port-

folio explains expected excess returns relative to a traded (credit-risk-

free) money market account. The second example, which works just as

well in the multi-period case, is one in which individual optimality can

be characterized as the optimality of the aggregate endowment for a

suitably constructed “representative” agent. Representative-agent ar-

guments of this type have been used extensively in the literature to

justify the formulation of simple single-agent equilibrium models that

relate aggregate consumption to market risk premia and interest rates.

Both examples rely on special preference and endowment structure and

a high degree of similarity among agents.

Example 3.2.9 (CAPM). There is a single period (T = 1) and an

underlying full-support probability, which can be thought of as repre-

senting common beliefs among the I agents. Consider an equilibrium

(X, c) with a traded money-market account (MMA) defining the short

rate r and return R0 ≡ 1 + r. The set of traded returns is

R ≡ {−x1/x0 | x ∈ X, x0 6= 0} .

Each endowment ei is assumed to be marketed, with present value wi

(which is uniquely defined since X is arbitrage-free). The present value

of the aggregate endowment e is therefore w ≡ ∑

i w
i. The market

return Rm is the return of the traded contract whose payoff is the

time-one aggregate endowment e1. Since e1 has present value w − e0,

Rm = e1/ (w − e0) ∈ R. To ensure that the market return is well-

defined and has positive variance, we assume that

(3.2.3) var [e1] > 0 and e0 6= w.

The CAPM states that Rm is a beta-pricing return:

(3.2.4) ER −R0 =
cov [R,Rm]

var [Rm]

(

ERm − R0
)

, R ∈ R.

We will show the necessity of the CAPM with ERm 6= R0 under the

assumption that all agents are variance averse: For all c ∈ dom (Di),

Di (c) ⊇ {x ∈ L | (x0,Ex1) = (0, 0) and var [c1 + x1] < var [c1]} .

Moreover, assuming preference transitivity, we will show that the equi-

librium is necessarily effectively complete.
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The essential argument is simple. Because of the assumptions of

common beliefs, marketed endowments and variance aversion, in equi-

librium, agents sell their endowments and buy plans on the minimum-

variance frontier. By two-fund separation, all agents can finance their

equilibrium consumption by holding the MMA and the same frontier

risky investment. By market clearing, the market return takes the same

form and must therefore also be a frontier return. The CAPM equation

(3.2.4) then follows from Proposition 2.2.3.

We proceed with the details, starting with a review of minimum-

variance analysis in the current context. On the space of random

variables, we use the inner product 〈x | y〉 = E [xy] with induced

norm ‖ · ‖. Let xΠ
1 denote the Riesz representation of the present-

value functional on X1 ≡ {x1 | x ∈ X}, which is the unique xΠ
1 ∈ X1

such that −x0 = 〈xΠ
1 | x1〉 for all x ∈ X. Define xΠ ∈ X by letting

−xΠ
0 = 〈xΠ

1 | xΠ
1 〉, a positive number, since xΠ

1 6= 0 by the MMA pric-

ing equation 〈xΠ
1 | R0〉 = 1. The return RΠ ≡ −xΠ

1 /x
Π
0 is therefore

well-defined. We call x ∈ X a frontier cash flow if var [x1] mini-

mizes var [y1] over all y ∈ X such that y0 = x0 and Ey1 = Ex1, a

condition that is equivalent to x1 being the projection of zero onto

M ≡
{

z ∈ X1 | 〈xΠ
1 | z〉 = −x0, 〈1 | z〉 = Ex1

}

, which is in turn equiv-

alent to x1 ∈ M⊥ = span
(

xΠ
1 , 1

)

. We have shown that x ∈ X is a

frontier cash flow if and only if x1 ∈ span
(

RΠ, R0
)

.

The main CAPM argument follows. By the marketed-endowment

assumption, ci = wi1Ω×{0} + xi for some xi ∈ X. By the optimality

of ci for agent i and variance-aversion, xi is a frontier cash flow and

therefore xi1 = aiRΠ + biR0 for some ai, bi ∈ R. Let a ≡ ∑

i a
i and

b ≡ ∑

i b
i. Adding up over all agents and using market clearing and the

regularity assumption (3.2.3), we find

(3.2.5) e = w1Ω×{0} + x, where x1 = aRΠ + bR0 and a 6= 0.

By the same regularity assumption, x0 6= 0 and the market return

Rm has positive variance. This shows that (−1, Rm) is a frontier cash

flow and therefore Rm is a frontier return, in the sense that for all

R ∈ R, ER = ERm implies var [R] ≥ var [Rm]. As in Lemma 2.2.2,

this means that Rm is the projection of zero onto the linear manifold

Rm ≡ {R ∈ R | ER = ERm}, a condition that is equivalent to the
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orthogonality of Rm to Rm, which is in turn equivalent to cov [R,Rm] =

var [Rm] for all R ∈ Rm. The CAPM equation (3.2.4) with ERm 6= R0

now follows exactly as in the (1 =⇒ 2) part of Proposition 2.2.3.

Finally, we show that (X, c) is an effectively complete market equi-

librium, assuming preference transitivity:

x ∈ Di
(

ci
)

and y ∈ Di
(

ci + x
)

=⇒ x+ y ∈ Di
(

ci
)

.

Suppose yi ∈ Di (ci) for every agent i and
∑

i y
i ∈ X. We will show

that this violates individual optimality and hence cannot happen in

equilibrium. Let ȳi ∈ X be defined by the requirement that ȳi1 is the

projection of yi1 onto X1. Write yi = ȳi+(δi, εi), where δi ≡ yi0 − ȳi0 ∈ R

and εi ≡ yi1−ȳi1 is orthogonal toX1. Since 1 ∈ X1, Eε
i = 0. By variance

aversion and preference transitivity,

(3.2.6) ȳi +
(

δi, 0
)

∈ Di
(

ci
)

.

Let y ≡ ∑

i y
i, ȳ ≡ ∑

i ȳ
i and ε ≡ ∑

i ε
i. Since ε = y1 − ȳ1 ∈ X1

and ε is also orthogonal to X1, ε = 0 and therefore
∑

i δ
i1Ω×{0} =

y − ȳ ∈ X. Since X is arbitrage-free,
∑

i δ
i = 0. If for some i, δi < 0,

preference monotonicity and (3.2.6) implies ȳi ∈ Di (ci), which violates

the optimality of ci. Therefore,
∑

i δ
i = 0 and δi ≥ 0 for all i, which

implies δi = 0 for all i. Equation (3.2.6) reduces to ȳi ∈ Di (ci), which

again violates the optimality of ci. ♦

Example 3.2.10 (representative-agent pricing). The following is an

example of representative-agent pricing based on the assumed scale in-

variance (also known as homotheticity) of preferences. Other variations

are explored in the exercises.

We will characterize an equilibrium (X, c) for agents who are spec-

ified in terms of a fixed reference agent (D0, e0) with dom (D0) ≡ L++.

A key assumption is that D0 is scale invariant (SI), meaning that

the operators of positive scaling and specification of desirable cash flows

commute:

D0 (sc) = sD0 (c) for all s ∈ (0,∞) and c ∈ dom
(

D0
)

,

where sD0 (c) ≡ {sx | x ∈ D0 (c)}. For i = 1, . . . , I, agent (Di, ei) is

defined in terms of the parameters (bi, wi, xi) ∈ L × (0,∞) ×X by
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Di (c) ≡ D0
(

c− bi
)

for all c ∈ dom
(

Di
)

≡ bi + L++,

ei ≡ bi + wie0 + xi.

The consumption plan bi can be thought of as a subsistence plan, the

scalar wi as the agent’s wealth above subsistence measured in multiples

of the reference plan e0, and xi as an endowed traded cash flow. For

example, if e0 = 1Ω×{0} and X is arbitrage-free, then the present value

of the endowment in excess of subsistence, ei − bi, is equal to wi. We

do not assume, however, that e0 is marketed. Note that the aggregate

endowment can be written as e ≡ ∑

i e
i = b+we0 +x, where b ≡ ∑

i b
i,

w ≡ ∑

iw
i and x ≡ ∑

i x
i. Let us now define the allocation c resulting

from first allocating to all agents their subsistence plans bi and then

allocating the remaining aggregate endowment e − b in proportion to

each agent’s wealth, wi, above subsistence:

ci ≡ bi +
wi

w
(e− b) , i = 1, . . . , I.

The representative agent (D, e), whose endowment is the aggregate

endowment, is defined by the preference correspondence

D (c) ≡ D0 (c− b) for all c ∈ dom (D) ≡ b+ L++.

The claim is that (X, c) is an equilibrium if and only if the ag-

gregate endowment e is optimal for the representative agent given the

market X, that is, X ∩ D (e) = ∅. To verify this claim, one can easily

check, using the definition of the endowments and allocation, that the

allocation c is X-feasible and clears the market. Moreover, using the

preference and allocation definitions and the scale-invariance of D0,

(3.2.7)
1

wi
Di
(

ci
)

= D0

(

ci − bi

wi

)

= D0

(

e− b

w

)

=
1

w
D (e) ,

and therefore X ∩ Di (ci) = ∅ if and only if X ∩ D (e) = ∅.

Finally, assuming (X, c) is an equilibrium and D (e) is convex, we

show that (X, c) is an effectively complete market equilibrium. Suppose

that yi ∈ Di (ci) for all i and y ≡ ∑

i y
i. By (3.2.7), ȳi ≡ (w/wi) y

i ∈
D (e), and therefore, by the convexity of D (e), y =

∑

i (w
i/w) ȳi ∈

D (e). Since e is an optimal consumption plan for the representative

agent, it follows that y /∈ X. ♦
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3.3. Utility functions and optimality

In the remainder of this chapter we introduce more structured for-

mulations based on utility representations of preferences. For sim-

plicity, we assume throughout that every agent’s consumption set is

C ≡ L++, although the theory clearly applies more generally and some

of the exercises assume specifications that require different consump-

tion sets. We define utility functions to be continuous and monotone,

which is not standard in the literature, but is convenient for our pur-

poses. The existence of a utility representation is characterized in Sec-

tion A.1.

Definition 3.3.1. A utility (function) is a continuous function

of the form U : C → R that is increasing: for all c ∈ C, if x is an

arbitrage, then U (c+ x) > U (c). The function U : C → R is a utility

representation of the preference correspondence D if dom (D) = C

and x ∈ D (c) is equivalent to U (c+ x) > U (c), in which case U is said

to represent D. Two utility functions are ordinally equivalent if

they represent the same preference correspondence. A utility function

U is normalized if U (s) = s for all s ∈ (0,∞).

Note that the utility functions U and Ũ on C are ordinally equiv-

alent if and only if Ũ = f ◦ U for a (strictly) increasing function f

from the range of U onto the range of Ũ . (Since these ranges are con-

nected intervals, f is necessarily continuous.) If D admits a utility

representation Ũ , the function

(3.3.1) U (c) ≡ inf {s ∈ R | s− c ∈ D (c)} , c ∈ dom (D) ,

is the unique normalized utility that is ordinally equivalent to Ũ ; it can

be expressed as U = φ−1 ◦ Ũ where φ (s) ≡ Ũ (s), s ∈ (0,∞). While

the numerical value Ũ (c) in isolation is meaningless, since U (U (c)) =

U (c), U (c) represents a per-period payment of an annuity that is

equally desirable as c.

A preference correspondence D is convex if D (c) is a convex set

for all c ∈ dom (D), a condition that can be thought of as preference

for consumption smoothing across spots. Concavity of a utility func-

tion clearly implies the convexity of the preference correspondence it
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represents. The converse claim is not generally true—a convex prefer-

ence correspondence admitting a utility representation may admit no

concave utility representation.5 The following example shows that the

converse is true for scale-invariant preferences.

Example 3.3.2. (scale-invariant preferences) Suppose the prefer-

ence correspondence D is scale invariant (SI):

D (sc) = sD (c) for all s ∈ (0,∞) and c ∈ L++.

The function U defined in (3.3.1) is homogeneous of degree one:

U (sc) = sU (c) for all s ∈ (0,∞) and c ∈ L++.

It follows that a preference correspondence admitting a utility repre-

sentation is SI if and only if it admits a utility representation (the

normalized version) that is homogeneous of degree one.6 If D is both

SI and convex, then U is necessarily concave. Since U is homogeneous

of degree one, concavity of U is equivalent to

(3.3.2) U (x+ y) ≥ U (x) + U (y) for all x, y ∈ L++.

To show (3.3.2) given convexity of D, fix any x, y ∈ L++ and de-

fine α, β ∈ (0,∞) so that S ≡ U (x+ y) = U (αx) = U (βy), that

is, α ≡ S/U (x) and β ≡ S/U (y). Let p ≡ α/ (α + β). For all

ǫ > 0, utility monotonicity implies S < U (αx+ ǫ) , U (βy + ǫ) and

therefore S < U ((1 − p)αx+ pβy + ǫ). Letting ǫ ↓ 0, we have S ≤
U ((1 − p)αx+ pβy) = Sαβ/ (α+ β). Therefore, α−1+β−1 ≤ 1, which

rearranges to (3.3.2). ♦

Let us now fix a reference market X and a preference correspon-

dence D with utility representation U . We call a consumption plan c

optimal if it is optimal for D given X. On the space of all adapted

processes, we use the inner product

(3.3.3) 〈x | y〉 = E

[

T
∑

t=0

xtyt

]

, x, y ∈ L.

5For example, Reny [2013] shows that U (x, y) ≡ x +
√

x2 + y represents a convex

preference correspondence on (0, ∞)
2
, but there is no strictly increasing function f

such that f ◦ U is concave.
6In the literature, preferences that are representable by a homogeneous-of-degree-
one utility function are commonly called “homothetic.”



3.3. UTILITY FUNCTIONS AND OPTIMALITY 139

In applications, U is commonly assumed to be differentiable, in which

case a simple characterization of optimality can be given in terms of

the gradient ∇U (c) ∈ L, defined by

〈∇U (c) | x〉 = lim
ǫ↓0

U (c+ ǫx) − U (c)

ǫ
, x ∈ L.

Example 3.3.3. (gradient of additive utility) Suppose the utility

takes the additive form U (c) = E
Q∑

t ut (ct), where each ut : (0,∞) →
R is a differentiable function andQ is a full-support probability that can

be thought of as expressing beliefs. Let ξ denote the conditional density

process ξt = EtdQ/dP . Lemma 2.4.4 implies U (c) = E
∑

t ut (ct) ξt and

therefore ∇U (c)t = u′
t (ct) ξt. For example, Section A.4 shows that if

U represents scale-invariant preferences, then ut must take a power or

logarithmic form, which implies that the utility function is necessarily

differentiable. ♦

spot 0

spot 1

m
arket X

∇U(c)

Figure 3.3.1. The dotted line is the boundary of the
set D (c) = {x | c+ x ∈ L++, U (c+ x) > U (c)}, which
includes the shaded region of all arbitrage cash flows.
The gradient ∇U (c) is orthogonal to the dotted line and
points to the direction of steepest utility gain. Optimal-
ity means that X does not intersect D (c) and is therefore
tangent to the dotted line, which in turn implies that
∇U (c) is orthogonal to the market.
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The role of the utility gradient for optimality is illustrated in Fig-

ure 3.3.1 (which extends Figure 1.4.1) and is formally shown in the fol-

lowing proposition. Note that the assumed strict positivity of ∇U (c)

is not implied by the monotonicity of U . (Set ut (c) = (c− 1)3 in Ex-

ample 3.3.3 and compute ∇U (1).) The reader can show, however, that

if U is concave, then the fact that U is monotone does imply the strict

positivity of ∇U (c).

Proposition 3.3.4. Suppose c ∈ C and the gradient vector ∇U (c)

exists and is strictly positive. If c is optimal, then ∇U (c) is a state-

price density. Conversely, if U is concave and ∇U (c) is a state-price

density, then c is optimal.

Proof. Suppose c is optimal. Given any x ∈ X, we use the fact

that C is open to select ε > 0 so that c + αx ∈ C for all α ∈ [0, ε].

The function f (α) ≡ U (c + αx), α ∈ [0, ε], is maximized at zero and

therefore has a nonpositive right derivative at zero: 〈∇U (c) | x〉 ≤ 0.

By assumption, ∇U (c) ∈ L++ and therefore ∇U (c) is a state-price

density. Conversely, suppose that U is concave and π ≡ ∇U (c) is a

state-price density. For all x ∈ X such that c + x ∈ C, the gradient

inequality and the fact that 〈π | x〉 ≤ 0 imply that U (c+ x) ≤ U (c) +

〈π | x〉 ≤ U (c). �

In cases where the utility U is known to be concave but differentia-

bility cannot be guaranteed, optimality of c ∈ C can be characterized

in terms of the superdifferential

∂U (c) ≡ {π ∈ L | c+ x ∈ C =⇒ U (c+ x) ≤ U (c) + 〈π | x〉 } .

As shown in Section B.6, assuming U is concave, ∂U (c) is nonempty,

and d = ∇U (c) if and only if ∂U (c) = {d}.

Proposition 3.3.5. Consider any c ∈ C. If there exists a state-

price density π ∈ ∂U (c), then c is optimal. Conversely, if c is optimal

and U is concave, then there exists a state-price density π ∈ ∂U (c).

Proof. The result can be viewed as a corollary of Proposition 3.1.8,

which relates optimality to Π-optimality, and Proposition 3.3.6 below,

which characterizes Π-optimality. A more direct argument, using only

the separating hyperplane theorem, follows.



3.3. UTILITY FUNCTIONS AND OPTIMALITY 141

Suppose π ∈ ∂U (c) is a state-price density. For all x ∈ X such that

c+x ∈ C, 〈π | x〉 ≤ 0 and therefore U (c+ x) ≤ U (c)+〈π | x〉 ≤ U (c).

This proves the optimality of c. Conversely, suppose c is optimal and

U is concave. Consider the convex sets in L × R:

A ≡ { (x, α) | x ∈ X, U (c) < α } ,
B ≡ { (y, β) | c+ y ∈ C, β ≤ U (c+ y) } .

If (x, α) ∈ A ∩ B, then U (c) < α ≤ U (c + x) for some x ∈ X, contra-

dicting the optimality of c. Note also that (0, U (c)) is in the closure

of both sets. Therefore, by the separating hyperplane Theorem B.6.2,

there exists some non-zero (π, r) ∈ L × R such that

(x, α) ∈ A =⇒ 〈π | x〉 + rα ≤ rU (c) ,(3.3.4)

(y, β) ∈ B =⇒ 〈π | y〉 + rβ ≥ rU (c) .(3.3.5)

If r > 0, condition (3.3.5) is violated by taking β to minus infinity. If

r = 0, and therefore π 6= 0, condition (3.3.5) is violated by y = −επ
for ε > 0 small enough so that c + y ∈ C. Therefore, r < 0 and,

after rescaling, we can set r = −1. Given this normalization, condi-

tion (3.3.4) implies that 〈π | x〉 ≤ 0 for all x ∈ X, and condition (3.3.5)

implies that π ∈ ∂U (c). Since U is increasing, π is necessarily strictly

positive. �

We have seen in Proposition 3.1.8 that optimality given the mar-

ket is closely related to the notion of Π-optimality for a present-value

function Π. For example, in a complete market, an agent can sell their

endowment for a time-zero financial wealth w and select a consumption

plan c to maximize utility subject to the (necessarily binding) wealth

constraint Π (c) ≤ w. The Lagrange multiplier λ of this constraint,

whose interpretation as a marginal value of wealth is reviewed in the

following proposition, will play a prominent role in the sequel.

Proposition 3.3.6. Suppose Π is a positive linear functional on L
with Riesz representation π ∈ L++ and

V (w) ≡ sup {U (c) | Π (c) ≤ w, c ∈ L++ } , w ∈ (0,∞) .

Fix any c ∈ L++ and w ∈ (0,∞) such that Π (c) = w. If λπ ∈ ∂U (c)

for some λ ∈ (0,∞), then c is Π-optimal and λ ∈ ∂V (w). Assume (for

simplicity) that U is concave and therefore V is concave and ∂V (w) 6=
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∅. If c is Π-optimal and λ ∈ ∂V (w), then λπ ∈ ∂U (c) and if ∇U (c)

exists, V is differentiable at w and λ = V ′ (w).

Proof. The first two claims are an application of Theorem B.7.2

(without U concavity). Condition (2) of Theorem B.7.2 in this context

reduces to λπ ∈ ∂U (c) for some λ > 0, where the positivity of λ is a

consequence of the monotonicity of U . The claim for the differential

case follows from Theorem B.6.4. Suppose U is concave and ∇U (c)

exists. Then ∂U (c) = {∇U (c)} and therefore λπ = ∇U (c) for all

λ ∈ ∂V (w), which implies that ∂V (w) is a singleton and therefore

∂V (w) = {V ′ (w)}. �

Remark 3.3.7. Under the proposition’s assumptions, suppose U is

concave, V (w) = U (c) and ∇U (c) exists. The fact that V ′ (w)π =

∇U (c) implies that V ′ (w) = 〈∇U (c) | x〉 for all x such that Π (x) = 1.

Informally speaking, if w is changed by a small amount ǫ, the resulting

optimal utility value V (w + ǫ) is approximately equal to U (c+ ǫx),

where x is any unit-cost cash flow. Once all but the last penny of one’s

wealth has been optimally allocated, what one does with the last penny

is of no quantitative significance. This sort of intuition applies more

broadly to a class of so-called envelope theorems and is particularly

important in interpreting observed choices involving monetary amounts

that are trivial in comparison to one’s total wealth. ♦

Example 3.3.8. In the context of Proposition 3.3.6, if U is homo-

geneous of degree one, then V (w) = V (1)w and the marginal value of

wealth λ = V ′ (w) does not depend on w. ♦

As in Section 3.1, individual optimality characterizations extend

to allocational optimality given the market. To see, how, let us fix a

reference preference correspondence profile
(

D1, . . . ,DI
)

and assume

that each Di has a utility representation U i. We call an allocation

c ∈ Cn optimal given X if it is optimal for
(

D1, . . . ,DI
)

given X.

Thus an allocation c is optimal given X if and only if for every other

allocation c+ x ∈ Cn,

U i
(

ci + xi
)

> U i
(

ci
)

for all i =⇒
I
∑

i=1

xi /∈ X.
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Moreover, by Proposition 3.1.4, c is optimal given X if and only if for

all c + x ∈ Cn,

U i
(

ci + xi
)

≥ U i
(

ci
)

for all i and U i
(

ci + xi
)

> U i
(

ci
)

for some i

=⇒
I
∑

i=1

xi /∈ X.

Pareto optimality is allocational optimality given the market {0}.

Proposition 3.3.9. Suppose c is an allocation and the gradients

∇U i (ci) exist and are strictly positive. If c is optimal given X, then

there exists a state-price density π and some µ ∈ (0,∞)I such that

(3.3.6) π = µi∇U i
(

ci
)

, i = 1, . . . , I.

Conversely, assuming every U i is concave, if π is a state-price density

and (3.3.6) holds for some µ ∈ (0,∞)I , then c is optimal given X.

Proof. Suppose c ∈ Cn is optimal given X. For i 6= j, the zero

cash flow x = 0 maximizes U i (ci + x) subject to U j (cj − x) ≥ U j (cj)

as x ranges over the set of cash flows such that ci + x, cj − x ∈ C. Ap-

plying Theorem B.7.4 results in condition (3.3.6) for some µ ∈ (0,∞)I

and π. Since allocational optimality implies individual optimality, π is

a state-price density by Proposition 3.3.4. Conversely, assuming utility

concavity, consider any ci + xi ∈ C such that x ≡ ∑

i x
i ∈ X. Multiply

the gradient inequality U i (ci + xi) ≤ U i (ci)+〈∇U i (ci) | xi〉 by µi, add

up over i, and use (3.3.6) and 〈π | x〉 = 0 to conclude that
∑

i
µiU

i
(

ci + xi
)

≤
∑

i
µiU

i
(

ci
)

.

Since µi > 0, it is not the case that U i (ci + xi) > U i (ci) for all i. �

The reader is encouraged to attempt a visualization of the preced-

ing result based on Figure 3.3.1, but with two agents and a common

market X. The less obvious case is when X is incomplete, which can

be visualized by adding a third orthogonal axis, while preserving X

as a line. In this case, ∇U1 (c1) and ∇U2 (c2) can both be orthogonal

to X without satisfying the collinearity condition (3.3.6). Individual

optimality implies that both gradients are state-price densities, but not

their collinearity. Allocational optimality given X implies Pareto op-

timality, which in turn implies the gradient collinearity. To visualize
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the last claim, note that if a cash flow xi forms an acute angle with

∇U i (ci), then for all sufficiently small ǫ > 0, ǫxi is strictly desirable for

agent i. The non-collinearity of the gradients allows us to choose such

xi that sum up to zero, implying the violation of Pareto optimality.

A useful construct for characterizing effectively complete market

equilibria is the so-called central planner, defined in terms of the

parameter µ ∈ (0,∞)I as the agent whose endowment is the aggregate

endowment e, and whose preferences are represented by the utility

function Uµ : L++ → R, where

(3.3.7) Uµ (c) ≡ sup

{

I
∑

i=1

µiU
i
(

ci
)

|
I
∑

i=1

ci ≤ c, ci ∈ L++

}

.

For scalar µi, we use the notation

µi∂U
i
(

ci
)

≡
{

µid | d ∈ ∂U i
(

ci
)}

.

Proposition 3.3.10. Suppose U i is concave for every agent i and

c is an X-feasible allocation. Then (X, c) is an effectively complete

market equilibrium if and only if there exists µ ∈ (0,∞)I such that

e =
∑

i c
i is optimal for the central planner given X and c solves the

maximization problem (3.3.7) defining Uµ (e). In this case, there exists

a state-price density π for X such that

π ∈ ∂Uµ (e) =
⋂I

i=1
µi∂U

i
(

ci
)

,

and if the gradient vectors ∇U i (ci) exist, then ∇Uµ (e) also exists and

π = ∇Uµ (e) = µi∇U i
(

ci
)

, i = 1, . . . , I.

Proof. Since every U i is assumed to be concave, Uµ is also con-

cave and ∂Uµ (e) 6= ∅ (by Theorem B.6.3 or Lemma B.7.3). Apply

Theorem B.7.2 to (3.3.7) with c = e, F (δ) = Uµ (e+ δ) and λ = π.

The theorem’s second condition in this application can be stated as

Uµ (e) =
I
∑

i=1

max
{

µiU
i
(

ci
)

−
〈

π | ci − ei
〉

| c ∈ LI
++

}

, π ∈ L++,

where strict positivity of π follows from the assumption that every U i

is increasing. The ith term of this sum is maximized by ci if and only if

π ∈ µi∂U
i (ci). Therefore, for every µ ∈ (0,∞)I and allocation c such

that
∑

i c
i = e, Uµ (e) =

∑

i µiU
i (ci) and π ∈ ∂Uµ (e) both hold if and

only if π ∈ ⋂

i µi∂U
i (ci).
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Suppose (X, c) is an effectively complete market equilibrium. By

Proposition 3.2.6, there exists a present-value function Π such that

(Π, c) is an Arrow-Debreu equilibrium. Given a state price density π

representing Π, the Π-optimality of ci for agent i implies that there

exists λi > 0 such that λiπ ∈ ∂U i (ci). The argument of the first

paragraph with µi ≡ 1/λi shows that Uµ (e) =
∑

i µiU
i (ci) and π ∈

∂Uµ (e) and therefore, by Proposition 3.3.5, e is optimal for the central

planner given X. Reversing these steps yields the converse. The claim

involving gradients is a consequence of Theorem B.6.4. �

Example 3.3.11. Suppose that every agent’s utility takes the form

U i (c) = E

T
∑

t=0

uit (ct) ,

where each uit : (0,∞) → R is a concave differentiable function. For

all agent weights µ ∈ (0,∞)I , the utility Uµ defined in (3.3.7) is of the

same form with i = µ, where

uµt (x) ≡ sup

{

I
∑

i=1

µiu
i
t (xi) |

I
∑

i=1

xi ≤ x, xi ∈ (0,∞)

}

.

Assuming (X, c) is an effectively complete market equilibrium, there ex-

ists µ ∈ R
I
++ such that ∇Uµ (e) is a state-price vector and πt = uµ′

t (et)

defines a corresponding state-price density. In this special context, the

state-price density is a deterministic function of the aggregate endow-

ment at every spot. ♦

While the above example suggests that an additive utility struc-

ture has some analytical advantages, the following example highlights

a limitation of additive utility in capturing aversion to risk associated

with the possible persistence of outcomes.

Example 3.3.12. Suppose the random variables δ1, . . . , δT are in-

dependent and identically distributed. For example, think of each δt

as taking the value +1 or −1, depending on the outcome of a coin

toss. (Mathematically, let δt (ω) = ωt in Example 1.1.1 and assign

equal probability to every state ω as in Example 2.1.8.) Consider two

consumption plans a and b with some common initial value a0 = b0 > 1

and such that for every time t > 0, at = a0 + δ1 and bt = b0 + δt. In the
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coin-toss interpretation, consumption under a is either permanently in-

creased or permanently decreased depending on the outcome of a single

coin toss at time one, while consumption under b is increased or de-

creased in every period, depending on a new coin toss for every period.

While both a and b result in the same expected consumption in every

period, there is a clear sense in which a is riskier than b. Yet, every

utility of the form U = E
∑

t ut, for any functions ut : (0,∞) → R, must

necessarily assign the same value to both a and b, since U =
∑

t Eut

and Eut (at) = Eut (bt) for all t. ♦

3.4. Dynamic consistency and recursive utility

In this section we show that the dynamic consistency of preferences

admitting a utility representation leads to a recursive relationship of

utilities on the information tree. The resulting recursive utility class

includes additive specifications such as expected discounted utility. Ex-

ample 3.3.12 gave a first indication of the inadequacy of additive util-

ities. We will further see in this section that additive utilities require

that time preferences in the absence of risk determine attitudes toward

risk. This limitation motivates a broader class of recursive utilities,

which allow a partial separation of time preferences and attitudes to-

ward risk. Recursive utility is used in the remainder of this chapter to

discuss equilibrium pricing and optimal consumption-portfolio choice.

We consider an agent whose preferences at spot (F, t) are repre-

sented by a preference correspondence DF,t with domain C ≡ L++,

where DF,t (c) ⊆ LF,t for all c ∈ C. Up to this chapter’s final section,

we assume that DF,t is forward looking: for all a, b ∈ C, if a = b on

F ×{t, . . . , T} then DF,t (a) = DF,t (b). In other words, spot-(F, t) pref-

erences do not depend on past or unrealized consumption. While this

assumption rules out potentially important aspects of preferences, it is

methodologically appropriate to start with the simpler case and layer

complexity on top as needed. (For example, Section 3.9 introduces a

special type of habit formation or durability of consumption.) More-

over, we assume that every DF,t is represented by a utility UF,t : C → R,

which is necessarily also forward looking: for all consumption plans

a, b, if a = b on F×{t, . . . , T} then UF,t (a) = UF,t (b). This property al-

lows us to consistently define UF,t
(

c1F×{t,...,T}

)

≡ UF,t (c) for all c ∈ C,
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thus extending the domain of UF,t to CF,t ≡
{

c1F×{t,...,T} | c ∈ C
}

. We

call the function UF,t increasing on CF,t if for every c ∈ C and arbi-

trage x ∈ LF,t, UF,t (c+ x) > UF,t (c).

Definition 3.4.1. A spot-(F, t) utility (function) is any forward-

looking function UF,t : C → R that is continuous and increasing on CF,t;

it is said to represent DF,t if x ∈ DF,t (c) is equivalent to UF,t (c+ x) >

UF,t (c). A dynamic utility is a function U : C → L such that for

all spots (F, t), a spot-(F, t) utility UF,t : C → R is well-defined by

UF,t (c) ≡ U (c) (F, t). The dynamic utility U is normalized if for all

s ∈ (0,∞), U (s) = s.

Let us fix any reference dynamic utility U : C → L. We call U (c)

the utility process of c ∈ C and write Ut (c) for its time-t value.

Since U0 (c) = UΩ,0 (c), we write U0 for the time-zero utility function

UΩ,0 : C → R. (Note the inconsistency with last section’s notation.

Since we were only concerned with time-zero utilities, in the last sec-

tion we used the notation U for what is U0 in this section.) A dynamic

utility Ũ is ordinally equivalent to U if for all spots (F, t), UF,t and

ŨF,t represent the same preference correspondence. The discussion of

Section 3.3 applied to each UF,t shows that U has a unique ordinally

equivalent normalized version. A property of U is ordinal if its validity

for U is equivalent to its validity for the normalized version of U and

is therefore effectively a property of the represented preference corre-

spondences. U is dynamically consistent if for all spots (F, t) and

x ∈ LF,t, UF,t (c+ x) > UF,t (c) implies U0 (c+ x) > U0 (c), provided

c, c + x ∈ C. This ordinal property corresponds to the dynamic con-

sistency assumption DF,t (c) ⊆ DΩ,0 (c) ≡ D (c) discussed at the end of

Section 3.1. The assumed continuity and monotonicity of utilities im-

plies the following seemingly stronger dynamic consistency condition.

Lemma 3.4.2. U is dynamically consistent if and only if for all

spots (F, t), c ∈ C and x ∈ LF,t such that c+ x ∈ C,

UF,t (c+ x) ≥ UF,t (c) ⇐⇒ U0 (c + x) ≥ U0 (c) .

Proof. Suppose U is dynamically consistent and UF,t (c+ x) ≥
UF,t (c). Then UF,t (c+ x+ ε) > UF,t (c) for all ε > 0, and therefore

U0 (c+ x+ ε) > U0 (c) for all ε > 0, and therefore U0 (c+ x) ≥ U0 (c).

The converse is immediate. �
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Consider now any nonterminal spot (F, t) and let

(3.4.1) (F0, t+ 1) , . . . , (Fd, t+ 1)

denote its immediate successor spots. The number d can vary from spot

to spot, although in typical applications it is a constant throughout

the filtration. Assuming U is normalized, a consequence of dynamic

consistency is that the spot-(F, t) utility remains the same if for each i

we replace the restriction of c on the subtree rooted on (Fi, t+ 1) with

an annuity whose payments are all equal to the (normalized) utility

value UFi,t+1 (c). More formally, we have the following claim.

Lemma 3.4.3. Suppose the dynamic utility U is a normalized and

dynamically consistent. Given any c ∈ CF,t, let c̄ ∈ CF,t be defined

by letting c̄(F, t) = c (F, t) and c̄ = UFi,t+1 (c) on Fi × {t+ 1, . . . , T}.

Then UF,t (c) = UF,t (c̄).

Proof. Let xi ≡ (UFi,t+1 (c) − c) 1Fi×{t+1,...,T}. Adding xi to c re-

places c on the subtree rooted at (Fi, t+ 1) with an annuity whose

payment is UFi,t+1 (c). We use induction in k to show that

(3.4.2) UF,t (c) = UF,t

(

c+
k
∑

i=0

xi

)

, k = 0, 1, . . . , d.

For k = 0, the claim is trivially true. For the inductive step, assume

UF,t (c) = UF,t (b), where b = c +
∑k−1
i=0 xi, with b = c for k = 0.

The utility normalization implies that UFk,t+1 (c) = UFk,t+1 (c + xk).

Since c equals b on the subtree rooted at (Fk, t+ 1), UFk,t+1 (b) =

UFk,t+1 (b+ xk). By Lemma 3.4.2, U0 (b) = U0 (b+ xk) and therefore

UF,t (b) = UF,t (b+ xk). The last equation combined with the inductive

hypothesis gives UF,t (c) = UF,t (b+ xk), proving (3.4.2). �

The preceding lemma’s conclusion is equivalent to the existence of

a function ΦF,t : (0,∞)2+d → R such that

(3.4.3) UF,t (c) = ΦF,t (c (F, t) , UF0,t+1 (c) , . . . , UFd,t+1 (c)) , c ∈ C.

The functions ΦF,t, as (F, t) ranges over all nonterminal spots, specify

a backward recursion on the information tree, which starts with the

terminal values UT (c) (equal to cT if U is normalized) and computes

UF,t (c) in terms of spot-(F, t) consumption and the already computed

end-of-period utility values. Let us call a dynamic utility that admits
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such a recursive specification a generalized recursive utility. One

can easily check that every generalized recursive utility is dynamically

consistent. We have therefore shown the following equivalence.

Lemma 3.4.4. A dynamic utility is a generalized recursive utility if

and only if it is dynamically consistent.

We call a (non-normalized) dynamic utility Ũ additive if it takes

the form Ũt (c) = Et
∑T
s=t us (cs), for functions ut : (0,∞) → R that

are increasing and continuous and hence invertible, and an expecta-

tion operator E under some full-support probability. Every additive

utility is dynamically consistent and is therefore a generalized recur-

sive utility. As already noted, utility additivity has some analytical

advantages but also some significant limitations. Besides the issue

illustrated in Example 3.3.12, risk-attitudes represented by additive

utilities are entirely determined by preferences in the absence of uncer-

tainty. For every consumption plan c that is deterministic, meaning

each ct is constant across states, an additive time-zero utility reduces

to Ũ0 (c) =
∑

t ut (ct). As a corollary of the uniqueness Theorem A.2.4,

we have the following limitation of additive utilities.

Proposition 3.4.5. Any two additive dynamic utilities that are or-

dinally equivalent when restricted to deterministic plans are necessarily

ordinally equivalent over all consumption plans.

In order to achieve a partial separation of time preferences and

attitudes toward risk, we consider a normalized generalized recursive

utility (3.4.3) such that for all x, x′, y0, . . . , yd, y ∈ (0,∞),

ΦF,t (x, y0, . . . , yd) = ΦF,t (x, y, . . . , y) ⇐⇒
ΦF,t (x

′, y0, . . . , yd) = ΦF,t (x
′, y, . . . , y) .(3.4.4)

This is an ordinal property of UF,t (or U0 given dynamic consistency)

since, by Lemma 3.4.3,

(3.4.5) ΦF,t (x, y0, . . . , yd) = UF,t

(

x1F×{t} +
d
∑

i=0

yi1Fi×{t+1,...,T}

)

.
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The value ΦF,t (x, y0, . . . , yd) can be thought of as a utility value of

a single-period uncertain payoff (y0, . . . , yd) ∈ (0,∞)1+d, with corre-

sponding certainty equivalent value y ≡ νF,t (y0, . . . , yd) defined im-

plicitly by any of the equivalent equations of condition (3.4.4), in-

dependently of the value of x. From the perspective of spot (F, t),

an agent whose preferences are represented by UF,t is indifferent be-

tween the uncertain annuity
∑

i yi1Fi×{t+1,...,T} and the certain annuity

νF,t (y0, . . . , yd) 1F×{t+1,...,T}, independently of spot-(F, t) consumption.

The lower the certain annuity payment νF,t (y0, . . . , yd) is, the more

risk averse the agent. A dynamic utility U satisfies the irrelevance of

current consumption for risk aversion if condition (3.4.4) holds

at every nonterminal spot (F, t), where ΦF,t is defined by (3.4.5). If we

also define

(3.4.6) fF,t (x, y) ≡ ΦF,t (x, y, . . . , y) , x, y ∈ (0,∞) ,

then ΦF,t (x, y0, . . . , yd) = fF,t (x, νF,t (y0, . . . , yd)) and (3.4.3) becomes

(3.4.7) UF,t (c) = fF,t (c (F, t) , νF,t (UF0,t+1 (c) , . . . , UFd,t+1 (c))) .

By recursive utility we mean a dynamic utility that satisfies a recur-

sion of this form. Combining Lemma 3.4.4 with the preceding argu-

ment, we have the following ordinal characterization of recursive utility.

Proposition 3.4.6. A dynamic utility is a recursive utility if and

only if it is dynamically consistent and satisfies the irrelevance of cur-

rent consumption for risk aversion.

A dynamic utility is recursive if and only if its normalized ver-

sion is recursive. With a normalized utility in mind, we define the

terms conditional aggregator and conditional certainty equiva-

lent (CE) to mean, respectively, any continuous increasing functions

fF,t : (0,∞)2 → (0,∞) and νF,t : (0,∞)1+d → (0,∞) that are normal-

ized: for all s ∈ (0,∞), fF,t (s, s) = s and νF,t (s, . . . , s) = s. A recur-

sive utility U satisfying (3.4.7) is normalized if and only if UT (c) = cT

and the functions fF,t and νF,t are conditional aggregators and CEs,

respectively. The main theory of the remainder of this chapter is pre-

sented in terms of normalized recursive utilities.
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Our earlier construction of recursion (3.4.7) makes precise the sense

in which the conditional aggregator fF,t and conditional CE νF,t repre-

sent single-period time preferences and risk aversion from the perspec-

tive of spot (F, t). Suppose U ′ is another normalized recursive utility

with spot-(F, t) conditional aggregator f ′
F,t and conditional CE ν ′

F,t. By

identity (3.4.6), fF,t = f ′
F,t if and only if UF,t and U ′

F,t are equal when

restricted to consumption plans of the form x1F×{t} + y1F×{t+1,...,T}.

In this sense, fF,t represents time preferences over a single period. A

complete separation between time preferences and risk attitudes is not

generally possible. We can make the more modest claim, however,

that given single-period time preferences, the conditional CE repre-

sents single-period risk attitudes. The conditional CE ν ′
F,t is more

risk averse than νF,t if ν ′
F,t ≤ νF,t, meaning that ν ′

F,t (z) ≤ νF,t (z) for

all z ∈ (0,∞)1+d. Assuming that fF,t = f ′
F,t, we have seen that making

ν ′
F,t more risk averse than νF,t means that from the perspective of spot

(F, t), the constant annuity that is of equal utility as the contingent

annuity
∑

i yi1Fi×{t+1,...,T} makes a lower payment ν ′
F,t (y0, . . . , yd) un-

der U ′
F,t compared to the payment νF,t (y0, . . . , yd) under UF,t. In this

sense, risk aversion toward single-period payoffs is higher under U ′
F,t

than UF,t.

Example 3.4.7. The functional form of νF,t can be founded on any

static theory of choice under uncertainty, the most common being ex-

pected utility theory. Suppose νF,t (z) = u−1 (
∑

i u (zi)P [Fi | F ]) and

ν ′
F,t (z) = ũ−1 (

∑

i ũ (zi)P [Fi | F ]) for increasing continuous functions

u, ũ : (0,∞) → R and a common full-support probability P . Theo-

rem A.6.1 shows that ν ′
F,t ≤ νF,t if and only if ũ = φ ◦ u for a concave

function φ : u (0,∞) → R. Section A.6 discusses various conditions

that express the idea that νF,t is risk averse in an absolute sense, all of

which are equivalent to the concavity of u. ♦

Recall that Lt denotes the set of all Ft-measurable random vari-

ables. Let L++
t denote the set of strictly positive elements of Lt. Just

as it is convenient to represent the conditional expectations E[· | F ] for

every spot (F, t) by an operator Et, it will be convenient to represent

conditional CEs as operators from L++
t+1 to L++

t by letting

(3.4.8)

vt (z) (ω) ≡ vF,t (z) ≡ νF,t (z (F0) , . . . , z (Fd)) , ω ∈F, z ∈ L++
t+1,
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where z (Fi) denotes the value of the random variable z on the event Fi.

For instance, for the expected-utility conditional CE specification of

Example 3.4.7, vt = u−1
Etu, meaning vt (z) = u−1 (Etu (z)) for all

z ∈ L++
t+1. For conditional aggregators, we write

(3.4.9) ft (ω, x, y) ≡ f (ω, t, x, y) ≡ fF,t (x, y) , ω ∈F, x, y ∈ (0,∞) .

As with random variables, the state variable ω is typically elided. These

conventions allow us to write recursion (3.4.7) more succinctly as

(3.4.10) Ut (c) = ft (ct, vt (Ut+1 (c))) , UT (c) = cT .

Example 3.4.8. The normalized version of the additive utility Ũt ≡
Et
∑T
s=t us is Ut ≡ φ−1

t ◦ Ũt, where φt (α) ≡ ∑T
s=t us (α), α ∈ (0,∞).

It is not hard to see that U is recursive with an aggregator and CE

that are both specified in terms of the same functions ut, thus tying

time preferences to risk aversion as discussed earlier. Rather than go

over the general case, the point is made more clearly in the special case

where, for some β ∈ (0, 1) and u : (0,∞) → R,

(3.4.11) Ũt (c) = Et

[

T−1
∑

s=t

βs−tu (cs) +
βT−t

1 − β
u (cT )

]

.

To motivate the utility weight for terminal consumption, define the

hypothetical infinite-horizon plan c̄ by letting c̄t = ct for t < T and

c̄t = cT for all t ≥ T . Then Ũt (c) = Et
∑∞
s=t β

s−tu (c̄s). The normalized

version U satisfies recursion (3.4.10) with

(3.4.12) ft (ω, x, y) ≡ u−1 ((1 − β)u (x) + βu (y)) , vt ≡ u−1
Etu.

Since preferences over deterministic consumption plans determine f ,

they also determine u and hence v, which captures attitude toward

risk. This illustrates the more general conclusion of Proposition 3.4.5.

By relaxing the additivity assumption, we can use a different function

u in specifying f and v, thus freeing the conditional CE specification

from any assumptions on preferences in the absence of uncertainty. ♦

Motivated by the streamlined notation of recursion (3.4.10), we

henceforth adopt the following terminology.

An aggregator f is a mapping that assigns to every state ω and

nonterminal time t a normalized, increasing and continuous function

f (ω, t, ·) : (0,∞)2 → (0,∞) such that the process (ω, t) 7→ f (ω, t, x, y)
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is adapted, for all (x, y). The aggregator f is state (resp. time)

independent if f (ω, t, ·) does not vary with the state ω (resp. time t).

For instance, the aggregator in (3.4.12) is state and time independent.

For every spot (F, t), the aggregator f implies a conditional aggregator

fF,t defined by (3.4.9).

A certainty equivalent (CE) υ is a mapping that assigns to

each nonterminal time t a continuous function υt : L
++
t+1 → L++

t that is

normalized (vt (s) = s for all s ∈ (0,∞)) and for every z ∈ L++
t+1 and

spot (F, t), the value of υt (z) on F , which we denote by υF,t (z), is an

increasing function of the restriction7 of z on F . Given this condition,

we consistently extend the domain of vF,t by letting υF,t (z) ≡ υF,t (z1F )

for all z ∈ L++
t+1. For every spot (F, t), the CE v implies a conditional

CE νF,t defined by (3.4.8).

Using this terminology, we restate the definition of recursive utility

as it applies to a normalized dynamic utility.

Definition 3.4.9. A normalized dynamic utility U is a recursive

utility if there exist an aggregator f and a CE υ such that for every

c ∈ C, the process U (c) solves the backward recursion (3.4.10).

Consider two normalized recursive utilities U and U ′ with respec-

tive CEs v and v′ and a common state independent aggregator f . For

deterministic c, the utility process U (c) is also deterministic and there-

fore vt (Ut+1 (c)) = Ut+1 (c). The analogous claim is true of U ′. Since

f is common, it follows that U = U ′ on the set of deterministic plans,

and U ′
0 ≤ U0 if and only if v′ is more risk averse than v in the sense

that v′
t ≤ vt for all t.

We conclude this section with a recursive-utility gradient calcu-

lation, which is essential in formulating optimality conditions. As in

Section 3.3, the gradient is defined relative to the inner product (3.3.3),

where E is the expectation operator relative to some underlying full-

support probability that is fixed throughout.

We will derive a gradient expression in terms of the CE derivative,

which we define using the conditional norm notation ‖h‖t ≡ (Et [h
2])

1/2
.

Definition 3.4.10. The derivative of the CE υ is a mapping κ

that assigns to each time t < T and z ∈ L++
t+1 a random variable

7More formally, this means that for all x, y ∈ L++
t+1, if x = y on F then υt (x) = υt (y)

on F , and if x ≥ y 6= x on F then υt (x) > υt (y) on F .
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κt+1 (z) ∈ Lt+1 such that for all z + h ∈ L++
t+1,

υt (z + h) = υt (z) + Et [κt+1 (z) h] + εt (h) ‖h‖t,

where εt (h) is small for small h in the sense that for all ǫ > 0, there

exists δ > 0 such that ‖h‖t < δ implies |εt (h)| < ǫ. A CE is differen-

tiable if it has a derivative.

For a more concrete expression of the CE derivative, consider the

spot-(F, t) conditional CE νF,t implied by v, and let zi denote the value

of z on Fi for each immediate successor spot (Fi, t+ 1) of (F, t). Writing

κFi,t+1 (z) for the value of κt+1 (z) on Fi, we have

(3.4.13) κFi,t+1 (z)P [Fi | F ] =
∂νF,t (z0, . . . , zd)

∂zi
.

In the converse direction, by a standard calculus result, if the partial

derivatives of νF,t exist and are continuous for all nonterminal spots

(F, t), then κ as specified in (3.4.13) is the derivative of v.

Example 3.4.11. Suppose υt = u−1
Etu for some continuously dif-

ferentiable increasing function u : (0,∞) → R. Then the derivative κ

of υ exists and is given by

κt (z) =
u′ (z)

u′ (υt−1 (z))
, t = 1, . . . , T,

where u′ denotes the derivative of u. ♦

The gradient of a recursive utility is computed in the following

proposition, where ∂ft/∂c and ∂ft/∂v denote the partial derivatives

of the time-t aggregator ft with respect to its consumption and CE

arguments, respectively.

Proposition 3.4.12. Suppose U is a normalized recursive utility

with aggregator f and CE υ. Suppose also that ft (ω, ·) is differentiable

for every state ω and time t < T , and υ has derivative κ. Given a

reference consumption plan c, let the processes λ and E be defined by

(3.4.14) λt ≡ ∂ft
∂c

(ct, υt (Ut+1 (c))) , t < T, λT = 1,

(3.4.15) E0 ≡ 1,
Et

Et−1
≡ ∂ft−1

∂v
(ct−1, υt−1 (Ut (c)))κt (Ut (c)) .
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Then for every adapted process x and time t,

(3.4.16) lim
ǫ↓0

Ut (c + ǫx) − Ut (c)

ǫ
= Et

[

T
∑

s=t

Es
Et
λsxs

]

,

and therefore

∇U0 (c) = Eλ.

Proof. Fixing x ∈ L, define, for all sufficiently small ǫ ∈ R,

φt (ǫ) ≡ Ut (c+ ǫx) .

The left-hand-side in (3.4.16) defines the derivative φ′
t (0). The utility

recursion implies

φt (ǫ) = ft (ct + ǫxt, υt (φt+1 (ǫ))) .

Differentiating at ǫ = 0 using the differentiation chain rule, we have

φ′
t (0) = λtxt +

∂ft
∂v

(c, υt (Ut+1 (c)))Et
[

κt+1 (φt+1 (0))φ′
t+1 (0)

]

.

Letting Vt ≡ φ′
t (0) and δt ≡ λtxt, the recursion can be restated as

Vt = δt +
1

Et
Et [Et+1Vt+1] , VT = xT .

As discussed in Section 2.3, this recursion expresses the fact that E
(viewed as a state-price density) prices the contract (δ, V ), a condition

that can be restated as equation (3.4.16). �

Proposition 3.3.6 gives a context in which λ0 of the above propo-

sition is the marginal value of wealth V ′ (w). The same argument can

be applied from the perspective of any other spot. For this reason, we

will refer to λ as a marginal-value-of-wealth process.

3.5. Scale invariant recursive utility

The optimality and equilibrium theory to follow assumes a recur-

sive utility that represents scale invariant preferences in the sense of

Examples 3.2.10 and 3.3.2. In preparation, we analyze a scale invariant

(SI) normalized recursive utility U with aggregator f and CE v (Def-

inition 3.4.9). U is SI if UF,t represents SI preferences for every spot

(F, t), a condition that, by Lemma 3.4.2, is equivalent to U0 being SI.

For every spot (F, t), UF,t is assumed to be normalized and is therefore

SI if and only if it is homogeneous of degree one: UF,t (sc) = sUF,t (c)
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for all s ∈ (0,∞) and c ∈ C. A conditional aggregator or CE can also

be viewed as a normalized utility function and is therefore defined to

be SI if it is homogeneous of degree one. We call an aggregator f or

CE v SI if for every nonterminal spot (F, t), the implied conditional

aggregator fF,t or CE νF,t is SI. Given last section’s construction of

a recursive-utility representation, it is straightforward to verify that a

recursive utility is SI if and only if the corresponding aggregator and

conditional CE are both SI.

Example 3.5.1 (Epstein-Zin-Weil utility). By Theorem A.4.3, the

expected utility CE of Example 3.4.7 is SI if and only if

(3.5.1) vt = u−1
γ Etuγ, where uγ (x) ≡ x1−γ − 1

1 − γ
(with u1 ≡ log ),

for a coefficient of relative risk aversion (CRRA) γ. Analogously,

assuming an additive utility over deterministic plans (characterized by

Theorem A.2.3), the aggregator is SI and state and time independent

if and only if it takes the form

(3.5.2) ft (ω, c, υ) = u−1
δ ((1 − β)uδ (c) + βuδ (υ)) ,

for parameters β ∈ (0, 1) and δ ∈ R, with uδ defined in (3.5.1). The

normalized recursive utility specified in terms of the constant param-

eters β, δ and γ by the CE (3.5.1) and aggregator (3.5.2) is known

as an Epstein-Zin-Weil (EZW) utility.8 (All our later results with

EZW utility apply with minor changes to parameters that are adapted

processes, which can be thought of as the result of applying Theo-

rem A.4.3 separately to each conditional aggregator fF,t and CE νF,t.)

The constant parameters (β, δ) of EZW utility determine and are deter-

mined by the utility of deterministic consumption plans. Given (β, δ),

increasing γ increases risk aversion.

Epstein-Zin-Weil utility reduces to expected discounted utility if

and only if γ = δ, in which case

Ũ ≡ uδ ◦ U
1 − β

takes the additive form (3.4.11) of Example 3.4.8 with u = uδ. Note

that on deterministic plans, Ũ takes the same additive form, with Et

8Named after the contributions of Epstein and Zin [1989] and Weil [1989, 1990].
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omitted, no matter what the value of γ is. So EZW utility without

uncertainty is ordinally equivalent to time-additive discounted utility.

Normalizing the more general expected discounted utility

(3.5.3) Ũt (c) = Et

[

T−1
∑

s=t

bs−tuδ (cs) +
bT−t

1 − β
uδ (cT )

]

,

for some positive constant b, not necessarily equal to β, yields the EZW

form, but with a time-dependent parameter β. Assuming δ 6= 1, the

additive utility (3.5.3) becomes EZW utility (with constant parame-

ters) after a change of the unit of account. Let us call the original

unit a “bushel” and the new unit a “dollar,” and let u represent the

bushel-to-dollars unit conversion process. For every consumption plan

c in bushels, let cu ≡ cu denote the same consumption plan in dollars,

and let Ũu (cu) ≡ Ũ (c). Clearly, Ũu represents the same preferences

over consumption plans in dollars as Ũ does over consumption plans in

bushels. For the specific unit conversion choice ut ≡ (1 + α)t, where α

solves (1 + α)1−δ β = b, Ũu

t (cu) is ordinally equivalent to

Et

[

T−1
∑

s=t

βs−t
(cu

s )1−δ

1 − δ
+
βT−t

1 − β

(cu

T )1−δ

1 − δ

]

, (δ 6= 1) ,

and therefore the normalized version Uu of Ũu is EZW utility with

constant parameters β and γ = δ. For example, if one is interested in

maximizing Ũ0 (c) subject to 〈π | c〉 ≤ w for some SPD π with π0 = 1,

one can change the unit of account and equivalently maximize the EZW

utility Uu

0 (cu) subject to 〈πu | cu〉 ≤ wu0 = w, where πu ≡ u−1π. Note

that πu and π differ only in their respective implied short-rate processes

ru and r, which are related by (1 + ru) = (1 + α) (1 + r). ♦

Example 3.5.2 (multiple-prior forms of recursive utility). Convex

duality can be used to express recursive utility in a variety of equiv-

alent ways. This example illustrates the basic idea9 by applying Ex-

ample A.6.2 to the Epstein-Zin-Weil utility U of Example 3.5.1 with

9The example is extended in Skiadas [2015] to allow for a non-unit EIS and risk-
source dependent CRRA. A continuous-time version can be found in Skiadas [2003].
The basic building tool is that of conjugate (or Fenchel) duality, exposited in
Rockafellar [1970], which can be applied to any concave or convex function defining
the utility recursion to express the corresponding nonlinearity as minimization or
maximization over linear forms.



3.5. SCALE INVARIANT RECURSIVE UTILITY 158

γ > δ = 1. The claim is that for every consumption plan c,

(3.5.4)
logU0 (c)

1 − β
= min

Q∈Q

{

ŨQ
0 (c) +

1

γ − 1
ŨQ

0

(

ξQ
)

}

,

where Q denotes the set of all full-support probabilities on 2Ω, ξQ is

the conditional density process of Q with respect to P , and

ŨQ
0 (c) ≡ E

Q

[

T−1
∑

t=0

βt log ct +
βT

1 − β
log cT

]

.

As usual, E
Q denotes expectation under Q. To show (3.5.4), we ap-

ply Example A.6.2 to the conditional CE at each nonterminal spot.

By Remark 2.4.5 and associated expression (2.4.10), the identity of

Example A.6.2 can be expressed as

log
(

u−1
γ Etuγ (Ut+1)

)

= min
Q∈Q

{

E
Q
t logUt+1 + θEQt log

ξQt+1

ξQt

}

,

with θ ≡ (γ − 1)−1 and the usual abbreviation U ≡ U (c). Substitute

into the utility recursion

Ut = exp
(

(1 − β) log (ct) + β log
(

u−1
γ Etuγ (Ut+1)

))

to find that V ≡ (1 − β)−1 logU satisfies the recursion

Vt = min
Q∈Q

{

log ct +
βθ

1 − β
E
Q
t log

ξQt+1

ξQt
+ βEQt Vt+1

}

.

Starting with the terminal value VT = (1 − β)−1 log cT and iterating

backward in time, it follows that

logU0 (c)

1 − β
= min

Q∈Q

{

ŨQ
0 (c) +

θ

1 − β
E
Q

[

T−1
∑

t=0

βt+1 log
ξQt+1

ξQt

]}

.

Identity (3.5.4) follows after noting that, since ξQ0 = 1, the expression

in the last expectation can be expanded as

T−1
∑

t=0

βt+1 log
ξQt+1

ξQt
=

T
∑

t=1

βt log ξQt − β
T−1
∑

t=1

βt log ξQt

= (1 − β)
T−1
∑

t=1

βt log ξQt + βT log ξQT .

♦

At the center of the equilibrium and optimality theory to follow

is the utility gradient expression Eλ of Proposition 3.4.12, with added
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regularity implied by scale invariance that we now review. It is a gen-

eral property of the gradient of a homogeneous-of-degree-one functional

that it is homogeneous of degree zero and satisfies the so-called Euler

equation: The functional’s rate of change at a vector x in the direc-

tion of x equals the functional’s value at x. The proof is a matter of

observing simple properties of the relevant difference quotient. In the

following lemma, we state and prove this claim in the language of SI

CEs.

Lemma 3.5.3. Suppose υ is an SI CE with derivative κ. Then for

all processes s, U ∈ L++,

κt (st−1Ut) = κt (Ut) and υt−1 (Ut) = Et−1 [κt (Ut)Ut] .

Proof. Since the derivative κ of υ is in particular a directional

derivative, we have the identity

Et−1 [κt (st−1Ut)xt] = lim
ǫ↓0

υt−1 (st−1Ut + ǫst−1xt) − υt−1 (st−1Ut)

ǫst−1

= Et−1 [κt (Ut) xt] ,

where the second equality follows from the fact that υ is SI and there-

fore the term st−1 can be factored out in the numerator. Since xt can be

any Ft-measurable random variable, κt (st−1Ut) = κt (Ut). For xt = Ut

and st−1 = 1, scale invariance allows us to factor out (1 + ǫ) in the

numerator of the above difference quotient, for all ǫ > 0, and conclude

that it must equal υt−1 (Ut). �

The Euler equation for homogeneous functions applied to SI recur-

sive utility gives the following result.

Lemma 3.5.4. Suppose U is an SI recursive utility that satisfies the

smoothness assumptions of Proposition 3.4.12 and therefore π ≡ Eλ is

the utility gradient of U0 at c, where λ and E are defined by (3.4.14)

and (3.4.15), respectively. Then

(3.5.5) U (c) = λW,

where

(3.5.6) Wt ≡ Et

[

T
∑

s=t

πs
πt
cs

]

, t = 0, . . . , T.

Proof. Set x = c in (3.4.16). The left-hand side equals Ut (c). �
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For readability, we abuse notation, writing c to denote either a

consumption plan or a dummy variable representing a consumption

value, and υ to denote either a CE or a dummy variable representing

a conditional CE value. An SI aggregator can be written as

(3.5.7) ft (ω, c, υ) = υgt

(

ω,
c

υ

)

, c, υ ∈ (0,∞) ,

where gt (ω, x) ≡ ft (ω, x, 1), which leads us to the following terminol-

ogy and SI aggregator characterization.

Definition 3.5.5. A proportional aggregator is a mapping that

assigns to each time t < T a function gt : Ω × (0,∞) → (0,∞), where

gt (·, x) is Ft-measurable for all x ∈ (0,∞), and for all ω ∈ Ω, the

function gt (ω, ·) is continuous and increasing, gt (ω, 1) = 1, and the

mapping x 7→ gt (ω, x) /x is decreasing. A proportional aggregator g

concave or differentiable if gt (ω, ·) has the respective property for

every (ω, t).

Lemma 3.5.6. An aggregator f is SI if and only if it takes the

form (3.5.7) for some proportional aggregator g, in which case f is

concave if and only if g is concave.

Proof. The first part of the proposition is a straightforward con-

sequence of the definitions. If f is concave, then clearly so is g. Con-

versely, suppose f is given by (3.5.7) for a concave proportional aggre-

gator g. We fix the reference pair (ω, t) and abuse notation by writing

f and g for the functions ft (ω, ·) and gt (ω, ·). Consider any pair of

distinct points (c1, υ1) and (c2, υ2) in (0,∞)2 and let (c, υ) denote their

sum. Concavity of g implies

g
(

c

υ

)

≥ υ1

υ1 + υ2
g

(

c1

υ1

)

+
υ2

υ1 + υ2
g

(

c2

υ2

)

.

Multiplying through by υ shows that f (c, υ) > f (c1, υ1) + f (c2, υ2),

which implies concavity of f , since f is homogeneous of degree one. �

The terminology and notation for proportional aggregators is analo-

gous to that for aggregators. Thus we say that g is state independent

if gt (ω, ·) does not vary with ω, and time independent if gt (ω, ·) does

not vary with t. We also omit the state variable in expressions like the
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utility recursion

(3.5.8) Ut (c) = υt (Ut+1 (c)) gt

(

ct
υt (Ut+1 (c))

)

, t < T, UT = cT .

We next introduce some useful transformations of a proportional

aggregator g , which is from now on assumed to be differentiable, with

g′
t (ω, ·) denoting the derivative of gt (ω, ·).

The elasticity h of g is defined for every time t < T by

(3.5.9) ht (x) ≡ d log gt (x)

d log x
=
xg′

t (x)

gt (x)
, x ∈ (0,∞) .

Since x, gt (x) and g′
t (x) are all positive, so is ht (x). The fact that

gt (x) /x is decreasing is equivalent to ht (x) ∈ (0, 1) for all x ∈ (0,∞).

Note also that since gt (1) = 1, we have g′
t (1) = ht (1) ∈ (0, 1). The

functions g′
t and ht arise naturally in the following calculations.

Lemma 3.5.7. Under the same assumptions as Lemma 3.5.4,

(3.5.10) λt = g′
t (xt) and

ct
Wt

= ht (xt) , for all t < T,

where Wt is defined in (3.5.6) and

(3.5.11) xt ≡ ct
υt (Ut+1 (c))

.

Proof. The expression for λt follows from the definition (3.4.14) of

λ and identity (3.5.7). Identity U (c) = λW from Lemma 3.5.4 together

with the definitions of x and h, and the utility recursion (3.5.8) imply

ct
Wt

=
ctg

′
t (xt)

Ut (c)
=

ctg
′
t (xt)

υt (Ut+1 (c)) gt (xt)
= ht (xt) .

�

Another transformation of gt that is going to be useful in the theory

of SI pricing to follow is defined as

(3.5.12) qt (x) ≡ gt (x) − xg′
t (x)

g′
t (x)

, x ∈ (0,∞) .

The following lemma shows that the function qt arises naturally in

computing the gradient of an SI recursive utility.

Lemma 3.5.8. Given the assumptions of Proposition 3.4.12, sup-

pose further that U is SI recursive utility with proportional aggregator

g, and let qt be defined by (3.5.12). Then the gradient π ≡ ∇U0 (c)
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solves the recursion

(3.5.13) π0 = λ0,
πt
πt−1

= qt−1 (xt−1) κt (Ut (c))λt, t = 1, . . . , T,

where xt is defined in (3.5.11), and λ is given in (3.5.10) with λT = 1.

Proof. The claim is a corollary of Proposition 3.4.12 and the ob-

servation that

qt (x) =
∂ft (c, υ) /∂v

∂ft (c, υ) /∂c
, x ≡ c

υ
∈ (0,∞) .

�

The elasticity of g should not be confused with the elasticity of

intertemporal substitution (EIS), which in the current context is

the inverse of the elasticity of q:

(3.5.14)
1

EISt (x)
≡ d log qt (x)

d logx
, x ∈ (0,∞) .

Example 3.5.9 (constant-EIS aggregator). A constant EIS corre-

sponds to the SI aggregator form (3.5.2) of Example 3.5.1. Suppose the

proportional aggregator g implies a constant EIS and let δ ≡ 1/EIS.

Define the parameter β by 1 − β ≡ g′
t (1) = ht (1) ∈ (0, 1). Integrating

(3.5.14) and using the identity ht (x) = 1/ (1 + qt (x) /x), we have

(3.5.15) qt (x) =
βxδ

1 − β
and ht (x) =

(1 − β) x1−δ

(1 − β)x1−δ + β
.

Finally, integrating (3.5.9) and using the fact that gt (1) = 1 results in

the proportional aggregator gt (x) ≡ ft (x, 1), where f is the aggrega-

tor (3.5.2) of the EZW specification of Example 3.5.1. ♦
The unit-EIS proportional aggregator is an example of what we

will call a regular proportional aggregator, which is defined next and

used in simplifying some secondary aspects of the optimality theory to

follow.

Definition 3.5.10. The proportional aggregator g is regular if it

is differentiable and for all ω ∈ Ω, the derivative g′
t (ω, ·) : (0,∞) →

(0,∞) is decreasing and satisfies

(3.5.16) lim
x↓0

g′
t (ω, x) = ∞ and lim

x→∞
g′
t (ω, x) = 0.

In the remainder of this section we assume that g is a regular pro-

portional aggregator and we follow the usual notational convention of
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omitting the implied state variable ω. In this case, the derivative g′
t is

invertible and therefore It : Ω × (0,∞) → (0,∞) is well-defined by

(3.5.17) g′
t (It (λ)) = λ, λ ∈ (0,∞) .

Analogously to c and v, we abuse notation by using the same sym-

bol for a process, λ in this case, and a dummy variable representing

possible values of the process. The definition of It is motivated by

the relationship λt = g′
t (xt) of Lemma 3.5.7, which is equivalent to

xt = It (λt).

The regularity assumption on g implies that gt is a (strictly) concave

function. The convex dual10 of gt is the function g∗
t : Ω × (0,∞) →

(0,∞) defined for every λ ∈ (0,∞) (and implied state) by

(3.5.18) g∗
t (λ) ≡ max

x∈(0,∞)
{gt (x) − λx} = gt (It (λ)) − λIt (λ) .

To gain some geometric understanding of this quantity (also encoun-

tered in Example A.6.2), draw the graph of gt on the real plane and

a line of slope λ that intersects the graph. Raise the line as high as

possible while intersecting the graph and maintaining the slope λ. At

the highest such point, the line is tangent to the graph and intersects

the vertical axis at g∗
t (λ). The fact that this line is above the graph

corresponds to the inequality gt (x) ≤ g∗
t (λ) + λx, with the inequality

becoming an equality at the tangency point where λ = g′
t (x).

Note that after the change of variables

λ ≡ g′
t

(

c

υ

)

and x ≡ c

v
,

we have

(3.5.19)
∂ft (c, υ)

∂v
= g∗

t (λ) and qt (x) =
g∗
t (λ)

λ
.

An observation that will be useful later on is that the last equation

uniquely determines λ given qt (x) :

Lemma 3.5.11. Assuming the proportional aggregator g is regular,

for every time t < T and q ∈ (0,∞) , there exists a unique λ ∈ (0,∞)

such that q = g∗
t (λ) /λ.

10In more classical terms, if we define ft (x) ≡ −gt (x) and f∗
t (x∗) ≡ g∗

t (−x∗), then
f∗

t is the Legendre transform of ft, also known as the convex conjugate of ft.
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Proof. Plot the graph of the concave function gt and note that as

the slope λ = g′
t (x) of the tangent line at x decreases, the intercept

g∗
t (λ) with the vertical axis increases. Therefore, g∗

t is a (strictly)

decreasing function. Letting the tangent line’s slope go to zero, observe

that g∗
t (0+) = gt (∞) > gt (1) = 1. Consider now the graph of g∗

t on the

plane and, for any given q ∈ (0,∞), the line L = {(λ, λq) | λ ∈ (0,∞)}.

The graph of g∗
t is downward sloping, it is above L near the vertical

axis and therefore crosses L at exactly one point, which defines the

unique λ ∈ (0,∞) such that q = g∗
t (λ) /λ. �

3.6. Equilibrium with scale invariant recursive utility

We continue taking as given an underlying full-support probabil-

ity P , defining the expectation operator E, relative to which state-price

densities and utility gradients are defined. Proposition 3.4.12 gives the

formula Eλ for the gradient of recursive utility at a given reference

consumption plan c. If c is optimal for some agent given a market,

then π ≡ Eλ is also an equilibrium state-price density (SPD). Since

an SPD prices all traded assets, we have a link between consumption

and market prices, which is the basis for so-called consumption-based

asset pricing models. A useful way of thinking about equilibrium price

restrictions is in terms of the period-t intertemporal marginal rate

of substitution (IMRS) πt/πt−1, where π is the utility gradient at a

given reference consumption plan c. If c is optimal, the IMRS places

recursive restrictions on every traded (or synthetic) contract. For ex-

ample, as we saw in Section 2.3, assuming the contract (δ, V ) has well-

defined returns Rt ≡ Vt/ (Vt−1 − δt−1), its pricing by π can be stated

as

(3.6.1) Et−1

[

πt
πt−1

Rt

]

= 1.

Applied to a traded money-market account with rate process r ∈ P0,

we have the IMRS mean restriction Et−1πt/πt−1 = (1 + rt)
−1, while

the Hansen-Jagannathan bound (2.3.9) implies a lower bound on the

IMRS conditional variance.

Remark 3.6.1. In interpreting the IMRS, it is important to keep

in mind that it is defined relative to P . Suppose πQ is an SPD relative

to another full-support probability Q and let ξt ≡ E [dQ/dP ]. (Recall
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that Q is an EMM if πQ is predictable, but we do not assume that

here.) By Lemma 2.4.4, if the pairs (P, π) and
(

Q, πQ
)

represent the

same present-value function, then πt/π0 = πQt ξt/π
Q
0 . ♦

In the remainder of this section we elaborate on equilibrium pricing

restrictions under the assumption of SI recursive utility, which is con-

sistent with the representative-agent argument of Example 3.2.10. The

theory presented is agnostic toward this interpretation—the consump-

tion plan c can be either an individual investor’s plan or a representative

agent’s plan.

A formula for the equilibrium IMRS for SI recursive utility was

established in Lemma 3.5.8. We now show how the IMRS can be

determined by taking as input consumption growth only. As a pre-

liminary example, consider an agent maximizing the additive utility of

Example 3.4.8 under the assumption of scale invariance, which implies

the EZW specification of Example 3.5.1 with γ = δ. The utility gradi-

ent at a reference consumption plan c can be computed spot by spot,

resulting in the IMRS11

(3.6.2)
πt
πt−1

= β

(

ct
ct−1

)−δ

, (assuming γ = δ).

The IMRS in this case is determined by consumption growth at every

spot on the information tree. The following proposition shows that

for a more general SI recursive utility the mapping from consumption

growth to IMRS is less direct, requiring the solution of a backward

recursion on the information tree. Although not explicitly stated, the

proof shows that the process x corresponds to the consumption-to-CE

ratio of equation (3.5.11).

Proposition 3.6.2 (IMRS and consumption growth). Suppose U

is a normalized SI recursive utility with differentiable proportional ag-

gregator g and CE υ with derivative κ. Given a consumption plan c, let

the process x be defined by the backward recursion, where gT (x) ≡ x,

(3.6.3) xt−1 = υt−1

(

gt (xt)

xt

ct
ct−1

)−1

, t = 1, . . . , T ; xT = 1.

11This direct link between the IMRS and consumption growth was established in
an influential paper by Lucas [1978].
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Then π ∈ L++ is the gradient of U0 at c if and only if π0 = g′
0 (x0) and

(3.6.4)
πt
πt−1

= qt−1 (xt−1)κt

(

gt (xt)

xt

ct
ct−1

)

g′
t (xt) , t = 1, . . . , T,

where the functions qt are defined by (3.5.12).

Proof. With some abuse of notation, let

(3.6.5) xt ≡ ct
υt (Ut+1)

, U ≡ U (c) .

By the recursion defining the utility function,

Ut = υt (Ut+1) gt (xt) = ct−1
gt (xt)

xt

ct
ct−1

.

Since υt−1 is homogeneous of degree one,

υt−1 (Ut) = ct−1υt−1

(

gt (xt)

xt

ct
ct−1

)

.

Substituting into equation (3.6.5) with t − 1 in place of t results in

recursion (3.6.3). Since recursion (3.6.3) uniquely determines x, the

recursion’s solution must equal the x defined by equation (3.6.5). The

same expression for Ut and the fact that κt is homogeneous of degree

zero (Lemma 3.5.3) result in the identity

(3.6.6) κt (Ut) = κt

(

gt (xt)

xt

ct
ct−1

)

.

Lemma 3.5.8 completes the proof. �

Example 3.6.3. For the constant-CRRA CE (3.5.1), Example 3.4.11

and equation (3.6.3) imply that the middle factor of the IMRS expres-

sion (3.6.4) can be written as

κt

(

gt (xt)

xt

ct
ct−1

)

=

(

xt
xt−1

)γ (

gt (xt)
ct
ct−1

)−γ

. ♦

Given scale invariance, pricing in terms consumption growth is

closely related to pricing in terms of the market return. We elabo-

rate in the context of an SI recursive utility U . Given a consumption

plan c ∈ L++, suppose π is the gradient of U0 at c. The following

proposition relates the corresponding IMRS to the quantity

(3.6.7) Mt ≡ Wt

Wt−1 − ct−1

, where Wt ≡ Et

[

T
∑

s=t

πs
πt
cs

]

.
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In the representative-agent pricing context of Example 3.2.10, c is the

aggregate endowment and M is the market return process.

Proposition 3.6.4 (IMRS and market returns). Suppose U is a

normalized SI recursive utility whose CE υ has derivative κ and whose

proportional aggregator g is regular, with convex dual g∗ as defined

in (3.5.18). Given any c, π ∈ L++, let the process M be defined by

(3.6.7). Then the process λ ∈ L++ is uniquely defined as the solution

to the following backward recursion, which also defines the process q

along the way:

(3.6.8) qt−1 =
g∗
t−1 (λt−1)

λt−1
=

1

υt−1 (λtMt)
, λT = 1.

Finally, if π is the gradient of U0 at c, then

(3.6.9)
πt
πt−1

= qt−1κt (λtMt)λt, t = 1, . . . , T, π0 = λ0.

Proof. Suppose π is the gradient of U0 at c, and let U ≡ U (c).

By Lemma 3.5.4 and the definition of Mt,

(3.6.10) Ut = λtWt = (Wt−1 − ct−1)λtMt.

By Lemma 3.5.7, λt = g′
t (xt), where xt denotes the consumption-to-CE

ratio (3.5.11). Given this fact, the combination of identities (3.5.12)

and (3.5.19) proves the first equality in (3.6.8) with qt = qt (xt). The

remainder of (3.6.8) is a consequence of the following string of equalities

qt−1 = xt−1
1 − ht−1 (xt−1)

ht−1 (xt−1)
=

ct−1

υt−1 (Ut)

Wt−1 − ct−1

ct−1

=
1

υt−1 (λtMt)
.

The first equality follows from the definition of ht and qt in (3.5.9) and

(3.5.12), the second equality follows from the identity ht (xt) = ct/Wt

of Lemma 3.5.7, and the last equality follows by inserting expres-

sion (3.6.10) for Ut and simplifying using the homogeneity of υt−1.

That the process λ uniquely solves (3.6.8) is shown in Lemma 3.5.11.

The IMRS expression (3.6.9) follows from Lemma 3.5.8, expres-

sion (3.6.10) for Ut, and the fact that κt is homogeneous of degree zero

(Lemma 3.5.3). �

Example 3.6.5. In addition to the assumptions of Proposition 3.6.4,

suppose that υt = u−1
γ Etuγ, where uγ is the power or logarithmic
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function (3.5.1) for some CRRA γ > 0. The CE derivative calcula-

tion of Example 3.4.11 and equation (3.6.8) imply that κt (λtMt) =

(qt−1λtMt)
−γ . IMRS expression (3.6.9) in this case reduces to

(3.6.11)
πt
πt−1

= (qt−1λt)
1−γM−γ

t ,

with q and λ given by (3.6.8). Note that

(3.6.12) γ = 1 implies
πt
πt−1

=
1

Mt
. ♦

Consider now the consumption growth to market return ratio

(3.6.13) Φt ≡ ct
ct−1

1

Mt
=

(

1

̺t−1
− 1

)

̺t, ̺t ≡ ct
Wt

,

where the second equation follows from the definition of M in (3.6.7).

For a strictly concave differentiable proportional aggregator g, the pro-

cesses x and λ uniquely determine each other, since λt = g′
t (xt). By

Lemma 3.5.7, ̺t = ht (xt) and therefore the ratio Φ is determined by

either x or λ. Given x or λ, consumption growth and market returns

carry the same information. In Propositions 3.6.2 and 3.6.4, x or λ is

determined by a backward recursion. For EZW utility with non-unit

EIS, the fact that we can invert the identity ̺t = ht (xt) means that

the IMRS expression can be computed jointly in terms of market re-

turns and consumption growth, without having to solve a backward

recursion. The resulting IMRS expression12 is a geometric average of

expression (3.6.2) for the additive (γ = δ) case, and expression (3.6.12)

for the unit CRRA (γ = 1) case.

Proposition 3.6.6 (EZW pricing with non-unit EIS). Suppose U

is the EZW utility of Example 3.5.1 for some CRRA γ and inverse-EIS

δ 6= 1. Fix any consumption plan c and let Mt be defined by (3.6.7). If

π ∈ L++ is the gradient of U0 at c, then

(3.6.14)
πt
πt−1

=



β

(

ct
ct−1

)−δ




φ
(

1

Mt

)1−φ

, φ ≡ 1 − γ

1 − δ
.

Proof. Once again, we apply Lemma 3.5.8 and we show that

the IMRS expression (3.5.13) reduces to the claimed expression. By

12The proposition’s proof shows the more general IMRS expression (3.6.18), which
applies for any, not necessarily additive, differentiable SI CE. Another version is
given in Skiadas [2009] for a constant CRRA CE and any regular proportional
aggregator g, provided h is invertible.
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Lemma 3.5.7, ̺t ≡ ct/Wt = ht (xt), where xt is the consumption-to-CE

ratio. Here ht is given by equation (3.5.15), and we can therefore invert

the last equation to compute xt as a function of ̺t:

xt =

(

β

1 − β

̺t
1 − ̺t

)1/(1−δ)

.

Using the expression for qt in (3.5.15), we then compute

(3.6.15) qt (xt) =

(

β

1 − β

)1/(1−δ) (
̺t

1 − ̺t

)δ/(1−δ)

.

Similarly, using the fact that gt (x) =
(

(1 − β)x1−δ + β
)1/(1−δ)

, we find

(3.6.16) λt = g′
t (xt) = (1 − β)1/(1−δ)

(

1

̺t

)δ/(1−δ)

.

The last two centered equations and equation (3.6.13) together imply

(3.6.17) qt−1 (xt−1)λt = β1/(1−δ)Φ
−δ/(1−δ)
t .

Finally, we claim that

κt (Ut (c)) = κt (λtMt) = κt
(

Φ
−δ/(1−δ)
t Mt

)

.

Since κt is homogeneous of degree zero (Lemma 3.5.3), the first equa-

tion follows from equation (3.6.10) (just as in the proof of Proposi-

tion 3.6.4), and the second equation follows from equation (3.6.17).

The last two displays and IMRS expression (3.5.13) result in

(3.6.18) π0 = λ0 and
πt
πt−1

= β1/(1−δ)Φ
−δ/(1−δ)
t κt

(

Φ
−δ/(1−δ)
t Mt

)

.

We will also use the identity

(3.6.19) υt−1

(

Φ
−δ/(1−δ)
t Mt

)

= β−1/(1−δ),

To show it, let qt ≡ qt (xt). As in the proof of Proposition 3.6.4,

qt−1 = 1/υt−1 (λtMt) and therefore υt−1 (qt−1λtMt) = 1 (since υ is SI).

Substituting expression (3.6.17) for qt−1λt results in (3.6.19).

All results so far apply for any differentiable SI CE. For a constant

CRRA CE, κt (z) = (z/υt−1 (z))−γ. Applying this expression with

z = Φ
−δ/(1−δ)
t Mt in the IMRS expression (3.6.18) and using (3.6.19)

the claimed IMRS expression (3.6.14) follows. �
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Example 3.6.7 (unit EIS). The key to the proof of the preceding

proposition is the invertibility of the identity ̺t = ht (xt) of Lemma 3.5.7,

which does not hold in the unit-EIS case gt (x) = x1−β , β ∈ (0, 1), where

ht (x) = 1 − β. Equation (3.6.13) in this case gives

ct
ct−1

= βMt (assuming unit EIS). ♦

This section’s results attribute all IMRS variability to stochastic

consumption growth and/or market returns. Another source of IMRS

variability can be hard-wired into preferences, for example, through

stochastic parameters β, γ, δ, or beliefs (Remark 3.6.1). There are

many other possible sources of IMRS variability that do not fit this

section’s formalism, including agent heterogeneity, non-tradeability of

labor income due to moral hazard concerns, collateral constraints and

associated leverage dynamics, other institutional constraints, market

panics or runs, limited ability to model the future leading to model

revisions violating dynamic consistency, and trading patterns driven by

narrative and influence dynamics that are hard to explain in a Bayesian

framework.

3.7. Optimal consumption and portfolio choice

In this section we discuss the problem of finding an optimal trad-

ing strategy for an agent that maximizes an an SI recursive utility U

given a positive initial financial wealth w and no subsequent income.

(Any endowment is effectively assumed marketed and already sold.)

We assume an arbitrage-free market X that is implemented by 1 + J

contracts, denoted as in Section 1.8, with every V j strictly positive.

Since the market is arbitrage-free, Sjt−1 and Rj
t ≡ V j

t /S
j
t−1 are also

strictly positive, for all t > 0. Contract 0 is a money-market account

(MMA) with rate process r and return process R0 ≡ 1 + r.

Suppose the agent converts the initial wealth w to a consumption

plan c ∈ L++ by following a trading strategy (θ0, θ). The latter defines

in (1.8.6) a corresponding portfolio allocation policy ψ =
(

ψ1, . . . , ψJ
)

,

and equation (1.8.7) defines the return process Rψ. The agent enters

period t with financial wealth Wt−1, consumes ct−1 and invests the

remainder according to the allocation ψt earning a return Rψ
t for the
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period:

(3.7.1) W0 = w, Wt = (Wt−1 − ct−1)Rψ
t , WT = cT .

The pair (c,W ) is related to the synthetic contract
(

δθ, V θ
)

by

Sθt−1 = Wt−1 − ct−1, Wt = V θ
t , ct = δθt , t = 1, . . . , T.

Note that the middle equation in (3.7.1) states that Rθ
t = Rψ

t . The

agent effectively spends w − c0 at time zero to purchase the synthetic

contract
(

δθ, V θ
)

and subsequently consumes all dividends. Since every

synthetic contract is traded, the contract
(

δθ, V θ
)

is priced by every

SPD π, which is condition (3.5.6) and the reason we have used the

same notation W in both instances.

With this background in mind, we state the optimal consumption-

portfolio problem more parsimoniously by taking as primitive the con-

tract returns and the agent’s initial wealth, and expressing optimal

decisions in terms of wealth allocations in every period.

Definition 3.7.1. A consumption (allocation) policy is a (0, 1)-

valued adapted process ̺ such that ̺T = 1. A portfolio (allocation)

policy is a process ψ =
(

ψ1, . . . , ψJ
)

∈ P1×J
0 . An allocation policy is

a pair (̺, ψ) of a consumption policy and a portfolio policy. A wealth

process is a strictly positive adapted process. The allocation policy

(̺, ψ) generates the wealth process W defined recursively by

(3.7.2) W0 = w, Wt = Wt−1 (1 − ̺t−1)Rψ
t ,

in which case the allocation policy (̺, ψ) finances the consumption

plan c ≡ ̺W , and is optimal if c is optimal, that is, there is no x ∈ X

such that U0 (c+ x) > U0 (c).

The section’s main result follows. For simplicity, we assume a con-

cave utility, a differentiable CE v, and that the period-t portfolio allo-

cation can be any member of the set

(3.7.3) Ψt ≡
{

ψt ∈ L1×J
t−1 | Rψ

t is strictly positive
}

.
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Although not shown here,13 it is worth noting that the following result

remains true if v is only assumed to be concave (not necessarily dif-

ferentiable) and Ψt is an arbitrary spot-dependent nonempty convex

subset of the set in (3.7.3).

Theorem 3.7.2. Suppose U is a normalized SI recursive utility with

a regular proportional aggregator g and a concave differentiable CE v.

Let h, I and g∗ be defined in (3.5.9), (3.5.17) and (3.5.18), respectively.

An allocation policy (̺, ψ) is optimal if and only if it is generated by

the following recursive procedure:

(1) (Initialization) Set λT = ̺T = 1 and t = T .

(2) (Recursive step) Given λt, select ψt ∈ Ψt such that

(3.7.4) υt−1

(

λtR
ψ
t

)

= max {υt−1 (λtR
p
t ) | p ∈ Ψt} ,

let λt−1 ∈ L++
t−1 be the unique solution to

(3.7.5)
λt−1

g∗
t−1 (λt−1)

= υt−1

(

λtR
ψ
t

)

,

and set ̺t−1 = ht−1 (It−1 (λt−1)).

(3) (Loop) While t > 1, decrease t by one and repeat (2).

Assuming (̺, ψ) is optimal and finances c, the process λ generated by

this algorithm is the marginal-value-of-wealth process defined by (3.4.14),

and U (c) = λW , where W is the wealth process generated by (̺, ψ).

Remark 3.7.3. Since U is assumed to be SI, the CE v is homoge-

neous of degree one. We saw in Example 3.3.2 that a homogeneous-of-

degree-one utility is concave if and only if the corresponding preference

correspondence is convex. The argument also applies to the conditional

CE. In particular, a risk averse SI expected utility CE is necessarily

concave (since, by Theorem A.6.4, the conditional CE at every spot is

ordinally equivalent to a concave utility function).

Remark 3.7.4. By Lemma 3.5.6, the assumed concavity of the

proportional aggregator implies the concavity of the aggregator. Even

without the SI assumption, if both the aggregator and CE are concave,

the recursive utility is concave. This follows by a straightforward in-

duction, starting with the terminal date and then showing that Ut is

concave given that Ut+1 is concave, using the utility recursion.

13See Skiadas [2013a] for a proof.
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Proof. Setting to zero the partial derivatives of the value being

maximized in (3.7.4) with respect to each contract’s allocation, we have

the optimality condition

(3.7.6) Et−1

[

κt
(

λtR
ψ
)

λt
(

Rj
t − R0

t

) ]

= 0, j = 1, . . . , J,

where κ is the derivative of v. Since the CE υ is assumed to be concave,

condition (3.7.6) is necessary and sufficient for (3.7.4).

We henceforth assume that the allocation policy (̺, ψ) generates

the wealth process W and finances the consumption plan c ≡ ̺W ,

which by the budget equation in the form (3.7.1) implies that

(3.7.7) Rψ
t =

Wt

Wt−1 − ct−1

.

Necessity: Suppose c is optimal with corresponding marginal-value-

of-wealth process λ. Then π ≡ ∇U0 (c) is an SPD, and therefore

(3.7.8) Et−1

[

πt
πt−1

Rj
t

]

= 1, j = 0, 1, . . . , J,

which in turn implies

(3.7.9) Et−1

[

πt
πt−1

Rψ
t

]

= 1, t = 1, . . . , T.

Substituting expression (3.7.7) for Rψ into (3.7.9) shows that π prices

the contract (c,W ) (technically, the contract (c−c01Ω×{0},W−c01Ω×{0}),

since c0 6= 0). It follows that W satisfies (3.5.6) and we can apply

Proposition 3.6.4 with M = Rψ. Therefore λ uniquely solves recur-

sion (3.7.5) and πt/πt−1 is given by equation (3.6.9), which in con-

junction with the state-pricing condition (3.7.8) implies the optimality

condition (3.7.6), and hence (3.7.4). The expression for ̺ follows from

Lemma 3.5.7.

Sufficiency: Suppose λ, q and π are defined by (3.6.8) and (3.6.9),

but with Rψ in place of M . By construction and Lemma 3.5.3,

1 = qt−1υt−1

(

λtR
ψ
t

)

= qt−1Et−1

[

κt
(

λtR
ψ
t

)

λtR
ψ
t

]

= Et−1

[

πt
πt−1

Rψ
t

]

.

Therefore, equation (3.7.9) is satisfied, which as we saw earlier implies

that W satisfies (3.5.6). The interested reader can now show that

U (c) = λW by verifying the utility recursion, and that π = ∇U0 (c) by

Lemma 3.5.8. Assuming ψ solves (3.7.4), the corresponding optimality
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conditions (3.7.6) are satisfied, and therefore Et−1

[

(πt/πt−1)Rj
t

]

takes

the same value for all j, a value necessarily equal to one, since we

have already shown (3.7.9). It follows that π prices every contract

implementing the market and is therefore an SPD. By Remark 3.7.4,

the utility is concave, and optimality of c follows by Proposition 3.3.4.

�

Example 3.7.5 (unit EIS and optimal consumption policy). Sup-

pose that the proportional aggregator takes the unit-EIS form of Exam-

ple 3.5.9 with δ = 1. In this case, ht (x) = 1 −β for all x, and therefore

the optimal consumption-to-wealth ratio is constant: ̺t−1 = 1 − β. As

we saw in Example 3.5.1, if the conditional CE is an expected utility

one with unit CRRA, then the recursive utility is ordinally equiva-

lent to expected discounted logarithmic utility. By moving away from

the expected-discounted utility framework, we can vary risk aversion

while retaining the simplifying assumption of a constant consumption-

to-wealth ratio. ♦

Example 3.7.6 (Markovian formulation). Suppose that the con-

tracts implementing the market have the Markovian structure of Sec-

tion 2.6, which is defined in terms of an underlying martingale basis

with stochastically independent increments. In this case, the process

λ and the optimal allocation policy can be expressed as functions of

the Markov state: λt = λ (t, Zt), ̺t = ̺ (t, Zt) and ψt = ψ (t, Zt−1),

with the abuse of notation defined in Section 2.6. Analogously to the

arbitrage-pricing application of Section 2.6, the significance of the Mar-

kovian formulation is that the recursive formula determining ψt and

λt−1 in terms of λt need be evaluated only for every possible value of

the Markov state Zt−1 rather than every time-(t− 1) spot, which can

dramatically reduce the problem’s computational complexity. ♦

Example 3.7.7 (deterministic marginal value of wealth). Suppose

that the short-rate process r is deterministic and period-t excess re-

turns Rj
t − R0

t are stochastically independent of Ft−1, for all t > 0.

In this case, a backward induction shows that the marginal-value-of-

wealth process λ at the optimum is deterministic. As a consequence,

the optimal allocation policy (̺, ψ) is also deterministic, with the opti-

mal time-t portfolio weights determined as the solution to the myopic
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problem

υt−1

(

Rψ
t

)

= max {υt−1 (Rp
t ) | p ∈ Ψt} .

♦

The algorithm of Theorem 3.7.2 produces a solution provided there

is an optimal portfolio solution to problem (3.7.4). We show below

that this is indeed the case for an expected-utility SI CE with CRRA

γ > 0. Problem (3.7.4) in this case can be equivalently expressed as

(3.7.10) ψt ∈ arg max

{

E
Q
t−1

[

(Rp
t )

1−γ − 1

1 − γ

]

| p ∈ Ψt

}

,

provided we define the probability Q to have the conditional density

process ξ determined by the recursion

(3.7.11)
ξt
ξt−1

=
λ1−γ
t

Et−1[λ1−γ
t ]

, ξ0 = 1.

The reason for this is the change-of-measure formula of Lemma 2.4.10.

Example 3.7.8 (unit CRRA and optimal portfolio choice). The

optimal portfolio problem with unit CRRA (γ = 1) reduces to

ψt ∈ arg max {Et−1 log (Rp
t ) | p ∈ Ψt} .

In this case, the optimal portfolio weights are the same as for a myopic

agent who maximizes conditional expected logarithmic utility over a

single period. In contrast to Example 3.7.7, the myopic portfolio rule

is optimal even if the marginal-value-of-wealth process is stochastic.

Referring back to Example 3.7.5, recall that a unit EIS implies a myopic

consumption policy. The intersection of that example and the present

one is the case of expected discounted logarithm utility, in which case

the entire optimal policy (̺, ψ) is myopic. ♦

Proposition 3.7.9. For an expected-utility SI CE with positive

CRRA γ, the optimal-portfolio problem (3.7.4) has a solution and there-

fore the algorithm of Theorem 3.7.2 produces a solution.

Proof. The argument applies over a single period at each nonter-

minal spot. We therefore assume, without loss of generality, that T = 1

and the underlying probability P coincides with the probability Q

in (3.7.10). We omit time subscripts and let u (x) ≡ (x1−γ − 1) / (1 − γ).

Suppose first that γ ≥ 1. Given any SPD (1, π), define the compact
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set

A ≡
{

z ∈ L++ | Eu (z) ≥ u (1 + r) , E [πz] = 1
}

and the closed set B ≡
{

Rp | p ∈ R
1×J

}

. Since 1+r ∈ B and E [πz] = 1

for all z ∈ B, the optimal portfolio problem is equivalent to maximizing

the continuous function Eu over the compact set A ∩ B. Existence of

a maximum follows by Proposition B.3.7. If γ ∈ (0, 1), A as defined

above is not compact. We instead define A to be the set of every [0,∞)-

valued random variable z such that E [πz] = 1. Arguing as above, we

conclude there is an optimal portfolio choice, provided we verify that

the optimizing value of z is strictly positive. This follows from the

fact that the marginal value z−γ becomes infinite at zero and therefore

there is always a utility-improving small deviation away from zero. �

3.8. Recursive utility and optimality in continuous time

This section introduces recursive utility and the associated problem

of optimal consumption and portfolio choice in the Brownian setting of

Section 2.8. Technicalities aside, the resulting formulation is simpler

than its discrete counterpart thanks to the quadratic approximations

encoded in the Ito calculus. A rigorous treatment of this material re-

quires sophisticated and involved mathematics. The objective here is to

provide a more accessible informal introduction that is consistent with

the rigorous theory, but omits several mathematical details, focusing

instead on essential results and intuition based on the discrete theory.

As in Section 2.8, the underlying filtration is generated by an SBM B

over the time horizon [0, T ], under some probability with expectation

operator E. The extension to a filtration generated by multiple inde-

pendent SBMs is straightforward and mainly a matter of introducing

appropriate matrix notation.

A consumption plan is a strictly positive adapted process c (sat-

isfying omitted technical requirements for utility processes and related

quantities to be well defined). As in the discrete case, we differentiate

between consumption over a single period, which in the current context

is ctdt over [t, t+ dt], and terminal lump-sum consumption cT . State-

price densities and utility gradients are defined in terms of the inner
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product

〈x | y〉 = E

[

∫ T

0
xtytdt+ xT yT

]

.

To formulate recursive utility in continuous time, we fix a reference

consumption plan c and, abusing notation, we let U ≡ U (c) denote

the corresponding normalized utility process with Ito decomposition

dUt = αUt dt+ βUt dBt, UT = cT .

As we saw in Sections 2.5 and 2.8, expressing αUt as a function of
(

Ut, β
U
t

)

can be thought of as a backward-in-time recursion, which

is formally expressed as a backward stochastic differential equation

(BSDE) to be solved jointly in
(

U, βU
)

. This is how we can specify

recursive utility directly in continuous time.

The heuristic argument that follows can be applied to a broader

class of recursive utilities, but for concreteness we assume the expected-

utility CE14 vt ≡ u−1
Etu, for some continuous increasing function

u : (0,∞) → R with Arrow-Pratt coefficient of absolute risk aversion

A ≡ −u′′/u′. Ito’s lemma implies

u (Ut+dt) = u (Ut) + u′ (Ut)

(

αUt − A (Ut)

2

(

βUt
)2
)

dt+ u′ (Ut) dBt.

Apply the conditional expectation Et on both sides, which eliminates

the Brownian term, and then apply u−1 on both sides, followed by a

first-order Taylor expansion on the right-hand side. The result is the

Arrow-Pratt CE approximation15

vt (Ut+dt) = Ut +

(

αUt − A (Ut)

2

(

βUt
)2
)

dt.

We can heuristically rewrite the Arrow-Pratt approximation as

vt (Ut+dt) = EtUt+dt − A (Ut)

2
vart [Ut+dt] .

As we will see, this is the key in concluding that if a myopic optimal

portfolio in a scale-invariant formulation is justified, the optimal port-

folio has to be mean-variance efficient in the maximum-Sharpe-ratio

sense of Section 2.2 over every infinitesimal time interval.

14Skiadas [2013c] shows how expected-utility CEs can approximate a wider class
of nonexpected-utility smooth CEs over small risks, which arise naturally with
recursive utility in high-frequency models and their continuous-time limit.
15Named after the contributions of Arrow [1965, 1971] and Pratt [1964].
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The aggregator of the recursive utility can also be specified more

generally, but for concreteness we assume

(3.8.1) uδ (Ut) =
(

1 − e−βdt
)

uδ (ct) + e−βdtuδ (vt (Ut+dt)) , UT = cT ,

where β > 0 is a constant (not to be confused with βU). For now,

uδ : (0,∞) → R can be any increasing and continuously differentiable

function. Inserting the Arrow-Pratt CE approximation in this recursion

and using a first-order Taylor expansion results in an expression for αUt
in terms of

(

Ut, β
U
t

)

corresponding to the BSDE

(3.8.2) dUt = −
(

f (ct, Ut) − A (Ut)

2

(

βUt
)2
)

dt+ βUt dBt, UT = cT ,

where

f (c, U) ≡ β
uδ (c) − uδ (U)

u′
δ (U)

.

We proceed assuming the BSDE has a unique solution,16 and the so-

lution is increasing in c. Analogously to the discrete case, this sec-

tion’s entire analysis applies with only cosmetic changes if the param-

eters f and A are state and time dependent, provided f (ω, t, c, U) and

A (ω, t, U) as functions of (ω, t) are adapted processes (and technically

sufficiently regular for the relevant integrals and BSDEs to make sense).

Remark 3.8.1. The quadratic term in the drift of BSDE (3.8.2) can

be eliminated by passing to the ordinally equivalent utility Vt ≡ u (Ut).

Letting ϕ ≡ uδ ◦ u−1, recursion (3.8.1) can be restated as

ϕ (Vt) =
(

1 − e−βdt
)

ϕ (u (ct)) + e−βdtϕ (EtVt+dt) , VT = u (cT ) ,

This is of the same form as (3.8.1). The argument leading to (3.8.2) in

this case leads to the BSDE17

(3.8.3) dVt = −φ (ct, Vt) dt+ βVt dBt, VT = u (cT ) ,

16The existence/uniqueness theory for nonlinear BSDEs begins with
Pardoux and Peng [1990] and Duffie and Epstein [1992a], the latter in the
context of developing continuous-time recursive utility. These papers imposed
conditions that are violated in this section’s main application with EZW utility. For
the latter, the relevant BSDE foundations were developed by Schroder and Skiadas
[1999] and Xing [2017].
17In the continuous-time counterpart of Exercise 3.10.6, given in Skiadas [1998], the
concavity or convexity of φ corresponds to monotonicity of preferences for informa-
tion, or what in a different setting Kreps and Porteus [1978] termed preferences for
the timing for resolution of uncertainty.
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where φ (c, v) ≡ β (uδ (c) − ϕ (v)) /ϕ′ (v). Alternatively, the equiva-

lence of BSDEs (3.8.2) and (3.8.3) can be shown as an application of

Ito’s lemma. Assuming sufficient integrability conditions, BSDE (3.8.3)

can equivalently be expressed in the Duffie-Epstein18 form

Vt = Et

[

∫ T

t
φ (cs, Vs) ds+ u (cT )

]

,

which should be thought of as a fixed-point problem in V . ♦

In the remainder of this section, we specialize to an SI normal-

ized utility, implying that f (c, U) = Ug (c/U) for a function g that

is the continuous-time counterpart of the proportional aggregator. By

Theorem A.4.3, additivity of the SI aggregator implies that for some

constants β and δ (the inverse of the EIS), we can set

(3.8.4) g = βuδ where uδ (x) ≡ x1−δ − 1

1 − δ
, with u1 ≡ log .

Similarly, an SI expected-utility CE implies a constant coefficient of

relative risk aversion γ, and we can therefore set A (U)U = γ. Prefer-

ence monotonicity implies β > 0. We also assume strict concavity of

both uδ and uγ, and therefore γ, δ > 0. The utility BSDE becomes

(3.8.5)
dUt
Ut

= −
(

g
(

ct
Ut

)

− γ

2

(

σUt
)2
)

dt+ σUt dBt, UT = cT .

For simplicity,19 we will discuss optimal consumption and portfolio

choice under the assumption that U is specified by BSDE (3.8.5), where

g is defined by (3.8.4), corresponding to the continuous-time version of

the EZW utility of Example 3.5.1. As in the discrete case, g deter-

mines and is determined by the utility of deterministic consumption

plans, and given g, increasing γ increases risk aversion.

Example 3.8.2 (expected discounted SI utility). Given any b ∈ R

and β, δ ∈ (0,∞), consider the dynamic utility

(3.8.6) Ũt (c) ≡ Et

[

∫ T

t
e−b(s−t)uδ (cs) ds+

e−b(T−t)

β
uδ (cT )

]

,

18Formulated in Duffie and Epstein [1992a].
19The extension to an increasing and concave g is formally straightforward as is
allowing time and state dependence of g and γ, although technical regularity con-
ditions are needed for a mathematically rigorous treatment.
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where uδ is defined in (3.8.4). Let U denote the normalized version of

this utility function. Fixing c, we write Ũ and U for Ũ (c) and U (c),

respectively. Normalization means that at every time t the consump-

tion plan c should have the same utility value as a constant annuity

with payment rate Ut, that is,

Ũt = Et

[

∫ T

t
e−b(s−t)uδ (Ut) ds+

e−b(T−t)

β
uδ (Ut)

]

=
uδ (Ut)

qt
,

where

1

qt
≡
∫ T

t
e−b(s−t)ds+

e−b(T−t)

β
=

1

b
+

(

1

β
− 1

b

)

e−b(T−t).

By Ito’s lemma, if uδ (Ut) = qtŨt, then U satisfies the BSDE

(3.8.7)
dUt
Ut

= −
(

qtuδ

(

ct
Ut

)

− δ

2

(

σUt
)2
)

dt+ σUt dBt, UT = cT .

The BSDE is of the form (3.8.5) with γ = δ, but time-dependent

proportional aggregator g = quδ, unless b = β, in which case U is an

EZW utility with γ = δ.

The time dependence of g presents no problem, but excluding the

logarithmic case, there is still a way of reducing Ũ to the EZW spec-

ification with time-independent parameters, even if b 6= β. Assuming

δ 6= 1, let α ≡ (β − b) / (1 − δ) and define U to satisfy

(3.8.8) uδ (Ut) = βŨt +
α

b

(

1 − e−b(T−t)
)

.

By Ito’s lemma, U solves the BSDE

(3.8.9)
dUt
Ut

= −
(

α + βuδ

(

ct
Ut

)

− δ

2

(

σUt
)2
)

dt+ σUt dBt, UT = cT .

Analogously to Example 3.5.1, we can eliminate α by changing the unit

of account from a “bushel” to a “dollar,” using the bushel-to-dollar con-

version process ut ≡ eαt. A consumption plan c in bushels is consump-

tion plan cu ≡ cu in dollars, and Uu (cu) ≡ uU (c) defines a dynamic

utility Uu representing the same preferences over consumption plans

in dollars as U does over consumption plans in bushels. Integration by

parts shows that BSDE (3.8.9) is equivalent to BSDE

dUu

t

Uu

t

= −
(

βuδ

(

cu

t

Uu

t

)

− δ

2

(

σUt
)2
)

dt+ σUt dBt, Uu

T = cu

T ,
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which is of the normalized EZW form with γ = δ. As we will see

in Remark 3.8.5, on the market side, changing units from bushels to

dollars corresponds to adjusting the short-rate process from r to r+α. ♦

Consider now an agent20 whose preferences are represented by the

continuous-time SI recursive utility just defined and who has some ini-

tial financial wealth w > 0 and no other income. The agent has access

to the financial market of Section 2.8, but with r, a, y, σ, and there-

fore µ, representing general predictable processes, rather than constants

(subject to the usual integrability restrictions required for Ito processes

to be well defined). The assumed stock return dynamics and associated

market-price-of-risk process are therefore

(3.8.10)
dSt
St

+ ytdt = µtdt+ σtdBt, ηt ≡ µt − rt
σt

.

We also assume that σt > 0 and
∫ T

0 η2
t dt < ∞ with probability one.

The agent can use the initial wealth w to purchase an initial portfolio

in the MMA and the stock, and can rebalance the account over time,

provided the account balance Wt stays positive at all times t. The

agent withdraws cash from the account at a time-t rate ct for all t < T ,

followed by a terminal lump-sum payment cT = WT , thus converting

the initial wealth w = W0 to a consumption plan c. The agent seeks to

do so in a way that maximizes the utility U0 (c). By dynamic consis-

tency, time-zero optimality implies optimality at every other time. It

is therefore sufficient to solve the agent’s problem from the perspective

of time zero. A useful way of thinking of the agent’s consumption and

trading strategy is as the time-zero purchase of the synthetic contract

(c,W ), where c is the dividend process generated by the contract and

W is the contract’s cum-dividend price process.

The budget equation of Section 2.8 can be extended to the current

context as in Remark 2.8.7. Instead, we equivalently describe the bud-

get equation in terms of wealth allocations, analogously to (3.7.2). An

20The rest of this section is based on Schroder and Skiadas [2003], which includes
trading constraints, more general recursive utilities, as well as multiple assets and
sources of risk, all in the context of an SI formulation with possibly incomplete
markets but tradeable income. Non-tradeable income is inconsistent with scale in-
variance. Schroder and Skiadas [2005] give a version of the argument that includes
non-tradeable income at the cost of translation-invariant preferences, which remove
wealth effects.
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allocation policy is a pair (̺, ψ) of adapted processes, where for every

time t < T , ̺t > 0 represents the consumption rate as a proportion

of wealth and ψt is the proportion of wealth that is allocated to the

stock, with the remainder allocated to the MMA. We also assume, as

part of an allocation policy definition, that ̺T ≡ 1 (corresponding to

the assumption cT = WT ) and that the following version of the budget

equation uniquely determines the strictly positive wealth process W

generated by (̺, ψ):

(3.8.11) W0 = w,
dWt

Wt
= (rt − ̺t) dt+ ψt

(

dSt
St

+ (yt − rt) dt

)

.

The consumption plan financed by (̺, ψ) is c ≡ ̺W . We call a con-

sumption plan feasible if it is financed by some allocation policy, and

optimal if it maximizes U0 among all feasible consumption plans. We

wish to determine an allocation policy that is optimal in that it fi-

nances an optimal consumption plan.

Given the reference consumption plan c, the relevant market X (c)

is the set of all x such that c + x is a feasible consumption plan. For

arbitrary π0 > 0, define the process πt ≡ π0 exp
(

− ∫ t
0 rs

)

ξt, where ξ is

defined by (2.8.11), as in Remark 2.8.3. By Ito’s lemma,

(3.8.12)
dπt
πt

= −rtdt− ηtdBt.

In a variant of Proposition 2.8.1, we will show that π is an SPD for

X (c) by analyzing the linear BSDE

(3.8.13) dWt = −
(

ct − rtWt − ηtσ
W
)

dt+ σWt dBt, WT = cT ,

which results from entering c = ̺W into the budget equation (3.8.11)

and using the return dynamics and definition of η in (3.8.10). The

BSDE expresses the heuristic backward recursion

Wt = ct + Et

[

πt+dt
πt

Wt+dt

]

, WT = cT .

On a finite information tree, such a recursion implies that the present-

value function represented by π prices the contract (c,W ). This con-

clusion is not guaranteed in continuous time. As we saw in the last

chapter, in continuous time we have to entertain the possibility that

the synthetic contract (c,W ) is implemented by a sort of generalized
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doubling strategy, where wealth can be created from nothing, or a gen-

eralized reverse doubling strategy, where wealth is guaranteed to be

destroyed. The fact that W is required to stay positive precludes gen-

eralized doubling strategies, but not value-destroying strategies. As a

consequence Wt should be at least as great as the time-t present value

of c. A condition that limits in a suitable sense how big W can get

rules out value-destroying strategies, allowing the conclusion that Wt

equals the time-t present value of c.

Lemma 3.8.3. Suppose
(

W,σW
)

solves BSDE (3.8.13) and Wt ≥ 0

for all t. Then

(3.8.14) Wt ≥ 1

πt
Et

[

∫ T

t
πscsds+ πT cT

]

, t ∈ [0, T ] .

Moreover, if E [supt πtWt] < ∞, the inequality holds as an equality.

Proof. Given the dynamics (3.8.12) for π and (3.8.13) for W ,

integration by parts implies that d (πtWt) = −πtctdt+ dMt, where M

is a local martingale. Let τn be a sequence of stopping times such that

τn ↑ T with probability one and M is a martingale up to time τn, and

therefore Mt = EtMτn
on {τn ≥ t}, which in turn implies

πtWt = Et

[ ∫ τn

t
πscsds+ πτn

Wτn

]

on {τn ≥ t} .

As n → ∞, the term Et [
∫ τn

t πscsds] converges to Et

[

∫ T
t πscsds

]

by

the monotone convergence theorem (for conditional expectations). We

also know that πτn
Wτn

converges to πTWT = πT cT . Inequality (3.8.14)

follows by Fatou’s lemma (for conditional expectations). If we fur-

ther know that E [supt πtWt] < ∞, then limn Et [πτn
Wτn

] = Et [πTWT ]

and (3.8.14) becomes an equality thanks to Lebesgue’s dominated con-

vergence theorem (for conditional expectations), another fundamental

result in the theory of integration.21
�

Preference monotonicity implies that if the consumption plan c is a

candidate to be optimal, it should not be financed by a value-destroying

strategy. A sufficient condition for this to be true is the preceding

lemma’s integrability condition, which we would have to verify in a

21For all the referenced conditional expectation limit results, see, for example,
Chapter 10 of Dudley [2002].
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mathematically complete formulation. The integrability condition al-

lows us to confirm the SPD property of π as we set out to do.

Lemma 3.8.4. Suppose an allocation policy generates the wealth

process W and finances the consumption plan c. If E [supt πtWt] < ∞,

then π is an SPD relative to X (c), that is, 〈π | x〉 ≤ 0 for all x such

that c+ x is a feasible consumption plan.

Proof. Suppose c + x is a feasible consumption plan. Applying

Lemma 3.8.3, π0w ≥ 〈π | c+ x〉 and π0w = 〈π | c〉. Subtract the latter

from the former to conclude that 0 ≥ 〈π | x〉. �

Remark 3.8.5 (change of unit of account). Consider a change of the

unit of account where consumption plan c in “bushels” is consumption

plan cu ≡ cu in “dollars.” If π is an SPD in bushels, then πu ≡ u−1π is

the same SPD in dollars. Maximizing U0 (c) subject to 〈π | c〉 ≤ wπ0

(as we are effectively doing in the solution method that follows) is

equivalent to maximizing Uu

0 (cu) subject to 〈πu | cu〉 ≤ wuπu

0 , where

Uu (cu) ≡ uU (c) and wu ≡ wu0. In Example 3.8.2, ut ≡ eαt and the

only difference between π and πu is in their respective implied short-

rate processes r and r + α, as can be seen by applying integration

by parts to πu ≡ u−1π and comparing the resulting Ito expansion

to (3.8.12). ♦

Similarly to Proposition 3.3.4, we will formulate optimality condi-

tions based on the state-price density property of a utility gradient.

Technical aspects aside, the utility gradient calculation is analogous

to Proposition 3.4.12 for the discrete case. Given any feasible direc-

tion x, the idea is to use the utility BSDE to write the Ito expansion

of U (c+ ǫx) − U (c) and then linearize the Ito coefficients, assuming

small ǫ, resulting in a linear BSDE of the form we used earlier to price

the contract (c,W ). The following remark outlines the result and a

derivation of the associated gradient inequality.22

22The utility gradient calculation and its use in this chapter originated in a
chapter of my doctoral thesis. My advisor, Darrell Duffie, had just pioneered
continuous-time recursive utility with Larry Epstein in Duffie and Epstein [1992a],
and asset pricing applications using dynamic programming Markovian methods in
Duffie and Epstein [1992b]. My idea was to characterize optimality in a static way
in terms of gradients without a Markovian structure, and to derive utility gradient
expressions for recursive utility and extensions. These initial results were published
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Remark 3.8.6. Suppose that for a continuously differentiable F ,

the pair (U,Σ) ≡ (U (c) ,Σ (c)) uniquely solves the BSDE

(3.8.15) dUt = −F (ct, Ut,Σt) dt+ ΣtdBt, UT = cT .

Fixing c, define the processes λ, FU and FΣ by

λt ≡ ∂F (ct, Ut,Σt)

∂c
,

FU (t) ≡ ∂F (ct, Ut,Σt)

∂U
, FΣ (t) ≡ ∂F (ct, Ut,Σt)

∂Σ
.

Then, omitting technical requirements,

(3.8.16) lim
ǫ↓0

Ut (c+ ǫx) − Ut (c)

ǫ
= Et

[

∫ T

t

Es
Et
λsxsds+

ET
Et
λTxT

]

,

where E solves
dE
E = FUdt+ FΣdB, E0 = 1.

Assuming concavity of F and omitted regularity conditions, we out-

line a derivation of the gradient inequality

(3.8.17) U0 (c + x) ≤ U0 (c) + 〈Eλ | x〉.

Let y ≡ U (c+ x) − U (c) and z ≡ Σ (c+ x) − Σ (c). The gradient

inequality for F gives

0 ≤ D ≡ −F (c+ x, U + y,Σ + z) + F (c, U,Σ) + λx+ FUy + FΣz.

Subtracting the BSDE for U (c) from the BSDE for U (c+ x), we get

dy = − (λx−D + FUy + FΣz) dt+ zdB, yT = xT .

This is a linear BSDE of the form (3.8.13), with (y, λx−D,FU , FΣ)

corresponding to (W, c,−r,−η). Given sufficient regularity, the argu-

ment of Lemma 3.8.3 in this context implies that y0 = 〈E | λx − D〉.
Since both E and D are positive, y0 ≤ 〈E | λx〉 = 〈Eλ | x〉, which is

the claimed gradient inequality. ♦

We continue taking as given the reference consumption plan c and

associated utility process U ≡ U (c) determined by BSDE (3.8.5) with

g defined in (3.8.4), for constant positive parameters β, γ, δ. Although

we have used x for a variety of roles, in the remainder of this section x

in Duffie and Skiadas [1994]. I continued this work at Northwestern University with
Mark Schroder, who was a doctoral student at the time, leading to the theory on
which this section is based.
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represents the consumption to utility ratio, in terms of which we define

the process λ:

(3.8.18) xt ≡ ct
Ut

and λt ≡ g′ (xt) = βx−δ
t for t < T ; λT = 1.

The convex dual g∗ is defined by (3.5.18), and therefore

(3.8.19) g∗ (λt) = g (xt) − g′ (xt) xt.

Remark 3.8.6 applies to BSDE (3.8.5) with Σ = UσU and F (c, U,Σ) ≡
Ug (c/U) − (γ/2) Σ2/U . As a consequence (omitting technical require-

ments), the gradient of U0 is Eλ, where E solves

(3.8.20)
dE
E =

(

g∗ (λ) +
γ

2

(

σU
)2
)

dt− γσUdB, E0 = 1.

The concavity of g implies the concavity of F , as can be seen by ap-

plying Lemma 3.5.6 to each of the additive terms of F . We assume

enough regularity for the gradient inequality (3.8.17) to hold.

Lemma 3.8.7. Suppose the allocation policy (̺, ψ) finances the plan

c and Eλ is an SPD for the market X (c). Then (̺, ψ) is optimal.

Proof. If c + x is a feasible consumption plan, then 〈Eλ | x〉 ≤ 0

and the gradient inequality (3.8.17) implies U0 (c+ x) ≤ U0 (c). �

Suppose the candidate optimal allocation policy (̺, ψ) finances c,

generating the wealth process W such that E [supt πtWt] < ∞ (which

would need to be confirmed as part of a rigorous optimality verification

argument). By Lemma 3.8.4, π is an SPD for X (c). The scaling factor

π0 > 0 is arbitrary, so let us set π0 = λ0. Assuming π = Eλ, we

proceed to derive optimality conditions, obtaining expressions for ̺ and

ψ along the way. Conversely, under omitted regularity assumptions,

these optimality conditions imply that π = Eλ and hence the optimality

of (̺, ψ) by Lemma 3.8.7.

As a first step we relate the utility process U to W using scale

invariance. The Euler equation for homogeneous functions gives

(3.8.21) Ut = lim
ǫ↓0

Ut (c+ ǫc) − Ut (c)

ǫ
= λtEt

[

∫ T

t

πs
πt
csds+

πT
πt
cT

]

.

The first equation is true because Ut is homogeneous of degree one and

the second equation follows from identity (3.8.16) with Eλ = π. By

Lemma 3.8.3, the right-hand side equals λtWt. Using integration by
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parts, we therefore have the key identities

(3.8.22) U = λW and
dU

U
=
dλ

λ
+
dW

W
+
dλ

λ

dW

W
.

The first equation and (3.8.18) allow us to compute the optimal con-

sumption policy as a function of λ:

(3.8.23) ̺t ≡ ct
Wt

= λt
ct
Ut

= λtxt = β1/δλ
1−1/δ
t , t < T.

As in the discrete case, the determination of the optimal portfolio

allocation policy can be performed jointly with a backward recursion

that determines λ. To see how, we start with the notation

dλ

λ
≡ µλdt+ σλdB.

The budget equation (3.8.11) and (3.8.22) imply

(3.8.24) σU = σλ + ψσ.

Applying integration by parts to π = Eλ, using (3.8.20), we have

dπ

π
=
(

g∗ (λ) +
γ

2

(

σU
)2

+ µλ − γσUσλ
)

dt−
(

γσU − σλ
)

dB.

Matching coefficients with the Ito decomposition (3.8.12) for dπ/π and

substituting expression (3.8.24) for σU , we find

−µλ = r + g∗ (λ) +
γ

2

(

(ψσ)2 −
(

σλ
)2
)

,

ψσ =
1

γ

(

η + (1 − γ) σλ
)

.

These two equations are the counterpart of the joint recursive determi-

nation of λ and ψ in the second step of the algorithm of Theorem 3.7.2.

The Arrow-Pratt CE approximation leads to the closed-form solution

for ψσ, which can now be substituted into the expression for µλ. The

result is a stand-alone BSDE for λ as summarized in the following so-

lution method. The claimed optimal allocation rule is obtained by sub-

stituting η ≡ (µ− r) /σ in the above expression for ψσ, and EIS ≡ 1/δ

in expression (3.8.23) for ̺.

Solution method: Determine
(

λ, σλ
)

by solving the BSDE

(3.8.25)
dλt
λt

= −
(

rt + g∗ (λt) − γ

2
Qt

(

σλt
)

)

dt+ σλt dBt, λT = 1,
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where Qt (z) ≡ z2 − (γ−1ηt − (1 − γ−1) z)
2
. The optimal allocation

policy (̺, ψ) is given by ̺T = 1 and, for t < T ,

(3.8.26) ̺t = βEISλ1−EIS
t and ψt =

1

γ

µ̃t − rt
σ2
t

,

where µ̃t ≡ µt + (1 − γ)σλt σt.

An optimality verification argument essentially reverses the steps

leading to this solution method. A mathematically complete treatment

is technically involved, requiring regularity assumptions along the way.

Example 3.8.8 (Unit EIS). Assuming δ = 1, the optimal con-

sumption allocation policy in (3.8.26) reduces to ̺t = β. To relate

this to Example 3.7.5, let us write β̄ and ¯̺ for the parameters β and

̺ in last section’s discrete context. If we heuristically think of the

infinitesimal time interval [t, t+ dt] as a single discrete period, then

β̄ = e−βdt = 1 − βdt and ¯̺t = ̺tdt. The conclusion ¯̺t = 1 − β̄ of

Example 3.7.5 corresponds to ̺t = β in the current context. ♦

Example 3.8.9 (unit CRRA). Assuming γ = 1, µ̃t = µt and the

optimal portfolio allocation in (3.8.26) reduces to

ψt =
µt − rt
σ2
t

.

This is a mean-variance efficient portfolio in the sense of Section 2.2

(with Σt = σ2
t ), whose single-period analysis can be heuristically ap-

plied over an infinitesimal time interval [t, t+ dt]. In the discrete Ex-

ample 3.7.8, we concluded that the optimal portfolio is myopic. Here

we can add the insight of mean-variance efficiency thanks to the Arrow-

Pratt approximation of a logarithmic CE. ♦

We encountered another example of a myopic optimal portfolio in

Example 3.7.7, which in the current context corresponds to determin-

istic r, µ and σ. For simplicity, in the following example we take these

parameters to be constant and derive a closed-form solution. As in

the last example, the combination of a myopic portfolio rule and the

Arrow-Pratt CE approximation lead to a mean-variance efficient opti-

mal portfolio.

Example 3.8.10 (constant investment opportunity set). Suppose

that rt = r, µt = µ, σt = σ, and therefore ηt = η ≡ (µ− r) /σ, are all



3.8. RECURSIVE UTILITY AND OPTIMALITY IN CONTINUOUS TIME 189

deterministic constants. Then the marginal-value-of-wealth process λ

is also deterministic and BSDE (3.8.25) reduces to an ordinary differ-

ential equation. Setting σλ = 0 in (3.8.26) results in the mean-variance

efficient optimal portfolio23

ψt =
η

γσ
=

1

γ

µ− r

σ2
.

The optimal ̺ in (3.8.26) is given, for all t < T , by

̺t = p
(

1 +
(

pβ−1/δ − 1
)

e−p(T−t)
)−1

,

where

p ≡ β

δ
+
(

1 − 1

δ

)

(

r +
η2

2γ

)

.

To show this claim for δ 6= 1, set σλ = 0 in BSDE (3.8.25) to find that

zt ≡ (λt/β)(1−δ)/δ solves dzt = (pzt − β) dt or d (e−ptzt) = (β/p) de−pt.

Integrating from t to T , results in the λt such that ̺t = β1/δλ
1−1/δ
t

has the claimed form. For δ = 1, the claimed optimal consumption

allocation expression reduces to ̺t = β, which is consistent with Ex-

ample 3.8.8. The current example applies in particular to the expected

discounted utility of Example 3.8.2 and more generally to any recursive

utility specified by BSDE (3.8.5) with g = α+βuδ, by simply replacing

r with r + α while keeping η and ψ = η/γσ the same (implying that

µ changes to µ + α). The claim follows from Remark 3.8.5 and the

change of the unit of account described in Example 3.8.2. ♦
The more general expression for the optimal portfolio ψt in (3.8.26)

allows for deviations from mean-variance efficiency due to a stochas-

tically varying marginal value of wealth. To relate it to last section’s

discrete theory, recall that for the CE vt = u−1
γ Etuγ, the optimal port-

folio rule can be expressed as (3.7.10), where Q is the probability with

the conditional density process ξ defined by recursion (3.7.11). Heuris-

tically, if the discrete time period is the time interval [t, t+ dt], recur-

sion (3.7.11) becomes24 dξt/ξt = (1 − γ)σλt dBt. By Girsanov’s theorem

23This optimal portfolio allocation (with extensions) was first shown for the additive
case (γ = δ) by Merton [1969, 1971], whose work has been seminal for the theory
of dynamic optimal consumption and portfolio choice. Merton used the Hamilton-
Jacobi-Bellman approach, which is also applicable in the current setting.
24To see why, write recursion (3.7.11) as

ξt+dt

ξt

=
λ1−γ

t+dt

λ1−γ
t + . . . dt

=

(

λt+dt

λt

)1−γ

+ . . . dt.
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(see Remark 2.8.3), the drift of the stock’s cumulative return, which

is µt under P , becomes µ̃t ≡ µt + (1 − γ) σλt σt under Q. The opti-

mal portfolio in (3.8.26) is therefore mean-variance efficient under the

probability Q. Just as in the last two examples under P , this is a con-

sequence of the Arrow-Pratt CE approximation in the myopic optimal

portfolio problem (3.7.10) under Q.

Examples in which σλ is stochastic can be formulated in terms of

Markov processes, where BSDE solutions can be related to correspond-

ing PDE solutions, in a generalization of the argument that related the

linear BSDE (2.8.15) to PDE (2.8.19).

3.9. Habit formation and durability of consumption

We have defined dynamic utilities to be forward-looking, meaning

that utility at a spot on the information tree is not dependent on con-

sumption outside the subtree rooted at the given spot. In this section,

we conclude with a simple extension in which past consumption can

influence utility for current consumption, either as a detraction, which

can be thought of as habit formation, or an enhancement, which can

be thought of as durability of past consumption. We represent this de-

pendence by letting the utility process U (c) take the form Û (ĉ), where

ĉt is a function of the history of the consumption plan c up to time t.

In a typical application Û can be expected discounted utility or any

forward-looking dynamically consistent utility (which by Lemma 3.4.4

is a generalized recursive utility). Assuming a special linear depen-

dence of ĉ on c, we will show that maximizing U in a given (effectively)

complete market X is equivalent to maximizing Û in a suitably defined

modified market X̂, thus reducing the original optimal consumption

problem to an equivalent problem of the type we have analyzed so far.

The mathematical structure that accommodates this analysis makes

no assumption on the functional form of Û , putting the original and

transformed problems on a symmetric footing. To see the essential

Take logarithms on both sides and use a first-order Taylor expansion on the right-
hand side, to find

d log ξt = (1 − γ) d log λt + . . . dt.

Applying Ito’s lemma,

dξt

ξt

= (1 − γ) σλ
t dBt + . . . dt.

But since we know that ξ is a local martingale, the . . . dt term is zero.
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idea, we start with a three-date finite state-space example. On the

space L of adapted processes we use the inner product 〈x | y〉 ≡ x0y0 +

E [x1y1 + x2y2], where E denotes expectation under a given full-support

probability. An agent with consumption set C and endowment e ∈ C

trades in an arbitrage-free complete market X to maximize the utility

function U0 : C → R. (Assuming dynamic consistency, it is sufficient

to focus on utility maximization from the perspective of time zero.) A

corresponding state-price density π ∈ L++ exists and is unique up to

positive scaling. Since X = {x ∈ L | 〈π | x〉 = 0}, the agent’s optimal

consumption problem can be stated as

(3.9.1) max {U0 (c) | 〈π | c〉 = 〈π | e〉 , c ∈ C} .

The wealth process Wt (c) ≡ Et
∑

s≥t (πs/πt) cs associated with the

consumption plan c is determined by the requirement that (c,W (c)) is

a traded contract in X. (Although c0 6= 0, we can still regard (c,W (c))

as a contract by identifying it with (c−c01Ω×{0},W (c)−c01Ω×{0}).) Also

associated with c is, for fixed scalar parameter ϕ, the consumption

stock process H (c), where

H0 (c) = 0, H1 (c) = c0, H2 (c) = c1 + ϕc0.

We refer to the primitives introduced so far together with the fixed

scalar parameter ν as the primal formulation.

We now introduce a dual formulation using the dual parameters

ν̂ = −ν and ϕ̂ = ϕ− ν.

The mapping that takes primal quantities to their dual defines an iso-

morphism, meaning that it is a bijection that preserves the structure

of the primal formulation. The dual of the consumption plan c is

(3.9.2) ĉ = c+ νH (c)

and the dual consumption set is Ĉ = {ĉ | c ∈ C}. The dual consump-

tion stock process is

Ĥ0 (ĉ) = 0, Ĥ1 (ĉ) = ĉ0, Ĥ2 (ĉ) = ĉ1 + ϕ̂ĉ0.

Notice that

(3.9.3) Ĥ (ĉ) = H (c)
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and therefore equation (3.9.2) can be inverted to

(3.9.4) c = ĉ+ ν̂Ĥ (ĉ) .

The dual state-price density π̂ is defined so that for all c ∈ C,

(3.9.5) 〈π | c〉 = 〈π̂ | ĉ〉 .

Substituting expression (3.9.4) for c and using the law of iterated ex-

pectations, we find

〈π | c〉 = (1 + Eπ1ν̂ + Eπ2ν̂ϕ̂) ĉ0 + E [(π1 + E1π2ν̂) ĉ1 + π2ĉ2] .

The desired identity (3.9.5) is therefore achieved by setting

π̂0 = π0

(

1 + P 1
0 ν̂ + P 2

0 ν̂ϕ̂
)

, π̂1 = π1

(

1 + P 2
1 ν̂
)

, π̂2 = π2,

where P s
t ≡ Etπs/πt is the time-t primal-market price of a unit discount

bond maturing at time s (that is, a default-free bond paying one unit of

account at time s). We assume25 that π̂ ∈ L++ (which, for example, is

true if ν < 0 and ϕ > 0). The dual market X̂ = {x̂ ∈ L | 〈π̂ | x̂〉 = 0} is

the complete market with state-price density π̂. The dual agent has the

dual endowment ê ∈ Ĉ and trades in the dual market X̂ to maximize

the dual utility function Û0 : Ĉ → R, where

(3.9.6) Û0 (ĉ) = U0 (c) .

Equivalently, the dual agent solves

(3.9.7) max
{

Û0 (ĉ) | 〈π̂ | ĉ〉 = 〈π̂ | ê〉 , ĉ ∈ Ĉ
}

.

Thanks to identities (3.9.5) and (3.9.6), the primal problem (3.9.1)

is equivalent to the dual problem (3.9.7) in the sense that c ∈ C is

optimal for the primal problem if and only if ĉ ∈ Ĉ is optimal for the

dual problem. The wealth process Ŵ (ĉ) is defined by the requirement

that (ĉ, Ŵ (ĉ)) is a traded contract in X̂, or Ŵt (ĉ) ≡ Et
∑

s≥t (π̂s/π̂t) ĉs.

The dual formulation is the primal with hats on every quantity.

Conversely, with the convention that double hats cancel out (ˆ̂x = x),

adding hats on every quantity of the dual takes us back to the primal.

Because of this symmetry, the dual of every valid expression is also

valid. For example, the dual of the transformation we used to define π̂

25The duality argument goes through if we relax the strict positivity of π and π̂
and monotonicity of U and Û .
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is

π0 = π̂0

(

1 + P̂ 1
0 ν + P̂ 2

0 νϕ
)

, π1 = π̂1

(

1 + P̂ 2
1 ν
)

, π2 = π̂2,

where P̂ s
t = Etπ̂s/π̂t are unit discount-bond prices in the dual market.

To see the validity of the claimed expression for π0 directly, note that

the dual of u ≡ (1, 0, 0) is û = (1, ν, νϕ), which at time zero can be sold

in the dual market for its present value p ≡ 1 + P̂ 1
0 ν + P̂ 2

0 νϕ. That is,

there is an x̂ ∈ X̂ such that û + x̂ = (p, 0, 0). By identity (3.9.5) and

the fact that 〈π̂ | x̂〉 = 0, we have π0 = 〈π | u〉 = 〈π̂ | û+ x̂〉 = π̂0p.

To see the expression for π1 repeat this argument from the perspective

of every time-one spot. The dual of this argument sheds light on our

earlier expressions giving π̂ in terms of π.

The isomorphism just described is useful, because if, say, the dual

agent’s problem is solved, we also have a solution to the primal problem

with U0 (c) = Û0 (c + νH (c)). Assuming ϕ ∈ (0, 1), one can think of

H (c) as an inventory level that is replenished one-to-one with consump-

tion and depreciates at a constant rate: Ht+1 (c) = ct + ϕHt (c). For

ν < 0, past consumption, summarized by Ht (c), reduces the impact of

consumption ct on the agent’s utility, reflecting habit formation. Sym-

metrically, if ν > 0 past consumption enhances current consumption,

reflecting consumption durability. At this point the reader may wish

to relax the assumption that there are only three dates and explore

how our earlier results for recursive utility transform to incorporate

habit formation or consumption durability in this special form. The

isomorphism also applies to Arrow-Debreu equilibria, and hence any

effectively-complete market equilibrium, provided all agents have com-

mon parameters (ν, ϕ). Leaving further analysis of the discrete case

as an exercise, we proceed to a continuous-time version of the isomor-

phism, which offers the usual benefit of simplified expressions made

possible by the Ito calculus.

We adopt last section’s Brownian information setting, although the

approach and most of the expressions that follow apply in any reason-

able continuous-time formulation. To keep the exposition short, we

assume there is no terminal consumption. Cash flows and state-price

processes live in the space of every adapted process x such that the in-

tegral
∫ T

0 x2
tdt is well defined and has finite expectation. On this space,
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Primal Dual

κ = κ̂+ ν̂, ν = −ν̂ κ̂ = κ+ ν, ν̂ = −ν

Ht (c) ≡ ∫ t
0 e

−κ(t−s)csds Ĥt (ĉ) ≡ ∫ t
0 e

−κ̂(t−s)ĉsds

Ht (c) = Ĥt (ĉ)

c = ĉ+ ν̂Ĥ (ĉ) ĉ = c+ νH (c)

U (c) = Û (ĉ)

P s
t ≡ Etπs/πt P̂ s

t ≡ Etπ̂s/π̂t

πt = π̂t
(

1 +
∫ T
t P̂

s
t νe

−κ(s−t)ds
)

π̂t = πt
(

1 +
∫ T
t P

s
t ν̂e

−κ̂(s−t)ds
)

Wt (c) ≡ Et

∫ T
t (πs/πt) csds Ŵt (ĉ) ≡ Et

∫ T
t (π̂s/π̂t) ĉsds

π (W (c) +H (c)) = π̂
(

Ŵ (ĉ) + Ĥ (ĉ)
)

Table 3.9.1. Durability/habit duality in continuous time.

we use the inner product

〈x | y〉 ≡ E

∫ T

0
xtytdt.

A consumption plan is any strictly positive cash flow c, with ct inter-

preted as a time-t consumption rate. The consumption stock process

H (c) can be thought of as an inventory that starts at zero, is replen-

ished one-to-one with consumption, and continuously depreciates at a

constant rate κ per unit of time. More precisely, H (c) is the unique

solution to the ordinary differential equation

(3.9.8) dHt (c) = (ct − κHt (c)) dt, H0 (c) = 0.

(The argument that follows goes through if we allow κ and ν to be

suitably integrable adapted processes and even if we add a zero-mean

martingale to H (c) representing random shocks to the consumption

stock.)
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Table 3.9.1 indicates the relationship of κ and ν to the dual pa-

rameters κ̂ and ν̂, the closed-form expression for H (c) and its dual

Ĥ (ĉ), the relationship between a primal consumption plan c and its

dual ĉ = c + νH (c), and the claim H (c) = Ĥ (ĉ), which in turn im-

plies the symmetric expression c = ĉ + ν̂Ĥ (ĉ). To show this claim,

compare (3.9.8) to its dual form

(3.9.9) dĤt (c) =
(

ĉt − κ̂Ĥt (ĉ)
)

dt, Ĥ0 (c) = 0.

It is clear from the definitions that differential equations (3.9.8) and (3.9.9)

are identical and therefore have a common solution.

The next item on Table 3.9.1 corresponds to the utility specification

U (c) = Û (c+ νH (c)). As in the discrete example, for ν < 0 the

utility function U adds habit formation to the utility Û , which in an

application could be taken to be any (forward-looking) recursive utility.

For ν > 0, the utility U allows for durability in consumption relative

to Û . (Of course, the primal and dual are symmetric and their role is

interchangeable.)

With π̂t and πt related as in Table 3.9.1, identity (3.9.5) follows by

a continuous-time version of our earlier argument:

〈π | c〉 = E

∫ T

0
πt

(

ĉt + ν̂
∫ t

0
e−κ̂(t−s)ĉsds

)

dt

= E

[

∫ T

0
πtĉt dt+

∫ T

0

∫ T

0
1{s≤t}e

−κ̂(t−s)
EEs [πtν̂ĉs] dsdt

]

= E

[

∫ T

0
πtĉt dt+

∫ T

0

∫ T

s
Esπtν̂e

−κ̂(t−s) dt ĉs ds

]

= E

[

∫ T

0

(

πt +
∫ T

t
Etπsν̂e

−κ̂(s−t) ds

)

ĉt dt

]

= 〈π̂ | ĉ〉 .

In the first equation, we substituted ĉ + ν̂Ĥ (ĉ) for c. In the second

equation, we interchanged the expectation operator and the double

time integral, and applied the law of iterated expectations. In the

third equation, we took the unconditional expectation back out of the

double time integral and reversed the order of integration with respect

to s and t. In the same double integral, we relabeled (s, t) to (t, s) and

factored out ĉt across both terms to arrive at the fourth equation. The

final equation reflects the relationship between π̂ and π in Table 3.9.1.

A similar argument applied conditionally on time-t information results
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in the more general last identity of Table 3.9.1. Just as in the discrete

case, we can conclude that the primal problem (3.9.1) is equivalent to

the dual problem (3.9.7), an equivalence that extends to Arrow-Debreu

equilibria with common parameters κ and ν.

The relationship between π and π̂ and the state-price dynamics

(3.9.10)
dπ

π
= −rdt− ηdB and

dπ̂

π̂
= −r̂dt− η̂dB,

allow us to relate the short-rate and market-price-of-risk processes in

the primal market to those of the dual market.

Lemma 3.9.1. πt (rt + κ) = π̂t (r̂t + κ̂).

Proof. Let

δt ≡ e−κ̂t, pt ≡
∫ T

t
P s
t ν̂e

−κ̂(s−t)ds =
1

πtδt
Et

∫ T

t
πsν̂δsds,

and therefore d (pπδ) = −πν̂δdt + dLM, where we write LM to mean

“some local martingale” (not necessarily the same one in every occur-

rence). Since π̂δ = πδ (1 + p),

(3.9.11) d (π̂δ) = d (πδ) − πν̂δdt+ dLM.

The state-price dynamics (3.9.10) and integration by parts result in

(3.9.12)
d (πδ)

πδ
=
dπ

π
+
dδ

δ
= − (r + κ̂) dt+ dLM.

Since κ̂+ ν̂ = κ, equations (3.9.11) and (3.9.12) imply that

d (π̂δ) = −π (r + κ) δdt+ dLM,

and (3.9.12) with π̂ in place of π gives

d (π̂δ) = −π̂ (r̂ + κ̂) δdt+ dLM.

Matching drift terms yields the claimed identity. �

Leaving the general case as an exercise, in the remainder of this

section, we assume that r is deterministic. The discount-bond prices

in this case are P s
t = exp (− ∫ s

t rudu) and therefore

(3.9.13) pt ≡
∫ T

t
P s
t ν̂e

−κ̂(s−t)ds
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is also deterministic. Lemma 3.9.1 and the fact that π̂t = πt (1 + pt)

give the dual short rate and market price of risk as

r̂t =
rt + κ

1 + pt
− κ̂ and η̂t = ηt.

The pricing of risk is the same in the primal and dual markets as a

consequence of the assumption that r is deterministic.

Example 3.9.2. Assume that r is constant and r + κ̂ > 0. Then

pt =
ν̂

r + κ̂

(

1 − e−(r+κ̂)(T−t)
)

→ ν̂

r + κ̂
as T → ∞.

For large values of T , the ratio π̂t/πt is approximately a constant and

pricing in the primal and dual markets is approximately the same. In

particular, r̂t is approximately equal to r. ♦

Finally, we relate optimal consumption-portfolio policies in the pri-

mal and dual formulations. We adopt last section’s setting, where the

filtration is generated by a single Brownian motion. Again, this is

for expositional expediency, the underlying arguments apply in much

greater generality. The primal market is implemented by trading in the

money-market account (MMA) with deterministic short-rate process r,

and a stock with time-t instantaneous excess return

dRt =
dSt
St

+ (yt − rt) dt = ηtσtdt+ σtdBt,

where St is the stock price, yt the dividend yield, σt is the stock’s

volatility, and ηt is the market price of risk. We saw earlier that, since

r is deterministic, η̂ = η and r̂ is also deterministic. The dual market is

therefore implemented by trading in an MMA with short-rate process

r̂ and a stock with the same instantaneous excess returns dR̂ = dR.

The agent of the primal problem sells the endowment e and follows

a consumption-portfolio policy (̺, ψ) in the primal market generating

the wealth process W , where

dW

W
= (r − ̺) dt+ ψdR, W0 =

1

π0
〈π | e〉 .

At time t the agent consumes at a rate ct = ̺tWt and invests a propor-

tion ψt of the wealth Wt in the stock, with the remaining proportion

1−ψt in the MMA. Let us call the policy (̺, ψ) regular if W = W (c).

As discussed in the last section, this condition means that the policy
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does not destroy wealth and should therefore hold at an optimum. The

analogous statements apply for a policy (ˆ̺, ψ̂) in the dual market for

the dual agent. The following proposition shows how to determine a

primal optimal policy, given a known dual optimal policy.

Proposition 3.9.3. Suppose the regular26 dual-market consumption-

portfolio policy (ˆ̺, ψ̂) finances the dual agent’s consumption plan ĉ.

Given a deterministic short-rate process r, let pt be defined by (3.9.13),

and let zt ≡ Ht (c) /Wt (c). Then, assuming it is regular, the primal-

market consumption-portfolio policy (̺, ψ), where

̺ =
1 − pz

1 + p
ˆ̺ − νz and ψ = (1 − pz) ψ̂,

finances the primal agent’s consumption plan c. In particular, (̺, ψ) is

optimal for the primal agent if (ˆ̺, ψ̂) is optimal for the dual agent.

Proof. Let Ŵ ≡ Ŵ (ĉ) and H ≡ H (c) = Ĥ (ĉ). The last identity

of Table 3.9.1 and the fact that π̂ = π (1 + p) imply (1 + p)
(

Ŵ +H
)

=

W + H , which simplifies to (1 + p) Ŵ = W − pH = (1 − pz)W and

hence

(3.9.14)
Ŵ

W
=

1 − pz

1 + p
.

Using this ratio, we can now relate ̺ to ˆ̺:

̺ =
c

W
=
ĉ− νH

W
=
Ŵ

W
ˆ̺ − νz =

1 − pz

1 + p
ˆ̺ − νz.

26By Lemma 3.8.3, a sufficient condition for regularity is E supt πtWt < ∞, which

is equivalent to E supt π̂tŴt < ∞, assuming a deterministic short rate r and EMM
density ξT ≡ dQ/dP such that E

[

ξ2
T

]

< ∞. To show this equivalence, start

with πt = exp
(

−
∫ t

0
rsds

)

ξt and π̂t = exp
(

−
∫ t

0
r̂sds

)

ξt, where ξt ≡ EtdQ/dP .

Doob’s maximal inequality (a standard result in martingale theory) implies that
E
[

supt ξ2
t

]

≤ 4E
[

ξ2
T

]

< ∞ and therefore E
[

supt π2
t

]

,E
[

supt π̂2
t

]

< ∞. Since

E
∫ T

0
c2

t dt < ∞ by assumption, Jensen’s inequality implies E
[

H2
T

]

< ∞, where

H ≡ H (c) = Ĥ (ĉ). Note that there is a constant K such that Ht ≤ KHT for
all t. Using the Cauchy-Schwarz inequality, it follows that E supt πtHt < ∞ and

similarly E supt π̂tHt < ∞. Since π (W + H) = π̂
(

Ŵ + H
)

, the claim follows.
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To relate ψ to ψ̂, first recall the state-price dynamics (3.9.10) with

η = η̂. Integration by parts applied to last identity of Table 3.9.1 gives

πdW + . . . dt− π (W +H) ηdB

= π̂dŴ + . . . dt− π̂
(

Ŵ +H
)

ηdB,

where . . . dt denotes a drift term whose details are irrelevant. The

dB terms cancel out. Divide by πW and use first π̂ = π (1 + p) and

then (3.9.14) to find

dW

W
= . . . dt+ (1 − pz)

dŴ

Ŵ
.

Finally, substitute the budget equation dW/W = . . . dt+ ψdR on the

left and dŴ/Ŵ = . . . dt + ψ̂dR on the right, and match martingale

parts to find ψ = (1 − pz) ψ̂. �

For a stochastic short-rate process r, the relationship between ̺ and

ˆ̺ of Proposition 3.9.3 still applies, with the same proof, and primal and

dual portfolios are related by ψ = (1 − pz) ψ̂+(1 + z) σ−1 (η − η̂), with

a similar proof. An expression for η− η̂ in terms of the volatility struc-

ture of discount bonds is derived in Schroder and Skiadas [2002], who

also assume a more general specification of H and provide extensions of

the same idea in other settings. The simple general insight is that the

redefinition of consumption through a linear transformation and asso-

ciated redefinition of state prices can transform a new problem to one

that is either simpler or one that is just different but already analyzed.

3.10. Exercises

Exercise 3.10.1. Assume the context of the CAPM equilibrium of

Example 3.2.9, including preference transitivity. Provide a dual proof

that the equilibrium is effectively complete by showing that there exists

a complete market X̄ ⊇ X such that (X̄, c) is an equilibrium and

applying Corollary 3.2.7.

Hint: Define the complete market X̄ by setting to zero the present

value of all time-one payoffs that are orthogonal to all traded time-one

payoffs.

Exercise 3.10.2. This exercise outlines a variant of the representative-

agent equilibrium of Example 3.2.10 that includes an example of a
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CAPM equilibrium. For this purpose, modify the definition of a con-

sumption set and Definition 3.1.1 of a preference correspondence by

weakening the monotonicity requirement to introduce an upper bound

on allowable consumption: For every preference correspondence D,

there exists some b ∈ L such that dom (D) = {c ∈ L | c < b}, and

for every arbitrage cash flow y, if x = 0 or x ∈ D (c) then x+y ∈ D (c),

provided x+ y < b. (The notation c < b means c (ω, t) < b (ω, t) for all

(ω, t).) The technical motivation behind this definition is to allow for

a quadratic utility representation, as in this exercise’s final part, which

implies variance aversion and the CAPM pricing equation. Quadratic

utility is increasing only up to a maximum. The idea is to only consider

equilibria in which the constraint that consumption is below that max-

imum is non-binding. We proceed with a more general specification

that emphasizes the aggregation argument.

Agent preferences are specified in terms of a given scale-invariant

preference correspondence D0 with dom (D0) ≡ {c ∈ L | c < 0}. For

all i ∈ {1, . . . , I}, the preference correspondence of agent (Di, ei) is

specified in terms of bi ∈ L by

dom
(

Di
)

≡
{

c ∈ L | c < bi
}

and Di (c) ≡ D0
(

c − bi
)

.

Further assume that there exist vi, wi ∈ R such that

ei − wi1Ω×{0} ∈ X, bi − vi1Ω×{0} ∈ X and wi < vi,

and let b ≡ ∑

i b
i, e ≡ ∑

i e
i, v ≡ ∑

i v
i, w ≡ ∑

i w
i. The allocation

c ≡
(

c1, . . . , cI
)

is defined by

ci ≡ bi − vi − wi

v − w
(b− e) .

Assume that e < b and therefore ci < bi for all i by construction.

(a) Show that the allocation c is market-clearing and X-feasible,

assuming X is arbitrage-free.

(b) The representative agent (D, e) is defined by

dom (D) ≡ {c ∈ L | c < b} and D (c) ≡ D0 (c− b) .

Show that (X, c) is an equilibrium if and only if the consumption plan

e is optimal for the representative agent given the market X, that is,

X ∩ D (e) = ∅.
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(c) Show that if (X, c) is an equilibrium and D (e) is convex, then

(X, c) is an effectively complete market equilibrium.

(d) Specialize the setting by assuming that T = 1 and D0 has the

quadratic utility representation U0 (c) = −c2
0 − βE [c2

1], where E is ex-

pectation under a given full-support probability and β is a positive

scalar. Assume further that the parameters b1, . . . , bI are (determin-

istic) constants. Verify that the agent preferences are variance averse

in the sense of Example 3.2.9. Adding the assumptions of a traded

money-market account and the regularity condition var [e1] > 0 and

e0 6= w, all the CAPM assumptions of Example 3.2.9 are satisfied. In

this context, give an alternative derivation by the CAPM beta-pricing

equation (3.2.4) by using Proposition 3.3.4 and the optimality of the

aggregate endowment for the representative agent.

Hint: Construct a state-price density whose time-one value is an affine

function of the market return.

Exercise 3.10.3. This exercise outlines a variant of the representative-

agent equilibrium of Example 3.2.10, where preferences are assumed to

be translation invariant instead of scale invariant. (Theorem A.4.2

shows that an additive utility representing a translation-invariant pref-

erence correspondence necessarily takes an exponential form, which in

the expected-utility case corresponds to constant absolute risk aver-

sion.) Every preference correspondence in this exercise is assumed to

have the entire set of adapted processes L as its domain. Agents are

specified in terms of a fixed reference agent (D0, e0). The key assump-

tion is that D0 is translation invariant:

D0 (c) = D0 (c+ θ) for all θ ∈ R.

For i = 1, . . . , I, agent (Di, ei) is specified in terms of the parameters

(αi, θi, xi) ∈ (0,∞) × R ×X by

Di (c) ≡ αiD0
(

c

αi

)

, ei ≡ αie0 + θi + xi.

Let α ≡ ∑

i α
i, θ ≡ ∑

i θ
i, x ≡ ∑

i x
i. The representative agent

(D, e) is defined by

D (c) = αD0
(

c

α

)

, e ≡
I
∑

i=1

ei = αe0 + θ + x.
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The allocation c =
(

c1, . . . , cI
)

is defined by

(3.10.1) ci = θi +
αi

α
(e− θ) .

(a) Show that (X, c) is an equilibrium if and only if the consumption

plan e is optimal for the representative agent given the market X, that

is, X ∩ D (e) = ∅.

(b) Suppose (X, c) is an equilibrium and D (e) is convex. Show that

(X, c) is an effectively complete market equilibrium.

(c) Fix an underlying full-support probability and assume that for

some β ∈ (0, 1) and all i, Di has the utility representation

U i (c) = E

[

−αi
T
∑

t=0

βt exp
(

− ct
αi

)

]

.

Verify that all preference assumptions made so far are satisfied and

specify a state-price density π that corresponds to the utility gradient

of the representative agent at the aggregate endowment.

(d) Consider a sequence of models as in part (c), parameterized by

the time horizon T = 1, 2, . . . , and take as given an infinite filtration

{Ft | t = 0, 1, . . .} and corresponding adapted process e = (e0, e1, . . . ).

The information and endowment of the T th model is the restriction

of the respective quantity over the time set {0, 1, . . . , T}, that is, the

filtration is {Ft | t = 0, 1, . . . , T} and the endowment is (e0, e1, . . . , eT ).

All other parameters are common across all models. The endowment

process is strictly positive and follows the dynamics et = et−1 (1 + gt),

where the random variable gt is stochastically independent of Ft−1 and

takes the value ε ∈ (0, 1) with probability p ∈ (0.5, 1) and −ε with

probability 1 − p. Assume m ≡ p log (1 + ε) + (1 − p) log (1 − ε) > 0.

What is the limit of the equilibrium short rate rt as t → ∞? You can

use the law of large numbers from probability theory, which implies

that t−1 log (et/e0) = t−1∑t
s=1 log (1 + gs) converges (with probability

one) to the mean of log (1 + gt), which is m > 0, and therefore et → ∞
as t → ∞ (with probability one).

Exercise 3.10.4. Assume a single period (T = 1) and fix an un-

derlying full-support probability. An agent’s time-one consumption is

restricted to take values in a non-empty open interval D ⊆ R. Given

K states, DK denotes the set of all D-valued random variables, and
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C2
++ (D) denotes the set of all strictly increasing and twice-continuously

differentiable functions of the form u : D → R, with the first two deriva-

tives denoted u′ and u′′, respectively. Utilities over time-one consump-

tion are assumed to be of the expected-utility form Eu (c), c ∈ DK ,

where u ∈ C2
++ (D). The corresponding coefficient of absolute risk

aversion is the function Au : D → R, where

Au (w) ≡ −u′′ (w)

u′ (w)
, w ∈ D.

(a) Suppose that u, ũ ∈ C2
++ (D). Show that Au = Aũ if and only

if there exist a ∈ (0,∞) and b ∈ R such that ũ = au + b. Apply

Theorem A.2.4 to conclude that Aũ = Au if and only if

for all x, y ∈ DK , Eũ (x) > Eũ (y) ⇐⇒ Eu (x) > Eu (y) .

(b) Call u HARA with coefficients (α, β) ∈ R
2 if u ∈ C2

++ (D)

with

D ≡ {w | α+ βw > 0} and Au (w) ≡ 1

α + βw
.

(HARA is an acronym for hyperbolic absolute risk aversion. For β < 0,

consumption is bounded above, just as in Exercise 3.10.2.) Show that

u is HARA with coefficients (α, β) if and only if there exist a ∈ (0,∞)

and b ∈ R such that

(3.10.2) au (w) + b =















1
β−1

(α + βw)(β−1)/β , if β 6= 0 and β 6= 1;

log (α + w) , if β = 1;

−α exp (−w/α) , if β = 0 and α > 0.

(c) Explain why u HARA implies that u is strictly concave.

Exercise 3.10.5. This exercise, which has Exercise 3.10.4 as a pre-

requisite, formulates and analyzes a representative-agent equilibrium

for agents who maximize HARA expected utility. The formulation

nests Example 3.2.10 and Exercises 3.10.2 and 3.10.3 for the expected

utility case.27

27This exercise follows DeMarzo and Skiadas [1998, 1999] who include asymmetric
private information. A common approach in the literature of competitive equi-
librium with asymmetric information is to assume constant absolute risk aversion
(CARA) and joint normality of payoffs and private signals, and to construct an equi-
librium in which prices are a linear function of the private signals, while remaining
silent on the question of the possible existence of other, nonlinear, equilibria with
different qualitative implications for the informational role of prices. The approach
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Assume T = 1 and fix an underlying full-support probability over

K states. For simplicity, agents can only trade in a forward market to

modify their time-one consumption. Taken as given is a column vector

V ≡ (V1, . . . , VJ)′, where Vj ∈ R
K represents the time-one value of some

asset that can be traded in a forward market. A portfolio is a row

vector θ ≡ (θ1, . . . , θJ), where θj ∈ R represents a number of forward

contracts in asset j. Given a forward-price vector f ≡ (f1, . . . , fJ)′ ∈
R
J×1, the portfolio θ generates the cash flow (0, θ (V − f)). Since all

time-zero cash flows are zero, we define the market (given f) by

Xf ≡
{

θ (V − f) | θ ∈ R
1×J

}

.

Each agent i ∈ {1, . . . , I} has a (time-one) endowment of the form

ei ≡ ai + biV, ai ∈ R, bi ∈ R
1×J ,

and maximizes the utility Eui over time-one consumption, where ui

is HARA with coefficients (αi, β). Note that E and β are the same

across agents. The set of admissible (time-one) consumption plans for

agent i is DK
i , where Di ≡ {w | αi + βw > 0}. The consumption plan

ci ∈ DK
i is optimal for agent i given f if there is no x ∈ Xf such

that ci + x ∈ DK
i and Eui (c

i + x) > Eui (c
i). An allocation is any

element of DK
1 ×· · ·×DK

I . The allocation c ≡
(

c1, . . . , cI
)

is f-feasible

if ci − ei ∈ Xf for all i, and market-clearing if
∑

i (c
i − ei) = 0.

An equilibrium is a pair (f, c) of a forward-price vector f and an f -

feasible and market-clearing allocation c such that for all i ∈ {1, . . . , I},

ci is optimal for agent i given f .

Define the aggregate parameters

α ≡
I
∑

i=1

αi, a ≡
I
∑

i=1

ai, b ≡
I
∑

i=1

bi, e ≡
I
∑

i=1

ei = a + bV.

The representative agent is endowed with the aggregate endow-

ment e and maximizes the expected utility Eu, where u is HARA with

coefficients (α, β). The set of admissible consumption plans for the

extending this exercise allows the removal of distributional assumptions, the re-
placement of CARA with HARA, and the characterization of all equilibria, linear
or not. The conclusions highlight indeterminacy issues and the non-robustness of
claims of full revelation of private information in equilibrium. More generally, our
theoretical understanding of how information diffuses through prices in equilibrium
is highly incomplete.
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representative agent is therefore DK , where D ≡ {w | α + βw > 0}.

Assume that for every agent i, ei ∈ DK
i and therefore e ∈ DK .

(a) Fix any forward-price vector f such that Xf is arbitrage-free

(meaning Xf ∩ R
K
+ = {0}). Show that

(3.10.3) ci ≡ ai + bif +
αi + β (ai + bif)

α + β (a + bf)
b (V − f)

defines an allocation c ∈ DK
1 × · · · ×DK

I that is f -feasible and market-

clearing, and there exist scalars λif > 0 such that

λifu
′
i

(

ci
)

= u′ (e) , i = 1, . . . , I.

(b) Show that for all f ∈ R
J×1, the aggregate endowment e is

optimal for the representative agent given f (that is, there is no x ∈ Xf

such that e+ x ∈ DK and Eu (e+ x) > Eu (e)) if and only if

(3.10.4) f =
E [u′ (e)V ]

Eu′ (e)
.

(c) Show that the pair (f, c) defined by equations (3.10.4) and (3.10.3)

is an equilibrium.

(d) Show that the equilibrium of part (c) is an effectively com-

plete market equilibrium: for all x1, . . . , xI such that ci + xi ∈ DK
i , if

Eui (c
i + xi) ≥ Eui (c

i) for all i and Eui (c
i + xi) > Eui (c

i) for some i,

then
∑

i x
i /∈ Xf . You can base your argument on Proposition 3.3.9,

but you should give a proof from first principles.

(e) Show that the equilibrium of part (c) is unique.

Hint: If the forward-price vector f is part of some equilibrium and

the market-clearing allocation c is Pareto optimal and f -feasible, then

(f, c) is an equilibrium.

(f) Assume β ≡ −1. Given the equilibrium of part (c), call R a

traded forward return if there exists a portfolio θ such that θf 6= 0

and R = θV/θf . Assume that a + bf 6= 0 and var [e] > 0, and define

the forward return of the aggregate endowment:

Rm ≡ a+ bV

a+ bf
=

e

forward price of e
.
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Assuming thatR0 is a forward traded return that is uncorrelated toRm,

show that every traded forward return R satisfies the CAPM equation

E

[

R− R0
]

=
cov [R,Rm]

var [Rm]
E

[

Rm −R0
]

.

Exercise 3.10.6 (preferences for the timing of resolution of un-

certainty). In the main text preferences are defined over consumption

plans taking the information tree (filtration) as given. In settings in

which the information structure is not fixed, it is natural to consider

preferences not only over consumption but also over information.28 In

particular, an agent may have preferences for earlier or later resolution

of uncertainty about future consumption. For instance, in the context

of Example 3.3.12, given the consumption plan b, an agent with prefer-

ences for late resolution of uncertainty would prefer to to wait to find

out the outcome of the tth coin toss at time t, rather than have all T

coin tosses announced at time zero.

More formally, let C be a (nonempty) set of consumption plans and

let Φ be the set of every filtration {Ft} satisfying F0 = {Ω, ∅} and FT =

2Ω. We consider a (non-normalized) utility function V0 (·) over the set

of all pairs (c, {Ft}) ∈ C×Φ such that c is adapted to {Ft}. Taking as

primitive an underlying probability with expectation operator E and

the functions Ft : R
2 → R, t = 0, . . . , T − 1 and FT : R → R, assume

that V0 (c, {Ft}) is the initial value of the process V that solves the

backward recursion

Vt = Ft (ct,E [Vt+1 | Ft]) , t = 0, . . . , T − 1; VT = FT (cT ) .

We say that the utility function V0 (·) expresses preferences for earlier

resolution of uncertainty if for all (c, {F1
t }) and (c, {F2

t }) in its domain,

F1
t ⊆ F2

t for all t implies V0

(

c,
{

F1
t

})

≤ V0

(

c,
{

F2
t

})

.

Preferences for late resolution of uncertainty are defined analogously,

with the last inequality reversed.

(a) Use Jensen’s inequality to show that if the functions Ft are

convex (resp. concave) in their second (utility) argument for all t < T ,

28A version of the ideas of this exercise appears in Kreps and Porteus [1978],
whose formalism is based on preferences over timed probability distributions. The
probability-free approach of this exercise is from Skiadas [1998], where a continuous-
time version of the main characterization can also be found.
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then V0 (·) expresses preferences for earlier (resp. later) resolution of

uncertainty.

(b) Suppose the choice of Ft corresponds to the functional form of

expected discounted utility. What does that imply about preferences

over information?

(c) Suppose the utility process associated with (c, {Ft}) is of the

EZW form of Example 3.5.1, with CRRA γ and inverse EIS δ. Charac-

terize preferences for the timing of resolution of uncertainty in terms of

the relative value of the parameters γ and δ. You can use without proof

the fact that if u is of the HARA form (3.10.2) and β ∈ (0, 1), then

the function u−1 ((1 − β)u (x) + βu (y)) is concave if u is concave, and

convex if u is convex. (This follows by the argument of Example 3.3.2

for the power-or-logarithmic case. A similar argument applies for the

exponential case, based on translation invariance.)

Exercise 3.10.7. In this problem assume scale-invariant recursive

utility with a proportional aggregator that takes the unit-EIS form

gt (x) = x1−β for some β ∈ (0, 1).

(a) Specialize the result of Proposition 3.6.2 (IMRS and consump-

tion growth) to this case.

(b) Specialize the result of Proposition 3.6.4 (IMRS and market

returns) to this case.

(c) Show that the procedures for computing π in parts (a) and (b)

can be easily derived from each other, given the relationship between

consumption growth and market returns of Example 3.6.7 (unit EIS).

(d) Further specialize the results of parts (a) and (b) by assuming

unit-EIS Epstein-Zin-Weil utility. (Provide as specific expressions as

you can.)

Exercise 3.10.8. An alternative approach to proving Theorem 3.7.2

on optimal consumption and portfolio choice is based on the ideas of

dynamic programming. While it is not difficult to show the complete

Theorem 3.7.2, in this problem you are only asked to use a dynamic

programming argument to prove the sufficiency part: If (̺, ψ) is con-

structed according to the Theorem’s algorithm, then it is optimal. Also,

for notational brevity, assume the proportional aggregator gt = g is

time independent.
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Define a value function to be a mapping V : (0,∞) → L++ that

assigns to each w ∈ (0,∞) a strictly positive adapted process V (w).

For each spot (F, t), think of V (w) (F, t) as the optimal utility level at

spot (F, t) given total wealth w at that spot. (In a typical application,

the dependence on (F, t) is through the value Z (F, t) of some Markov

process Z on that spot, and the value function is therefore defined

as a function of wealth and the Markov state. Here, Z (F, t) can be

thought of as being the spot itself, which can be identified with the

entire history leading to that spot.)

Write Vt (w) for the random variable that takes the value V (w) (F, t)

on F for every spot (F, t). The corresponding Bellman equation is

Vt−1 (w) = max
̺t−1,ψt

f
(

̺t−1w, υt−1

(

Vt
(

(1 − ̺t−1)wRψ
t

)))

.

Proceed in the following steps.

(a) What exactly is the mathematical content of the Bellman equa-

tion at each spot? What is the set over which maximization occurs at

each spot?

(b) Conjecture the functional form of V (w), explaining your rea-

soning.

(c) Show that the algorithm of Theorem 3.7.2 produces a solution

to the Bellman equation.

(d) Provide an optimality verification argument, that is, show that

given the right terminal condition, a solution to the Bellman equation

defines an optimal policy. You should explain how the Bellman equa-

tion defines the optimal policy and then prove optimality using only

the budget equation, the utility definition, and the Bellman equation.

Exercise 3.10.9. In this exercise you will verify two claims of Ex-

ample 3.8.2, whose context is assumed. You can ignore technicalities

involving omitted integrability assumptions. (For example, with D de-

noting the random variable inside the expectation defining Ũ0, you can

assume that E [D2] < ∞ and therefore the martingale EtD has a unique

martingale representation.)

(a) Verify that if uδ (Ut) = qtŨt then U satisfies BSDE (3.8.7).

(b) Assuming δ 6= 1, verify that if U is defined by (3.8.8), then it

satisfies BSDE (3.8.9).



APPENDIX A

Additive Utility Representations

This appendix presents some basic results on the representation

of preferences by additive utility functions. Simple ordinal assump-

tions, mainly separability and continuity, are enough for the existence

of an additive utility representation. Additional ordinal restrictions,

like preference convexity, scale or translation invariance, and state in-

dependence are shown to have strong implications for the structure

of an additive utility representation. The appendix concludes with a

discussion of risk aversion in the context of expected utility.

A.1. Utility representations of preferences

In this appendix we discuss preferences over the set C ≡ (ℓ,∞)N

for some integer N ≥ 2 and constant ℓ ∈ [−∞,∞). (Note that we

allow the possibility ℓ = −∞, corresponding to C = R
N .) We treat a

constant α ∈ (ℓ,∞) as an element of C by identifying it with (α, . . . , α).

As in Definition 3.3.1, a utility is a continuous and increasing function

of the form U : C → R. A preference is a binary relation on C, that

is, a subset ≻ of C × C, with the notation a ≻ b indicating (a, b) ∈ ≻.

The utility U represents the preference ≻ defined, for all a, b ∈ C, by

a ≻ b ⇐⇒ U (a) > U (b) .

The preference ≻ is another way of expressing the preference corre-

spondence D represented by U (Definitions 3.1.1, 3.3.1): a + x ≻ a if

and only if x ∈ D (a). Following this section, all preferences in this

appendix are assumed to have a utility representation, but we use the

preference notation ≻ where we wish to emphasize that a property is

ordinal and therefore not dependent on any particular choice of a utility

representation.

We close this section with a characterization of every preference

≻ that admits a utility representation. We define the relation � on

C by letting a � b if and only if not b ≻ a. Clearly, ≻ admits a

209
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utility representation U if and only if � admits a utility representation

U in the sense (A.1.1) of the following utility representation theorem.

The argument is simplified by our standing assumption of monotone

preferences.1

Theorem A.1.1. For any binary relation � on C, there exists a

utility function U : C → R such that

(A.1.1) a � b ⇐⇒ U (a) ≥ U (b) .

if and only if � is

• total: for all a, b ∈ C, either a � b or b � a.

• transitive: a � b and b � c implies a � c.

• increasing: for all a, b ∈ C, if b 6= a ≥ b then not b � a.

• continuous: for every sequence (an, bn) such that an � bn for

all n, if limn→∞ (an, bn) = (a, b) ∈ C × C, then a � b.

Proof. The “only if” part is immediate from the definitions. Con-

versely, suppose that � is total, transitive, increasing and continuous.

On C, define the function U (c) ≡ inf {α ∈ R | α � c} and the relation

a ∼ b if and only if both a � b and b � a. We proceed in six steps.

Step 1: U (c) ∼ c. Choose any sequence αn in R that converges to

U (c) and satisfies αn � c for all n. Since � is continuous, U (c) � c

and U (c) = min {α ∈ R | α � c}. For all n = 1, 2, . . . , it is not the

case that U (c) − n−1 � c, and since � is total, c � U (c) − n−1. Since

� is continuous, c � U (c). This proves that U (c) ∼ c.

Step 2: a � b ⇐⇒ U (a) ≥ U (b). Since � is transitive, if a � b,

then {α ∈ R | α � a} ⊆ {α ∈ R | α � b}, and therefore U (a) ≥ U (b)

by the definition of U . Conversely, since � is monotone, U (a) ≥ U (b)

implies that U (a) � U (b). By Step 1, a � U (a) and U (b) � b. Since

� is transitive, it follows that a � b.

1Debreu [1983] (based on a 1954 working paper) shows the existence of a continuous
utility representation of a continuous, total and transitive binary relation, without
monotonicity. The claim fails if continuity is also dropped, with the classic coun-
terexample being lexicographic preferences: For a, b ∈ R

2, suppose a ≻ b if and
only if a1 > b1 or (a1 = b1 and a2 > b2). Suppose ≻ has a utility representation U .
Then for all x ∈ R, the interval (U (x, 0) , U (x, 1)) is nonempty and therefore con-
tains a rational r (x). If y > x, then U (y, 0) > U (x, 1) and therefore r (y) > r (x).
We therefore have a bijective mapping x 7→ r (x) of the real numbers onto a subset
of the rationals, a contradiction, since the rationals can be enumerated (r1, r2, . . . )
while, by Cantor’s diagonal argument, any enumeration of the reals must omit some
real number.
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Step 3: U is increasing. Suppose a, b ∈ C and b 6= a ≥ b. Since �
is increasing, not b � a. By Step 2, U (a) > U (b).

Step 4: For all u ∈ (ℓ,∞), U (u) = u. Since � is total and increas-

ing, for all α, u ∈ (ℓ,∞), α � u if and only if α ≥ u. The claim now

follows by the definition of U .

Step 5: For all u ∈ R, if u ∼ c, then u = U (c). This is a corollary

of Steps 2 and 4.

Step 6: U is continuous. Consider any sequence cn in C converging

to c ∈ C. Suppose first that {U (cn)} converges to some u. Since

U (cn) ∼ cn for all n and � is continuous, it follows that u ∼ c and

therefore u = U (c) by Step 5. Consider now the general case, where

we do not know a priori that {U (cn)} converges. Since {cn} converges,

it is bounded. There exist, therefore, α, β ∈ (ℓ,∞) such that c and all

the components of cn are valued in [α, β] and therefore U (c) and U (cn)

are all valued in the compact set [U (α) , U (β)]. It follows that every

subsequence of {U (cn)} has a convergent further subsequence, which

as shown earlier must converge to U (c). This proves that U (cn) also

converges to U (c). �

A.2. Additive utility representations

The remainder of this appendix discusses preferences on (ℓ,∞)N ,

where ℓ ∈ [−∞,∞), that admit an additive utility representation in

the following sense.

Definition A.2.1. A utility U : (ℓ,∞)N → R is additive if there

exist functions Un : (ℓ,∞) → R such that

(A.2.1) U (x) =
N
∑

n=1

Un (xn) , x ∈ (ℓ,∞)N .

Given any x, y ∈ (ℓ,∞)N and A ⊆ {1, . . . , N}, xAy denotes the

element of (ℓ,∞)N defined by

(xAy)n =







xn, if n ∈ A;

yn, if n /∈ A.

Definition A.2.2. A preference ≻ on (ℓ,∞)N is separable if

(A.2.2) xAz ≻ yAz ⇐⇒ xAz̃ ≻ yAz̃,

for all x, y, z, z̃ ∈ (ℓ,∞)N and A ⊆ {1, . . . , N}.
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A preference that admits an additive utility representation is clearly

separable. The following remarkable theorem gives a converse. It is a

special case of Debreu’s additive representation theorem,2 but it cap-

tures the deeper aspects of Debreu’s theorem. The proof would take

us too far afield and will not be given here.

Theorem A.2.3 (additive utility representation). Suppose N > 2

and ≻ is a preference on (ℓ,∞)N that admits a utility representation.

Then ≻ admits an additive utility representation if and only if it is

separable.

The assumption N > 2 is critical; separability is not sufficient for

the existence of an additive representation if N = 2. The uniqueness

part of Debreu’s theorem (which also applies for N = 2) is stated

and proved below. The result is essential for our discussion of the

limitations of additive utilities in Chapter 3, and our later parametric

characterization of scale or translation invariant additive preferences,

and the associated foundation of expected utility with constant relative

or absolute risk aversion.

Theorem A.2.4 (uniqueness of additive representations). For any

N ≥ 2, suppose the utilities U and Ũ are additive: For all x ∈ (ℓ,∞)N ,

U (x) =
∑

n Un (xn) and Ũ (x) =
∑

n Ũn (xn). Then the following two

conditions are equivalent:

(1) U and Ũ are ordinally equivalent: For all x, y ∈ (ℓ,∞)N ,

U (x) > U (y) ⇐⇒ Ũ (x) > Ũ (y) .

(2) U and Ũ are related by a positive affine transformation:

There exist a ∈ (0,∞) and b ∈ R
N such that

Ũn = aUn + bn, n = 1, . . . , N.

Proof. That (2) =⇒ (1) is immediate. We show the converse,

assuming that ℓ = −∞. This is without loss of generality: If ℓ > −∞,

then apply the result for ℓ = −∞ to the utility functions that map

z ∈ R
N to

∑

n Un (ℓ+ ezn) and
∑

n Ũn (ℓ+ ezn), respectively.

2Debreu [1983] characterizes continuous additive utility representations in a way
that includes Theorems A.2.3 and A.2.4. Krantz et al. [1971] present an algebraic
theory of additive representations that generalizes Debreu’s topological results (see
also Wakker [1988, 1989]).
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Consider any ordinally equivalent additive utilities U and Ũ on

R
N that satisfy, for all n ∈ {1, . . . , N},

(A.2.3) Un (0) = Ũn (0) = 0 and U1 (1) = Ũ1 (1) = 1.

The claim is that Ũn = Un for all n, which proves (1) =⇒ (2),

since any additive utility on R
N can be made to satisfy normaliza-

tion (A.2.3) after a positive affine transformation. Fixing an arbitrary

n ∈ {2, . . . , N}, L ∈ (−∞, 0) and scalar ∆ such that L+ ∆ > 1, define

the functions f, g : [0, 1] → R by

f (z) ≡ U1 (L+ z∆) − U1 (L)

U1 (L+ ∆) − U1 (L)
, g (z) ≡ Un (L+ z∆) − Un (L)

U1 (L+ ∆) − U1 (L)
.

Define also f̃ and g̃ by putting a tilde over f , g and every instance of U

in the above display. Applying Lemma A.2.5 immediately following this

proof to these functions, it follows that U1 (x) = Ũ1 (x) and Un (x) =

Ũn (x) for all x ∈ [L,L+ ∆]. This proves that Ũn = Un for all n, since

every x ∈ R is in an interval of the form (L,L+ ∆) ⊃ [0, 1]. �

Lemma A.2.5. Suppose the functions f, g, f̃ , g̃ : [0, 1] → R are strictly

increasing and continuous, and satisfy

(A.2.4) f (0) = g (0) = f̃ (0) = g̃ (0) = 0 and f (1) = f̃ (1) = 1.

Suppose also that for all x, y, z, w ∈ [0, 1],

(A.2.5) f (x)+g (y) = f (z)+g (w) ⇐⇒ f̃ (x)+g̃ (y) = f̃ (z)+g̃ (w) .

Then f = f̃ and g = g̃.

Proof. Let N be any positive integer such that 2−N < g (1). Given

any n ∈ {N,N + 1, . . . }, define xnk ∈ [0, 1] and yn ∈ (0, g (1)) by

(A.2.6) f (xnk) = k2−n, k = 0, 1, . . . , 2n, and g (yn) = 2−n.

Note that xn0 = 0 and xn2n = 1. Since g (0) = 0, we have

f (xnk) + g (0) = f
(

xnk−1

)

+ g (yn) , k = 1, . . . , 2n.

By assumption (A.2.5), it is also true that

(A.2.7) f̃ (xnk) + g̃ (0) = f̃
(

xnk−1

)

+ g̃ (yn) , k = 1, . . . , 2n.
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Since g̃ (0) = f̃ (0) = 0, it follows that

1 = f̃ (1) =
2n
∑

k=1

f̃ (xnk) − f̃
(

xnk−1

)

= 2ng̃ (yn) .

This proves that g̃ (yn) = 2−n, which together with (A.2.7) shows that

f̃ (xnk) = k2−n for k > 0. Comparing this conclusion to (A.2.6), we

have proved that the functions f−1 and f̃−1 are equal on the set Dn =

{k2−n | k = 0, . . . , 2n}, for all n ≥ N . Since the set
⋃

n≥N Dn is dense

in [0, 1] and the functions f−1 and f̃−1 are continuous, it follows that

f−1 = f̃−1 and therefore f = f̃ .

To show that g = g̃, we apply the same argument with (F,G, F̃ , G̃)

in place of (f, g, f̃ , g̃), where

F (z) ≡ g (z)

g (1)
, F̃ (z) ≡ g̃ (z)

g̃ (1)
, G (z) ≡ f (z)

g (1)
, G̃ (z) ≡ f̃ (z)

g̃ (1)
.

The conclusion F = F̃ implies that g = ag̃ for some a ∈ (0,∞). Choose

ε, δ > 0 such that f (ε) = g (δ), and therefore f (ε)+g (0) = f (0)+g (δ)

(by (A.2.4)). By (A.2.5), it must also be the case that f̃ (ε) = g̃ (δ).

Since f = f̃ and g̃ = ag, this shows that a = 1 and therefore g = g̃,

completing the proof. �

A.3. Concave additive representations

A preference ≻ on (ℓ,∞)N is convex if for all y ∈ (ℓ,∞)N , the set

{x | x ≻ y} is convex. Preference convexity is a key component of this

text’s theory as it expresses preference for smoothing across time and

states. As pointed out in Section 3.3, a convex preference admitting

a utility representation may admit no concave utility representation.

This is also true of additive representations: U (x) ≡ ex1 − e−x2 de-

fines an additive utility on (0,∞)2 that represents a convex preference

(uniquely up to positive affine transformations). On the other hand,

we have the following positive and rather surprising result.3

Theorem A.3.1. Suppose the preference ≻ on (ℓ,∞)N is convex

and admits an additive utility representation U : (ℓ,∞)N → R. Then

at least N − 1 of the functions Un defined in (A.2.1) are concave.

3The proof of Theorem A.3.1 is based on Yaari [1977], who credited Koopmans
with a different proof, as well as Gorman for the twice-differentiable case, in both
cases in unpublished papers.
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Proof. The theorem follows from Lemma A.3.3 below. �

In fact, the argument that follows proves a stronger result in that

our standing monotonicity assumption on preferences plays no role and

the interval (ℓ,∞) is replaced by the interval (ℓ,m), for any m ∈ (ℓ,∞].

The remainder of this section shows two lemmas that lead to the proof

of Theorem A.3.1. The first lemma is stated a little more generally

than needed in this section. We will use it again in our discussion of

expected utility and risk aversion.

Lemma A.3.2 (Yaari). Suppose the continuous function f : (ℓ,m) →
R is not concave and p ∈ (0, 1). Then there exist some x∗ ∈ (ℓ,m) and

small enough scalar ε > 0 such that for all δ ∈ (0, ε),

(A.3.1) f (x∗) < pf (x∗ + (1 − p) δ) + (1 − p) f (x∗ − pδ) .

Proof. Since f is not concave, there exist x0, x1 ∈ (ℓ,m) and

α ∈ (0, 1) such that

f (xα) < (1 − α) f
(

x0
)

+ αf
(

x1
)

,

where xα ≡ (1 − α) x0 + αx1 and x0 < x1. Let h : (ℓ,m) → R be

the affine function whose graph is the straight line through the points

(x0, f (x0)) and (x1, f (x1)). Inequality (A.3.1) is satisfied by the given

function f if and only if it is satisfied by the function f −h. Replacing

f by f − h, we proceed under the assumption that f (x0) = f (x1) = 0

and therefore f (xα) < 0. Let

K = argmin
{

f (x) : x ∈
[

x0, x1
]}

,

a compact set (since f is continuous), and let x∗ = minK. Clearly,

x∗ ∈ (x0, x1) and f (x∗) < 0. Choose ε > 0 small enough so that

x∗ + (1 − p) ε and x∗ − pε are both valued in [x0, x1]. The fact that

x∗ minimizes f on [x0, x1] and x∗ is the least point in [x0, x1] with this

property implies, for all δ ∈ (0, ε), the inequalities

f (x∗) ≤ f (x∗ + (1 − p) δ) and f (x∗) < f (x∗ − pδ) ,

which in turn imply (A.3.1). �

We close the section with the lemma that contains the essential part

of the proof of Theorem A.3.1.
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Lemma A.3.3. Suppose that the functions f, g : (ℓ,m) → R are

continuous and neither of them is concave. Then there exists some

(x∗, y∗) such that the set
{

(x, y) ∈ (ℓ,m)2 | f (x) + g (y) > f (x∗) + g (y∗)
}

is nonempty and not convex.

Proof. Let x∗ and ε be selected in terms of f as in Lemma A.3.2

with p = 1/2, and let y∗ and ε be analogous quantities for g. (Note

that we can choose the same ε in both cases.) Clearly, the validity of

the lemma’s claim does not change if f and g are modified by adding a

constant. Replacing f with f−f (x∗) and g with g−g (y∗), we proceed

under the assumption that

(A.3.2) f (x∗) = g (y∗) = 0.

Letting ǫ ≡ ε/2, condition (A.3.1) can be restated as

(A.3.3) f (x∗ + a) + f (x∗ − a) > 0 for all a ∈ (−ǫ, ǫ) .

This implies that x∗ is not a local maximizer of f . Therefore, the set

If ≡ {f (x∗ + a) | a ∈ (−ǫ, ǫ)}

is an interval (since f is continuous) that includes a subinterval of the

form [0, δ) for some δ > 0. Analogously, we have

(A.3.4) g (y∗ + b) + g (y∗ − b) > 0 for all b ∈ (−ǫ, ǫ) ,

and Ig includes a subinterval [0, δ) for some δ > 0. It follows that If∩Ig
is nonempty, which is to say that there exist a and b in (−ǫ, ǫ) such that

f (x∗ + a) = g (y∗ + b). The last equality in combination with (A.3.3)

and (A.3.4) implies

f (x∗ − a) + g (y∗ + b) > 0 and f (x∗ + a) + g (y∗ − b) > 0.

We have proved that

S ≡ {(x, y) | f (x) + g (y) > 0}

contains the points (x∗ − a, y∗ + b) and (x∗ + a, y∗ − b), whose mid-

point is (x∗, y∗). By (A.3.2), (x∗, y∗) /∈ S and therefore the set S is not

convex. �
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A.4. Scale/translation invariant representations

In the first two sections, we characterized every preference ≻ that

admits a utility representation and saw that if ≻ admits a utility rep-

resentation and N > 2, it admits an additive utility representation if

and only if it is separable. In this section, we take the existence of an

additive utility representation as given and show (for any N) that a

translation invariance property of ≻ is equivalent to the utility taking

an exponential functional form, and a scale invariance property of ≻ is

equivalent to the utility taking a power or logarithmic functional form.4

In the following sections, we will interpret these results as providing

ordinal foundations for expected utility with constant absolute risk

aversion in the case of translation-invariant preferences, and constant

relative risk aversion in the case of scale-invariant preferences.

The section’s central argument is an application of Theorem A.2.4

on the uniqueness of additive representations and the following char-

acterization of a linear function on the real line.5

Lemma A.4.1. Suppose that the function f : R → R satisfies

(A.4.1) f (x+ y) = f (x) + f (y) for all x, y ∈ R,

and there exists some nonempty open interval on which f is bounded.

Then f (x) = f (1)x for all x ∈ R.

Proof. We must show that δ (x) ≡ f (x) − f (1)x = 0 for all

x ∈ R. Using (A.4.1), we find nδ (1/n) = δ (1) = 0 and therefore

δ (1/n) = 0 for every positive integer n. Similarly, for positive integers

m and n, δ (m/n) = mδ (1/n) = 0. We have shown that δ (r) = 0

if r is a positive rational number. Since δ (0 + 0) = δ (0) + δ (0) and

δ (0) = δ (r) + δ (−r), δ (r) = 0 for every rational r. The function

δ inherits from f the property that it is bounded on some nonempty

open interval (a, b). Given any x ∈ R, we can find a rational r such

that x + r ∈ (a, b), and since δ (x) = δ (x) + δ (r) = δ (x+ r), δ is

bounded on the entire real line. Finally, for all x ∈ R, the set of all

δ (nx) = nδ (x), n = 1, 2, . . . , is bounded only if δ (x) = 0. �

4To my knowledge, the purely ordinal characterizations of Theorems A.4.2
and A.4.3, without any differentiability assumptions, first appear in Skiadas [2013b].
5For some historical context and related results, see Aczél [2006].
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The preference ≻ on R
N is said to be translation invariant if

x ≻ y and t ∈ R =⇒ x+ t ≻ y + t.

Theorem A.4.2. Suppose the preference ≻ on R
N admits an addi-

tive utility representation. Then ≻ is translation invariant if and only

if it admits a utility representation of the form

(A.4.2) U (x) =
N
∑

n=1

wn
1 − exp (−αxn)

α
, x ∈ R

N ,

for unique α ∈ R and w1, . . . , wN ∈ (0, 1) such that
∑

n wn = 1. The

convention for α = 0 is that (1 − exp (−αx)) /α is equal to x, which is

the limit as α → 0.

Proof. Suppose U is an additive utility representing the translation-

invariant preference ≻. Without loss of generality, we assume that

Un (0) = 0 for all n = 1, . . . , N (otherwise, replace Un by Un − Un (0)).

For any t ∈ R, the translation invariance of ≻ implies that U (x+ t)

as a function of x ∈ R
N defines another additive utility representation

of ≻. By Theorem A.2.4 and the fact that Un (0) = 0, there exists a

function a : R → (0,∞) such that

(A.4.3) Un (s+ t) = Un (s) a (t) + Un (t) , s, t ∈ R, n = 1, . . . , N.

Suppose a (t) = 1 for all t. By Lemma A.4.1, Un (x) = wnx, x ∈ R,

for necessarily positive constants wn, which can be assumed to add

up to one after positively scaling the utility, resulting in representa-

tion (A.4.2) with α = 0.

Suppose instead that a (y) 6= 1 for some y. Equation (A.4.3) applied

with (s, t) = (x, y) and again with (s, t) = (y, x) implies that

(A.4.4) Un (x) = wn (1 − a (x)) , x ∈ R,

where wn ≡ Un (y) / (1 − a (y)) 6= 0 (since Un is increasing). Equa-

tion (A.4.3) with s = 1 implies that a is the difference of two increasing

functions and is therefore bounded on some open interval. Substitut-

ing expression (A.4.4) for Un into equation (A.4.3) and simplifying, we

find that log a satisfies the assumptions of Lemma A.4.1. It follows

that log a (x) = −αx for some scalar α, and equation (A.4.4) becomes

the claimed representation (A.4.2) after positive scaling.

The converse claim is immediate. �
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The preference ≻ on (0,∞)N is scale invariant if

x ≻ y and s ∈ (0,∞) =⇒ sx ≻ sy.

Theorem A.4.3. Suppose the preference ≻ on (0,∞)N admits an

additive utility representation. Then ≻ is scale invariant if and only if

it admits a utility representation of the form

(A.4.5) U (x) =
N
∑

n=1

wn
x1−γ
n − 1

1 − γ
, x ∈ (0,∞)N ,

for unique γ ∈ R and w1, . . . , wN ∈ (0, 1) such that
∑

nwn = 1. The

convention for γ = 1 is that (x1−γ − 1) / (1 − γ) is equal to log x, which

is the limit as γ → 1.

Proof. Using the notation expx = (exp x1, . . . , exp xN ), define

the preference ≻exp on R
N by

x ≻exp y ⇐⇒ exp x ≻ exp y.

Note that ≻exp is translation invariant if and only if ≻ is scale invariant.

The result follows from Theorem A.4.2 applied to ≻exp, with expres-

sion (A.4.5) resulting from (A.4.2) after replacing xn with log xn and

−α with 1 − γ. �

A.5. Expected utility representations

The rest of this appendix is on expected utility, which is a special

type of additive utility. We henceforth refer to {1, . . . , N} as the state

space and regard every x ∈ (ℓ,∞)N as a (state-contingent) payoff.

An agent expresses preferences over such payoffs, represented by the

preference relation ≻, not knowing what state will be realized. A full-

support probability is a vector P = (P1, . . . , PN) ∈ (0, 1)N such that
∑

n Pn = 1. (Note that here P is a probability mass function, while in

the main text a probability P refers to the corresponding probability

measure. Clearly, one determines the other and there should be no

confusion.) An expected utility is a pair (P, u) of a full-support

probability P and an increasing continuous function u : (ℓ,∞) → R.

The expected utility (P, u) represents the preference ≻ if

(A.5.1) U (x) ≡
N
∑

n=1

Pnu (xn) , x ∈ (ℓ,∞)N ,
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defines a utility representation U of ≻. Last section’s utilities (A.4.2)

and (A.4.5) are examples of the expected utility form (A.5.1), repre-

senting a translation or scale invariant preference ≻.

The uniqueness of additive representations (up to a positive affine

transformation) specializes to expected utilities as follows.

Theorem A.5.1. If (P, u) and (P̃ , ũ) are expected utilities repre-

senting the same preference, then P̃ = P and there exist constants

a ∈ (0,∞) and b ∈ R such that ũ = au+ b.

Proof. By the uniqueness Theorem A.2.4, there exist a ∈ (0,∞)

and b1, . . . , bn ∈ R such that P̃nũ = aPnu + bn for all n. Adding up

over n, we obtain ũ = au+b, where b ≡ ∑

n bn. Therefore, P̃n (au+ b) =

aPnu+ bn or (P̃n − Pn)au = bn − P̃nb. The right-hand side of the last

equation is a constant but the left-hand side is a strictly monotone

function, unless P̃n = Pn. �

As a corollary of Theorem A.2.3 and last section’s results, we have

the following ordinal sufficient conditions for the existence of an ex-

pected utility representation.

Theorem A.5.2. Assuming N > 2, every scale or translation in-

variant separable preference admits an expected utility representation.

The remainder of this section provides an ordinal characteriza-

tion of the existence of an expected utility representation, without the

scale/translation invariance assumption. We introduce a property we

call state independence and we refine Theorem A.2.3, where N > 2, by

showing that ≻ is both separable and state independent if and only if it

admits an expected utility representation.6 Clearly, scale or translation

invariance implies state independence. The details of this argument are

not needed elsewhere in this text and can therefore be omitted.

6Preferences over probability distributions that admit an expected-utility represen-
tation were first characterized by von Neumann and Morgenstern [1944] (see also
Herstein and Milnor [1953]). Incorporating a subjective view of probability in the
tradition of Ramsey [1926], Savage [1954] developed an axiomatic foundation for
expected utility with a nonatomic probability that is uniquely determined by prefer-
ences over mappings from states to a set of consequences. Anscombe and Aumann
[1963] offered an alternative foundation for expected utility with subjective beliefs
that utilizes objective probabilities to calibrate subjective beliefs. The approach
presented here is a variant of that in Wakker [1984, 1988, 1989] and is based on
Skiadas [1997, 2009].
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First, some terminology and notation. The indifference relation

∼ associated with the preference ≻ is defined by

x ∼ y ⇐⇒ (not x ≻ y) and (not y ≻ x) .

We write 1n for the payoff that is the indicator of {n}, that is,

1nk =







1, if k = n;

0, if k 6= n.

As usual, we identify a scalar w ∈ (ℓ,∞) and the constant payoff

(w,w, . . . , w). Fixing any distinct states m,n ∈ {1, . . . , N}, suppose

the agent is indifferent between the constant payoff w and the same

payoff but with the contingent value at state m increased by z ∈ (0,∞)

and the contingent value at state n decreased by y ∈ (0, w − ℓ). We

express this indifference with the notation

(z;m+) =w (y;n−) ⇐⇒ w ∼ w + z1m − y1n.

We denote the agent’s indifference between increasing the constant pay-

off w by z ∈ (0,∞) at state m or by x ∈ (0,∞) at state n as follows

(z;m+) =w (x;n+) ⇐⇒ w + z1m ∼ w + x1n.

We write (x;n+) =m
w (y;n−) if there exists some z ∈ (0,∞) such that

(z;m+) =w (y;n−) and (z;m+) =w (x;n+) .

We write (x;n+) 6=m
w (y;n−) if there exists some z ∈ (0,∞) such that

(z;m+) =w (y;n−) and not (z;m+) =w (x;n+) .

The preference ≻ is state independent if7 for all w ∈ (ℓ,∞) and

distinct states m,n ∈ {2, . . . , N}, there do not exist x ∈ (0,∞) and

y ∈ (0, w − ℓ) such that (x; 1+) =m
w (y; 1−) and (x;n+) 6=m

w (y;n−).

Theorem A.5.3. Suppose that N > 2 and ≻ is a preference that

admits a utility representation. Then ≻ admits an expected utility rep-

resentation if and only if it is both separable and state independent.

7Theorem A.5.3 and its proof remain valid if we define state independence to mean
that for all distinct m, n ∈ {2, . . . , N}, there exists ǫ > 0 such that for all x, y ∈
(0, ǫ), it is not the case that (x; 1+) =m

w (y; 1−) and (x; n+) 6=m
w (y; n−).
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Proof. The “only if” part is straightforward. Conversely, suppose

≻ is separable and state independent. By Theorem A.2.3, ≻ is repre-

sented by an additive utility U =
∑

n Un. For every state n, define the

open interval In ≡ {Un (x) | x ∈ (ℓ,∞)} and the function fn : I1 7→ In

such that Un (x) = fn (U1 (x)) for all x ∈ (ℓ,∞). Note that fn is in-

creasing and surjective, and therefore continuous. We will show that

each fn is affine, that is, there exist an ∈ (0,∞) and bn ∈ R such that

fn (U1) = anU1 + bn.

Letting u ≡ U1 and Pn ≡ an/
∑

n an results in an expected utility

representation (P, u).

To prove that fn is affine, we will show that for all α ∈ I1, there

exists ε > 0 such that for all δ ∈ (0, ε),

(A.5.2) fn (α + δ) − fn (α) = fn (α) − fn (α − δ) .

By Yaari’s Lemma A.3.2 with p = 1/2, this condition implies that both

fn and −fn are concave, and therefore fn is affine.

Fix any α ∈ I1 and let w ∈ (ℓ,∞) be defined by U1 (w) = α. Con-

sider any distinct states m,n ∈ {2, . . . , N}. By the utility continuity,

there exists a sufficiently small ε > 0 such that for all δ ∈ (0, ε) there

exist positive scalars x, y, z, z′ that solve the equations

δ = U1 (w + x) − U1 (w) = U1 (w) − U1 (w − y) ,

δ = Um (w + z′) − Um (w) ,

Um (w + z) − Um (w) = Un (w) − Un (w − y) .

The first three equalities imply that (x; 1+) =m
w (y; 1−), and the last

one that (z;m+) =w (y;n−). The state independence assumption then

requires that (z;m+) =w (x;n+), and therefore

Un (w + x) − Un (w) = Um (w + z) − Um (w) .

This proves that

Un (w + x) − Un (w) = Un (w) − Un (w − y) ,

which in turn implies (A.5.2). �
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A.6. Expected utility and risk aversion

We close with a discussion of risk aversion in the context of expected

utility, with the central theme being the connection between utility

concavity and risk aversion. As is customary in the related literature,

we use the term “more risk averse” to mean “no less risk averse,” and

“risk averse” to mean “risk averse or risk-neutral.”

Consider a preference ≻ on (ℓ,∞)N with expected utility repre-

sentation (P, u). The corresponding certainty equivalent (CE) v

is the unique utility representation of ≻ satisfying v (w) = w for all

w ∈ (ℓ,∞). Let E denote the expectation operator under P :

Ez ≡
N
∑

n=1

znPn, z ∈ R
N .

The CE v : (ℓ,∞)N → (ℓ,∞) is necessarily given as v = u−1
Eu, mean-

ing v (x) = u−1 (Eu (x)) for all x ∈ (ℓ,∞)N . An agent maximizing v is

indifferent between x and a constant payoff v (x). For given probability

P , a lower CE value v (x) represents higher risk aversion, since, given

the same odds, the agent is willing to settle for a lower sure payoff in

place of x. We therefore define an expected utility CE ṽ = ũ−1
Eũ to

be more risk averse than v if

ṽ (x) ≤ v (x) for all x ∈ (ℓ,∞)N ,

which we state simply as ṽ ≤ v. The condition is characterized as fol-

lows, where f ◦u denotes function composition: (f ◦ u) (x) = f (u (x)).

Theorem A.6.1. Suppose (P, u) and (P, ũ) are expected utilities,

with corresponding CEs v ≡ u−1
Eu and ṽ ≡ ũ−1

Eũ. Then ṽ ≤ v if and

only if ũ = f ◦ u for a concave function f : u (ℓ,∞) → R.

Proof. Define the function f : u (ℓ,∞) → R so that ũ = f ◦ u. If

f is concave, then ṽ ≤ v by Jensen’s inequality:

ũ (ṽ (x)) = Ef (u (x)) ≤ f (Eu (x)) = ũ (v (x)) , x ∈ (ℓ,∞)N .

Suppose f is not concave and let p ≡ P1 > 0. By Yaari’s Lemma A.3.2,

there exist w ∈ (ℓ,∞) and ε > 0 such that for all δ ∈ (0, ε),

(A.6.1) f (u (w)) < pf (u (w) + (1 − p) δ) + (1 − p) f (u (w) − pδ) .
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Pick δ > 0 small enough so that x ∈ (ℓ,∞)N is well-defined by

u (x1) = u (w) + (1 − p) δ, u (xn) = u (w) − pδ, n ≥ 2,

which implies w = v (x). By inequality (A.6.1), ũ (w) < Eũ (x) and

therefore v (x) < ṽ (x), proving that it is not the case that ṽ ≤ v. �

Example A.6.2 (multiple-prior representation of risk aversion).

Consider the expected-utility CEs v ≡ u−1
Eu and ṽ ≡ ũ−1

Eũ satisfy-

ing, for a given constant α ∈ (0,∞),

ũ = f ◦ u where f (x) ≡ 1 − exp (−αx)

α
, x ∈ R.

For example, this condition is satisfied for u (x) = x and ũ = f , as in

Theorem A.4.2, and also for

u (x) = log (x) and ũ (x) =
x1−γ − 1

1 − γ
, where γ ≡ 1 + α,

as in Theorem A.4.3.

Given a probability Q, we write

dQ

dP
≡
(

Q1

P1
, . . . ,

QN

PN

)

,

for the density of Q with respect to P , which is useful in relating

expectation under Q, denoted by E
Q, to expectation under P :

(A.6.2) E
Qz ≡

N
∑

n=1

znQn =
N
∑

n=1

zn
Qn

Pn
Pn = E

[

z
dQ

dP

]

, z ∈ R
N .

The probability of an expected utility representation is often referred

to as a prior, in the Bayesian sense of belief prior to the arrival of

information. The increase in risk aversion from v ≡ u−1
Eu to ṽ ≡

ũ−1
Eũ is sometimes expressed in the literature (often under the rubric

of robustness or ambiguity aversion) as the multiple-prior specification

(A.6.3) u (ṽ (x)) = min
Q∈Q

{

E
Qu (x) +

1

α
E
Q log

(

dQ

dP

)}

,

where Q denotes the set of all full-support probabilities. The quantity

E
Q log (dQ/dP ), known as the relative entropy of Q with respect to P ,

is minimized for Q = P .

To show identity (A.6.3), let us first reduce it to its essentials. Using

the assumption ũ = f ◦ u and the fact that the CE f−1
Ef is invariant
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to a positive affine transformation of f , we have

u (ṽ (x)) = f−1
Ef (u (x)) = − 1

α
log (E exp (−αu (x))) .

After the change of variables z ≡ αu (x), it follows that identity (A.6.3)

is equivalent to

(A.6.4) − log (E exp (−z)) = min
Q∈Q

E
Q

[

z + log

(

dQ

dP

)]

.

Let g (z) ≡ − exp (−z), z ∈ R, and define the convex dual8

g∗ (y) ≡ max
z∈R

{g (z) − yz} = y log y − y, y ∈ (0,∞) .

The key behind (A.6.4) is the fact that

(A.6.5) g (z) = min
y∈(0,∞)

{zy + g∗ (y)} .

Let φ (z) denote the CE on the left-hand side of (A.6.4) and let φ̃ (z)

denote the CE on the right-hand side of (A.6.4). Utilizing identi-

ties (A.6.2) and (A.6.5), the definitions of g and g∗, and the fact that

every y ∈ (0,∞)N can be decomposed as y = sdQ/dP , s ∈ (0,∞),

Q ∈ Q, we have

g (φ (z)) = Eg (z) = min
y∈(0,∞)N

E [zy + g∗ (y)]

= min
s∈(0,∞), Q∈Q

E

[

zs
dQ

dP
+ g∗

(

s
dQ

dP

)]

= min
s∈(0,∞)

{

φ̃ (z) s+ g∗ (s)
}

= g
(

φ̃ (z)
)

.

We have shown that φ = φ̃, which is identity (A.6.4), completing the

proof of identity (A.6.3). ♦

Suppose the preference ≻ admits an expected utility representation

(P, u). By Theorem A.5.1, the probability P is uniquely determined by

≻ and defines the risk-neutral CE E. As a corollary of Theorem A.6.1,

we have the following characterization of the condition that u−1
Eu is

more risk averse than risk neutral.

8This type of convex duality also appears in Section 3.5. For each y > 0, g∗ (y) is
the vertical axis intercept of the line of slope y that is tangent to the graph of g.
That g (z) ≤ g∗ (y) + yz for all z corresponds to the fact that this line lies above
the graph of g. The equality g (z) = g∗ (y) + yz is obtained for the value y = g′ (z)
that is the slope of the tangent line at (z, g (z)).
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Corollary A.6.3. For every expected utility (P, u), u is concave

if and only if u−1
Eu (x) ≤ Ex for all x ∈ (0,∞)N .

By Theorem A.3.1, the concavity of u is also equivalent to the

convexity of the preference ≻, which can be thought of as preference

for diversification. We define9 ≻ to be risk averse if whenever it

rejects adding a payoff to a sure payoff, it also rejects adding every

scaled-up version of the same payoff. More precisely, ≻ is risk averse

if for all w ∈ (ℓ,∞), provided θx ∈ (ℓ− w,∞)N ,

(A.6.6) w ≻ w + x and θ ∈ (1,∞) =⇒ w ≻ w + θx.

This condition defines aversion to a specific risk x. Implicit in expected

utility is a sense in which risk aversion is risk-source independent,10

which leads to the equivalence of risk aversion to the concavity of u,

and hence the equivalence of all three notions just introduced: risk

aversion, preferences for diversification, and more risk averse than risk

neutral.

Theorem A.6.4. A preference with expected utility representation

(P, u) is risk averse if and only if u is concave.

Proof. Suppose u is concave, w ∈ (ℓ,∞) and θ ∈ (1,∞). Since

w + x is a convex combination of w and w + θx, if Eu (w + θx) ≥
u (w) then Eu (w + x) ≥ u (w), which is the contrapositive of condi-

tion (A.6.6) and therefore proves that ≻ is risk averse.

Conversely, suppose ≻ is risk averse. We show that u is concave

assuming N = 2, which entails no loss of generality. We do so by

confirming that u−1
Eu ≤ E and applying Corollary A.6.3. Suppose

instead that for some x ∈ (ℓ,∞)2, u−1
Eu (x) > Ex. Define µ ≡ Ex and

x̂ ≡ x− µ, and therefore

(A.6.7) Eu (µ+ x̂) > u (µ) and Ex̂ = 0.

We claim that this condition implies that u is convex on (µ− ǫ, µ+ ǫ)

for some ǫ > 0. Suppose instead u is not convex on (µ− ǫ, µ+ ǫ)

9To my knowledge, this definition of risk aversion and Theorem A.6.4 first appeared
in Skiadas [2009]. The proof given here is somewhat shorter thanks to Lemma A.3.2
of Yaari [1977].
10For a specification of scale-invariant preferences with source-dependent risk aver-
sion, see Skiadas [2013b, 2015].
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for all ǫ > 0. Since there are only two states, Yaari’s Lemma A.3.2

applied to −u, for all n = 1, 2, . . . , implies that there exist µn ∈
(µ− 1/n, µ+ 1/n) and δn ∈ (0, 1) such that u (µn) > Eu (µn + δnx̂),

hence u (µn) > Eu (µn + x̂) by risk aversion. Since u is continuous and

limn→∞ µn = µ, u (µ) ≥ Eu (µ+ x̂) in contradiction to (A.6.7). So let

ǫ > 0 be such that u is convex on (µ− ǫ, µ+ ǫ). Since u is also (strictly)

increasing, it follows11 that the derivative u′ exists and is positive at

all but at most countably many points of (µ− ǫ, µ+ ǫ). Since u is

continuous, in condition (A.6.7), we can slightly perturb µ if necessary

to some value w such that u′ (w) exists and is positive, while it is still

the case that Eu (w + x̂) > u (w). We can then slightly decrease x̂ to

x̃ so that Eu (w + x̃) ≥ u (w), Ex̃ < 0 and x̃n 6= 0 for every state n.

Risk aversion implies that for all δ ∈ (0, 1), Eu (w + δx̃) ≥ u (w) and

therefore

E

[

u (w + δx̃) − u (w)

δx̃
x̃

]

≥ 0.

Letting δ ↓ 0 gives u′ (w)Ex̃ ≥ 0, a contradiction since u′ (w) > 0 and

Ex̃ < 0 by construction. �

Consider now an expected utility (P, u), where u belongs to the

set C2 of all twice continuously differentiable real-valued functions on

(ℓ,∞). The scale- or translation-invariant cases of Section A.4 are

examples. More generally, every expected utility is “close” to a smooth

version in the following sense.

Remark A.6.5. Suppose x ∈ (ℓ,∞)N is perceived as x+ε, where ε

is an arbitrarily small noise term that is stochastically independent of

x and continuously distributed over a compact interval with a density

fε that is twice continuously differentiable. The expected utility of x

can be thought of as the reduced form of the expected utility of x+ ε,

11Suppose u is strictly increasing and convex on an interval (a, b) and w ∈ (a, b).
For all small enough δ > 0, define the ordered slopes

∆+ (δ) ≡ u (w + δ) − u (w)

δ
≥ u (w) − u (w − δ)

δ
≡ ∆− (δ) .

As δ ↓ 0, ∆+ (δ) monotonically decreases to a limit defining the right derivative
u′

+ (w), and ∆− (δ) monotonically increases to a limit defining the left derivative

u′
− (w). Clearly, u′

+ (w) > 0 and u′
+ (w) ≥ u′

− (w). The intervals
(

u′
− (w) , u′

+ (w)
)

are non-overlapping as w ranges over (a, b) and therefor at most countably many of
them are nonempty. This proves that for all except at most countably many values
of w ∈ (a, b) , u′ (w) = u′

− (w) = u′
+ (w) > 0.
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and therefore

u (x) ≡
∫

R

uε (x+ y) fε (y) dy =
∫

R

uε (z) fε (z − x) dz.

For continuous but otherwise arbitrary uε, the assumed properties of

fε imply that u ∈ C2. ♦

The coefficient of absolute risk aversion associated with u ∈ C2

is the function

(A.6.8) Au ≡ −u′′

u′
.

Our principal motivation for introducing this function is the approxi-

mation of the expected utility of small Brownian risks, discussed in Sec-

tion 3.8. Just like the CE u−1
Eu, Au is invariant to positive affine trans-

formations of u and determines u up to a positive affine transformation.

(To show the last claim, write (A.6.8) as Au (x) dx = −d log u′ (x) and

integrate twice.) Given P , the function Au is therefore uniquely as-

sociated with the corresponding CE u−1
Eu and hence the preference

represented by (P, u). The translation-invariant representation of The-

orem A.4.2 corresponds to constant absolute risk aversion: Au (x) = α

for all x ∈ R. The function x 7→ xAu (x) is known as the coefficient

of relative risk aversion. The scale-invariant representation of The-

orem A.4.3 corresponds to constant relative risk aversion: xAu (x) = γ

for all x ∈ (0,∞).

By Theorem A.6.4, for u ∈ C2, the expected utility (P, u) is risk

averse if and only if u′′ ≤ 0 if and only if Au ≥ 0. (The inequalities are

to be interpreted as holding on the entire domain, for example, Au ≥ 0

means Au (x) ≥ 0 for all x ∈ (ℓ,∞).) By Theorem A.6.1, for u, ũ ∈ C2,

the expected utility (P, ũ) is more risk averse than the expected utility

(P, u) (in the sense that ũ−1
Eũ ≤ u−1

Eu) if and only if Aũ ≥ Au. To

prove this claim, note that if ũ = f ◦u then Aũ = Au +
(

Af ◦ u
)

u′ and

f is concave if and only if Af ≥ 0.



APPENDIX B

Elements of Convex Analysis

This appendix reviews some basic linear algebra and convex anal-

ysis concepts, with optimization principles as the main focus. The

emphasis is on the finite-dimensional case, but from a perspective that

is amenable to infinite-dimensional extensions.1 As in the main text,

≡ means equal by definition.

B.1. Vector spaces

The analysis of this appendix is all carried out in the context of an

inner product space X, which is a vector space together with an inner

product, which in turn defines a norm. We introduce these concepts in

order in this section and the next one.

Vector spaces in this text are defined relative to the field R of the

real numbers or scalars. A vector or linear space is a triple of a set X,

whose elements are called vectors or points, an addition operation

assigning to each (x, y) ∈ X×X a vector x+y, and a scaling operation

assigning to each (α, x) ∈ R × X a vector αx, provided that for all

x, y, z ∈ X and α, β ∈ R, the following conditions are satisfied.

• x + y = y + x; (x+ y) + z = x + (y + z); and there exists a

vector 0 with the property: for all x ∈ X, x+ 0 = x and there

exists −x ∈ X such that x+ (−x) = 0.

• (αβ)x = α (βx) and 1x = x.

• α (x+ y) = αx+ αy and (α+ β) x = αx+ βx.

The zero vector 0 and additive inverses −x are necessarily unique.

The vector difference between x and y is x− y ≡ x+ (−y).

It is customary to refer to a vector space X, while it is implied that

addition and scaling operations are also specified along with X. Two

1Treatments of finite-dimensional convex optimization theory include Rockafellar
[1970], Bertsekas [2003] and Boyd and Vandenberghe [2004], the latter provid-
ing an introduction to optimization algorithms. Infinite-dimensional exten-
sions can be found in Bonnans and Shapiro [2000], Dunford and Schwartz [1988],
Ekeland and Témam [1999], Luenberger [1969] and Zeidler [1985].
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vector spaces X and X̃ are isomorphic if there is a bijection (one-

to-one and onto function) φ : X → X̃ that preserves the addition and

scaling operations: for all x, y ∈ X and α ∈ R,

φ (x+ y) = φ (x) + φ (y) and φ (αx) = αφ (x) .

In these two equations, addition and scaling on the left-hand side refer

to operations in X and those on the right-hand side refer to opera-

tions in X̃. Such a function φ is a vector space isomorphism. The

composition of two (vector space) isomorphisms and the inverse of an

isomorphism are also isomorphisms.

A canonical vector space example is d-dimensional Euclidean

space, for positive integer d, defined as the Cartesian product Rd with

coordinate-wise addition and scaling operations: (x+ y)i = xi+yi and

(αx)i = αxi for all i ∈ {1, . . . , d}. The set L of all random variables

on a given state space Ω is another example of a vector space, where a

random variable is a real-valued function on Ω and addition and scaling

are defined state-wise: (x+ y) (ω) = x (ω) + y (ω) and (αx) (ω) =

αx (ω) for all ω ∈ Ω. If Ω = {ω1, . . . , ωd}, then L is isomorphic to

R
d. A vector space isomorphism can “forget” aspects not relevant to

the vector space structure. For example, the vector space R
m×n of all

m × n matrices with real entries, with the usual addition and scaling

operations, is isomorphic to mn-dimensional Euclidean space, but the

shape of a matrix is not preserved. The point of an isomorphism is

that we can identify any two isomorphic structures in contexts where

only the isomorphically preserved structure is relevant. For example,

throughout this text, we identify R
1×d and R

d×1 with the Euclidean

space R
d if the shape of the vector is irrelevant.

We henceforth fix a reference vector space X. Unless otherwise

specified, a vector is an element of X. A linear subspace of X is

any subset Y of X that is closed with respect to addition and scaling:

for all x, y ∈ Y and α ∈ R, x + y ∈ Y and αx ∈ Y . Equivalently,

a linear subspace of X is a subset of X that is a vector space in its

own right, with the suitably restricted addition and scaling operations

inherited from X. A linear combination of the vectors x1, . . . , xn

is an expression of the form α1x1 + · · · + αnxn, for scalar αi, as well

as the vector this expression evaluates to (recursively in the obvious
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way). The term linear combination will always refer to the linear com-

bination of finitely many vectors. If all the αi are zero, we call the

linear combination trivial. The linear span of a set of vectors S, de-

noted span (S), is the intersection of all linear subspaces that include

S, which equals the set of all linear combinations of elements of S. We

say that span (S) is the linear subspace generated or spanned by S or

the elements of S. If S = {x1, . . . , xn}, we also write span (x1, . . . , xn)

for span (S). We call a set of vectors S, as well as its elements, lin-

early independent if every linear combination of vectors in S that

equals the zero vector is trivial, a condition that is equivalent to the

unique representation (up to reordering of terms) of each element of

span (S) as a linear combination of elements of S, and is also equivalent

to the nonexistence of a vector x in S that can be expressed as a linear

combination of vectors in S \ {x}.

A basis of the vector spaceX is a linearly independent set of vectors

that spans X. The space X is finite-dimensional if it has a finite

basis. Given an arbitrary ordering B1, . . . , Bd of a finite basis, we define

the column matrix B ≡ (B1, . . . , Bd)
′, which we also call a basis, and

write σx ∈ R
1×d for the row matrix of the coordinates of x ∈ X

relative to B:

x = σxB ≡ σx1B1 + · · · + σxdBd ≡
d
∑

i=1

σxi Bi.

The mapping x 7→ σx defines a vector space isomorphism from X to

d-dimensional Euclidean space. For n > m, n-dimensional Euclidean

space is not isomorphic to m-dimensional Euclidean space, since the

linear independence on n vectors in R
n is not preserved when linearly

mapped to R
m. This shows that every finite-dimensional space X is

isomorphic to a unique Euclidean space, whose dimension d defines the

dimension of X and equals the number of elements of every basis

of X. The vector space {0} has dimension zero, and a vector space

that is not finite-dimensional is infinite-dimensional.

A functional is a function of the form f : X → R. The functional

f is linear if f (x+ y) = f (x) + f (y) and f (αx) = αf (x) for all

x, y ∈ X and α ∈ R. Given a finite basis B = (B1, . . . , Bd)
′ and a

linear functional f , we use the notation

f (B) ≡ (f (B1) , . . . , f (Bd))
′ ∈ R

d×1.
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The vector f (B) determines the entire function f , since x = σxB

implies f (x) = σxf (B) = σx · f (B). The dot of the last expression

denotes the Euclidean inner product:

(B.1.1) x · y ≡
d
∑

i=1

xiyi, x, y ∈ R
d.

The mapping (x, y) 7→ x · y is symmetric (x · y = y · x), linear in x

(hence linear in y, by symmetry), and positive definite (x · x ≥ 0, with

equality only if x = 0). These three properties lead us into a more

general notion of inner product.

B.2. Inner products

Abstracting away the essential properties of the Euclidean inner

product, we define a (real) inner product 〈· | ·〉 on the vector space

X as a mapping that assigns to each (x, y) ∈ X × X a scalar 〈x | y〉
such that for all x, y, z ∈ X and α ∈ R,

• 〈x | y〉 = 〈y | x〉.
• 〈x+ y | z〉 = 〈x | z〉 + 〈y | z〉 and 〈αx | y〉 = α 〈x | y〉.
• 〈x | x〉 ≥ 0, with 〈x | x〉 = 0 only if x = 0.

An inner product space is a vector space together with an inner

product on this space. Similarly to vector spaces, it is customary to

refer to an inner product space X, with the understanding that there

is a specified inner product that is associated with the vector space X.

Example B.2.1. A symmetric positive definite matrix Q ∈ R
d×d

defines an inner product on R
d: 〈x | y〉 ≡ ∑

i,j xiQijyj = xQy′, where

x and y are treated as row vectors. The Euclidean inner product is

obtained if Q is the identity matrix. ♦

Two inner product spaces X and X̃ (each with an implied inner prod-

uct) are said to be isomorphic if there is a vector space isomorphism

φ : X → X̃ that preserves inner products:

〈φ (x) | φ (y)〉 = 〈x | y〉 , x, y ∈ X,

where the right-hand side is an inner product in X and the left-hand

side is an inner product in X̃. The function φ is an inner product

space isomorphism. As with vector space isomorphisms, the set of
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isomorphisms between two inner product spaces is closed with respect

to inverses and function composition.

Example B.2.2. Let E denote an expectation operator relative to

a full-support probability on a finite state space Ω. The set L of all

random variables on Ω with the inner product 〈x | y〉 ≡ E [xy] is an

inner product space, which is isomorphic to a Euclidean inner product

space. Covariance agrees with this inner product on the subspace of

zero-mean random variables, but is not an inner product on L. ♦

Example B.2.3. Suppose X is finite-dimensional. A basis B of

X defines the inner product 〈x | y〉 ≡ σx · σy, where x = σxB and

y = σyB. Later, we will establish that every inner product on X has

this representation for some basis, and therefore X is isomorphic to a

Euclidean inner product space. ♦

The norm induced by the inner product 〈· | ·〉 is the function

‖·‖ : X → R defined by

(B.2.1) ‖x‖ ≡
√

〈x | x〉, x ∈ X.

The value ‖x‖ defines the norm of x, which we informally think of as

the length of x.

An inner product space isomorphism φ is an isometry, meaning

it preserves norms: ‖φ (x)‖ = ‖x‖ for all x ∈ X (with the norm sym-

bols referring to norms in their respective spaces). Conversely, every

isometry also preserves inner products, since

(B.2.2) ‖x+ y‖2 = ‖x‖2 + 2 〈x | y〉 + ‖y‖2.

The vectors x and y are orthogonal if 〈x | y〉 = 0, a condition that

should be visualized as x and y forming a right angle. Identity (B.2.2)

implies that the vectors x and y are orthogonal if and only if they

satisfy the Pythagorean identity

(B.2.3) ‖x+ y‖2 = ‖x‖2 + ‖y‖2 .

Toward a geometric interpretation of an inner product, consider a

non-zero vector x and let x̂ ≡ ‖x‖−1x, which is the unique positively

scaled version of x whose norm is one. For any other vector y, 〈x̂ | y〉
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is the value of the scalar α that minimizes ‖y − αx̂‖. In other words,

ȳ ≡ 〈x̂ | y〉 x̂ =
〈x | y〉
〈x | x〉x

is the point of the line span (x) closest to y, a condition that defines ȳ

as the projection of y on span (x). To confirm the expression for ȳ,

use identity (B.2.2) and the fact that ‖x̂‖ = 1 to find

‖y − αx̂‖2 = ‖y‖2 − ‖ȳ‖2 + (α − 〈x̂ | y〉)2 .

The quadratic is clearly minimized for α = 〈x̂ | y〉. The corresponding

minimum is equal to ‖y − ȳ‖2 = ‖y‖2 − ‖ȳ‖2, which is a Pythagorean

identity equivalent to the orthogonality of y − ȳ to ȳ and therefore x.

This shows that the orthogonality of y − ȳ to x uniquely characterizes

a point ȳ ∈ span (x) as the projection of y on span (x).

Suppose now y is also non-zero and let ŷ ≡ ‖y‖−1y. The vectors

〈x̂ | ŷ〉 x̂ and ŷ form an orthogonal triangle whose hypotenuse ŷ has

unit length and therefore 〈x̂ | ŷ〉 x̂ has length less than one, or one if

ŷ = ±x̂. This suggests the Cauchy-Schwarz inequality

(B.2.4) |〈x | y〉| ≤ ‖x‖‖y‖,

which combined with identity (B.2.2) implies the triangle inequality

(B.2.5) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ .

Proposition B.2.4. In an inner product space, all vectors x and

y satisfy the Cauchy-Schwarz inequality (B.2.4), with equality holding

if and only if one of the two vectors is on the linear span of the other.

Proof. If either vector is zero, it is on the linear span of the other

and the Cauchy-Schwarz inequality holds trivially as an equality. Sup-

pose x and y are non-zero. Since ŷ − 〈x̂ | ŷ〉 x̂ is orthogonal to x̂, the

Pythagorean identity implies

0 ≤ ‖ŷ − 〈x̂ | ŷ〉 x̂‖2 = ‖ŷ‖2 − ‖〈x̂ | ŷ〉 x̂‖2 = 1 − 〈x̂ | ŷ〉2 ,

which implies 〈x̂ | ŷ〉2 ≤ 1 and hence the Cauchy-Schwarz inequality.

Equality holds if and only if ŷ− 〈x̂ | ŷ〉 x̂ = 0 if and only if y ∈ span(x)

if and only if x ∈ span(y). �

Example B.2.5. In the context of Example B.2.2, consider the

vector space {x− Ex | x ∈ L} with the covariance inner product. In
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this case, the Cauchy-Schwarz inequality states that the correlation

coefficient of two random variables lies in the interval [−1, 1]. ♦

For the remainder of this appendix, X is an inner product space

with implied inner product 〈· | ·〉. For every x ∈ X,

f (y) = 〈x | y〉 , y ∈ X,

defines a linear functional f . In this case, x is the (necessarily unique)

Riesz representation of f . The effect of applying a linear functional

with Riesz representation x to a vector y can be visualized as being the

result of first projecting y onto the line defined by x, taking the length

of that projection, signing it based on whether y forms an acute or

oblique angle with x, and finally scaling the result by the length of x.

If X is finite-dimensional, every linear functional f admits a Riesz

representation, which can be expressed concretely in terms of a basis

B = (B1, . . . , Bd)
′. To simplify notation, we extend the inner product

notation to matrices of vectors, with the usual matrix scaling, addition

and multiplication rules. In particular,

〈x | B′〉 ≡ (〈x | B1〉 , . . . , 〈x | Bd〉) ,

and 〈B | B′〉 is the Gram matrix of B, defined as the d × d matrix

whose (i, j) entry is 〈Bi | Bj〉:

〈B | B′〉 ≡

















〈B1 | B1〉 〈B1 | B2〉 · · · 〈B1 | Bd〉
〈B2 | B1〉 〈B2 | B2〉 · · · 〈B2 | Bd〉

...
...

. . .
...

〈Bd | B1〉 〈Bd | B2〉 · · · 〈Bd | Bd〉

















.

Proposition B.2.6. Suppose B = (B1, . . . , Bd)
′ is a basis of X

and for all x ∈ X, σx ∈ R
1×d is defined by x = σxB. Then the Gram

matrix 〈B | B′〉 is symmetric and positive definite, and

(B.2.6) 〈x | y〉 = σx 〈B | B′〉 σy′, x, y ∈ X.

Every linear functional f has a Riesz representation: for all y ∈ X,

f (y) = 〈x | y〉 , where x = f (B)′ 〈B | B′〉−1
B.

Consequently, σx = 〈x | B′〉 〈B | B′〉−1 for all x ∈ X.
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Proof. The linearity of the inner product in each of its arguments

implies (B.2.6). By the symmetry of the inner product, 〈B | B′〉 is a

symmetric matrix. By the positive definiteness of the inner product,

for all σ ∈ R
1×d, σ 〈B | B′〉 σ′ = 〈σB | σB〉 ≥ 0, with equality holding

if and only if σB = 0 if and only if σ = 0 (since B is a basis). This

proves that the matrix 〈B | B′〉 is positive definite (hence invertible).

For any linear functional f , f (y) = f (σyB) = f (B)′ σy′. Comparing

to (B.2.6), it follows that x is the Riesz representation of f if and only

if f (B)′ = σx 〈B | B′〉 if and only if x = f (B)′ 〈B | B′〉−1 B, in which

case σx = 〈x | B′〉 〈B | B′〉−1, since f (B)′ = 〈x | B′〉. �

A corollary is that every d-dimensional inner product space is iso-

morphic to an inner product space of the form of Example B.2.1. The

isomorphism is the mapping x 7→ σx, and the matrix Q of Exam-

ple B.2.1 is the Gram matrix 〈B | B′〉. The basis B is said to be

orthonormal if the corresponding Gram matrix is an identity matrix:

(B.2.7) 〈Bi | Bj〉 =







1 if i = j,

0 if i 6= j.

Note that the orthonormality condition (B.2.7) implies the linear inde-

pendence of the vectors Bi (since x =
∑

i αiBi implies αi = 〈x | Bi〉).

Proposition B.2.7. Ever finite-dimensional inner product space

has an orthonormal basis and is therefore isomorphic to a Euclidean

inner product space.

Proof. We construct an orthonormal basis recursively.2 Start

with any non-zero vector x and let B1 ≡ ‖x‖−1x. For the recur-

sive step, suppose we have already constructed orthonormal vectors

B1, . . . , Bn and let L ≡ span (B1, . . . , Bn). If n = d, the dimension

of X, then L = X and the construction is complete. If n < d, choose

any x ∈ X \ L, and define xL ≡ ∑n
i=1 〈x | Bi〉Bi (which, as we will

see in Section B.5, is the projection of x on L). By the orthonormal-

ity condition (B.2.7), x − xL is orthogonal to each of B1, . . . , Bn. We

can therefore define Bn+1 ≡ ‖x − xL‖−1 (x− xL) to construct n + 1

orthonormal vectors, completing the recursive step. �

2This recursive construction, known as Gram-Schmidt orthogonalization, is mainly
of theoretical value. Its numerical implementation can be unstable and better
alternatives exist. See, for example, the discussion of this point in Meyer [2004].
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B.3. Some basic topological concepts

We continue in the context of an inner product space X with in-

duced norm ‖ · ‖, which we use to define convergence and related basic

topological concepts. The function ‖·‖ : X → R+ is positively homo-

geneous: ‖αx‖ = |α| ‖x‖ for all α ∈ R; positive definite: ‖x‖ ≥ 0, with

‖x‖ = 0 only if x = 0; and satisfies the triangle inequality (B.2.5),

which is equivalent to

(B.3.1) |‖x‖ − ‖y‖| ≤ ‖x− y‖ .

These three properties more broadly define a norm on a vector space

(which may or may not be induced by an inner product).

A sequence in a set S is a function of the form x : {1, 2, . . .} → S.

We write xn for the sequence as well as its value at n, which we think

of as the nth element in the sequence. A sequence xn in X converges

to some limit x ∈ X if for all ε > 0, there exists an integer N such that

n > N implies ‖xn − x‖ < ε. In this case, the sequence xn is said to

be convergent. A function f : D → R, where D ⊆ X, is continuous

at x ∈ D if for all sequences xn in D, the convergence of xn to x ∈ D

implies the convergence of f (xn) to f (x). A function is continuous if

it is continuous at every point of its domain. Inequality (B.3.1) shows

that a norm is continuous. Thanks to identity (B.2.2), norm continuity

implies the continuity of an inner product that induces the norm:

Proposition B.3.1. Suppose xn and yn are sequences in X con-

verging to x and y, respectively. Then 〈xn | yn〉 converges to 〈x | y〉.

If X is finite-dimensional, a linear functional f is continuous, since

it has a Riesz representation x and therefore

(B.3.2) |f (y) − f (z)| ≤ ‖x‖ ‖y − z‖

by the Cauchy-Schwarz inequality. A linear functional on an infinite-

dimensional space may not be continuous.

Example B.3.2. Suppose X is the inner product space of all se-

quences x in R such that xn = 0 for all but finitely many values

of n, with the inner product 〈x | y〉 =
∑

n xnyn. The linear functional

f (x) ≡ ∑

n nxn is not continuous. ♦
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A sequence xn in X is Cauchy if for all ε > 0, there exists an

integer N such that m,n > N implies ‖xm − xn‖ < ε. The trian-

gle inequality implies that every convergent sequence is Cauchy. The

following example shows that there are Cauchy sequences that do not

converge. Intuitively, a Cauchy sequence should converge to something,

but if that something is not in X, then the sequence is not convergent.

As we will see shortly, this is not an issue in finite-dimensional spaces.

Example B.3.3. Suppose X is the vector space of all continu-

ous functionals on the unit interval with the inner product 〈x | y〉 =
∫ 1

0 x (t) y (t) dt. The sequence xn (t) = 1/ (1 + nt), t ∈ [0, 1], is Cauchy

but does not converge in X. ♦

In a finite-dimensional space, the convergence or Cauchy property

of a sequence is equivalent to the respective property of the sequence’s

coordinates relative to any given basis, no matter what inner product

is used.

Proposition B.3.4. Suppose B1, . . . , Bd is a basis of X. For scalar

σin and σi, the sequence
∑

i σ
i
nBi is Cauchy (resp. converges to

∑

i σ
iBi)

if and only if for every coordinate i, the sequence σin is Cauchy (resp.

converges to σi).

Proof. Suppose σin is Cauchy for all i. By the triangle inequal-

ity (B.2.5), ‖∑i σ
i
mBi −∑

i σ
i
nBi‖ ≤ ∑

i |σim − σin| ‖Bi‖ and therefore
∑

i σ
i
nBi is Cauchy. Conversely, the mapping from a vector to its jth

coordinate is a linear functional f . Inequality (B.3.2), where x is the

Riesz representation of f , implies that σjn ≡ f (
∑

i σ
i
nBi) is Cauchy if

∑

i σ
i
nBi is Cauchy. The claim in parentheses follows by the same argu-

ment, but with convergent in place of Cauchy and σ in place of σm. �

A subset S of X is closed if every convergent sequence in S con-

verges to a point in S. The set S is complete if every Cauchy se-

quence in S converges to a point in S. Since every convergent sequence

is Cauchy, all complete sets are closed. A Hilbert space is an inner

product space X such that the set X is complete (relative to the norm

induced by the inner product). Note that a subset of a complete set is

complete if and only if it is closed, and therefore the complete subsets of

a Hilbert space are its closed subsets. Example B.3.3 is an instance of



B.3. SOME BASIC TOPOLOGICAL CONCEPTS 239

an inner product space that is not a Hilbert space, and the correspond-

ing set X is an example of a closed set that is not complete. On the

other hand, every finite-dimensional inner product space is a Hilbert

space. By Proposition B.3.4, the completeness of a finite-dimensional

space is implied by the completeness of R, which is a fundamental prop-

erty of the real line. (One of the constructions of the real numbers from

the rational numbers is as equivalence classes of Cauchy sequences of

rationals, thus constructing a completion of the rationals.)

Since all inner product space isomorphisms are isometries, conver-

gence, the Cauchy property, continuity, the property of being closed,

completeness, as well as compactness (discussed below) are all prop-

erties that are preserved by an inner product space isomorphism. By

Proposition B.2.7, every finite-dimensional inner product space is iso-

morphic to a Euclidean space, and therefore all these properties in a

finite-dimensional space are equivalent to corresponding properties in

a Euclidean space. There is a great variety of useful (non-isomorphic)

infinite-dimensional Hilbert spaces. One example is the space of all

finite variance random variables on an infinite probability space with

the inner product 〈x | y〉 = E [xy].

A subsequence of a sequence x : {1, 2, . . . } → S is a function of

the form x ◦ n, for some strictly increasing function n : {1, 2, . . .} →
{1, 2, . . .} (where x ◦ n denotes function composition: (x ◦ n) (k) =

xn(k), k = 1, 2, . . . ) A subset S of X is compact if every sequence in S

has a subsequence that converges to a point in S. Note that a compact

set is complete and therefore closed. A compact set S is also bounded,

meaning sup {‖x‖ | x ∈ S} < ∞. If S were unbounded, there would

exist a sequence xn in S such that ‖xn‖ > n for all n, which precludes

the existence of a convergent subsequence. On the real line, a closed

bounded interval is compact since it can be sequentially subdivided

into halves that contain infinitely many points of a given sequence,

leading to the selection of a subsequence that is Cauchy and therefore

convergent (by the completeness of the real line). By virtue of Propo-

sition B.3.4, this type of argument can be extended to R
d by applying

it to each coordinate sequentially. Since every finite-dimensional space

is isomorphic to R
d, the following is true.



B.3. SOME BASIC TOPOLOGICAL CONCEPTS 240

Proposition B.3.5. In a finite-dimensional space, a set is compact

if and only if it is closed and bounded.

Example B.3.6. The space ℓ2 of all sequences x : {1, 2, . . .} → R

such that
∑∞
n=1 x (n)2 < ∞ with 〈x | y〉 ≡ ∑∞

n=1 x (n) y (n) can be

shown to be a Hilbert space. The sequence xn in ℓ2, where xn (n) = 1

and xn (m) = 0 for all m 6= n, is in the closed and bounded set B ≡
{x | ‖x‖ ≤ 1}, but has no convergent subsequence. In fact, B is not

compact in all infinite-dimensional spaces. ♦

Our interest in compactness is due to the fact that over a compact

set, a continuous function achieves its supremum and infimum.

Proposition B.3.7. Suppose that S is a compact subset of X and

the function f : S → R is continuous. Then there exist x∗, x∗ ∈ S such

that f (x∗) ≥ f (x) ≥ f (x∗) for all x ∈ S.

Proof. Let xn be a sequence such that f (xn) converges to sup f .

By the compactness of S, there exists a subsequence of xn converging

to some x∗ ∈ S. Since f is continuous, f (x∗) = sup f and there-

fore f (x∗) ≥ f (x) for all x ∈ S. The same argument applied to −f
completes the proof. �

Proposition B.3.7 implies that in a finite-dimensional space all norms

are topologically equivalent, in the sense of the following proposition,

which implies that on a finite-dimensional vector space, all norms define

the same convergent sequences, Cauchy sequences, continuous func-

tions, closed sets, complete sets and compact sets. The situation is

quite different with infinite-dimensional spaces, where different norms

can define dramatically different notions of convergence.

Proposition B.3.8. Suppose X is finite-dimensional, and ‖·‖′ is a

norm on X, that is, any positively homogeneous, positive definite func-

tion ‖·‖′ : X → R+ satisfying the triangle inequality (not necessarily

induced by an inner product). Then there exist constants k and K such

that k ‖x‖ ≤ ‖x‖′ ≤ K ‖x‖ for all x ∈ X.

Proof. ‖·‖′ is continuous on B ≡ {x | ‖x‖ ≤ 1}, which is closed

and bounded, and hence compact. Let k and K be the minimum and

maximum of ‖·‖′ over B. Since ‖x‖−1 x ∈ B for every non-zero x ∈ X,

the claim follows. �



B.4. CONVEXITY 241

We conclude the section with an overview of some related topolog-

ical concepts and notation. Consider any subset S of X. The closure

of S, denoted by S̄, is the set of every point x for which there exists

some sequence in S that converges to x. Note that the set S is closed

if and only if S = S̄. The interior of S, denoted by S0, is the set of

all x ∈ S such that for every sequence xn converging to x, there exists

an N such that n > N implies xn ∈ S. The boundary of S is the set

S̄ \ S0. The set S is open if S = S0, or equivalently, if its complement

X \ S is closed.

The following properties can be verified as an exercise. The empty

set and X are both open and closed. The union of finitely many closed

sets is closed, and the intersection of finitely many open sets is open.

Arbitrary intersections of closed sets are closed, and arbitrary unions

of open sets are open. The set of all open subsets of X is known as

the topology of X. It turns out that convergence and related properties

discussed in this section can all be specified entirely in terms of the

space’s topology, rather than sequences. General topology allows an

arbitrary set of open sets respecting the preceding properties, in which

case sequences are not sufficient in characterizing topological properties

(see, for example, Dudley [2002]). We have no need for this extension

in this text.

B.4. Convexity

The purpose of this section is to introduce the central notions of

convexity and concavity, which underly the analysis of the rest of this

appendix, as well as some basic topological implications of convexity

assumptions. As always, we take as given the reference inner product

space X.

A set C ⊆ X is convex if the line segment connecting any two

points in C lies entirely within C: For all x, y ∈ C,

α ∈ (0, 1) =⇒ αx+ (1 − α) y ∈ C.

Two important special types of convex set that arise in this text are

convex cones and linear manifolds. C is a cone if for all x ∈ C,

α ∈ [0,∞) implies αx ∈ C. Note that a cone C is convex if and only if

x, y ∈ C implies x+ y ∈ C; and a convex cone C is a linear subspace if
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and only if x ∈ C implies −x ∈ C. A set M ⊆ X is a linear manifold

if the line through any two points in M lies in M : For all x, y ∈ M ,

α ∈ R =⇒ αx+ (1 − α) y ∈ M.

Clearly, every linear manifold is convex. The translation of S ⊆ X by

the vector x is defined and denoted by x+S ≡ S+x ≡ {x+ y | y ∈ S}.

If M is a linear manifold and m ∈ M , then M −m is a linear subspace.

Conversely, the translation of any linear subspace is a linear manifold.

Therefore, M ⊆ X is a linear manifold if and only if it takes the form

M = m + L for some vector m and linear subspace L. In this case,

the dimension of M is the dimension of L. By Proposition B.3.4,

a finite-dimensional linear manifold is complete and therefore closed.

In contrast, an infinite-dimensional linear subspace may not be closed.

For instance, in the context of Example B.3.6, the linear subspace of

all sequences x such that x (n) = 0 for all but finitely many values of

n is not closed.

A function f : C → R, where C ⊆ X, is concave if C is convex

and for all x, y ∈ C,

α ∈ (0, 1) =⇒ f (αx+ (1 − α) y) ≥ αf (x) + (1 − α) f (y) .

The function f is convex if −f is concave. Note that a linear functional

is both concave and convex. We saw in the last section that a linear

functional is necessarily continuous if X is finite-dimensional. This fact

generalizes as follows.

Theorem B.4.1. Suppose X is finite-dimensional, C is a convex

subset of X, and the function f : C → R is concave. Then f is

continuous at every point of the interior of C.

Proof. Since every finite-dimensional inner product space is iso-

morphic to a Euclidean space, we assume that X = R
d with the Eu-

clidean inner product. Given any x ∈ C0, choose α, β ∈ R
d such that

αi < xi < βi for all i and [α, β] ≡∏d
i=1 [αi, βi] ⊆ C. A point in [α, β]

is extreme if each of its coordinates equals αi or βi. (For example,

for d = 2, [α, β] is a rectangle and its extreme points are the four cor-

ners.) Concavity of f implies that for all y ∈ [α, β], there exists an

extreme point ȳ ∈ [α, β] such that f (y) ≥ f (ȳ). (To see that, think

of a plot of f (y) on [αi, βi] as a function of its ith coordinate and note
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that the minimum is achieved at one of the endpoints.) Since [α, β]

has finitely many extreme points, f is minimized by one of them. Let

b denote the minimum value, and let r > 0 be small enough so that

B (x; r) ≡ {y | ‖y − x‖ ≤ r} ⊆ [α, β]. Fixing any y ∈ B (x; r), let

u ≡ (y − x) / ‖y − x‖ and φ (α) ≡ f (x+ αu) for all α ∈ [−r, r]. We

then have the inequalities

K ≡ φ (0) − b

r
≥ φ (0) − φ (−r)

r

≥ φ (‖y − x‖) − φ (0)

‖y − x‖ ≥ φ (r) − φ (0)

r

≥ b− φ (0)

r
= −K.

The fact that φ is bounded below by b justifies the first and last in-

equalities. The three middle expressions represent slopes that decrease

from left to right because φ : [−r, r] → R is concave. This proves that

|f (y) − f (x)| ≤ K ‖y − x‖ for all y ∈ B (x; r). �

Convex complete bounded sets can play the role compact sets did in

the last section, even in the infinite-dimensional case, where compact-

ness is less helpful.3 Given a sequence xn, we write conv (xn, xn+1, . . . )

for the set of all finite linear combinations of the form
∑

i αixni
, where

αi > 0,
∑

i αi = 1 and ni ≥ n for all i. Equivalently, conv (xn, xn+1, . . . )

is the intersection of all convex sets that contain the points xn, xn+1, . . .

Lemma B.4.2. Suppose xn is a sequence in a subset of X that is con-

vex, complete and bounded. Then there exists a convergent sequence yn

such that yn ∈ conv (xn, xn+1, . . . ) for all n.

Proof. Since xn lies in a bounded set,

Ln ≡ inf {‖y‖ | y ∈ conv (xn, xn+1, . . . )}

is finite, increasing in n, and converges to the finite limit L ≡ supn Ln

as n → ∞. Choose yn ∈ conv (xn, xn+1, . . . ) such that ‖yn‖ < Ln+1/n

for all n. We will show that the sequence yn is Cauchy and hence

convergent, since xn is assumed to lie in a convex complete set. Given

any ǫ > 0, choose N such that 1/N < ǫ and Ln > L− ǫ for all n > N .

3The argument that follows originates in Komlós [1967]. Here we follow the exposi-
tion of Beiglböck et al. [2012], who show a useful application in stochastic analysis.
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For all m > n > N , we have (1/2) (ym + yn) ∈ conv (xn, xn+1, . . . ) and

therefore ‖(1/2) (ym + yn)‖ ≥ Ln > L− ǫ and

‖ym − yn‖2 = 2‖ym‖2 + 2‖yn‖2 − ‖ym + yn‖2

< 2 (Lm + 1/m)2 + 2 (Ln + 1/n)2 − 4 (L− ǫ)2

< 4 (L+ ǫ)2 − 4 (L− ǫ)2 = 16Lǫ.

The Cauchy property of yn follows. �

The following result is a corollary of Proposition B.3.7 in the finite-

dimensional case, but is remarkable in that it applies equally well in

the infinite-dimensional case.

Proposition B.4.3. Suppose the nonempty set C ⊆ X is convex,

complete and bounded, and the function f : C → R is convex and con-

tinuous. Then there exists y ∈ C such that f (y) ≤ f (x) for all x ∈ C.

Proof. Choose the sequence xn in C so that f (xn) converges to

M ≡ inf {f (x) | x ∈ C}. Let yn be as in Lemma B.4.2, converging to

y ∈ C (since C is closed). Given any ǫ > 0, choose N large enough

so that n > N implies f (xn) < M + ǫ. Fixing n > N , suppose that

yn =
∑

i αixni
for finitely many αi > 0 such that

∑

i αi = 1 and ni ≥ n.

Convexity of C and f implies yn ∈ C and

M ≤ f (yn) ≤
∑

i

αif (xni
) <

∑

i

αi (M + ǫ) = M + ǫ.

This shows that the sequence f (yn) converges to M and also converges

to f (y), since f is continuous. Therefore, M = f (y). �

B.5. Projections on convex sets

In Section B.2 we characterized the projection of a vector on a line

by an orthogonality condition. As the geometric intuition suggests,

this argument generalizes to projections on convex sets. The vector xC

is a projection of the vector x on the set C ⊆ X if

xC ∈ C and ‖x− xC‖ ≤ ‖x− c‖ for all c ∈ C.

In other words, xC is a point of C that is closest to x. A projection

xC on a convex set C may not exist (for example, take X to be the

real line, C = (0, 1) and x = 2), but, as shown below, if xC exists it is

unique, and if C is complete (Cauchy sequences in C converge in C)
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then xC does exist. Our central concern is the dual characterization of

a projection. We say that a vector y supports the set C at xC ∈ C if

(B.5.1) 〈y | c− xC〉 ≥ 0 for all c ∈ C.

In other words, y makes an acute angle with every vector connecting xC

to a point in C. Drawing a picture suggests that if xC is the projection

of x on the convex set C, then y ≡ xC − x supports C at xC , which is

precisely the dual characterization of a projection.

The central result on projections on convex sets follows. Note that

the existence statement applies in particular if X is a Hilbert space

and C is closed, since then C is necessarily complete.

Theorem B.5.1 (projection theorem). Suppose C is a convex sub-

set of the inner product space X. Then the following are true for all

vectors x, y ∈ X.

(1) The vector xC is a projection of x on C if and only if xC ∈ C

and xC − x supports C at xC .

(2) If xC is a projection of x on C and yC is a projection of y on C,

then ‖xC − yC‖ ≤ ‖x− y‖.

(3) If a projection of x on C exists, it is unique.

(4) If C is nonempty and complete, then the projection of x on C

exists.

Proof. (1) Given c, xC ∈ C, define xα ≡ xC + α (c− xC) ∈ C for

all α ∈ [0, 1] (and therefore x0 = xC and x1 = c). The quadratic

‖x− xα‖2 = ‖x− xC‖2 + 2α 〈xC − x | c− xC〉 + α2 ‖c− xC‖2

is minimized at α = 0 if and only if 〈xC − x | c− xC〉 ≥ 0.

(2) Let δ ≡ y − x and δC ≡ yC − xC . The support condition of

part 1 requires 〈xC − x | δC〉 ≥ 0 and 〈y − yC | δC〉 ≥ 0. Adding up

the two inequalities, we find 〈δ − δC | δC〉 ≥ 0 and therefore

‖δ‖2 = ‖δ − δC‖2 + 2 〈δ − δC | δC〉 + ‖δC‖2 ≥ ‖δC‖2 .

(3) Let x = y in part 2.

(4) For an arbitrary c ∈ C, let r ≡ ‖c− x‖, which ensures that the

bounded set Cr ≡ C ∩ {z | ‖z − x‖ ≤ r} is nonempty. Since Cr is also

convex and complete (being a closed subset of C), the projection xC of
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x on Cr exists by Proposition B.4.3. Clearly, xC is also the projection

of x on C. �

For the rest of this section, our focus is on projections on linear mani-

folds, where the support condition becomes an orthogonality condition.

A vector x is orthogonal to the linear manifold M if x is orthogonal

to y − z for all y, z ∈ M . The orthogonal to M subspace, denoted

by M⊥, is the linear subspace of all vectors that are orthogonal to M .

Note that M⊥ = (x+M)⊥ for all x ∈ X. A linear manifold M can

be expressed as M = x + L for a linear subspace L, in which case

M⊥ = L⊥ = {x | 〈x | y〉 = 0 for all y ∈ L}. A vector x supports a lin-

ear manifold M at some point of M if and only if x ∈ M⊥. As a

consequence, Theorem B.5.1 applied to linear manifolds gives

Corollary B.5.2 (orthogonal projection theorem). Suppose M is

a linear manifold in X. A point xM is the projection of the vector x

on M if and only if xM ∈ M and x − xM ∈ M⊥. If M is complete

(for example, finite-dimensional), then every vector x has a unique

decomposition x = xM + y, where xM ∈ M and y ∈ M⊥.

The following is an example of what can go wrong if M is not

complete (and therefore infinite-dimensional).

Example B.5.3. Consider the vector space C [0, 1] of all contin-

uous functions of the form x : [0, 1] → R with the inner product

〈x | y〉 =
∫ 1

0 x (t) y (t) dt. If it existed, the projection of the zero vector

on the linear manifold M ≡ {x ∈ C [0, 1] | x (0) = 1} would minimize
∫ 1

0 x (t)2 dt subject to the constraint x (0) = 1. Such a minimum does

not exist within C[0, 1]. ♦

A useful extension of the preceding corollary is the following geo-

metrically intuitive statement, which is, however, not valid without the

completeness assumption.4

Proposition B.5.4. Suppose M = x + L for a vector x and a

complete linear subspace L. Then M⊥⊥ = L.

4Although not needed in this text, it is not hard to show that for an arbitrary linear
subspace L of a Hilbert space, L⊥⊥ is the closure of L.
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Proof. Since M⊥ = L⊥, it suffices to show that L = L⊥⊥. That

L ⊆ L⊥⊥ (whether L is complete or not) is immediate from the defini-

tions. Conversely, suppose L is complete and x ∈ L⊥⊥. Let x = xL+y,

where xL ∈ L and y ∈ L⊥, and therefore 〈x | y〉 = 〈xL | y〉 + 〈y | y〉
and 〈xL | y〉 = 0. Since x ∈ L⊥⊥, we also have 〈x | y〉 = 0. The last

three equalities imply that 〈y | y〉 = 0 and therefore x = xL ∈ L. �

Orthogonality and projections are closely related to the notion of a

Riesz representation. Suppose f is a non-zero linear functional and n

is a unit-norm vector that is orthogonal to the functional’s null space

N ≡ {x | f (x) = 0}. Then f (n)n is the Riesz representation of f .

Indeed, for all x ∈ X, the vector f (x)n−f (n) x is in N and is therefore

orthogonal to n, a condition that rearranges to f (x) = 〈f (n)n | x〉.
This observation leads to the following existence argument (which does

not require X to be finite-dimensional).

Theorem B.5.5. In a Hilbert space, a linear functional has a Riesz

representation if and only if it is continuous.

Proof. A linear functional with a Riesz representation must be

continuous thanks to the Cauchy-Schwarz inequality. Conversely, sup-

pose f is a continuous linear functional with null space N . If X = N ,

the claim is trivial. Otherwise, pick any x ∈ X \ N . Since N is

closed and X is assumed complete, N is complete. By Corollary B.5.2,

x = xN +y, where xN ∈ N and y ∈ N⊥. Since n ≡ y/ ‖y‖ is orthogonal

to N and has unit norm, f (n)n is the Riesz representation of f . �

The projection of a Riesz representation on a linear subspace cor-

responds to the functional’s restriction on the linear subspace.

Proposition B.5.6. Suppose f (y) = 〈x | y〉 for all y ∈ X, and fL

is the restriction of f on the linear subspace L. Then xL is the Riesz

representation of fL in L if and only if it is the projection of x on L.

Proof. The joint requirement xL ∈ L and f (y) = 〈xL | y〉 for

all y ∈ L is equivalent to xL ∈ L and x − xL is orthogonal to L.

Corollary B.5.2 completes the proof. �

Projections on a finite-dimensional linear subspace can be simply

expressed in terms of a basis:
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Proposition B.5.7. Suppose B = (B1, . . . , Bd)
′ is a basis for the

linear subspace L. Then 〈x | B′〉 〈B | B′〉−1 B is the projection of the

vector x on L.

Proof. By Proposition B.5.6, the projection of x on L is the Riesz

representation of the restriction of the linear functional f (y) ≡ 〈x | y〉
on L, which is given by Proposition B.2.6 as f (B)′ 〈B | B′〉−1 B. (Al-

ternatively, one can directly check the orthogonality condition.) �

A useful application of Proposition B.5.7 is to problems that take

the form of minimizing a norm subject to linear constraints.

Proposition B.5.8. Suppose B = (B1, . . . , Bd)
′ is a matrix of lin-

early independent vectors and b ∈ R
d×1. The vector b′ 〈B | B′〉−1B is

the value of x that minimizes ‖x‖ subject to 〈B | x〉 = b and x ∈ X.

Proof. Let L ≡ span (B) and M ≡ {x ∈ X | 〈B | x〉 = b}. Recall

that, by Proposition B.3.4, L is complete and therefore, by Proposi-

tion B.5.4, L⊥⊥ = L. Pick any x ∈ M . Since M = x + L⊥, it follows

that M⊥ = L. The point 0M is the projection of the zero vector on

M if and only if 0M ∈ M ∩ M⊥, if and only if x − 0M ∈ L⊥ and

0M ∈ L, if and only if 0M is the projection of x on L, if and only if

0M = 〈x | B′〉 〈B | B′〉−1 B (by Proposition B.5.7). Since 〈B | x〉 = b,

the result follows. �

B.6. Supporting hyperplanes and (super)gradients

Continuing in the context of the inner product space X, we ex-

tend last section’s projection argument by essentially allowing the pro-

jected point to approach the boundary of a convex set, thus obtaining

a supporting vector without reference to a projection. More precisely,

consider a set C ⊆ X and a vector c̄ on the boundary of C, but not

necessarily in C. We say that the vector y supports C at c̄ if

(B.6.1) 〈y | c̄〉 = inf {〈y | c〉 | c ∈ C} .

The term is consistent with last section’s usage since (B.6.1) reduces

to (B.5.1) if c̄ = xC ∈ C. Condition (B.6.1) can be visualized as the

inclusion of C̄ in the half-space {x | 〈y | x〉 ≥ 〈y | c̄〉} with C̄ touching

the hyperplane {x | 〈y | x〉 = 〈y | c̄〉} at c̄. (A hyperplane is a linear

manifold whose orthogonal subspace is one-dimensional.)
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Theorem B.6.1 (supporting hyperplane theorem). Suppose X is

finite-dimensional,5 and the vector c̄ is on the boundary of a convex set

C ⊆ X. Then there exists a non-zero vector y that supports C at c̄.

Proof. Let xn be a sequence in X \ C̄ that converges to c̄. By

Theorem B.5.1, the projection x̄n of xn on C̄ exists, the sequence x̄n

converges to c̄ (since ‖x̄n − c̄‖ ≤ ‖xn − c̄‖), and yn ≡ x̄n − xn satisfies

〈yn | x̄n〉 ≤ 〈yn | c〉 for all c ∈ C. Dividing the last inequality by the

norm of yn, we can assume the inequality with ‖yn‖ = 1. The set

{y | ‖y‖ = 1} is closed and bounded and hence compact (assuming X

is finite-dimensional). There is, therefore, a subsequence of yn that

converges to some unit-norm vector y. By Proposition B.3.1, we can

take the limit along this subsequence to conclude that 〈y | c̄〉 ≤ 〈y | c〉
for all c ∈ C. Since c̄ is on the boundary of C, there exists a sequence cn

in C converging to c̄, and therefore 〈y | cn〉 converges to 〈y | c̄〉. These

two conditions together confirm the support condition (B.6.1). �

A useful application of the projection Theorem B.5.1 and the sup-

porting hyperplane Theorem B.6.1 is the following separation result.

Theorem B.6.2 (separating hyperplane theorem). Suppose X is

finite-dimensional, the sets A,B ⊆ X are convex and A∩B = ∅. Then

there exists a non-zero vector y such that

(B.6.2) inf
a∈A

〈y | a〉 ≥ sup
b∈B

〈y | b〉 .

Proof. The convex set

C ≡ A− B = {a− b | a ∈ A, b ∈ B}

does not contain the zero vector 0. If 0 /∈ C̄, the projection y of 0 on C

satisfies the support condition 〈y | (a− b) − y〉 ≥ 0 for all a ∈ A and

b ∈ B, which implies (B.6.2) as a strict inequality. If 0 ∈ C̄, let y be a

non-zero vector supporting C at 0. The support condition

0 = inf {〈y | a− b〉 | a ∈ A, b ∈ B}

implies (B.6.2) as an equality. �

5The assumption of finite dimensions cannot be omitted: Suppose X is the space
of all sequences x such that

∑

∞

n=1
x2

n < ∞, with 〈x | y〉 ≡ ∑

∞

n=1
xnyn. The set

C ≡ {x ∈ X | xn ≥ 0 for all n} has an empty interior, and if c̄ ∈ C is such that
c̄n > 0 for all n, there does not exist a non-zero vector that supports C at c̄.
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Applying the support condition to a set defined as the region be-

low the graph of a function leads to the concept of a supergradient.

Consider any function f : C → R, where C ⊆ X. The vector y is a

supergradient of f at x ∈ C if it satisfies the gradient inequality:

(B.6.3) f (x+ h) ≤ f (x) + 〈y | h〉 for all h such that x+ h ∈ C.

The superdifferential of f at x, denoted by ∂f (x), is the set of all

supergradients of f at x. The supergradient property can be visualized

as a support condition in the space X × R with the inner product

(B.6.4) 〈(x1, α1) | (x2, α2)〉 = 〈x1 | x2〉 + α1α2, xi ∈ X, αi ∈ R.

The (strict) subgraph of f is the set

(B.6.5) sub (f) ≡ {(x, α) ∈ C × R | α < f (x)} .

The definitions imply that

(B.6.6) y ∈ ∂f (x) ⇐⇒ (y,−1) supports sub (f) at (x, f (x)) .

Theorem B.6.3. Suppose X is finite-dimensional, the set C ⊆ X is

convex, the function f : C → R is concave and x is in the interior of C.

Then the superdifferential ∂f (x) is nonempty, convex and compact.

Proof. By the supporting hyperplane Theorem B.6.1, there exists

non-zero (y,−β) ∈ X × R that supports sub (f) at (x, f (x)) :

〈y | x〉 − βf (x) = inf {〈y | c〉 − βα | α < f (c) , c ∈ C, α ∈ R} .

Since the left-hand side is finite, β ≥ 0. If β = 0, then y supports

C at x, contradicting the assumption x ∈ C0. Therefore, β > 0 and

β−1y ∈ ∂f (x), which proves ∂f (x) 6= ∅. It follows easily from the

definitions that ∂f (x) is also convex and closed. Finally, we show that

∂f (x) is bounded and therefore compact. By Theorem B.4.1, we can

choose ε > 0 and K ∈ R such that ‖h‖ = ε implies x + h ∈ C and

f (x+ h) > K. For all nonzero y ∈ ∂f (x), let h ≡ − ‖y‖−1 εy and

note that

ε ‖y‖ = − 〈y | h〉 ≤ f (x) − f (x+ h) < f (x) −K.

This proves that ∂f (x) bounded. �
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The directional derivative of f at x in the direction h is the limit

f ′ (x; h) ≡ lim
α↓0

f (x+ αh) − f (x)

α
.

The gradient ∇f (x) of f at x is the Riesz representation of the func-

tional f ′ (x; ·), which is characterized by the condition

f ′ (x; h) = 〈∇f (x) | h〉 for all h ∈ X.

Of course, neither the gradient nor a directional derivative need to exist,

but under the assumptions of Theorem B.6.3, we have the following

characterization.

Theorem B.6.4. Suppose X is finite-dimensional, C ⊆ X is con-

vex, f : C → R is concave and x is in the interior of C. Then the

directional derivative f ′ (x; h) exists and is finite for all h ∈ X, and

(B.6.7) ∂f (x) = { y ∈ X | 〈y | h〉 ≥ f ′ (x; h) for all h ∈ X } .

The gradient ∇f (x) exists if and only if ∂f (x) is a singleton, in which

case ∂f (x) = {∇f (x)}.

Proof. Given any h ∈ X, consider the slopes

∆ (α) ≡ f (x+ αh) − f (x)

α
, x+ αh ∈ C, α ∈ R.

The concavity of f implies that ∆ (α) is nonincreasing in α. Choosing

ε > 0 such that x+ αh ∈ C for all α ∈ [−ε, ε], it follows that

(B.6.8) f ′ (x; h) ≡ lim
α↓0

∆ (α) = sup {∆ (α) | α ∈ (0, ε)} ≤ ∆ (−ε) .

This proves that f ′ (x; h) exists and is finite.

Suppose y ∈ ∂f (x). Then 〈y | h〉 ≥ ∆ (α) for all α ∈ (0, ε), and

therefore 〈y | h〉 ≥ f ′ (x; h) by (B.6.8). Conversely, suppose y /∈ ∂f (x)

and therefore ∆ (1) ≡ f (x+ h) − f (x) > 〈y | h〉 for some h. Since

∆ is decreasing, (B.6.8) implies f ′ (x; h) ≥ ∆ (1) > 〈y | h〉. This

proves (B.6.7).

To show the final claim, suppose ∇f (x) exists and y ∈ ∂f (x).

By (B.6.7), 〈∇f (x) − y | h〉 ≤ 0 for all h ∈ X. Letting h ≡ ∇f (x)−y,

it follows that y = ∇f (x). Conversely, suppose ∂f (x) = {y}. We

will show that y = ∇f (x) by confirming that f ′ (x; h) = 〈y | h〉 for

all h. Consider any h. The fact that f ′ (x; h) ≥ ∆ (α) if α > 0 and
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f ′ (x; h) ≤ ∆ (α) if α < 0 implies

f (x+ αh) ≤ f (x) + αf ′ (x; h) , α ∈ [−ε, ε] .

It follows that, in the space X × R, the subgraph of f , as defined

in (B.6.5), does not intersect the line segment

{(x+ αh, f (x) + αf ′ (x; h)) | α ∈ [−ε, ε]} .

By the separating hyperplane Theorem B.6.2, with the inner prod-

uct (B.6.4), there exists non-zero (p, β) ∈ X × R such that

inf { 〈p | x+ αh〉 + β (f (x) + αf ′ (x; h)) | α ∈ [−ε, ε] }
≥ sup { 〈p | x̃〉 + βα | (x̃, α) ∈ sub (f) } .

Clearly, this separation condition can only hold if β > 0. The right-

hand side is at least as large as 〈p | x〉 + βf (x), which is also obtained

as the expression on the left-hand side with α = 0. The coefficient of α

on the left-hand side must therefore vanish: 〈p | h〉 + βf ′ (x; h) = 0. It

follows that f ′ (x; h) = 〈y | h〉, where y = −β−1p is a consequence of the

fact that the separation condition reduces to the gradient inequality.

�

B.7. Optimality conditions

We conclude with some basic results relating to constrained opti-

mization problems of the form

(B.7.1) F (δ) ≡ sup {f (x) | g (x) ≤ δ, x ∈ C} , δ ∈ R
n,

for given C ⊆ X and functions f : C → R and g : C → R
n, where n is

a positive integer. With the convention sup ∅ = −∞, equation (B.7.1)

defines the function F : Rn → [−∞,+∞]. Although the parameter δ

seems redundant, it will play an important role.

Assuming F (0) is finite, the superdifferential of F at zero is

∂F (0) ≡ {λ ∈ R
n | F (δ) ≤ F (0) + λ · δ for all δ ∈ R

n} ⊆ R
n
+.

The inclusion in R
n
+ is due to the monotonicity of F : For all λ ∈ ∂F (0),

if δ ≥ 0 then λ · δ ≥ F (δ) − F (0) ≥ 0, and therefore λ ≥ 0.

The Lagrangian function associated with f and g is

L (x, λ) ≡ f (x) − λ · g (x) , x ∈ C, λ ∈ R
n.
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Lemma B.7.1. Assuming F (0) < ∞ and λ ∈ R
n
+, λ ∈ ∂F (0) if

and only if F (0) = sup {L (x, λ) | x ∈ C}.

Proof. In R
n × R with the Euclidean inner product, λ ∈ ∂F (0)

if and only if (λ,−1) supports at (0, F (0)) the set

(B.7.2) sub (F ) ≡ { (δ, α) ∈ R
n × R | α < F (δ) } .

Similarly, F (0) = sup {L (x, λ) | x ∈ C} if and only if (λ,−1) supports

at (0, F (0)) the set

S ≡ { (δ, α) ∈ R
n × R | for some x ∈ C, g (x) ≤ δ and α < f (x) } .

Finally, note that sub (F ) = S. �

Assuming that the supremum defining F (0) is a maximum and

∂F (0) is nonempty, the following main result provides a way of con-

verting the constrained optimization problem defining F (0) to an un-

constrained problem. The intuitive idea is that the parameter λ, known

as a Lagrange multiplier, provides an appropriate pricing of the con-

straint g ≤ 0. If the constraint gi (x) ≤ 0 is slack, then the correspond-

ing price λi must be zero. This leads to the complementary slack-

ness conditions gi (x) < 0 =⇒ λi = 0, which, given the inequalities

g (x) ≤ 0 and λ ≥ 0, are equivalent to λ · g (x) = 0.

Theorem B.7.2. Assuming x ∈ C, g (x) ≤ 0 and λ ∈ R
n, the

following two conditions are equivalent:

(1) f (x) = F (0) and λ ∈ ∂F (0).

(2) L (x, λ) = maxy∈C L (y, λ) , λ · g (x) = 0, λ ≥ 0.

Proof. Suppose condition 1 holds. We have already seen that

λ ∈ ∂F (0) implies λ ≥ 0. Since g (x) ≤ 0, L (x, λ) ≥ f (x) = F (0). By

Lemma B.7.1, F (0) ≥ L (x, λ). Therefore, L (x, λ) = f (x) = F (0).

The fact that L (x, λ) = f (x) implies λ · g (x) = 0. The fact that

L (x, λ) = F (0) and Lemma B.7.1 imply L (x, λ) = maxy∈C L (y, λ).

Conversely, suppose condition 2 holds. The assumption λ ·g (x) = 0

implies L (x, λ) = f (x). For all y ∈ C such that g (y) ≤ 0,

f (y) ≤ L (y, λ) ≤ L (x, λ) = f (x) .

Therefore, f (x) = F (0), and λ ∈ ∂F (0) follows by Lemma B.7.1. �
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The following lemma gives easy to check sufficient conditions for ∂F (0)

to be nonempty.

Lemma B.7.3. Suppose that F (0) < ∞, C and g are convex, f is

concave, and there exists some x ∈ C such that gi (x) < 0 for all i.

Then ∂F (0) is nonempty.

Proof. The concavity of f and convexity of g imply that the set

sub(F ), defined in (B.7.2), is convex. (The proof of this claim is

a matter of applying the definitions and is left to the reader.) By

the supporting hyperplane Theorem B.6.1, sub(F ) is supported at

(0, F (0)) by some non-zero (λ,−β), and therefore α < F (δ) implies

−βF (0) ≤ λ · δ − αβ for all δ ∈ R
n. If β < 0, setting δ = 0 leads

to a contradiction. The existence of an x such that gi (x) < 0 for all i

ensures that F (δ) > −∞ for all sufficiently small δ. As a consequence,

if β = 0, the support condition implies 0 ≤ λ · δ, where δ ≡ −ελ for

some ε > 0, a contradiction. Therefore β > 0 and β−1λ ∈ ∂F (0). �

The optimality condition 2 of Theorem B.7.2 is global since it uti-

lizes the objective and constraint functions over their entire domain.

Another type of optimality condition is local, providing implications

of the fact that small feasible perturbations from an optimum cannot

improve the objective. For example, assuming x ∈ C0 (the interior of

C) and the gradient ∇f (x) exists,

(B.7.3) f (x) = max {f (y) | y ∈ C} =⇒ ∇f (x) = 0.

This is because φ (α) ≡ f (x+ α∇f (x)), for all α near zero, is max-

imized at zero and therefore φ′ (0) = 〈∇f (x) | ∇f (x)〉 = 0. For the

converse of implication (B.7.3) to be true, we need some global regu-

larity condition so that we can deduce a global condition from a local

one. For example, if f is assumed to be concave and ∇f (x) = 0, the

gradient inequality implies that f (y) ≤ f (x) for all y ∈ C.

The preceding argument applies in particular to the function L (·, λ)

of optimality condition 2 of Theorem B.7.2. Assuming x ∈ C0 and the

existence of ∇f (x) and ∇g (x),

L (x, λ) = max
y∈C

L (y, λ) =⇒ ∇f (x) = λ · ∇g (x) ,



B.7. OPTIMALITY CONDITIONS 255

and the converse is true if C and g are convex and f is concave. This

leads us to the Kuhn-Tucker conditions:

(B.7.4) ∇f (x) = λ · ∇g (x) , λ · g (x) = 0, λ ≥ 0.

The sufficiency of the Kuhn-Tucker conditions for optimality under

convexity assumptions is covered by Theorem B.7.2 and the gradient

inequality. A necessity argument via Theorem B.7.2 and Lemma B.7.3

requires global convexity assumptions. These are redundant in the

following local argument, under a regularity condition requiring that

at the given optimum, there exists a marginal deviation that makes all

constraints slack.

Theorem B.7.4. Suppose x ∈ C0, g (x) ≤ 0, f (x) = F (0), and

the gradients ∇f (x) and ∇g (x) exist. Under the regularity condition

that there exists some vector h such that gi (x) + 〈∇gi (x) | h〉 < 0 for

all i, the Kuhn-Tucker conditions (B.7.4) are satisfied for some λ ∈ R
n.

Proof. Given the assumed feasibility and optimality of x,

(B.7.5) gi (x) + 〈∇gi (x) | h〉 < 0 for all i =⇒ 〈∇f (x) | h〉 ≤ 0.

To show this claim, consider any direction h for which the condition

on the left side of implication (B.7.5) holds. Let εi > 0 be such that

gi (x+ αh) ≤ 0 for all α ∈ [0, εi]. If gi (x) < 0, the existence of such an

εi follows from the continuity of gi (which is implied by the existence

of a gradient). If gi (x) = 0, such an an εi exists because gi (x+ αh) /α

converges to 〈∇gi (x) | h〉 < 0 as α ↓ 0. Letting ε ≡ min {ε1, . . . , εn},

it follows that g (x+ αh) ≤ 0 for all α ∈ [0, ε]. Since f (x) = F (0),

f (x+ αh) ≤ f (x) for all α ∈ [0, ε], and therefore

〈∇f (x) | h〉 = lim
α↓0

f (x+ αh) − f (x)

α
≤ 0,

completing the proof of condition (B.7.5).

Define A ≡ (−∞, 0)n × (0,∞) and the set B of all (b, β) ∈ R
n × R

for which there exists h ∈ X such that

g (x) + 〈∇g (x) | h〉 ≤ b and 〈∇f (x) | h〉 ≥ β.

Condition (B.7.5) implies A ∩ B = ∅. By the separating hyperplane

Theorem B.6.2, there exists some non-zero (−λ, µ) ∈ R
n ×R and some
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scalar s such that

(a, α) ∈ A =⇒ −λ · a+ µα ≥ s,(B.7.6)

(b, β) ∈ B =⇒ −λ · b+ µβ ≤ s.(B.7.7)

Condition (B.7.6) implies λ, µ ≥ 0 and s ≤ 0. Given that, (B.7.7)

implies

(B.7.8) −λ · (g (x) + 〈∇g (x) | h〉) + µ 〈∇f (x) | h〉 ≤ 0, all h ∈ X.

The case µ = 0 is ruled out by the constraint regularity condition.

After rescaling of λ, we can therefore assume that (B.7.8) holds with

µ = 1. Since λ ≥ 0 and g (x) ≤ 0, condition (B.7.8) with h = 0 implies

that λ · g (x) = 0. Finally, condition (B.7.8) with µ = 1, λ · g (x) = 0

and h = ∇f (x) − λ · ∇g (x) implies ∇f (x) = λ · ∇g (x). �

The ideas behind Theorem B.7.4 also apply to equality constraints.

For example, consider the problem of finding an x ∈ C that maximizes

f (x) subject to 〈B | x〉 = b, where B ≡ (B1, . . . , Bn)
′ and b ∈ R

n×1.

Suppose x ∈ C0, ∇f (x) exists, 〈B | x〉 = b and

f (x) = max { f (y) | 〈B | y〉 = b, y ∈ C } .

Consider any h ∈ span (B)⊥ and choose ε > 0 so that x + αh ∈ C for

α ∈ [−ε, ε]. Since 〈B | x+ αh〉 = b, the function φ (α) ≡ f (x+ αh),

α ∈ [−ε, ε], is maximized at zero and φ′ (0) = 〈∇f (x) | h〉 = 0.

We have shown that ∇f (x) ∈ span (B)⊥⊥ = span (B), and therefore

∇f (x) ∈ span (B) is a necessary local optimality condition. By virtue

of the gradient inequality, it is also a sufficient optimality condition

(given the feasibility of x) under the additional global assumption that

C is convex and f is concave. The argument can be extended to equal-

ity constraints of the form g (x) = 0, with ∇g (x) playing the role of B

in the preceding argument, but we have no need for such an extension

in this text.
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representation theorem, 212
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203, 228

coefficient of relative risk aversion

(CRRA), 156, 228

compact, 239

compensator, 62
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function, 242
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expectation, 55

change of measure, 76, 79

conditional, 58, 60

operator, 55
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expected utility, 219

concave, 226

more risk averse, 223, 224

representation theorem, 221

risk averse, 226

scale or translation invariant, 220

smooth, 227

uniqueness, 220

F

factor pricing, 86

Fatou’s lemma, 101

Feynman-Kac formula, 111

filtration, 12

generated, 16

finances, 130, 171, 182

finite-dimensional, 231

forward contract, 49, 74, 107, 204

delivery price, 49
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forward price, 49, 74, 108

Brownian model, 107

full support, 55

functional, 231

G
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gradient inequality, 250

Gram matrix, 235
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H
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Hansen-Jagannathan bound, 73, 164
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heat equation, 112
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I

IMRS, 164
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calculus, 97
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integral, 100

lemma, 97, 100

process, 99

J

Jensen’s inequality, 80

K

Kuhn-Tucker optimality conditions,

255

L

Lagrange multiplier, 253

Lagrangian, 252

law of iterated expectations, 59

law of large numbers, 120

law of one price, 18

leasing, 49

Legendre transform, 163

Lévy process, 93

limit, 237

linear

combination, 230

functional, 24, 231

independence, 231

manifold, 242

space, 229

span, 231

subspace, 230

M

marginal value of wealth, 141, 155

market, 16

adapted, 19

arbitrage-free, 16, 27
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complete, 18, 27
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dynamic, 19
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implementation, 88

implemented, 23

liquid, 19, 20

maker, 86

return, 133, 166

market price of risk, 85

binomial model, 119

Brownian model, 104

Markov property, 89

change of measure, 90

martingale, 60

continuous time, 96

local, 96, 99

representation, 82

matrix notation, 47

mean, 55

minimum variance frontier, 63

money-market account (MMA), 46

rate process, 46

monotone convergence theorem, 101

more risk averse, 151, 153, 223, 224

than risk neutral, 225

multiple-prior representation of risk

aversion, 157, 224

N

norm, 233, 237

normal distribution

characteristic function, 95

density, 106

Novikov condition, 107

null space, 247

O

open set, 241

optimal consumption and portfolio

choice, 172, 187

optimal portfolio allocation, 172,

188, 189

myopic, 175, 177, 188

option, 33

American, 33, 52

American call, 34, 80, 91

arbitrage pricing, 38

Black-Scholes formula, 109

dominant choice, 32

European call, 50, 109, 112

European put, 50

exercise, 33

exercise policy, 52

non-commitment assumption, 33

premium, 38, 50, 110

present-value maximization, 32

strike, 34, 50

writing, 50

ordinal property, 147

ordinally equivalent, 137, 147

orthogonal, 233, 246

projection, 246–248

subspace, 246–248

P

Pareto optimality, 143

partial differential equation (PDE),

111

partition, 10

refinement, 11

path, 13

period, 41

Π-optimality, 126, 141

Poisson process, 92

portfolio allocation, 48

frontier, 64

policy, 171

positive

affine transformation, 212

cash flow, 24

linear functional, 24

predictable, 41

representation, 83

preference, 209

preference correspondence, 124

convex, 137

scale-invariant (SI), 135, 138
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transitive, 135

preference profile, 124

preferences for the timing of

resolution of uncertainty, 206

present value, 18

present-value function, 24

conditional, 29

existence, 27

uniqueness, 27

probability (measure), 55

process, 13

projection, 244

theorem, 245

put-call parity, 50

Pythagorean identity, 233

Q

Q-martingale, 80

quadratic variation, 95

high-frequency limit, 122

R

Radon-Nikodym derivative, 76

random variable, 13

measurable, 14

recombining tree, 53

recursive utility, 150, 153, 177

concave, 172

continuous time, 177

Duffie-Epstein form, 179

Epstein-Zin-Weil (EZW), 156, 168,

179

generalized, 149

gradient, 154, 161, 185

normalized, 150

scale invariant (SI), 155

regular consumption-portfolio policy,

197

regular proportional aggregator, 162

representative agent, 136, 200, 201,

204

representative-agent pricing

CAPM, 133, 199, 206

HARA preferences, 203

scale invariant preferences, 135

translation-invariant preferences,

201

return, 47

excess, 48, 72

mean-variance efficient, 68

minimum variance, 63, 114, 116,

134

minimum variance frontier, 67

traded, 63

Riesz representation, 235, 247

risk averse, 226

risk-neutral

certainty equivalent, 225

pricing, 74, 109

S

SBM, 95

scalar, 229

semimartingale, 93

separable preference, 211

separating hyperplane theorem, 249

sequence, 237

Cauchy, 238

convergent, 237

Sharpe ratio, 66, 68, 117

short-rate process, 46

SI preference, 135, 138, 219

solvency constraint, 103

SPD, 69

spot, 12

immediate successor, 13

initial, 12

terminal, 12

standard deviation, 56

state space, 10

state-price density, 69

and utility gradient, 140

and utility superdifferential, 140

Brownian model, 104, 182

state-price process, 25

stochastic differential equation, 111
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stochastic process, 13

adapted, 14, 16

increments, 42

lagged, 42

Markov, 89

strictly positive, 13

stochastically independent, 56, 59

stopping time, 14, 52

strategy

adapted, 38

trading, 41

subgraph, 250

submartingale, 80

superdifferential, 250–252

supergradient, 250

support condition, 248

supporting hyperplane theorem, 249

supporting vector, 245, 248

synthetic contract, 44, 87

binomial model, 54

Brownian model, 109

T

Taylor approximation, 94

theta, 112

time, 10

total variation, 95

trading strategy, 41

admissible, 103

self-financing, 103

translation, 242

translation-invariant preference, 201,

218

triangle inequality, 234

two-fund separation, 64

U

uncorrelated, 56

unit CRRA, 168, 175, 188

unit EIS, 169, 174, 188

utility function, 137

additive, 139

concave, 138

gradient, 139

homogeneous of degree one, 138

homothetic, 138

normalized, 137

superdifferential, 140

utility process, 147

utility representation, 137, 210

V

value process, 21

variance, 56

variance averse, 133

vector, 229, 230

space, 229

subspace, 230

volatility, 83, 99

W

wealth process, 171, 191

continuous time, 182

Wiener process, 95
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