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Summary. This paper presents an axiomatic foundation for recursive utility
that captures the role of the timing of resolution of uncertainty without
relying on exogenously speci®ed objective beliefs. Two main representation
results are proved. In the ®rst one, future utility enters the recursion through
the type of general aggregators considered in Skiadas (1997a), and as a result
the formulation is purely ordinal and free of any probabilities. In the second
representation these aggregators are conditional expectations relative to
subjective beliefs. A new recursive representation incorporating disappoint-
ment aversion is also suggested. The main methodological innovation of the
paper derives from the fact that the basic objects of choice are taken to be
pairs of state-contingent consumption plans and information ®ltrations,
rather than the temporal (objective) lotteries of the existing literature. It is
shown that this approach has the additional bene®t of being directly appli-
cable to the continuous-time version of recursive utility developed by Du�e
and Epstein (1992).

JEL Classi®cation Numbers: D81, D91.

1 Introduction

The main purpose of this paper is to provide a simple axiomatic foundation
for recursive utility that captures the role of the timing of resolution of
uncertainty, without relying on exogenously speci®ed objective beliefs. We
introduce a setting in which information is modeled through ®ltrations,
rather than temporal lotteries, and preferences for the timing of resolution
are expressed as the monotonicity of a utility function with respect to its
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®ltration argument. This methodology has the advantage that it avoids
elaborate choice spaces of nested objective probability distributions, dealing
directly with state-contingent consumption plans (as in modern general
equilibrium theory) and allowing for subjective probabilities revealed
through choice. Another advantage of the approach is that it extends readily
to continuous time formulations. This fact will be demonstrated by extending
the Kreps and Porteus (1978) analysis of preferences for the timing of res-
olution of uncertainty to the continuous time setting of Du�e and Epstein
(1992).

The importance and structure of preferences that are not necessarily
temporally additive has been studied extensively in a literature surveyed by
Epstein (1992), and Karni and Schmeidler (1991). It is, for example, well
known that utility additivity with respect to time and states of nature is
overly restrictive in expressing reasonable notions of risk aversion in tem-
poral settings. A familiar illustration, a version of which is reported by Du�e
and Epstein (1992), involves the ranking of two temporal lotteries. The
payo�s of lottery A are determined by tossing a coin every day for ten years,
and paying out $100 or nothing immediately after each toss, depending on
whether the outcome is heads or tails. Lottery B also pays out $100 or
nothing each day over ten years, but there is only one coin toss: if the
outcome is heads all payments are $100, and if the outcome is tails all
payments are zero. In terms of direct preferences, most people would agree
that lottery A is less ``risky'' than lottery B. Yet, any utility function that is
additive with respect to time and states of nature would assign the same
utility level to both alternatives. Recursive utility can be viewed as a way of
overcoming this type of di�culty, while retaining dynamic consistency. As
Epstein (1992) explains in his survey, under additive temporal preferences
notions of intertemporal substitution and risk aversion are in¯exibly linked
to each other, while recursive utility allows an added degree of ¯exibility
through the curvature of an intertemporal aggregator.

Another consideration that arose in the literature of dynamic choice,
following ``induced-utility'' arguments by Mossin (1969), Dreze and Modi-
gliani (1972), and Spence and Zeckhauser (1972), is that it is not su�cient to
consider preferences over state-contingent consumption over time alone, the
manner in which uncertainty resolves over time must also be a factor that
determines utility. For example, continuing the illustration of Du�e and
Epstein (1992), consider a third lottery C that is the same as A, except that all
coins are tossed today (without changing the timing of payments). To dis-
tinguish between lotteries A and C, more than the speci®cation of state-
contingent payments is needed. Kreps and Porteus (1978) were the ®rst to
consider a direct axiomatic derivation of recursive utility that was su�ciently
structured to model the role of the timing of resolution of uncertainty. Kreps
and Porteus showed that the concavity (convexity) of an intertemporal
aggregator in their setting induces preferences for late (early) resolution of
uncertainty. Consequently, notions of risk-aversion in temporal settings
naturally lead to preferences for the timing of resolution. Intuitively, a risk-
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averse person may prefer a less informed signal of future consequences,
fearing the possibility of bad news, a situation all too familiar to anyone who
has delayed a visit to the doctor, seemingly against one's best interest. Of
course the same risk-averse individual faces bene®ts of planning from early
resolution. In an optimization problem, the latter e�ect can overcome the
direct utility e�ect. The work of Kreps and Porteus has been extended by
Chew and Epstein (1989, 1991), Grant, Kajii, and Polak (1996), and others.

Following Kreps and Porteus, papers on dynamic choice that incorporate
the role of the timing of resolution model objects of choice as temporal
lotteries, therefore assuming objectively given probabilities, and resulting in
technical structures of considerable complexity. Johnsen and Donaldson
(1985) on the other hand showed that recursive utility can be simply for-
mulated by placing time-consistency restrictions on preferences over state-
contingent consumption plans. Their setting is not rich enough to capture the
role of the timing of resolution of uncertainty, but they conjecture that the
Kreps-Porteus analysis should have an intuitive counterpart in their setting.
Their conjecture is con®rmed and extended in this paper. In order to express
the fact that di�erent choices can result in di�erent information streams, we
extend the Johnsen-Donaldson formulation so that objects of choice are
pairs of state-contingent consumption plans and information ®ltrations.
Preferences for early or late resolution can then be thought of simply as the
monotonicity of a utility in its ®ltration argument, a property that can be
characterized in a way analogous to that of Kreps and Porteus.

The paper contains two main representation theorems for recursive
utility. The ®rst result builds on the notion of aggregation developed in
Skiadas (1997a), to derive a recursion of the form Vt � ft�ct;At�Vt�1��, where
Vt is the time-t continuation utility (or, in the language of Koopmans (1960),
prospective utility), ct represents time-t consumption, and At is a conditional
aggregator given time-t information that is not necessarily additive. In this
way a purely ordinal theory is obtained, without the usual strong structural
assumptions required for cardinal or subjective probability representations.
Another representation theorem shows that any theory of subjective ex-
pected utility can be used as a basis for deriving the above recursive repre-
sentation, but with At being a conditional expectation relative to subjective
probabilities. The main part of the paper is on utility representations that
imply the irrelevance of unrealized alternatives, and history independence.
None of these conditions, however, is inherently a requirement of the paper's
approach. The ®nal section presents a brief discussion of possible extensions
that allow for aspects of preferences such as disappointment aversion (ex-
tending the formulation in Skiadas (1997a,b)) or habit formation.

The remainder of the paper is organized in ®ve sections and two ap-
pendices. Section 2 introduces the primitives of a discrete-time model, and
the basic notion of ``coherence.'' Section 3 de®nes recursive utility in such a
model, and discusses preferences for the timing of resolution of uncertainty.
Section 4 contains two ordinal representation theorems, while Section 5
presents a representation incorporating subjective beliefs. Section 6 discusses
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extensions of the model. Appendix A is on the continuous-time case, ex-
tending the formulation of Du�e and Epstein (1992) to incorporate the role
of the timing of resolution of uncertainty. Appendix B contains proofs.

2 Primitives and the notion of coherence

We begin with a discrete-time, ®nite state space model. The primitives in-
troduced in this section will be taken as given throughout the main part of
the paper.

Uncertainty is represented by the ®nite1 state space X. An event is any
nonempty subset of X. The set of all events is denoted E. Time is represented
by the set T � 0; . . . ; Tf g whose elements we call times. We model infor-
mation through algebras and ®ltrations. An algebra is any set of subsets of X
that is closed under unions and complementation. Given any algebra F,
there is a unique partition of X that generatesF, denotedF0. A ®ltration is
any sequence of algebras of the form Ft : t 2Tf g such that Ft �Ft�1 for
all t < T , and F0 � ;;Xf g. Consumption bundles are represented by ele-
ments of a set C. A consumption process is any function of the form
c : X�T! C, and is said to be adapted to the ®ltration Ftf g if, for every
time t, the random variable ct � c��; t� is Ft-measurable (meaning that for
every F 2F0

t , the restriction of ct to F is constant).
The decision maker expresses preferences over a set X , whose elements we

call acts. With every act x 2 X , we associate two objects: a consumption
process c�x�, and a ®ltration Ft�x� : t 2Tf g. The random variable ct�x�
represents time-t state-contingent consumption resulting from act x, while the
algebra Ft�x� represents the time-t information available to the decision
maker given choice x. We assume throughout that, for every x 2 X , c�x� is
adapted to Ft�x�f g. Conversely, given any ®ltration Ftf g, and any con-
sumption process c that is adapted to Ftf g, there exists an act x 2 X such
that c�x� � c and Ft�x� �Ft for all t 2T. Our later restrictions on pref-
erences will imply that an act x can be identi®ed with the pair of the con-
sumption process and ®ltration it generates.

Given any event F , we de®ne X F
t � x 2 X : F 2Ft�x�f g, the set of all acts

under which the truth of F or its complement is known at time t. We take as
primitive the set �F

t : F 2 E; t 2T� 	
, where �F

t is a preference order (that is,
a complete and transitive relation) on X F

t , for every F 2 E and t 2T. We
denote by �F

t and �F
t the asymmetric and symmetric parts of �F

t , respec-
tively. The interpretation of the statement x �F

t y is that the decision maker
regards the overall consequences of x realized on event F and during the time
interval t; . . . ; Tf g at least as desirable as the corresponding consequences of
y. We refer to �F

t as the time-t conditional preference given F . Of course, the
only non-trivial time-zero conditional preference is �X

0 .

1 The ®niteness assumption is made for simplicity of exposition. The analysis extends easily to

the in®nite case using the methods of Appendix A in Skiadas (1997a,b).
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Throughout the paper, conditional preferences will be assumed to satisfy
the following basic monotonicity condition, for all t 2 1; . . . ; Tf g:
A0. (Event Coherence) For any disjoint F ;G 2 E, and x; y 2 X F

t \ X G
t ,

(a) x �F
t y and x �G

t y implies x �F[G
t y, and

(b) x �F
t y and x �G

t y implies x �F[G
t y.

Event coherence expresses the fact that if the consequences of x over a
given time interval are preferred to the corresponding consequences of y in
each of two mutually exclusive scenarios, F and G, then the same is true in
the joint scenario F [ G. With regard to part (a) of A0 the word ``preferred''
should be interpreted in the weak sense (preferred or indi�erent), and with
regard to (b) it should be interpreted in the strong sense. (Notice that we do
not assume the stronger statement: x �F

t y and x �G
t y implies x �F[G

t y,
which would correspond to what is called ``strict coherence'' in Skiadas
(1997a,b).) The interpretation and signi®cance of event coherence is further
discussed in Skiadas (1997a,b), where the simpler term ``coherence'' is used
instead, since only atemporal choice is considered there.

Another important principle throughout the paper is what we call time
coherence, a notion analogous to event coherence, but with time intervals
playing the role of events. To de®ne time coherence, suppose that I1 and I2
are two consecutive time intervals, and let I be their union. Given any two
acts, x; y, and any event F , suppose that, on the event F , the consequences of
x during Ii are preferred to the consequences of y during Ii, for both values of
i. Time coherence stipulates that it must then be the case that, on event F , the
overall consequences of x during I are preferred to the overall consequences
of y during I . Moreover, if, on event F , the preferences of x on Ii are strongly
preferred to those of y on Ii for some i, then, on event F , the consequences of
x on I are strongly preferred to the consequences of y on I . (Time coherence is
therefore analogous to the formal de®nition of strict coherence in Skiadas
(1997a,b), with time intervals playing the role of events.)

While time coherence is easily formalized by de®ning preferences condi-
tioned on time intervals (as well as events), for simplicity, in this paper we use
the concept informally as a guide in formulating our postulates. As in Ski-
adas (1997a,b), strong implications, such as separability or recursivity, are
obtained if coherence is coupled with an interpretation of the word ``con-
sequence,'' a concept that will also be used at an informal level. For the main
results of the paper, a consequence at a given state and time will be assumed
to depend only on present and future consumption and information, im-
plying both history independence and the irrelevance of unrealized alterna-
tives. In the ®nal section we outline extensions in which consequences can
include subjective states of mind, such as feelings of disappointment or
habits, resulting in recursive representations that, while satisfying event and
time coherence, they need no longer satisfy the irrelevance of unrealized
alternatives or history independence.
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3 Recursive utility

A utility representation of the conditional preference family �F
t

� 	
is any set

of the form UF
t : F 2 E; t 2T� 	

, where U F
t : X F

t ! R is a utility represen-
tation of �F

t �that is; x �F
t y , U F

t �x� � U F
t �y�; for all x; y 2 X F

t �. Given any
utility representation U F

t

� 	
, and any algebraF, we will use the notation UF

t
to denote the real-valued function on X� x 2 X : F �Ft�x�f g de®ned by
UF

t �x; x� � U F
t �x� whenever x 2 F 2F0. The random variable UF

t ��; x� will
be denoted UF

t �x�.
As in Skiadas (1997a), conditional utilities will be related through

aggregator operators, de®ned as follows. Let L be the space of all real-valued
functions on X, and de®ne a conditional aggregator given event F to be any
function of the form A � j F� � : L! R with the property that, for any
U ; V 2 L, U � V on F implies A U j F� � � A V j F� �. (Throughout the paper,
U � �resp.;�; >�V on F means U�x� � �resp.;�; >�V �x� for all x 2 X.)
Given a conditional aggregator family A � j F� � : F 2 Ef g, and any algebraF,
we will denote by A � jF� � the function on L that takes values also in L, and is
de®ned by A V jF� ��x� � A V j F� � whenever x 2 F 2F0. A natural candi-
date for a conditional aggregator is a conditional expectation operator. The
general de®nition allows other possibilities, however, such as a minimum
operator corresponding to worst-case analysis of scenarios.

With the language of conditional utilities and aggregators in place, we can
now formulate the type of recursive utility representation that is the main
object of study of this paper:

De®nition 1. A utility representation U F
t

� 	
of �F

t

� 	
is said to be recursive if

there exist conditional aggregators A � j F� �, F 2 E, and functions
ft : C� It ! It, t 2T, where It � R, such that:

(a) For any algebras G and F, and any act x, we have

G �F �Ft�x� ) UG
t �x� � A UF

t �x� j G
� �

; t 2 1; . . . ; Tf g : �1�
(b) The functions ft are strictly increasing in their last argument, and the

function V : X� 0; . . . ; T � 1f g � X ! R de®ned by Vt�x� � UFt�x�
t �x� for

t 2T and VT�1�x� � 0 satis®es

Vt�x� � ft�ct�x�;A Vt�1�x� jFt�x�� ��; t 2T; x 2 X : �2�
In the above representation the conditional aggregators A � j F� �, F 2 E,

together with the functions ft, t 2T, which we call intertemporal aggrega-
tors, completely specify all conditional preferences through �1� and �2�. In
particular, conditional and intertemporal aggregators specify the decision
maker's attitudes towards information.

To discuss attitudes towards information, we de®ne the partial order �
on the space of acts, by letting, for every x; y 2 X , x � y if c�x� � c�y� and
Ft�x� �Ft�y� for all t 2T. The interpretation of the condition x � y is that
at time zero the decision maker can anticipate no less information in every
future date under act x than under act y, while both acts result in identical
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consumption plans. Uncertainty about future consumption is therefore re-
solved at least as fast under act x as under act y. The preference order �X

0 is
information seeking (respectively, information averse), if for all x; y 2 X , x � y
implies x �X

0 y (respectively, y �X
0 x). A decision maker with information

seeking preferences (weakly) prefers early rather than late resolution of un-
certainty.

To state a counterpart of the Kreps and Porteus (1978) proposition on
preferences for the timing of resolution, we ®rst de®ne a notion of convexity
relative to general aggregators. Given any conditional aggregator family

A � j F� �f g, we say that a function / : I ! I , where I � R, is A-convex if for
any I-valued random variable V and event F , we have

A /�V � j F� � � / A V j F� �� � :
In the case in which A � j F� � is a conditional expectation, this is the familiar
Jensen inequality. The de®nition of A-concave is obtained by simply re-
versing the above inequality.

Proposition 1. Suppose that �F
t : F 2 E; t 2T� 	

satis®es event coherence
(that is, A0 holds for every t), and has a recursive utility representation, UF

t

� 	
,

with corresponding conditional and intertemporal aggregator families A � j F� �f g
and ftf g, respectively (see De®nition 1). If the function ft�c; �� is A-convex
(respectively, A-concave) for every t 2T and c 2 C, then �X

0 is information
seeking (respectively, averse).

The simple recursive proof of this result is given in Appendix B. A con-
verse of Proposition 1 can be easily formulated, provided we assume a ``rich
enough'' space of acts. For example, in some axiomatizations of additive
aggregation that are based on connectedness and continuity (see Skiadas
1997a,b, as well as the references of Section 5) such richness of acts is as-
sumed in order to obtain additivity, and the proof of Proposition 1 can be
reversed to obtain a converse. It is also straightforward to formulate strict
versions of the notions of information aversion, A-convexity, event coher-
ence, and Proposition 1. We leave the details to the interested reader.

4 Ordinal representation theorems

In this section we formulate conditions on the primitives of Section 2 that
guarantee the existence of a recursive utility representation. We give two
representation theorems. The ®rst one has the simpler set of assumptions,
and derives a recursive utility representation in which conditional aggrega-
tors, while su�ciently well-behaved to imply dynamic consistency, need not
be monotone on their entire domain. In the second result, monotonicity is
obtained at the cost of a more elaborate version of event coherence. The case
of additive conditional aggregators is considered in the following section.

In addition to event coherence (A0), we are going to adopt three new
assumptions. The following assumption is clearly necessary for any recursive
utility representation to exist:
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A1. The preference order �X
0 has an (ordinal) utility representation.

An act, x, is deterministic if its corresponding consumption process, c�x�,
is deterministic (that is, not dependent on its state argument). Deterministic
acts will play the role of calibrating devices in our formulation. The assumed
properties that enable us to do so are summarized in the following condition:

A2. (a) For any event F , and any acts, x; y, such that x �F
1 y, there exists a

deterministic act z such that x �F
1 z �F

1 y.
(b) For any events F ;G, and any deterministic acts x; y 2 X F

1 \ X G
1 , we have

x �F
1 y , x �G

1 y.

The ®rst part of this assumption can be thought of as a weaker version of
the requirement that certainty equivalents for time-one preferences exist. The
second part is supported by the implicit informal assumptions that the de-
cision maker is indi�erent towards information when faced with a deter-
ministic consumption plan, and that the decision maker's enjoyment of
deterministic consumption is state-independent.

In order to state our next assumption, we introduce some new notation.
For any F ;G 2 E, t 2T, x 2 X F

t , and y 2 X G
t , we write �x; F � �t �y;G� to

indicate that, for any deterministic act z 2 X F
t \ X G

t , we have:

�y �G
t z) x �F

t z� and �y �G
t z) x �F

t z� :
Given assumption A2, the natural interpretation of this condition is that the
consequences of x during t; . . . ; Tf g on event F are at least as desirable as the
consequences of y during t; . . . ; Tf g on event G. Using this notation, we
can now formulate our ®nal condition needed to obtain a recursive utility
representation:

A3. For any x; y 2 X , t 2T, F 2F0
t �x�, G 2F0

t �y�, and c 2 C, such that
ct�x� � c on F and ct�y� � c on G, we have

�x; F � �t�1 �y;G� , �x; F � �t �y;G� ;
where, by convention, �x; F � �T�1 �y;G� is always true.

Condition A3 is a consequence of our implicit informal assumption of
time coherence, as discussed in Section 2, and the also informal assumption
that the time-t consequences of an act on some event depend only on time-t
consumption on the given event and the anticipation of future consequences.
To see that, consider the forward implication in A3. By assumption, the time-
t consumption on event F under act x coincides with the time-t consumption
on event G under act y. Moreover, the statement �x; F � �t�1 �y;G� indicates
that, from the point of view of time t, anticipated future consequences of act
x on event F are at least as desirable as anticipated future consequences of act
y on event G. The informal principles referred to above then imply that,
relative to time t, the present and anticipated future consequences of act x on
event F are at least as desirable as the corresponding consequences of act y
on event G. In symbols, �x; F � �t �y;G�. The converse implication follows by
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similar reasoning, using the strict version of time coherence described in
Section 2.

Condition A3 is the basic assumption that ties preferences recursively
across time. Its role is analogous to that of Postulate 3 of Koopman's (1960)
original formulation for the deterministic case, or the temporal consistency
Axiom 3.1 of Kreps and Porteus (1978) in a stochastic setting. What the
above interpretation of A3 rules out is that unrealized or past consequences
are also among the determinants of present consequences. In Section 6 we
discuss ways of relaxing this last informal assumption, while retaining time
coherence.

An ordinal representation theorem for recursive utility follows:

Theorem 1. Suppose that A0 holds for t � 1, and that A1 through A3 are
satis®ed. Then the conditional preference family �F

t

� 	
has a recursive utility

representation.

The proof of Theorem 1 in Appendix B also shows that the recursive
utility representation, U F

t

� 	
, of the theorem can be chosen to satisfy

�x; F � �t �y;G� , U F
t �x� � U G

t �y�; F 2Ft�x�;G 2Ft�y�; �3�
for all t 2 1; . . . ; Tf g. Conversely, the existence of such a recursive utility
representation and event coherence imply conditions A1, A2(b), and A3.
Condition A2(a) is clearly not necessary, while event coherence is necessary if
conditional aggregators are assumed to be (strictly) monotone, a condition
that the proof of Theorem 1 does not guarantee.2 Finally, the assumptions of
Theorem 1 imply that event coherence (A0) holds for all t 2T.

We conclude this section with a variant of Theorem 1, in which condi-
tional aggregators are shown to be monotone. This is achieved by replacing
event coherence with the following version:

A4. For any event F and any acts x; y 2 X F
1 , suppose that F x

1 ; . . . ; F x
n

� 	 �
F1�x� and F y

1 ; . . . ; F y
m

� 	 �F1�y� are both partitions of F . If �x; F x
i � �1 �y; F y

j �
for all i; j such that F x

i \ F y
j 6� ;, then x �F

1 y.

To interpret A4, one can think of the collection �x; F x
i � : i � 1; . . . ; n

� 	
as

a description of the consequences of x on F during the time interval
1; . . . ; Tf g, grouped in n scenarios, and analogously for
�y; F y

i � : i � 1; . . . ;mf g. The statement that �x; F x
i � �1 �y; F y

j � for all i; j such
that F x

i \ F y
j 6� ; can then be thought of as expressing the fact that the

consequences of x on F during 1; . . . ; Tf g are overall at least as desirable as
the corresponding consequences of y, that is, x �F

1 y.
A conditional aggregator A � j F� � given event F is monotone if for all

U ; V 2 L, U � V on F implies A U j F� � � A V j G� �. Under A2, conditions A1,
A3 and A4 are clearly necessary for the existence of a recursive utility

2 Of course, conditional aggregators in Theorem 1 are consistent with event coherence and

assumption A3, which together imply that, for any given ®ltration, preferences over state-

contingent consumption plans are dynamically consistent.
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representation such that �3� holds, and all the corresponding conditional
aggregators of De®nition 1 are monotone. Conversely, we have the following
version of Theorem 1:

Theorem 2. If conditions A1 through A4 are satis®ed, then the conditional
preference family �F

t

� 	
has a recursive utility representation that satis®es �3�

and with corresponding conditional aggregators that are monotone.

Condition A4 implies weak event coherence for time one preferences, in
the sense that part (a) of A0 holds (for t � 1, and under A2 and A3, for all t).
As a result, conditional aggregators are only shown to be weakly monotone.
On the other hand, it is straightforward to formulate strict versions of A4
that deliver event coherence in the sense of A0, or even strict event coherence
(meaning that x �F

t y and x �G
t y implies x �F[G

t y, for disjoint F ;G). Such a
strict version of A4 would also imply, in the context of Theorem 2, that a
conditional aggregator of the form A � j F� � is strictly monotone over the set of
all random variables of the form UF

t �x�, where x 2 X F
t and F is any sub-

algebra ofFt�x�. The details of these extensions are straightforward, and are
left to the interested reader.

5 Incorporating subjective probability

In this section we formulate assumptions that imply a recursive utility rep-
resentation in which all conditional aggregators take the form of conditional
expectations under subjective probabilities.

Let X 0 be the space of all acts under which all uncertainty is resolved at
time one:

X 0 � x 2 X : Ft�x� � 2X for all t � 1
� 	

:

Each element of X 0 can be thought of as a mapping from X to CT, the set of
all consumption paths. Time-one preferences over X 0 can therefore be em-
bedded into any of the standard axiomatic settings of subjective expected
utility theory. Here we will directly assume such a representation:

A5. There exists a function u : CT ! R, and a strictly positive probability P ,
such that, for all x; y 2 X 0,

x �F
1 y ,

Z
F

u�c�x��dP �
Z

F
u�c�y��dP ; F 2 E:

Condition A5 can be derived from more elementary assumptions by
applying any of a number of available theories of subjective expected utility
on ®nite state-spaces, such as those of Wakker (1989), Nakamura (1990), or
Gul (1992) (see also Chew and Karni, 1994; Skiadas, 1997b). The approach
of Anscombe and Aumann (1963), or that of Savage (1954) could also be
applied after appropriate enlargements of our setting, which are straight-
forward to implement, and will not be further discussed here.

In place of assumption A2, we are going to assume:
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A6. Given any t 2 1; . . . ; Tf g, x 2 X , and F 2Ft�x�, there exists some deter-
ministic act z 2 X 0 such that z �F

t x. If x is deterministic, then z can be chosen
so that it has the additional property c�z� � c�x�.

The proof of the following result can be found in Appendix B.

Theorem 3. Suppose that conditions A0, A1, A3, A5, and A6 are all satis®ed.
Then there exists a recursive utility representation in which all conditional
aggregators are conditional expectations relative to the probability P of as-
sumption A5.

As with Theorems 1 and 2, the recursive representation in Theorem 3 can
be selected to satisfy �3�. Also, the proof of Theorem 3 uses event coherence
only in the following weaker sense: For any x 2 X , x0 2 X 0, t 2 1; . . . ; Tf g,
and any disjoint events F ;G 2Ft�x�, x �F

t x0 and x �G
t x0 implies x �F[G

t x0.
On the other hand, event coherence is clearly a necessary condition for the
theorem's representation.

6 Extensions

We conclude the main part of this paper with a brief discussion of event and
time-coherent choice that violates the irrelevance of unrealized alternatives
or history independence.

Recursive utility in the sense of De®nition 1 satis®es the condition of the
irrelevance of unrealized alternatives, meaning that, for every event F and
time t, if two acts x; y 2 X F

t are identical on F � t; . . . ; Tf g (both in con-
sumption and ®ltration), then x �F

t y. This rules out the possibility that the
perceived impact of consumption and information about future consumption
depends on past expectations. For example, such dependence can arise if the
decision maker expects to feel disappointment or elation as a result of worse
or better than expected outcomes. Extending arguments made in Skiadas
(1997a,b) in a static setting, we now o�er, in outline form, a version of
recursive utility that incorporates disappointment aversion.

We adopt the same set of primitives as in Section 2. Since disappointment
is impossible with deterministic acts, the latter will play the same role as in
the last two sections. In particular, we assume A6, and we adopt the
de®nition of the relation �t of Section 4. We take as given a utility repre-
sentation, U F

t

� 	
, of �F

t

� 	
that satis®es �3� for all t 2T, and we let

Vt�x� � UFt�x�
t �x� for all x 2 X . We also assume that, for some underlying

probability, U F
t �x� � E Vt�x� j F� � for all x 2 X F

t , and any F 2 E and t 2T.
An axiomatic foundation for these assumptions can be based on Skiadas
(1997b). (The latter's formulation can be applied to time-t conditional
preferences, for every t 2 1; . . . ; Tf g, while an additional assumption can be
used to ensure that the underlying subjective probability is the same in every
period.)

Given the above structure, we now weaken our earlier assumption A3, to
incorporate disappointment aversion. Given any ®ltration Ftf g, we de®ne,
for convenience, Fÿ1 �F0.
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A7. For any t 2T, and x; y 2 X , suppose that F 2F0
t , F 0 2F0

tÿ1�x�, F � F 0,
and G 2F0

t �y�, G0 2F0
tÿ1�y�, G � G0. If, for some c 2 C, ct�x� � c on F and

ct�y� � c on G, then

�y;G0� �t �x; F 0� and �x; F � �t�1 �y;G�� � ) �x; F � �t �y;G� ; �4�
where, by convention, �y;G0� �ÿ1 �x; F 0� and �x; F � �T�1 �y;G� are always true.

As with A3, assumption A7 can be thought of in terms of time coherence
and an interpretation of consequences. In this case, time-t consequences are
allowed to include a sense of disappointment or elation when the arrival of
news is worse or better than expected. The condition �y;G0� �t �x; F 0� in �4�
indicates that the expectations formed under y just prior to the arrival of the
information that G is true are at least as good as the expectations formed
under x just prior to the arrival of the information that F is true. This
assumption guarantees that the conclusion �x; F � �t �y;G� (justi®ed as in A3)
would not be reversed because of any feelings of disappointment or elation.
In this sense, �4� is consistent with time coherence, but also allows for a sense
of disappointment aversion.

One can easily show (in a manner similar to step 4 of the proof of
Theorem 1) that A7 is equivalent to the existence of a function
f : T� C�R�R! R, which is nonincreasing in its third argument and
nondecreasing in its fourth argument, such that

Vt�x� � ft�ct�x�;E Vt�x� jFtÿ1�x�� �;E Vt�1�x� jFt�x�� ��; t 2T; x 2 X : �5�
Recursion �5� completely speci®es the decision maker's preferences. To see
that, de®ne Ut�x� � E Vt�x� jFtÿ1�x�� � for every t 2T and x 2 X , and notice
that �5� implies

Ut�x� � E ft�ct�x�;Ut�x�;Ut�1�x�� jFtÿ1�x�� �; t 2T; x 2 X : �6�
By the monotonicity of f in its third argument, Ut�x� is uniquely determined
by ct�x� and Ut�1�x�. Recursion �6� can therefore be used to determine Ut�x�
for every time t, which can subsequently be used in �5� to recover Vt�x� for
every time t.

Further generalizations can be achieved by weakening A3 or A7 to allow
for various forms of history dependence. For example, in the above for-
mulation a sense of disappointment or elation is only assumed to last over a
single period. It is left to the interested reader to formulate a generalization
of A7 that controls for expectations formed during the complete history. The
result is a version of recursion �6� that takes the forward-backward form:

Ut�x� � E ft�ct�x�;U0�x�; . . . ;Ut�x�;Ut�1�x�� jFtÿ1�x�� � :
In this case the whole process Ut�x�f g must be determined as a ®xed point.

Other types of history dependence can be attributed to the formation of
habits. To model such a situation one need only modify A3 by requiring that
the complete consumption history prior to t is the same for x on F as for y on
G. The result is the same type of recursion as in �2�, but now the argument ct

has to be interpreted as the complete history �c0; . . . ; ct�.
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Appendix A: Stochastic di�erential utility

Du�e and Epstein (1992) introduced a continuous-time version of recursive
utility, which they called stochastic di�erential utility (SDU), but did not
discuss the role of the timing of resolution of uncertainty in their setting. The
purpose of this section is to extend the de®nition of SDU to the type of acts
introduced in Section 2, but in continuous time, and to obtain a result
analogous to Proposition 1, linking the convexity or concavity of an inter-
temporal aggregator to preferences for information. This appendix is more
technical than the rest of the paper, but the intuition is analogous.

We start with a probability space �X;F; P� (no longer assumed ®nite),
and the bounded real interval T � �0; T �, representing a continuous time
horizon. For technical reasons, we assume that the above probability space is
complete (meaning that every subset of a P -null element of F is also in F).
For our purposes, a ®ltration is de®ned as any set of r-algebras of the form
Ft : t 2Tf g, satisfying the following conditions:
(a) For all s; t 2T such that s � t, we have Fs �Ft �F.
(b) F0 is the trivial r-algebra (generated by the null events).
(c) For every t < T , Ft �

T
s>t Fs.

As in the discrete case, a ®ltration represents a stream of information, where
for simplicity we have assumed that at time zero there is always no infor-
mation.

Consumption bundles are elements of a convex subset, C, of some Eu-
clidean space (or, more generally, of some separable Banach lattice), with �k k
denoting the norm of C. A consumption process is any product-measurable
function of the form c : X�T! C, satisfying E�R T

0 kctk2dt� <1. As be-
fore, we take as primitive a set of acts, X , and we associate with each x 2 X a
consumption process and a ®ltration, denoted c�x� and Ft�x�f g, respectively.
For every x 2 X , we assume that c�x� is optional3 relative to the ®ltration
Ft�x�f g, which should be interpreted as the restriction that, at each time,
present consumption is known.

We de®ne a recursive utility in terms of an intertemporal aggregator,
that is, a function of the form f : T� C�R! R satisfying the
following technical Lipschitz and growth condition: for some constant
K, and all c 2 C, t 2T, and u; v 2 R, f �t; c; u� ÿ f �t; c; v�j j � K uÿ vj j and
f �t; c; 0�j j � K�1� ck k�. For every x 2 X , Proposition A1 of Du�e and
Epstein (1992) guarantees that there is a unique (up to modi®cations) square-
integrable process4 V �x� satisfying

Vt�x� � E
Z T

t
f �s; cs�x�; Vs�x��ds jFt�x�

� �
; t 2T : �7�

3 The consumption process c is optional relative to the ®ltration Ftf g if it is measurable with
respect to the r-algebra on X�T generated by the set of RCLL (right continuous and with left

limits) consumption processes that are adapted to Ftf g, and the Borel r-algebra on C.
4 Square-integrability means that supt Vt�x� has ®nite second moment for all x.
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The arguments of Du�e and Epstein (1992) indicate that V �x� can be
thought of as a continuous time version of the corresponding process, V �x�,
in De®nition 1. For simplicity, we focus on the time-zero utility U : X ! R,
de®ned by U�x� � V0�x�.

The utility function U is information seeking (respectively, averse) if for
any x; y 2 X such that c�x� � c�y� and Ft�x� �Ft�y� for all t, we have
U�x� � U�y� (respectively, U�y� � U�x�). In analogy with the discrete-time
case, we then have the following result, which is the main contribution of this
appendix.

Proposition A. Suppose that, for every �t; c� 2T� C, f �t; c; �� is convex
(respectively, concave). Then U is information seeking (respectively, averse).

To prove this result, we use the author's following extension of Gron-
wall's inequality, whose proof is reported by Du�e and Epstein (1992,
Lemma B2).

Lemma A. Let �X;F; P � be a probability space equipped with a ®ltration5

Ftf g. Suppose that V is an integrable optional processes, K is a constant, and
U is a product-measurable process. Suppose that the paths of V are right
continuous almost surely, and that, for every t, the paths of the process

E Vs jFt� � : s � tf g are continuous almost surely. If VT � 0 a.s. and, for all t,
Ut � ÿK Vtj j and Vt � E

�R T
t Usds� VT jFt

�
a.s., then Vt � 0 a.s. for all t.

Proof of Proposition A: We assume that f is convex in its last argument; the
concave case is analogous. Suppose that x; y 2 X satisfy c�x� � c�y� � c and
Ft�x� �Ft�y� for all t. Recursion �7� gives

E Vt�x� jFt�y�� � ÿ Vt�y� � E
Z T

t
fs�cs; Vs�x�� ÿ fs�cs; Vs�y��� �ds jFt�y�

� �
:

By Jensen's inequality and the Lipschitz condition on f , we have

E fs�cs; Vs�x�� jFs�y�� � ÿ fs�cs; Vs�y�� � fs cs;E Vs�x� jFs�y�� �� � ÿ fs�cs; Vs�y��
� ÿK E Vs�x� jFs�y�� � ÿ Vs�y�j j :

Using a version of Fubini's theorem, the law of iterated expectations, and
Lemma A, we ®nd that E Vt�x� jFt�y�� � � Vt�y� for all t, an inequality anal-
ogous to �8� in the proof of Proposition 1. In particular, U�x� � U�y�,
completing the proof. (

Applications of Proposition A to asset pricing theory are given by Du�e,
Schroder, and Skiadas (1996, 1997).

5 Recall that we have incorporated in the de®nition of a ®ltration what are known as the ``usual

conditions.''
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Appendix B: Proofs

Proof of Proposition 1

We assume that ft�c; �� is A-convex; the A-concave case is analogous. Suppose
that acts x and y satisfy x � y (in the sense of Section 3), and let V be as in
De®nition 1. We will prove by a backward induction that, for all t 2T,

A Vt�x� jFt�y�� � � Vt�y� : �8�
For t � 0, �8� implies x �X

0 y, proving that U is information seeking. For
t � T , �8� holds as an equality, since both sides are equal to
fT �cT �x�; 0� � fT �cT �y�; 0�. Suppose now that t < T , and that
A Vt�1�x� jFt�1�y�� � � Vt�1�y�. This implies that x �F

t�1 y for all F 2F0
t�1�y�,

and by event coherence (A0), x �F
t�1 y for all F 2F0

t �y�. Therefore,
A Vt�1�x� jFt�y�� � � A Vt�1�y� jFt�y�� �. Using this fact, we then have:

A Vt�x� jFt�y�� � � A ft�ct�x�;A Vt�1�x� jFt�x�� �� jFt�y�� �
� ft�ct�x�;A A Vt�1�x� jFt�x�� � jFt�y�� ��
� ft�ct�x�;A Vt�1�x� jFt�y�� ��
� ft�ct�y�;A Vt�1�y� jFt�y�� �� � Vt�y�:

The ®rst and last equalities follow from the recursive representation �2�, the
®rst inequality follows from the A-convexity of f , the second equality follows
from the condition in part (a) of De®nition 1, and the last inequality follows
from the monotonicity of f in its last argument and the inductive hypothesis
as indicated above. This shows �8�, and completes the proof of Proposi-
tion 1. (

Proof of Theorem 1

We proceed in four steps. In the ®rst step we construct an appropriate utility
representation for the time-one conditional preference family �F

1

� 	
. In the

second step we construct a corresponding conditional aggregator family. In
the third step, we complete the de®nition of the utility representation, UF

t

� 	
,

of the entire conditional preference family �F
t

� 	
, extending the construction

of step 1. Finally, in the fourth step we construct the functions ft of recursion
�2�. Steps 1 and 2 are similar to the proof of Theorem A2 of Skiadas (1997a).
The complete argument is presented, however, both for completeness, and
because it is needed in other parts of the proof.

Step 1: Given any two sets of acts, X1 and X2, we write X1 � X2 to indicate
that X1 � X2 and for every F 2 E and x; y 2 X2 such that x �F

1 y, there exists a
z in X1 such that x �F

1 z �F
1 y. One can easily check that � is a transitive

relation, a fact we will use shortly. Let now Y be the set of all deterministic
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acts. Combining assumptions A0, A1, and A3, it follows easily6 that �F
1 has

some utility representation for every F 2 E.
By a standard result (see, for example, Fishburn, 1979), there exists a

countable �F
1 -order dense subset of Y , for every F . Since there are only

®nitely many events, there exists a countable set Z � Y . By assumption A2,
we also have Y � X , and therefore Z � X . We ®x such a set of deterministic
acts Z � z1; z2; . . .f g for the remainder of this proof.

Given any F 2 E and n 2 1; 2; 3; . . .f g, let the function
dF

n : X F
1 ! 0; 1; 2f g, be de®ned by

dF
n �x� �

0 if zn �F
1 x;

1 if x �F
1 zn;

2 if x �F
1 zn .

8<:
We then de®ne the corresponding utility function U F

1 : X ! �0; 1� through
the equations:

U F
1 �x� �

X1
n�1

dF
n �x�
3n ; x 2 X F

1 :

Notice that there is a unique sequence of the form dF
n �x� : n � 1; 2; . . .

� 	
that corresponds to each value of UF

1 . (The possibility of a double ternary
representation of a number in �0; 1� does not create a problem. For suppose
we had U F

1 �x� � U F
1 �y�, and, for some integer N , dF

N �y� � dF
N �x� � 1, while

dF
n �x� � 2 and dF

n �y� � 0 for all n > N . Then one obtains the contradiction
y �F

1 x and x �F
1 zn �F

1 y for n > N .)
Next we show that UF

1 is a utility representation of �F
1 . If x �F

1 y, then
dF

n �x� � dF
n �y� for every n, and therefore, UF

1 �x� � UF
1 �y�. If in addition

x �F
1 y, Z � X implies that dF

n �x� > dF
n �y� for some n, and therefore

U F
1 �x� > UF

1 �y�. Therefore, U F
1 �x� � UF

1 �y� , x �F
1 y for all x; y 2 X .

Step 2: Given the utility representation UF
1

� 	
constructed in step 1, a family

of conditional aggregators, A � j F� �f g, can be consistently de®ned to satisfy
�1� for t � 1, provided the following condition holds for any F 2 E and
x; y 2 X : For any algebras F �F1�x� and G �F1�y�, if F 2F \ G and
UF
1 �x� � UG

1 �y� on F , then U F
1 �x� � UF

1 �y�.
To prove this fact, we de®ne, for any algebra F �F1�x�,

dFn �x; x� � dF
n �x� whenever x 2 F 2F0. Suppose that UF

1 �x� � UG
1 �y� on

F 2F \ G, for some algebras F �F1�x� and G �F1�y�. Then
dFn �x� � dGn �y� on F for all n. Fix any n, and for each i 2 0; 1; 2f g, de®ne the
set Fi � dFn �x� � dGn �y� � i

� 	 \ F . Since

6 The idea is to express �F
1 in terms of �X

0 , by noticing that if two acts x and y are identical (in

consumption and ®ltration) at time zero and on F c for all t � 1, then x �X
0 y , x �F

1 y. On the

other hand, for any two acts x; y that are identical on F for t � 1, we have x �F
1 y. The same idea

is used in Step 3 below.
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Fi � dFn �x� � i
� 	 \ F � dGn �y� � i

� 	 \ F ;

we have Fi 2F \ G. Using event coherence (A0), it follows that
Fi � dF\Gn �x� � i

� 	 \ F � dF\Gn �y� � i
� 	 \ F :

Therefore, dF\Gn �x� � dF\Gn �y� on F . Since this is the case for all n,
UF\G
1 �x� � UF\G

1 �y� on F . Again by event coherence, it follows that
U F
1 �x� � UF

1 �y�, proving the consistency property required for conditional
aggregators to exist.

Remark: Another property of the above constructed utilities worth men-
tioning is that, for any algebra F �F1�x�, if UF

1 �x� is constant on F 2F,
then UF

1 �x� � UF
1 �x� on F . (To see that, notice that, for any n, if dFn �x� is

constant on F 2F �Ft�x�, then dF
n �x� � dFn �x� on F , an easy consequence

of the de®nitions and event coherence.) As a result, conditional aggregators
in the recursive representation can be chosen to have the additional property
that for every deterministic U , A U j F� � � U for all F .

Step 3: In this step we de®ne the remaining conditional utilities of the
representation U F

t

� 	
. We arbitrarily ®x some c 2 C. Given any x 2 X , and

t 2 2; . . . ; Tf g, we de®ne the act xt to satisfy

�cs�xt�;Fs�xt�� � �c;Ft�x��; if s < t;
�cs�x�;Fs�x��; if s � t .

�
The utility function UF

t for t > 1 is de®ned by letting UF
t �x� � U F

1 �xt�.
Finally, we let UX

0 be any utility representation of �X
0 (assumed to exist in

A1).
Applying A3 (with F � G), and using the above utility construction, one

can easily check that, for all t > 1 and x; y 2 X F
t ,

x �F
t y , xt �F

1 yt , U F
1 �xt� � UF

1 �yt� , UF
t �x� � U F

t �y� :
This proves that U F

t is a utility representation of �F
t for all F and t. It is also

immediate from the de®nitions that �1� holds with the aggregators de®ned in
step 2. This completes the construction of a utility representation, UF

t

� 	
,

satisfying �1� for some conditional aggregator family, A � j F� �f g.
Another important property of U F

t

� 	
that we will need is that �3� holds

for all t 2 1; . . . ; Tf g. To show that, we ®rst notice that, by A3,

�x; F � �t �y;G� , �xt; F � �1 �yt;G�; F 2Ft�x�; G 2Ft�y�; t > 1 :

It therefore su�ces to prove �3� for t � 1. To do so, we ®rst notice that, by
the construction of U F

1

� 	
and assumption A2(b), UF

1 �z� � U G
1 �z� for any

deterministic z 2 X F \ X G. Therefore, if U F
1 �x� � UG

1 �y�, then for every de-
terministic act z, U G

1 �y� � U G
1 �z� implies UF

1 �x� � U F
1 �z�, and U G

1 �y� > UG
1 �z�

implies UF
1 �x� > U F

1 �z�. Since U F
1 represents �F

1 , we have �x; F � �1 �y;G�.
Conversely, suppose that �x; F � �1 �y;G�. It then follows from the de®nitions
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in step 1 that dF
n �x� � dG

n �y� for every n, and therefore UF
1 �x� � UG

1 �y�. This
completes the proof of �3� for all t � 1.

Step 4: Finally, for every t 2T, we show the existence of a function
ft : C� It ! It, It � R, strictly increasing in its last argument, such that

Vt�x� � ft�ct�x�;UFt�x�
t�1 �x��; x 2 X ; �9�

where, by convention, UFT �x�
T�1 �x� � 0. Clearly, �9� together with the aggre-

gation result of step 2 gives recursion �2�, hence completing the proof of the
theorem.

Given any t 2T and c 2 C, let

It � UFt�x�
t�1 �x; x� : x 2 X; x 2 X ; ct�x; x� � c

n o
:

Given our assumptions, it follows easily that It is the same for any choice of
c. We now claim that �9� consistently de®nes a strictly increasing function
ft�c; �� on It. Suppose that for some c 2 C, t 2T, x; y 2 X , F 2F0

t �x�, and
G 2F0

t �y�, we have ct�x� � c on F and ct�y� � c on G. Then, by A3,

U F
t�1�x� � U G

t�1�y� , UF
t �x� � U G

t �y� ;
which con®rms our claim, and completes the proof of Theorem 1. (

Proof of Theorem 2

The proof of Theorem 2 is the same as that of Theorem 1, with the exception
of step 2 on the construction of conditional aggregators, which should be
replaced by the following argument. All utilities are de®ned as before, and we
use the fact that (3) holds. (The proof of �3� is given in step 3 of the proof of
Theorem 1.)

Given any event F , let DF be the set of all random variables of the form
UF
1 �x�, where x 2 X F

1 , andF is a sub-algebra ofF�x�. We are ®rst going to
de®ne a monotone conditional aggregator A � j F� � on DF . To do so, it su�ces
to show that for any x; y 2 X F

1 , and any algebras F �F�x� and G �F�y�,
UF
1 �x� � UG

1 �y� implies that U F
1 �x� � UF

1 �y�. But because of (3), this is an
immediate consequence of assumption A4.

Our next task is to extend the de®nition of A � j F� � to the whole domain L,
while preserving monotonicity. Let

D
F � V : V � U on F ; for some U 2 DF� 	

:

We extend A � j F� � to D
F
by letting

A V j F� � � sup A U j F� � : V � U on F ;U 2 DF� 	
; V 2 D

F
:

Finally, we extend A � j F� � to the whole of L, by letting

A V j F� � � inf A U j F� � : V � U on F ;U 2 D
F

n o
; V 2 L :
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The resulting extension A � j F� � is ®nite valued (because utilities are bounded
by construction), monotone, and de®nes a conditional aggregator given F .
The proof of Theorem 2 can then be completed just as for Theorem 1. (

Proof of Theorem 3

We begin by de®ning a utility representation UF
t

� 	
, which we will subse-

quently show to possess the desired properties. We let some c 2 C be ®xed
arbitrarily throughout the proof.

Given any x 2 X , t 2 1; . . . ; Tf g, and F 2F0
t �x�, we apply A6 to select a

deterministic act z�x; F ; t� 2 X 0 satisfying z�x; F ; t� �F
t x. If x is deterministic,

we select z�x; F ; t� so that c�z�x; F ; t�� � c�x�. In terms of z�x; F ; t�, we de®ne
the consumption stream c�x; F ; t� 2 CT by

c�x; F ; t�s �
c; if s < t;
cs�z�x; F ; t��; if s � t.

�
Finally, we de®ne UF

t �x� � u�c�x; F ; t��. We extend this de®nition to arbitrary
F 2Ft�x�, by postulating additivity:
F \ G � ; ) UF[G

t �x�P �F [ G� � U F
t �x�P�F � � U G

t �x�P �G�; F ;G 2Ft�x� :
This procedure de®nes a utility function U F

t : X F
t ! R, for any F 2 E and

t 2 1; . . . ; Tf g, which we next show to be a utility representation of �F
t .

Fix any x; y 2 X F
t , where t � 1, and let F1�x�; . . . ; Fn�x�f g �F0

t �x� and
F1�y�; . . . ; Fm�y�f g �F0

t �y� be both partitions of F , corresponding to the
events that would be known at time t, in every state of F , under x and y,
respectively. De®ne the act x0 2 X 0 by letting c�x0� be equal to c on F c, and
equal to c�x; Fi�x�; t� on Fi for i 2 1; . . . ; nf g. Let y0 be de®ned analogously.
For every i 2 1; . . . ; nf g, x0 and z�x; Fi�x�; t� are both in X 0 and result in
the same consumption on Fi�x�. Therefore, by A3 and the de®nition of
z�x; Fi�x�; t�, we have x0 �Fi�x�

t z�x; Fi�x�; t� �Fi�x�
t x. By event coherence (A0 or

the weaker condition of the remark following the statement of Theorem 3),
x �F

t x0, and similarly y �F
t y0. Therefore, x �F

t y , x0 �F
t y0. Applying A3

again, we have x0 �F
t y0 , x0 �F

1 y0, while, by A5 and the de®nition of
UF

t

� 	
, x0 �F

1 y0 , UF
t �x� � U F

t �y�. This proves that �F
t is a utility repre-

sentation of �F
t . We complete the speci®cation of UF

t

� 	
, by letting UX

0 be any
utility representation of �X

0 .
Next we show that equation �3� holds for all t 2 1; . . . ; Tf g. The forward

implication is an immediate consequence of the facts that UF
t

� 	
is a utility

representation of �F
t

� 	
, and, by construction, UF

t �z� � U G
t �z� for any

deterministic act z 2 X F
t \ X G

t . Conversely, suppose that �x; F � �t �y;G�
and U G

t �y� > UF
t �x� for some F 2Ft�x� and G 2Ft�y�. By A6, there

exists some deterministic z 2 X 0 such that z �G
t y, and therefore

U F
t �z� � UG

t �z� � U G
t �y� > UF

t �x�. Therefore, while y �G
t z, we have z �F

t x,
contradicting the assumption �x; F � �t �y;G�. This proves (3).

The proof of Theorem 3 can now be completed exactly as in step 4 of the
proof of Theorem 1. (
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