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This paper presents results on the existence and characterization of Pareto eflicient and of 
equilibrium allocations in a continuous-time setting under uncertainty in which agents have 
stochastic differential utility, a version of recursive utility. In order to charact& equilibrium 
and efficient allocations in terms of pointwise first-order conditions, uniform properness 
conditions on preferences are avoided. 
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1. Introduction 

This paper presents results on the existence and characterization of Pareto 
efficient and of equilibrium allocations in a continuous time setting under 
uncertainty in which agents have stochastic differential utility, a version of 
recursive utility. 

Section 2 is devoted to efficient allocations, including existence, characteri- 
zation in terms of first-order conditions in the smooth case, and the 
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associated allocation mechanism. As a by-product, we can give regularity 
conditions under which the state-price deflator associated with an effkient 
allocation is a semimartingale, a property that is useful in the characteriza- 
tion of security prices. Section 3 demonstrates conditions for existence of an 
equilibrium in which the first-order conditions for effkiency shown in section 
2 apply. This approach requires us to avoid the uniform properness 
conditions on preferences introduced by Mas-Cole11 (1986). 

Section 4 studies the issue of whether a local gross-substitutes condition 
global&es, as it does in the additive case considered by Dana (1991). That 
would provide conditions for uniqueness of equilibrium and an easy 
existence proof. 

While we deal exclusively with a pure exchange economy, the characteriza- 
tion of effkient allocations for production economies is of course the same, 
given the production choice, replacing the total private endowment with the 
total consumption. When specialized to exchange economies, Epstein’s (1987) 
characterization of efficient allocations in the deterministic case is recovered 
here. 

The remainder of this section sets up the primitives of the model. 

1 .I. Consumption space 

Let (sZ,g, P) be a probability space and [F = {g$:t E [0, 7’1) be a filtration of 
sub-a-algebras of 9 satisfying the usual conditions. [See Protter (1990) for 
details.] For some given PE Cl, co), let D denote the space of consisting of all 
processes of the form c:f2 x [0, T] + R’, with c measurable with respect to the 
a-algebra on 52 x [0, T] generated by left-continuous F-adapted processes, 
and with 

As usual, we identify two elements a and b of D if a= b almost everywhere. 
The usual positive cone of D is denoted D +. For simplicity, we assume that 
Y,, contains only events of probability zero or one. 

1.2. The agents 

There are m agents. Agent i is characterized by a utility function Ui, 
defined on D, by U,(c)= V& where Vi solves the recursive utility equation 
[see Duffie and Epstein (1992)]: 

) t E CO, Tl, (1) 
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where fi: WI+ x R! + R is a continuous function satisfying a growth condition 
in the first (consumption) argument and a uniform Lipschitz condition in the 
second (utility) argument. These technical assumptions, which can be weak- 
ened, ensure the existence of a unique p-integrable semimartingale’ I/’ 
solving (1) for each c in D,. [See D u ie and Epstein (1992a) for p> 1 and ff 
Antonelli (1991) for p= 1. In a Markovian setting, without the Lipschitz 
condition, see Dullie and Lions (1992).] We will always assume that f’( *, u) 
is strictly increasing for all i and u, which implies that Ui is strictly increasing 
[Duffie and Epstein (1992a)]. 

2. Effkient allocations 

The total endowment, an element e of D,, is to be shared among the 
agents. The feasible allocation set is li = {(cl,. . . , cm) ED”+: e -cicil O}. For u 
in Rq, let U,: D”+ + R be defined by 

U,(C)= f CriUi(C’). 

i=l 
(2) 

An allocation in D”+ is a-eficient if it maximizes U, over A. As is well 
known, if Ui is concave for all i, then this definition of efficiency coincides 
with the usual definition of Pareto optimality: a feasible allocation c is 
Pareto optimal if there is no other feasible allocation 2 such that Ui(e’)h 
Ui(c’), with strict inequality for at least some i. 

Proposition 1. Suppose f i is concave for all i. Then c is Pareto optimal if and 
only if there is some non-zero a such that c is u-eficient. 

Proof. Duftie and Epstein (1992a) show that Ui is a concave if f i is 
concave. The proof is then the usual application of separating hyperplanes in 
R”. I-J 

2.1. Existence of efficient allocations 

Theorem 1. If f i is concave for all i and p> 1, then there exists an efficient 
allocation. 

Proof. The criterion U,:A + R is weak-upper-semicontinuous, with respect 
to the usual norm on D”, since U’ is norm-continuous and concave for all i. 
[For these properties, see Dutfie and Epstein (1992).] Under the same 
topology, the allocation set /1 is weak-compact, by Alaoglu’s Theorem, since 
the lattice operations on D are continuous and ,4 is convex and norm- 

‘A process X is p-integrable if sup,IX,I is finite in P-norm. 
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bounded. An upper semi-continuous function on a compact set achieves its 
supremum. 0 

2.2. Gradient calculation 

We will give a characterization of efficiency under differentiability. The 
gradient of Ui, when it exists at some c in D+, is the linear functional GUI 
defined by 

vu,(C)h = lim ui(c + Ah)- ‘i(‘) 
I 

kF(c)={kD:c+kD+}. 
110 1 ' 

For convenience, from this point forward, unless otherwise mentioned, we 
take f’ to be C’ on the interior of its domain and take p =2. We let fi 
denote the partial derivative of fi with respect to its first (consumption) 
argument, and fk denote the partial with respect to its second (utility) 
argument. 

We let D,, denote the quasi-interior of D+; that is, c is in D, + if 
c(w, t) E R’+ + E int( Rr+)(o, t)-almost everywhere. 

Proposition 2. Fix CE D+ +. If f i satisfies a ungorm growth condition in its 
first (consumption) argument, or if f i is concave and c is bounded away from 
zero, then VUi(c) exists and 

VU’(c)h=E(i n’(c),h,dt), hEF(c), 

where 

do =exp j f L(c,, Vf) ds f f(c,, Vi). 
0 > 

Proof. For the case of a uniform growth condition, see Duffie and Skiadas 
(1991, Theorem 3). For the case of f i concave and c bounded away from 0, 
if h E F(c), then c + 6h 2 E > 0 for all 6 sufficiently small, and the arguments of 
the proof of Theorem 2 of Duflie and Skiadas (1994) go through using 
concavity to bound f t(c,+ [t, Vk) uniformly, for cd between c and c +6h for 
small 6. 0 

2.3. First-order characterization of efficiency 

In principle, the first-order conditions for Pareto optimality are that 



D. Duffie et al., Eficient and equilibrium allocations 137 

marginal rates of substitution of the different agents coincide. We will see 
what that means in this setting. For the remainder of this section, we fix a 
feasible allocation CED”, + such that, for all i, VUi(ci) exists and has the 
Riesz representation rr’(c’) of (3). We let 

H(c)= heD”: 1 h’=O,h’EF(c’),lsi$m 
I 

denote the set of feasible transfers. 

Proposition 3. If c is u-eficient then 

C ai~Ui(c’)h’60, hEH(c). 
I 

(4) 

Zf Ui is concave for all i, then the converse is true. 

Proof. These are merely the first-order conditions for optimality. 

Corollary. Zf for all i, Ui is concave and 

aixi(Ci) = cri~j(e’) a.e., i, j E { 1,. . . , m}, (5) 

then c is a-eficient. Suppose that ci is bounded away from zero for all i. Zf c is 
a-eflcient, than (5) holds. 

Proof. For the first assertion, (5) implies (4). For the second, with c 
bounded away from zero, F(c’) contains the sub-space of bounded processes. 
It follows that if rr =c&(ci) -ajrci(ci) is non-zero, there is some non-zero 
element h of F(c) such that E(st hrz, dt) > 0. Thus (4) applies if and only if (5) 
does. 0 

We give a set of sufficient conditions for an efficient allocation to be 
bounded away from zero that can be used as a basis for applying the last 
Corollary, and will also be useful later in demonstrating the existence of 
equilibrium. The conditions include the following ‘Inada’ style conditions on 
utilities. A special case satisfying the restriction is given by f (x, v) = x’- pv, 
for some c1 E (0,l) and p > 0. 

Znada Conditions. For all i: 

(i) For all x E I?+ +, sup, 1 f f(x, v)( < co. 
(ii) For any sequence x, in [w’ 

inf, 1 f i(x,, v)l + co. 
+ + converging to the boundary of I@+, 
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(iii) f ’ is concave. 

Lemma I. Suppose the Inada Conditions apply, e is bounded away from zero, 
and c is an a-eficient allocation. Then c is bounded away from zero. 

The result is implied by Lemma 4, to follow in section 3. (There might seem 
to be a missing assumption that a is strictly positive, but there is a standing 
assumption that c E D”+ +, which can only be true for a-efficient c if a>>O.) 

2.4. Local versus global eficiency 

Given the consumption process ci, its utility process Vi, and an initial 
weight ai, we define the discounted weight process 1’ by: 

Af = exp if I(& Vt) ds ai. 
0 > 

The first-order condition (5) for efficiency can be rewritten as 

1: fi(cf, Vf) = Aj ff(d, Vi) (w, t) - a.e. (7) 

We therefore have regularity conditions under which an a-efficient allo- 
cation solves, for almost every (w, t), the problem 

max 5 I’(W, t) f i(Xi, V’(0, t)), 

xeA(o,r) i= 1 
(8) 

where ,4(~,t)={x~(R~)m:x1+ 1.. +x,se(o, t)}, and where A and I/ are 
given by (6) and (7). 

Proposition 3. Suppose f i is concave for all i. Zf c solves (8) almost 
everywhere, then c is a-efficient. Conversely, suppose e is bounded away from 
zero, the Znada conditions apply, and c is a-efficient. Then c solves (8) almost 
everywhere. 

Proof. It can easily be seen that (7) is the first-order necessary (and with 
concavity, sufficient) condition for (8). Then Lemma 1 and the Corollary of 
Proposition 2 imply the result. 0 

2.5. The dynamic system for efficient allocations 

We can characterize optimal allocations as the solution to a particular 
dynamic equation, extending the work of Lucas and Stokey (1984), Epstein 
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(1987), Dana and LeVan (1989), and Kan (1990), as follows. The idea is to 
replace an apparently more difficult infinite-dimensional optimization 
problem with the finite-dimensional optimization problem (8), along with a 
dynamic equation for the state (,I, V) of the optimization problem. 

First, we say that f ’ is regular if it is C3 on the interior of its domain and 
if, for all u in R, the Hessian matrix associated with f(. , v) is everywhere 
negative definite. (Concavity alone of f assures negative semi-definiteness.) 
By the implicit function theorem, regularity of f i for all i implies that there 
is a Cz function K:R”, + x R: + x Rm +(I?#+ +)” such that the solution to (8) is 
given by K(l(o,t), e(o, t), (V’(o, t), . . . , Vm(qt))). [We use here uniqueness of 
the solution to (8) implied by strict concavity of fi( a, u), to ensure that K is 
globally, and not merely locally C’.] [See Mas-Cole11 (1985) for the details, 
which are standard in the study of smooth economies.] 

Now we can characterize the a-efficient allocation c by c, =K(;1,, e,, V,), 
where (2, V) solves the stochastic recursive integral equation in R” x IF!‘“: 

2: = ai exp i f b(Ki(As, es, V,), Vf) ds 
0 

(9) 

Existence of solutions to such integral equations can be deduced as follows, 
directly from the existence of a-efficient allocations. 

Proposition 4. 
zero, and, for 

(9). 

Suppose the Inada Conditions apply, e is bounded away from 
all i, f i is regular. Then there exists a unique solution (A, V) to 

Proof. This immediate from Theorem 1 and Proposition 3, and the 
uniqueness of a-efficient allocations implied by strict concavity. 

As an alternative and more direct approach to existence of solutions (9), 
we could take the fixed point approach of Antonelli (1992), along the 
following lines. Consider the space Y2 of R” x R”-valued semimartingales 
that are finite in the norm 

llXll.w =(f syp Il&l12])“2. 

Then consider the map X:Y2 + Y2 defined by %(,I, V), = (&, PJ, where 
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x=aiexp ifk(Ki(&ye,, V,), I’f)ds 
0 > 

> iE{l,...,m}. (10) 

Pf = E ; f ‘(Ki(&, e,, I’,), I’:) ds Ft * I 1 
A fixed point of % is a solution of (9). This is an extension of the usual 
Picard iteration approach to the existence of stochastic differential equations. 
See, for example, Antonelli (1991). Curiously enough, Antonelli shows 
counterexamples to existence for analogous equations with simple linear 
coefficient functions, leaving this direct fixed point approach an open issue. 

By considering the definition U,(e) =CiUiI’b in terms of the dynamic 
equation (9), one can think of U, as a generalized recursive utility function. 

2.6. Semimartingale state prices 

There are many cases, as examined in Duflie and Skiadas (1994), in which 
one can characterize security prices conveniently if the gradient represen- 
tation 7ri(ci) is a semimartingale. This issue can be resolved from the 
characterization (8) of efficient allocations, under the same regularity con- 
ditions on the aggregators f ‘, . . . ,f” used in the previous section. 

Proposition 5. Suppose the Znada Conditions apply, e is a semimartingale 
bounded away from zero, and for all i, f i is regular. Zf c is eficient then TC’(C’) 
is a semimartingale for all i. 

Proof. First, (A, e, V) is a semimartingale in I%“’ x IX’ x R”. Since K is C2, eq. 
(3) and Ito’s Lemma (which implies that a C2 function of a semimartingale is 
a semimartingale), we know that rr’(c’) is a semimartingale for all i. 0 

If, in addition to the hypotheses of Proposition 5, e is a special 
semimartingale with an absolutely continuous finite variation component, 
then ni(ci) has an absolutely continuous finite variation component. This is 
important in giving a classical interpretation of short-term interest rates [the 
drift of ai(ci) divided by I’], or in characterizing the behavior of security 
prices in general. See Karatzas et al. (1990) for an example of the ‘singular’ 
case, in which the finite variation part of n’(c’) is not absolutely continuous. 

3. Equilibrium 

This section demonstrates the existence of security-spot market equilibria 
in which each agent’s utility gradient exists and has a Riesz representation as 
characterized in section 2. We will deal only with the usual notion of Arrow- 
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Debreu complete markets equilibrium. As in Duflie (1986), there exists an 
implementation of such equilibria in a setting with security and spot markets 
only, given an appropriate space of admissible trading strategies, a spanning 
assumption on (nominal) cumulative dividend processes, and the same 
definition of an equilibrium. Only our utility and endowment assumptions 
differ from Duffie (1986). We do not require uniformly proper preferences a 
la Mas-Cole11 (1986) since the utility gradient representation used in section 2 
calls for pointwise interior consumption, which is only easily guaranteed in 
equilibrium with an Inada condition (‘infinite marginal utility at zero’) and 
an aggregrate endowment that is bounded away from zero. In this regard, we 
show that the ability to dispense with uniform properness, shown in the 
additive-utility case by Araujo and Monteiro (1989) and Duffie and Zame 
(1989), has little to do with additivity, and more to do with the ability to 
demonstrate uniform properness when one is restricted to the set of 
allocations that are individually rational and pareto optimal. 

Given an initial allocation (e’, . . . , em) ED”+ with e = Ci ei, an equilibrium is 
a feasible allocation (c’, . . . ,cm) and a non-zero linear price functional 
@:D + I%! such that, for all i, ci solves the problem 

max U,(c) subject to Q(c) S @(e’). 
CEDI 

(11) 

For simplicity, we will examine the case of 1= 1 commodity. The case of 
general I is easily handled by extending the following definitions and 
arguments. 

An aggregator f is defined to be good if it satisfies the uniform Lipschitz 
and growth assumptions and: 

(i) For all y, f( . , y) is strictly increasing. 
(ii) f is continuously differentiable on the interior of its domain. 
(iii) For all x>O, F,(x)~supoERfC(x,u)<~. 
(iv) As x _1J 0, we have a,+) =inf_,f,(x, v) + + co. 
(v) f is concave and continuous. 

Condition (iv) is an Inada condition. 

Theorem 2. Suppose the total endowment e=zy= I ei is bounded away from 
zero and, for each i, Ui is generated by a good aggregator f i. Then there 
exists an Arrow-Debreu equilibrium (@,(c’, . . . ,I?“)) with the properties: 

(i) (cl,..., cm) is Pareto optimal. 
(ii) For all i,c’ is bounded away from zero. 
(iii) @ has a bounded Riesz Representation rt E L. 
(iv) For each i, Ui has a gradient at ci with a bounded Riesz Representation 

n’(c’) given by (3). 
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(v) For each i, there is a constant ki >O such that K= kid’. 

Moreover, if e is a semimartingale, then x is a semimartingale. 

The theorem is an extension of Theorem A4 of Duffe and Zame (1989). 
We will construct a proof based on the following series of Lemmas, closely 
following the approach of Appendix A of Duflie and Zame (1989). 

Lemma 2. Suppose that U is a stochastic difirential utility function gener- 
ated by a good aggregator f. There is a constant k>O with the following 
property. Let A be any measurable (predictable) subset of 8 x [0, T] and let 
a>0 be any real number. If yeL+, yla on A, ZEL+, z=O off A, and zsaJ2, 
then 

U(Y) - WY - 4 5 ks, (;)E( i P,df)- 
The proof is an application of the Mean Value Theorem and Gronwall’s 
Inequality. Specifically, let V be the utility process of y and P the utility 
process for y-z. By the Mean Value Theorem, there are processes 5 and [ 
such that, for all t E [0, T], 

v, - t =.E i Cf,(y, + g,, v, + 5s)zs + f,(y, + t,, v, + 5,)( K - f?Jl ds % 
f I > 

where a is a uniform Lipschitz constant on f (c, a). The inequality exploits the 
fact that Vz p, which follows [Dufie and Epstein (1992)] from the 
monotonicity of f with respect to consumption and the fact that ~20. The 
Stochastic Gronwall-Bellman Inequality [Appendix of Duftie and Epstein 
(1992)] implies that 

U(y)--(y-z)= V,- Vo~eaTFf (;)E( [ z&)3 
proving the result. 

Lemma 3. Suppose that U is a stochastic dtyerential utility function gener- 
ated by a good aggregator f. There is a constant k>O with the following 
property. If H is a predictable subset of Sz x [0, T], h is a positive constant, 
and y E L + is such that y 5 h on H, then for any rZ E [0, h], 

U(y + Al,) - U(y) 2 k&(2h)lE . 
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The proof is analogous to that of Lemma 2, using the constant k =emaT. As 
pointed out by Mas-Cole11 and Zame (1990), the following is essentially the 
only prerequisite for existence of Arrow-Debreu equilibrium beyond the 
usual technical conditions required in a finite-dimensional setting. 

Lemma 4. Suppose (c’ ,...,cm) is a Pareto optimal allocation with Ui(C’)z 

U,(8) for all i. Under the assumptions of Theorem 2, for each i, ci is bounded 
away from zero and Ui satisfies the following forward cone condition at ci: 
There is some VEL+,EE(O, CO), and p~(0,00) such that Ui(c’+~v-z)> Ui(c’) 
whenever ci + lo - z E L + , 0 < ;1< p, and E(jg Iz,I dt) < LE. 

Given Lemmas 2 and 3, the proof of Lemma 4 is obvious from the proof 
of Theorem A.4 of Duffte and Zame (1989), since the last two displayed 
equations substitute for eqs. (13) and (14) of Duftie and Zame (1989). 

We can now complete the proof of the main existence theorem. Existence 
of the Arrow-Debreu equilibrium ((c’),@) follows from Theorem A.1 of 
DutIie and Zame (1989), based on the same form of arguments used in 
Theorem A.4 of Dufie and Zame (1989). [Further details may be found in 
the survey by Mas-Cole11 and Zame (1990).] Pareto optimality of (cl,. . . , cm) 
is the First Welfare Theorem for infinite-dimensional economies. [See, for 
example, Mas-Cole11 and Zame (1990).] The fact that @ has a bounded Riesz 
Representation follows from its L’-continuity, as shown in DutIie and Zame 
(1989). Lemma 4 implies that, for all i, ci is bounded away from zero. The 
existence of the given gradient representation rc’ follows from Lemma 8. The 
fact that the Riesz Representation rr of @ is, for each i, a positive scalar 
multiple of rri is due to the Kuhn-Tucker Theorem applied to the problem 
(11) of each agent i, and the fact that the set of feasible directions from ci 
contains all bounded predictable processes (since ci is bounded away from 
zero). This implies that GUI and @ coincide (up to a positive scaling) on 
the set of bounded predictable processes, which proves the last assertion of 
Theorem 2. 

4. Local versus global gross-substitutes 

We now explore the issue of whether a pointwise gross substitutes 
condition implies a global gross substitutes condition, and thereby a proof of 
uniqueness of efficient allocations, as well as a simple proof of existence. As 
shown by Dana (1991), this works with additive utility, but we shall see that 
this is not generally the case with recursive utility. 

Under the regularity conditions given above for the existence of equili- 
brium, the so-called ‘excess utility map’ E: rW7 + + [w” is defined by 

&i(a) =i VUi(Ci(a))(Ci(tl) -e’), 
I 
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where Ci(a) denotes the a-efficient allocation of consumption to agent i. A 
zero a* of E corresponds to an equilibrium allocation c(a*), for ci(a*) is then 
optimal and budget feasible for agent i by the first-order condition, and 
markets clear. 

We say that E is gross-substitutes if, for any i and k #i, ci is increasing in ai 
and decreasing in ak. As shown by Dana (1991), this gross-substitutes 
property implies uniqueness of equilibrium (and gives a simple proof of 
existence). 

Using the notation in (9), 

%(a) =$ E s’ %fX&(& et, VA, Vf) [&(A,, e,, V,) - ef] dt, 
I 0 1 (12) 

where A,=a. We write the integrand as Fi(cf,I,, V,). 
In the additive case, f’(c, V) = u(c) -fiu, we have Iz, =a for all t. Thus, as 

shown by Dana (1991), the Mitjushin-Polterovich conditions on u, which 
imply a gross substitutes property (in A,) of the ‘local’ excess utility map F, 
globalizes to the excess utility map E. We will illustrate how this issue is 
complicated by relaxing additivity, even given the rather explicit dynamic 
system (9) for utility weights, and even in the deterministic case. 

In the general case, the pointwise excess utility map F depends nontrivially 
on the weights 1, and the utilities V, at time t. In order to study the effect of 
a change of a on F(e,, A,, V,), one therefore needs to compute the sensitivity of 
(A,, V,) to a change in initial weights. In the deterministic case, this can be 
done through the classical technique of the resolvent matrix.* Since the 
boundary conditions for (9) are a mixture of the initial condition A,=a and 
the terminal condition Vr=O, it makes sense to study the problem in terms 
of the terminal utility weights AT rather that the initial weights. We can 
replace (9) in the deterministic case with 

4 =~ff,(Ki(& ef, V,), V,), & = a, 

(13) 
Vf = - fi(K& e,, V,), V,), V, = 0. 

Again, a zero of the modified excess utility map E defined by (12), replacing 
the dynamic system (9) with (13) corresponds to an equilibrium. 

Using the chain rule and the form of the resolvent for (13), the sensitivity 
of F(e,,I,, V,) to changes in Lr can be computed. Rather than trace out all of 
the effects, we point out an immediate obstacle to showing the gross- 

2When the initial condition l&c) of a dynamical system zC,=f(x,), x0= C&(P) varies with some 
parameter p, the local change in position at time t, ax,/@ is given by exp(~Of’(x,)ds)a&,/a~. 
The matrix f’(x,) is called the resolvent and is intensively used in the study of stability 
properties. See, for example, Arnold (1991) for details. 
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substitutes property of E. As a first step in such a program, it would be 
natural to impose conditions on f’ under which an increase in some agent’s 
terminal weight decreases all other agents’ weights and utilities for all time. If 
this were true ‘locally’, in terms of the resolvent of the dynamic system 
(i,, VJ, one might try to globalize it. For example, it would help if the 
exponential of a ‘gross-substitutes matrix’ (one with positive diagonal and 
non-positive off-diagonal elements) were also gross-substitutes. Even that is 
not true for more than two-dimensional systems. For example, to the nearest 
0.1, 

As to what conditions on a resolvent imply the global gross-substitutes 
condition, the literature on differential equations seems to offer little 
guidance. 

In short, going beyond the additive case, gross-substitutes conditions for 
even relatively explicit recursive utility functions do not seem at all obvious 
(to us). 
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