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Abstract

Scarce goods (donor organs, public housing, etc.) are often allo-
cated through waiting lists, especially when monetary transfers are un-
desirable. Arriving objects are offered to priority-ordered agents who
may defer the object to the next agent in line in order to wait for a bet-
ter one. We consider the welfare implications of arbitrarily influencing
such deferral decisions (by force, by “nudging,” etc.). When agents
are patient, uninfluenced (equilibrium) behavior is Pareto-dominant;
this conclusion strengthens as agents’ risk-aversion increases. When
risk-neutral agents are impatient, however, influence results in a wel-
fare tradeoff between earlier and later agents in the queue. The results
have implications for the “organ spoilage” problem in waiting lists for
donor organs, where useful lower-quality organs spoil in the time that
it takes to process the deferrals by agents early in the queue. Re-
moving the right to defer such organs appears to solve the wastage
problem by increasing utilization. But for some parameters (e.g. ex-
tremely high risk-aversion) such solutions could paradoxically lower
the welfare of some agents it is intended to help. Fortunately the pa-
rameters that result in this phenomenon appear to be atypical in real
world settings.
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1 Introduction
Many goods are allocated through priority-based waiting lists. Their use is
especially prevalent when a society wishes to avoid the use of monetary trans-
actions1 such as in the assignment of transplant organs, public housing for
the needy, openings in congested drug abuse treatment programs, vacancies
in publicly run nurseries, etc. In such allocation problems we are concerned
not only with efficiency but also with the distribution of total welfare. This
motivates us to look more carefully at the distribution of welfare in such set-
tings. We study how welfare is affected when we change the degree to which
agents are permitted to make selfish choices in such settings.

We consider a planner who strictly adheres to the principal of first-come-
first-served. The agents are exogenously ordered (e.g. by time of arrival to
the queue, health condition, neediness, etc.), and the agent in first position
(at the head of the queue) has first rights over the next object to arrive.
This right is typically not an obligation, however, especially when objects are
heterogeneous. The agent in position 1 might choose to defer the object to
the agent in position 2—without losing his position in the queue—in order
to wait for a better object. The agent in position 2 might do the same, and
so on. The right to exercise such deferral options clearly benefits an agent
starting in position 1. Agents in later positions also benefit conditional on
reaching an earlier position, but they also must wait longer to be offered
higher quality objects. The ambiguous total welfare effects lead to the ques-
tion of whether deferral should be permitted. More generally, our objective
is to describe the welfare implications of influencing deferral decisions in any
arbitrary way, e.g. constraining deferrals by law, encouraging more defer-
rals, “nudging” otherwise rational behavior, etc. We show that under some
conditions influence is unambiguously harmful, while in others it is typically
beneficial to most of the agents in the queue.

To further illustrate the ideas, consider waiting lists for transplant organs,
where deferral options not only affect welfare but can cause inefficient waste.2
Patients on the waiting list are prioritized based on various characteristics.3
When a donor organ arrives it is offered to the agents sequentially, each of
whom may decline the current organ. Particularly in the case of cadaveric

1See Roth (2007).
2This application is analyzed specifically in Section 6.
3Queues for kidneys, livers, and other organs could be based on health, age, probability

of survival, time of arrival to the queue, etc.
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kidneys this results in waste: some kidneys that could have benefitted pa-
tients later in the waiting list end up spoiling due to the time spent processing
the many deferrals by patients earlier in the list.4 This leads to longer waiting
times overall, contributing to the growing length of such waiting lists.

There are various potential solutions to this “spoilage problem.” Imagine
a policymaker evaluating the following proposals.

• “Should we disallow deferrals altogether, requiring the first patient in
the list to take any acceptable organ?”

• “Should we nudge patients early in the list to accept organs more fre-
quently than they otherwise would?”

• “Should we require patients later in the list to accept organs above
some specific quality threshold?”

Each of these solutions increases the organ utilization rate by influencing
agents to defer less often. The reduction in average waiting time is welfare
enhancing, but each solution also impacts welfare by altering the probability
distribution of consumption bundles offered to the agents. For example, by
altering deferral decisions made by agents early in a waiting list, this impacts
agents who start later in the waiting list through both (i) the distribution of
waiting time and (ii) the correlation of waiting time and organ quality. As
we show in our main results these latter effects often, but not always, can
be negative. In extreme cases these negative effects can even overpower the
positive effect of reduced waiting times. In such cases, a policymaker who
attempts to improve efficiency by prohibiting deferral—thus increasing organ
utilization—would perversely lower overall welfare! Fortunately it appears
that such extreme cases are unlikely when using realistic parameters in our
model.

There are two points we should emphasize about our approach. First, we
do not consider how one might go about actually influencing the behavior
of agents in the waiting list. We ignore this issue since it plays no role in
our analysis; we describe how influence would affect welfare whether such
influence is feasible or not. Depending on the application, deferral decisions
could be influenced in a variety of ways. One direct way is through simple
coercion such as legal constraints or disqualification from the queue, which
impose prohibitive penalties for deferring an offered object. A more indirect

4See the NY Times article of Sack (2012).
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method would be to conceal information about the quality of the object
being offered, reducing the agents’ ability to discriminate between objects
and effectively reducing their ability to defer some objects but not others.
Finally, agents might obtain advice (e.g. medical) on whether to defer an
object, which provides another avenue for influence.5 Regardless, to obtain
the most general results we ignore any constraints that might bind how much
an agent could be influenced.

The second point is to emphasize our objective of analyzing welfare dis-
tribution effects rather than welfare creation effects. As mentioned above,
permitting one agent to defer objects has a welfare distribution effect in that
it alters the distribution over consumption bundles for agents later in the
queue. In some applications, however deferral options can create welfare
in the following way. Suppose “A-type” and “B-type” agents respectively
prefer a-type and b-type objects. Social efficiency is improved by correlat-
ing the types of agents and their assigned objects. An A-agent should be
influenced to defer a b-type object to solve what would otherwise be a co-
ordination inefficiency. Solutions to this kind of problem are presented by
Leshno (2014) who, roughly speaking, rewards deferring agents by probabilis-
tically advancing them in the queue. Our objective is to analyze the above
welfare-distribution effect in isolation from the the issue of coordination in-
efficiency since these are two confounding issues. To separate these effects,
we eliminate coordination inefficiencies from our model by removing the hor-
izontal differentiation of objects (e.g. a/b types as in Leshno (2014)) and
assume instead that agents have identical tastes over vertically differentiated
objects (quality types).

1.1 Overview of Results
We begin with a benchmark case in which risk-neutral, homogeneous agents
do not discount payoffs, absent any feasibility constraints (such as the organ
spoilage problem mentioned earlier). This scenario yields a fairly striking
“expected payoff equivalence” result stating that influencing the deferral de-
cisions of agents in early queue positions has no effect on the expected payoffs
to agents in later queue positions. This leads to the first main result stating
that uninfluenced (equilibrium) behavior leads to a Pareto-dominant out-

5In the application of organ waiting lists, the use of these methods may also be bound
by ethical constraints, which goes beyond the scope of this paper.
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come: influencing the decisions made by agents in any one position in the
queue cannot strictly improve the continuation payoff to any other position
in the queue. Therefore without an efficiency-based reason to influence be-
havior (e.g. to solve the spoilage problem described earlier), a planner should
allow agents to fully exercise deferral options in this scenario.

Despite our expected payoff equivalence result, a change in deferral deci-
sions changes the probability distribution of agents’ consumption, impacting
risk-averse agents. We show that the variance of an agent’s total waiting costs
(time) is decreased by constraining deferral decisions by agents in earlier po-
sitions. This would benefit an entity that cares only about the waiting-cost
component of an agent’s payoff, e.g. an insurance company responsible for a
patient’s treatment costs before a transplant organ becomes available. How-
ever a change in the distribution of waiting time is typically accompanied
by a change in the correlation between waiting time and object quality. In-
tuitively, allowing deferrals tends to create a negative correlation between
waiting time and object quality, to the benefit of risk-averse agents. Despite
the fact that there are these two confounding effects, Corollary 4 strength-
ens the conclusion drawn under risk-neutrality: for agents with constant
absolute risk aversion, uninfluenced (equilibrium) behavior leads to a strictly
Pareto-dominant outcome.

On the other hand agents’ impatience erodes this kind of result. When
agents discount future payoffs, we obtain an “opposed interests” result im-
plying the following. If an object that is acceptable to an agent in a later
queue position is instead assigned to agents in some earlier position, then an
agent starting in the later position benefits from this if and only if it harms
an agent starting in the earlier position. Roughly speaking, if we ask whether
it is beneficial to influence the deferral decisions of agents early in the queue,
we would typically receive opposite answers from agents who start early/late
in the queue. A significant conclusion from this is that risk-aversion and
impatience are two important parts of agents’ preferences that determine, in
opposite ways, the welfare consequences of influencing deferral decisions.

Finally we apply the above results to the organ spoilage problem. Inter-
estingly the spoilage problem itself can be modeled as a form of influence:
agents in sufficiently late queue positions are forced (by nature) to defer all
objects (because they have spoiled by the time they are offered). This allows
us to incorporate this problem into our model and obtain general qualitative
statements. Should the spoilage problem be addressed by limiting agents’
rights to defer organs? As we argue in Section 6 such a solution becomes
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more compelling as agents become more impatient, but could become less
compelling as agents become more risk averse.

1.2 Related Literature
Our model is related to work that has been done both in operations and
economics. One special case of our model reduces to the parallel process
problem studied in a series of papers starting with Agrawala et al. (1984).
A set of jobs, each with an unknown length, must be completed by a set
of processors each with its own work rate. To minimize total job time (to-
tal waiting and processing time) it may be suboptimal to use the slowest of
the processors. Agrawala et al. derive a simple, threshold-based policy for
assigning jobs to available processors that minimizes total job time. They
also show that this policy would result from equilibrium behavior if the jobs
were individual agents.6 Our results apply to their model by interpreting
processors as objects and their speeds as quality. In particular, their policy
is a special case of Equation 2. Their optimality result, which can be reinter-
preted as a utilitarian welfare result, is a corollary of our Pareto-dominance
result, Theorem 3.7

Su and Zenios (2004) consider a model very similar to ours: patients
are offered arriving kidneys on a first-come-first-served basis and are free
(uninfluenced) to defer kidneys of low quality. Among other results, they
also show that equilibrium behavior maximizes total (utilitarian) welfare for
the agents already in the queue.8

If we also consider the welfare of agents yet to arrive to a waiting list,
however, it is known that equilibrium behavior does not maximize total (util-
itarian) welfare. Naor (1969) observed that when agents are deciding whether
to join a waiting list, decentralized behavior is socially suboptimal since the
agent joining the queue fails to internalize the waiting cost he imposes on any
future agents that might arrive. Using the same logic in our model, when
the last agent in line defers a low-quality object—and thus fails to depart

6Kumar and Walrand (1985) extend this result to a more general setting.
7Coffman et al. (1987) consider the same setup with the object of minimizing the

makespan (time elapsed until all jobs are complete), which can be reinterpreted as a
Rawlsian welfare criterion.

8While we obtain the stronger conclusion of Pareto-optimality, Su and Zenios obtain
their utilitarian result under more general conditions; hence there is no logical relation
between our results.
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the queue—he does disregards the effect it has on future agents who will
arrive behind him in the queue. Expected total welfare could be improved
by reducing the deferral agent of the last agent in line.

In fact, Hassin (1985) concisely explains that this problem can be solved
by switching the priority structure to last-come-first-served (LCFS), which
prioritizes agents in the reverse order of their arrival. This forces agents to
internalize the probabilistic arrival of future agents when making deferral
decisions, inducing socially optimal decisions overall. Su and Zenios (2004)
exploit this idea, estimating the hypothetical welfare gains from using LCFS
for kidney allocation. At the same time they point out (as does Hassin) that
LCFS methods are manipulable in various ways, increase risk to the agents,
are inequitable, and are unlikely to be politically acceptable.

Within the economics literature there has been a recent surge of interest
on dynamic matching and assignment. We have already mentioned the work
of Leshno (2014) that is complementary to ours. With the discrete-time
arrival of objects to agents with heterogeneous preferences, Leshno reduces
the coordination inefficiency we mentioned earlier by optimizing a “buffer
policy” which essentially probabilistically alters the waiting list position of
agents who defer an object.

Bloch and Cantala (2014) also consider the discrete-time arrival of het-
erogeneous objects, but without the persistent preferences of Leshno. They
analyze equilibria under a mechanism that assigns objects to a waiting list
probabilistically, maintaining priority in the weaker sense that earlier agents
in the list have a greater chance of receiving offers. By reducing the probabil-
ity of making offers to earlier positions, the planner reduces the incentive for
agents in later positions to defer objects in order to reach earlier positions.

With the motivation of a public housing application, Thakral (2015) ex-
amines a type of school choice model in which apartment types arrive in
discrete time periods, each having its own priority order over the waiting
agents. Thakral proposes a multiple wait list procedure, in which an arriving
apartment “proposes” to its highest priority agent, which in turn gives that
agent the option either to take the apartment or to join a specific waiting
list for some other single apartment type. This idea, incorporated with the
“you want my house I get your turn” concept in Abdulkadiroglu and Sönmez
(1999), yields a strategyproof mechanism with a desirable efficiency property
that also respects the apartments’ priority orders.

In the kidney exchange model of Ünver (2010), agents and objects arrive
in pairs, where the agents have implicit property rights over their initial
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endowments. With the motivation of organ compatibility, certain trades are
feasible (or more desirable than others). The analysis covers both pairwise
and multi-way exchanges.

If we generalize the concept of arriving objects to arriving agents, we
obtain the related, burgeoning literature on dynamic 2-sided matching.9
Doval (2014) considers stability in 2-sided matching when agents who ar-
rive in different periods may postpone their arrivals. Akbarpour et al. (2014)
analyze the limit behavior of a market in which agents randomly arrive (and
depart) a market to be pairwise matched, comparing mechanisms that do
and do not assign agents immediately upon arrival.

2 Model
We consider an ordered set of identical agents, each waiting to consume a
single object. Due to the nature of our analysis and results, it turns out to
be without loss of generality to suppose that the set of agents is the set of
natural numbers N = {1, 2, . . .}.10 Objects arrive randomly over time and
waiting is costly.

There is a set of object types O = {1, 2, . . . , n}.11 Objects of each type
arrive according to a Poisson process independent of arrivals of other types.
Formally, for each i ∈ O, the time between arrivals of i-type objects is
exponentially distributed with parameter µi > 0 (mean 1/µi), and arrival
times for i are independent of arrival times for types in O \ {i}.12 It is
convenient to denote the arrival rate for a set of types as follows.

∀O ⊆ O, µO ≡
∑
i∈O

µi

An agent who consumes an object of type i ∈ O receives a payoff of
vi ∈ R. To simplify the statement of some results, we assume that values are
distinct (i 6= j implies vi 6= vj), though this does not affect our conclusions.

9See also Damiano and Lam (2005), Kadam and Kotowski (2014), Kennes et al. (2014),
Kurino (2009), Pereyra (2013), and Marx and Schummer (2016).

10Results that apply to agent k ∈ N are independent of whether agents ` > k are present.
11The results easily extend to cases where O is infinite.
12An equivalent specification of the model is that objects in general arrive with expo-

nentially distributed arrival times with parameter
∑
i ∈ Oµi, and an independent random

process determines each object’s type with probabilities µi/
∑

j∈O µj .
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Furthermore we order the types’ labels from best to worst, so v1 > v2 >
· · · > vn.

Agents incur a constant flow of costs while waiting for an object to con-
sume, which we normalize to a cost of one unit per unit of time. That is,
a (non-discounting) agent who is assigned an i-type object after waiting t
units of time has a payoff of vi − t. We initially assume that agents are
risk-neutral, while in Section 4 we assume agents are risk-averse over such
payoffs. In Section 5 we modify these payoffs to account for discounting.

2.1 Waiting List Policies
We now specify how objects may be allocated to agents by defining the class
of Waiting List Policies. To motivate this definition, recall our objective to
consider encouraging, restraining, or otherwise modifying the deferral deci-
sions agents make when they are offered objects sequentially according to
their priority order in a waiting list. When an agent is assigned an object,
the agent leaves the queue, and all remaining agents move up one position
(maintaining their relative original ordering).

When deferral decisions are unrestricted, equilibrium behavior of an agent
in position 1 would be to accept any object from some “best” set of types,
sayW ∗(1), and to defer any others. Given this fact, the equilibrium behavior
of an agent in position 2 would be to accept some (possibly empty) set of
second-best object types, say W ∗(2) \W ∗(1) and to defer the rest. Similar
sets would describe the remaining positions.13

Now suppose that we can influence the deferral decisions of any agent
who reaches position 1. If we consider any arbitrary modification of agents’
behavior (which we do for the sake of generality), then an agent in position 1
could be influenced to accept some arbitrary set of object types W (1) and to
defer any others. For example if W (1) ⊇ W ∗(1) then this would represent a
restriction on deferral decisions in position 1; W (1) ⊆ W ∗(1) would represent
encouragement of deferrals; in general there could be no inclusion relation.

Similarly we can imagine influencing the acceptance/deferral choices of
any agent in position 2 so that such an agent accepts object types in
W (2) \W (1) and defers the rest. In general we imagine modifying the be-
havior of any agent who reaches position k so that they accept only object

13Recall the homogeneity of agents, so these sets need not depend on the identities of
the agents.
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types belonging to W (k) \W (k − 1). In this sense a Waiting List Policy W
describes a consistent way of influencing agents’ behavior anonymously: only
as a function of their position in the queue, and not of their identity. This
captures the kinds of policy proposals suggested in Section 1, e.g. disallowing
deferrals by agents in some position k, where values of k could be chosen by
a policymaker.

Definition 1. A waiting list policy is a correspondence W : N→ 2O that
is monotonic and nonempty: k < ` implies W (k) ⊆ W (`), and W (1) 6= ∅.

The definition is interpreted as follows. An agent in position 1 of the
waiting list is allocated the next object to arrive whose type belongs toW (1).
When this happens, this agent leaves and every other agent moves up one
position in the waiting list. In general when an object arrives whose type
belongs to W (k) \W (k − 1), the object is assigned to the agent currently
in position k, and any agent in some later position ` > k move to position
`− 1.14 If no such k exists the object is discarded. Nonemptiness guarantees
that each agent eventually receives an object.15

Our definition ignores whether it would be feasible to influence agents in
a way that implements any particular policy W . We are treating the vague
concept of influence as a black box. This is intentional in the interest of
generality. Feasibility constraints (including ethical ones) can be imposed on
the set of waiting list policies without affecting our welfare comparisons.

Despite this generality, it is also worth pointing out limitations of our
approach. The definition implies that a planner must influence agents’ de-
cisions anonymously, i.e. solely as a function of their position in the queue,
but not of their identity. In one sense this good: it rules out cases in which
a planner treats one agent better than he would treat another, given their
identical place in the queue. On the other hand this rules out mechanisms
that create incentives by dynamically changing the agents’ relative priori-
ties based on past deferral decisions (e.g. as in Leshno (2014)). Second, our
definition disallows the planner from using information about the current
queue length when influencing behavior, e.g. constraining only the last agent

14In this sense,W is the cumulative function of a social choice function that maps object
types to queue positions. We use this cumulative form because it allows us to state our
results much more clearly.

15This is without loss of generality since, if W (1) = ∅, we can simply ignore the agent in
position 1 who will be stuck in the queue forever and apply our results to the remaining
(relabeled) positions.

10



in line. Such methods can overcome inefficiencies when agents arrive dynam-
ically over time (Naor (1969)), but could also treat two agents differently
based on the presence of lower-priority agents. This example illustrates the
degree to which we are specifically analyzing problems in which the plan-
ner is committed to priority-based allocation. Among other examples, organ
waiting lists appear to adhere to this principle.

Examples

The most natural example of a waiting list policy is the one that would
result when deferral options are completely uninfluenced. When rational,
homogenous agents can foresee the actions of others, their behavior would
result in consumption described by a waiting list policy W ∗ alluded to at the
beginning of Subsection 2.1. This policy turns out to play a central role for
us beginning with Theorem 3.16

At another extreme, consider the complete removal of deferral options so
that the agent in position 1 must accept whichever object arrives next. In this
case,W (1) = O, and henceW (k) = O for all k ∈ N. More generally consider
a planner who disallows all deferral options but also withholds (discards)
certain object types from the agents. It turns out that our technical analysis
makes use of the class of such policies.

Definition 2. The waiting list policy W is the no-deferrals policy with
acceptable set Ô when, for all k ∈ N, W (k) = Ô.

Many other ideas can be expressed as waiting list policies. For instance
a class of object types O′ ⊆ O can be reserved for agents whose position
exceeds some value k. by requiring W (`) ∩O′ = ∅ for any ` ≤ k. In general,
the set W (1) need not be “better” than every other W (k).

Finally in Section 6 we exploit the fact that the organ spoilage problem
itself can be modeled as a constraint on waiting list policies by requiring that
W (k) be constant for all sufficiently large k. This captures the idea that
agents cannot be offered objects if they are sufficiently late in the queue.

16The derivation of this equilibrium appears in Su and Zenios (2004) and has counter-
parts in earlier literature cited in Section 1.

11



3 Baseline Setting

3.1 Equivalence results
We begin with some fundamental results on the expectations of payoffs for
an agent starting from a given position in the waiting list. The results have
implications for the baseline case of non-discounting, risk-neutral agents.
In particular, there is a (typically unique) waiting list policy that Pareto-
dominates every other policy.

To begin, we calculate the expected (continuation) payoff to an agent
starting in any kth position of the waiting list under an arbitrary policy W ,
showing that it depends only on the set W (k). Policies W and W ′ are shown
to be payoff-equivalent for position k whenever W (k) = W ′(k), i.e. whenever
positions 1 through k collectively consume the same types of objects under
the two policies. This result also implies that we can determine the set of all
achievable expected payoffs for position k even restricting attention to the
simple class of no-deferrals.

To establish intuition, consider an agent starting in position k = 2 eval-
uating his potential payoffs under W vs. W ′ where

W (1) ( W (2) = O (position 1 defers objects accepted by position 2),
W ′(1) = W ′(2) = O (position 1 defers no objects).

With what probability will the agent ultimately consume an object type in
W (1)? To do so under policy W , he must first reach position 1 (which
happens with probability µW (1)/µO), after which he is guaranteed to do so.
To do so under policy W ′, he must first reach position 1 (which happens
with probability 1), after which he consumes an object from W (1) ( O
with probability µW (1)/µO. Thus we obtain the same probability under both
policies. The same argument generalizes to individual object types i ∈ O
and to any position k. Therefore any two policies for which W (k) = W ′(k)
induce equivalent distributions over objects to the agent in position k.

Theorem 1 (Object equivalence). For any policy W , the probability that
an agent in position k ultimately consumes an object of type i ∈ W (k) is
µi/µW (k).

The straightforward proof is in the Appendix, as are all other omitted
proofs.
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Continuing with our example above, consider now the amount of time
that the agent in position 2 will wait before accepting an object. Under W ′

the agent must wait for the arrival of two objects (of any type), which on
average takes 2/µO units of time. Under W he first must wait an average
1/µO units of time for the next object to arrive. If it belongs to W (2)\W (1)
then he is finished waiting, but otherwise (with probability µW (1)/µO) waits
an average 1/µW (1) additional units of time, for a total expectation of 2/µO
as under W ′. This argument also generalizes to any two waiting list policies
that coincide at some position k. Therefore the total expected payoff to an
agent in position k can be described by referring only to the set W (k). In
the Appendix we prove the latter result directly, yielding the following.

Theorem 2 (Expected-payoff equivalence). Under any policy W , the ex-
pected payoff to an agent starting in position k ∈ N, denoted Π(k;W ), is

Π(k;W ) =
∑
j∈W (k) µjvj − k

µW (k)
(1)

In particular Π(k;W ) is a function only of W (k).

With Theorem 1 this implies the expected waiting time equivalence of
the kind we described earlier for the special case of position k = 2. We let
tWk denote the random variable describing the amount of time it takes for an
agent starting in position k to receive an object under policy W .

Corollary 1 (Expected-waiting-time equivalence). For any policy W , an
agent starting in position k ∈ N has an expected waiting time (cost) of
E(tWk ) = k/µW (k).

A second consequence of Theorem 2 is that, in order to determine which
expected payoffs are achievable for any given position k, it is sufficient to
consider only the class of no-deferrals policies.

Corollary 2. Under any policy W , the expected payoff to an agent starting
in position k is the same as the expected payoff under the no-deferrals policy
W ′ defined by W ′(`) = W (k) for all ` ∈ N.

3.2 No influence and Pareto-dominance
Consider which policies maximize the expected payoff to some fixed position
k ∈ N. To construct such a policy W it is necessary and sufficient to specify
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a set W (k) that maximizes Equation 1. The remaining sets W (`), ` 6= k, can
be specified arbitrarily (subject to Definition 1). Not surprisingly such a set
W (k) is a “threshold set” of the form W ∗(k) = {1, 2, . . . , i∗(k)},17 where the
threshold i∗(k) is the highest index (i.e. lowest quality) whose value exceeds
the expected payoff Π(k;W ∗).18

Lemma 1 (k’s favorite policy). For any k ∈ N, Π(k; ·) is maximized by any
policy W that satisfies W (k) = W ∗(k) ≡ {1, 2, . . . , i∗(k)}, where

i∗(k) ≡ max
{
i ∈ O : vi ≥

∑i−1
j=1 µjvj − k∑i−1

j=1 µj

}
(2)

The thresholds are increasing: ` < `′ implies i∗` ≤ i∗`′ and W (`) ⊆ W (`′).

The monotonicity of thresholds is intuitive. Agents in later positions
are willing to accept lower-value objects in order to avoid greater expected
wait times. The monotonicity also means that it is feasible to simultane-
ously provide each position k with its favorite set W ∗(k). We say that a
policy W (position-wise) Pareto dominates a policy W ′ if, for all k ∈ N,
Π(k;W ) ≥ Π(k;W ′).

Theorem 3 (Pareto-dominance). Let W ∗ be the policy where each W ∗(k) is
defined as in Lemma 1. Policy W ∗ Pareto dominates every other policy.

Proof. Since k < ` implies W (k) ⊆ W (`), W ∗ is a feasible policy. Pareto
dominance is immediate from Lemma 1.

In a related model, Su and Zenios (2004) show that a policy analogous
to W ∗ is optimal for a utilitarian planner: it maximizes the sum of agents’
expected payoffs.19 Agrawala et al. (1984) also provide a utilitarian result
for the parallel processor problem which is a special case of our model. The-
orem 3 strengthens these observations: since W ∗ is Pareto-dominant, it is
the optimal policy under any reasonable welfare objective.

Finally we observe that W ∗ represents how objects would be allocated if
agents could selfishly—and without influence—decide what objects to defer

17Recall objects are ordered in decreasing order of value vi.
18Such threshold results are well-known, e.g. see Agrawala et al. (1984) or Su and

Zenios (2004).
19They also point out that this result no longer holds when patients are arriving over

time; see Subsection 1.2 and Naor (1969).
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based on their own position in the queue. This follows from Equation 2.
First, once any agent reaches position 1 in the queue, it is clearly optimal
to accept an object if and only if it belongs to W ∗(1) since the behavior of
other agents becomes irrelevant at this point. Given this, while occupying
position 2 in the queue it is optimal for an agent to accept an object if and
only if it belongs to W ∗(2). The agent cannot improve by accepting any
other object, while deferring such an object cannot change the behavior of
the agent in position 1.20

Continuing such arguments leads to a conclusion analogous to one the
related model of Su and Zenios (2004): W ∗ would describe subgame-perfect
equilibrium consumption in a dynamic “waiting list game” where agents make
uninfluenced deferral decisions. Because of the closeness of this observation
to the result of Su and Zenios, we omit further formalization.21 Nevertheless
we shall refer to W ∗ as the no-influence equilibrium policy.

3.3 Waiting time distributions
Fixing a policy W , Corollary 1 describes the expected waiting time from any
position k as a function only of the set W (k). This does not tell us anything
else about the distribution of agents’ waiting times. In the application of
organ waiting lists, for example, doctors and patients might care about pre-
dictability. Though we do not model this in our payoffs, improved forecasting
of the timing of a transplant can aid in the doctor’s choice of treatment. Both
patients and care provides might benefit from a reduction in the variance of
patient waiting times. Even an insurance company responsible for waiting
costs (e.g. dialysis) might have a financial preference to see lower variance in
waiting costs.

For these reasons we are interested in the distribution of waiting time
from any position k under an arbitrary policy W . Let tWk denote the random
variable representing position k’s waiting time under policy W : the time
that an agent who starts in position k must wait before receiving an object.
We have shown that W (k) = W ′(k) implies E(tWk ) = E(tW ′k ). It turns out,

20There is a minor technical point here, which is that an agent in position 1 could be
indifferent about accepting type i∗(1). However then all agents would be indifferent about
this decision, using arguments as in Theorem 2.

21Su and Zenios restrict attention to threshold strategies, partly because they have
a continuum of object types. Our finite model demonstrates that this assumption is
unnecessary.
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however, that even when W (k) = W ′(k), two distinct policies W and W ′

typically yield different distributions for tWk and tW ′k . While the distribution
of tWk may be difficult to describe in general, the class of no-deferrals poli-
cies yield waiting times that follow an Erlang distribution—a sum of i.i.d.
exponential distributions, implying the following.

Lemma 2 (Waiting times for no-deferrals policies). Consider a no-deferrals
policy W , i.e. where W (k) ≡ Ô ⊆ O for all k ∈ N. For any k ∈ N the
waiting time tWk has an Erlang distribution with mean E(tWk ) = k/µÔ and
variance Var(tWk ) = k/µ2

Ô
.

Proof. The waiting time for an arrival of a single object from Ô is exponen-
tially distributed with parameter µÔ. An agent in position k receives such
an object precisely after k i.i.d. such arrivals, hence the mean and variance
calculations follow directly. Furthermore the sum of k i.i.d. exponentially
distributed variables yields an Erlang distribution.

Despite the difficulty of describing waiting time distributions in general,
it is possible to describe the variance of tWk for an arbitrary policy W . To
understand the idea behind the proofs, consider two object types O = {1, 2}
and a policy W where W (1) = {1} and W (2) = {1, 2}. Position 2’s waiting
time decomposes into tW2 = t′ + t′′ as follows. First is a wait of t′ units
of time for the first arrival of an object from the set {1, 2}; note that t′ is
exponentially distributed with parameter µ1 + µ2. Conditional on that first
object being of type 1, there is a wait of t′′ for the arrival of a new object
of type 1 ∈ W (1), and t′′ is exponentially distributed with parameter µ1.
Otherwise, however, the agent departs immediately with the type 2 object,
waiting t′′ = 0 additional units of time. So t′′ is either distributed exp(µ1)
with probability p1 ≡ µ1/(µ1 + µ2), or is identically zero with the remaining
probability.

The variance of t′′, which can be computed in a few different ways22 is

Var(t′′) = 2
µ1(µ1 + µ2) −

1
(µ1 + µ2)2

22Being a weighted density of exponentials, t′′ follows a hyper-exponential distribution
which has a known expression for variance. It can also be computed using Theorem 4 or
its proof.
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Since t′ is exponentially distributed and independent of t′′ we have

Var(tW2 ) = Var(t′ + t′′) = 1
(µ1 + µ2)2 +

(
2

µ1(µ1 + µ2) −
1

(µ1 + µ2)2

)

= 2
µ1(µ1 + µ2)

This exceeds the variance under policy W ′ where W ′(2) = W ′(1) = {1, 2}
(see Lemma 2) which is Var(tW ′2 ) = 2/(µ1 + µ2)2. Thus W and W ′ yield
different variances in waiting time even though both policies provide the
same expected waiting time (and expected payoff) to an agent in position 2.

In the proof of Theorem 4, the two “objects” used above represent the
sets of objects W (1) and W (2) \ W (1), or more generally W (k − 1) and
W (k) \W (k − 1). In addition t′ represents the wait for the first object from
W (k) and t′′ represents the entire continuation waiting time (either zero or
a continued wait from position k − 1). This gives us a recursive expression
for the variance of tWk which reduces to the following.

Theorem 4 (Waiting time variance). For any policy W , the waiting time
from position k has a variance of

Var(tWk ) = 1
µW (k)

((
k∑
`=1

2`
µW (`)

)
− k2

µW (k)

)
. (3)

Hence for positions ` < k, Var(tWk ) decreases as we expand the set W (`)
(increasing µW (`)).23 In other words, imagine that position ` < k defers
some object type i ∈ W (k). If we remove position `’s ability to defer this
object type, then this necessarily reduces the variance in waiting time from
position k. At the extreme, the variance of tWk is minimized by using a
no-deferrals policy.

Corollary 3 (Waiting time variance decreases in W ). Fix a position k ∈ N
and W and W ′ such that W ′(k) = W (k) and, for all ` < k, W (`) ⊆ W ′(`).
Then V ar(tW ′k ) ≤ V ar(tWk ). Hence, subject to the constraint that W (k) = Ô
for some Ô ⊆ O, the policy that minimizes Var(tWk ) is the no-deferrals policy
W (`) ≡ Ô.

23Of course feasibility requires that we maintain W (`) ⊆W (`+ 1).
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Thus there is a tradeoff between Pareto-optimality and predictability.
The former is obtained with the the no-influence equilibrium policy W ∗. By
influencing agents early in the queue to exercise fewer deferrals, Corollary 3
shows that we can lower the variance of waiting times for agents later in the
queue.

Finally we observe that expanding the set W (k) itself could increase or
decrease Var(tWk depending on the parameters of the problem. For example,
fix O = {1, 2}, µ1 = 1, and consider the no-deferrals policy W (`) = {1} for
all ` ∈ N for which V ar(tW` ) ≡ ` (Lemma 2). Consider a switch to policy W ′

where some position k no longer defers type 2, i.e. W ′(`) = {1} for l < k and
W ′(`) = {1, 2} otherwise. This switch has two effects. First, intuitively, the
increased object consumption rate lowers average waiting times for positions
` ≥ k, which tends to lower variance. Second however is that an agent in, say,
position k now either leaves the queue somewhat quickly (if the next object
to arrive is type i = 2) or must wait to reach position 1 before receiving an
object. Either effect could dominate.24

4 Risk-averse agents
We now consider how our results are impacted by agents’ risk-aversion. Risk-
averse agents prefer lower variability in their payoffs. As we showed in Sub-
section 3.3, variability in waiting time can be reduced by reducing the rate at
which deferrals are made, naively suggesting that influence could be used to
benefit risk-averse agents. This ignores another effect, however. Payoff vari-
ability is lowered by increasing the correlation between waiting time (cost)
and object value. When agents make uninfluenced deferral decisions, agents
beginning late in the queue wait longer conditional no receiving higher-valued
objects. This argument suggests that risk-averse agents also would prefer to
have uninfluenced deferral decisions, as was the case for risk-neutral agents
(Theorem 3). Strikingly, the latter argument is the only one that matters.
Specifically, we extend Theorem 3 to the case of agents with constant relative
risk aversion. In the process we prove an “aligned interests” result, showing
that a kind of marginal policy change at some position k benefits an agent
in that position if and only if it benefits an agent in position k − 1.

24The latter effect indeed dominates unless µ2 is large or k is small. When k ≤ 3 the
former effect always dominates.
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Formally, we suppose in this section that agents have constant absolute
risk aversion, i.e. utility from payoff v−t is u(v−t) = −e−α(v−t) with common
risk parameter α > 0. We assume that α < µ1 in order to bound the expected
utility from waiting only for the best object.25

The following two observations are straightforward. First, if (waiting
time) t is exponentially distributed with parameter µ, then

E(u(−t)) =
∫ ∞

0
−e−α(−t)df(t) = − µ

µ− α
(4)

Second, if (payoff components) x1,. . . , xk are independent random variables,
then

E(u(
∑

xi)) =
∫
· · ·

∫
−e−α(

∑
xi)df(x1) · · · df(xk)

= −
∏∫

e−α(xi)df(xi) = −
∏
−E(u(xi)) (5)

Fixing a policy W , denote the expected utility to an agent starting in
position k as UW

k . It is not difficult to derive UW
1 : An agent in position 1

receives an object from W (1) (with uncertain value v) after waiting t units
of time (which is exponentially distributed with parameter µW (1)). Thus the
expected utility to position 1 is

UW
1 ≡ E(u(v − t)) = −(−E(u(v)))(−E(u(−t)))

= E(u(v)) µW (1)

µW (1) − α

= µW (1)

µW (1) − α
∑

i∈W (1)

µi
µW (1)

(−e−αvi)

It is more tedious to describe UW
2 . An agent in position 2 ultimately

receives an object fromW (2), but his waiting time (distribution) depends on
whether or not that object belongs toW (1) ⊆ W (2). Nevertheless Equation 4
and Equation 5 allow us to write a recursive expression for UW

k as follows.

UW
k+1 = µW (k+1)

µW (k+1) − α

 µW (k)

µW (k+1)
UW
k +

∑
i∈W (k+1)\W (k)

µi
µW (k+1)

(−e−αvi)
 (6)

25The weaker assumption α <
∑
O µi would suffice, but would require additional care

in some statements.
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To prove Equation 6 observe that an agent in position k + 1 must (i)
endure the waiting time for an object from W (k + 1), and then (ii) either
experience the additional (continuation) payoff of being in position k, or
immediately receive an object from W (k + 1) \W (k). Since (i) and (ii) are
independent, the total expected utility of (i) and (ii) is a product of two
terms (Equation 5) the first of which is given by Equation 4. The second
(parenthetical) term is the expected utility of the payoffs described in (ii).
The recursive expression yields the following result (though we prove it non-
recursively in the Appendix).

Theorem 5. Fix a policyW and suppose agents have CARA utility functions
with parameter α. The expected utility of an agent in position k ∈ N is

UW
k =

∑
i∈W (k)

µi
µW (k)

(−e−αvi) ·
∏

`≤k:W (`)3i

µW (`)

µW (`) − α
(7)

Theorem 5 allows us to determine how a “marginally influence” in deferral
decisions impacts UW

k . Fix positions ` < k and consider removing some
object i ∈ W (`) \W (` − 1) only from W (`) (so that position ` now defers
type i instead of consuming it, and it is now accepted at position `+1). This
has two effects on the RHS expression in Equation 7.

• First, the ith term in the summation is subjected to one less “penalty
term” µW (`)/(µW (`) − α) > 1, which increases UW

k . This is interpreted
as follows: the agent in position k “gains in the short run” when an
position ` must now defer object i to a later position, increasing the
speed with which object i might be consumed.

• Second, however, µW (`) is decreased; this increases the µW (`)/(µW (`)−α)
“penalty term” which applies to all (remaining) objects in W (`) \ {i}.
The intuition for this change is that the agent in position k “loses in
the long run” since, conditional on reaching position ` there is a longer
expected wait to consume an object.

The sum of these two effects depends on the magnitude of vi. The first
(beneficial) effect is lower for higher values of vi. Intuitively, this captures
an agent’s preference to correlate high object values with long waiting times.
Roughly speaking, an agent in position k would prefer that earlier positions
defer only the relatively lower-value objects in W (k). In fact, imagine re-
stricting the ability of an agent in position k−1 to defer an object i ∈ W (k).
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Strikingly, we show that this improves UW
k if and only if it improves UW

k−1.
In that sense agents (positions) have aligned interests in deferral decisions.

Theorem 6 (aligned interests). Fix policy W , position k ≥ 2, and (if one
exists) object type j ∈ W (k) \W (k − 1). Let W ′(k − 1) = W (k − 1) ∪ {j},
and W ′(`) = W (`) for all ` 6= k−1, i.e. W ′ is obtained from W by allocating
j to k − 1 instead of to k. Then UW

k ≥ UW ′
k if and only if UW

k−1 ≥ UW ′
k−1.

Thus positions k − 1 and k “agree” on whether object j should be al-
located to position k − 1 or k. It is intuitive then that Theorem 6 leads
to an analog of Theorem 3 under CARA utility. Namely there is a “no-
influence equilibrium” policy W ∗

α that Pareto-dominates every other policy.
It is constructed by sequentially finding sets W ∗

α(k) that maximize the ex-
pected utility to positions k = 1, 2, 3, . . ., subject to the constraint of the
earlier positions’ “choices.”

Corollary 4 (Pareto-dominance). Suppose agents’ preferences are described
by a CARA utility function with (common) parameter α. Consider a (generi-
cally unique) policy W ∗

α defined by sequentially maximizing UW
k (using Equa-

tion 7) for k = 1, 2, 3, . . .. Then W ∗
α Pareto-dominates every other policy.

Proof. By construction no policy can improve upon UW ∗α
1 . Consider position

2. Fixing W ∗
α(1), by construction we cannot improve upon UW ∗α

2 by adding
any object i 6∈ W ∗

α(2) to W ∗
α(2). Fixing W ∗

α(2), Theorem 6 implies that
we cannot improve upon UW ∗α

2 by changing W ∗
α(1) to any arbitrary W (1) ⊆

W ∗
α(2). Sequentially repeating these arguments for positions k = 3, 4, . . .

proves the result.

5 Discounted payoffs

5.1 Intuition
Lastly we consider agents who discount future payoffs.26 With the introduc-
tion of discounting, our earlier results begin to break down. For instance

26We separate the analyses of risk-aversion and discounting for two reasons. First the
combination of assumptions yields to intractable payoff expressions. Secondly our objective
is to demonstrate the contradictory effects of these two assumptions. This is most easily
done by considering them as two separate departures from the baseline case of risk-neutral,
non-discounting agents.
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in this scenario, no single policy Pareto-dominates all others. In fact a new
effect emerges in which agents have opposed interests in influencing deferral
decisions, opposite of the effect described in Theorem 6.

To establish some intuition for how discounting plays a role, compare the
following two policies defined for some fixed set Ô ⊆ O.

W (1) = · · · = W (k) = Ô

W ′(1) ( · · · ( W ′(k) = Ô

Policy W is a no-deferrals policy—agents in positions 1 through k wait un-
til reaching position 1 before receiving the next object from Ô)—while W ′

could potentially assign the next object from Ô to any position 1 through k.
These policies offer position k identical expected waiting time (Corollary 1)
and distribution over allocated object (Theorem 1). However they differ in
both the probability distribution of waiting costs and the correlation between
consumed object value and waiting time.

An agent who discounts waiting costs would prefer to reduce the variance
of those costs.27 If we could hold everything else constant, this would suggest
a preference for W over W ′ (see Corollary 3). Of course we cannot hold
everything else constant because, as we vary the policy, this also changes
the timing with which an agent might receive different kinds of objects. To
consume an object from the set W ′(1), more time (on average) would pass
under policyW ′ than underW . Similarly an object fromW ′(k)\W ′(k−1) is
consumed more quickly under W ′ than W . If W ′ offers a lottery over either
a good object sooner or a worse object later, then W ′ could be preferable to
W . Conversely if W ′ is a lottery resulting either in a long wait for better
objects or a shorter wait for worse objects, the tends to be worse than the
lottery induced by W .

This intuition underlies our result that agents have “opposed interests” in
roughly the following sense. Consider a policy that changes only by assigning
some object type α ∈ O to position ` that was previously assigned to some
position k > `. An agent in any position k′ ≥ k gains from this change if and
only if an agent in position ` is harmed by this policy change. This result is
fairly striking. It implies that an agent in position k benefits from a policy
change when positions ahead of him are no longer permitted to defer an

27E.g. the discounted cost of waiting for two periods is lower than the expected dis-
counted cost of waiting for either one or three periods with equal probability.
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object that otherwise would have been consumed at position k, even though
he will be subject to this same constraint should he reach the earlier position.

5.2 Results
We suppose that agents continuously discount the future at a nominal interest
rate r per unit of time: The present value of receiving payoff of x at t units
of time in the future is x · e−rt. Observe that if an agent incurs waiting costs
for t units of time, where t is exponentially distributed with parameter µ,
then the expected NPV (ENPV) of these costs is

1/(r + µ). (8)

Likewise if an agent is to receive an object of value v after waiting t such
units of time then the ENPV of this payoff is

vµ/(r + µ). (9)

Using these two facts, it is straightforward to derive the expected NPV
of an agent’s payoff from position k = 1 under policy W , denoted ENPV W

1 .
It is the above ENPV of payoff from the eventual arrival of an object from
W (1) minus that of the waiting time for that object to arrive.

ENPV W
1 =

 ∑
i∈W (1)

µi
µW (1)

·
viµW (1)

r + µW (1)

− 1
r + µW (1)

=
(∑i∈W (1) µivi)− 1

r + µW (1)
(10)

since the arrival time of an object from W (1) is exponentially distributed
with parameter µW (1).

While Equation 10 is a simple generalization of the risk-neutral expected
payoff Π(1;W ) (Equation 1), the general description of ENPVk is not as
elegant. The simplest way to think of ENPV2 is to consider the agent in
position 2 acquiring payoffs as follows. First the agent waits for an arrival of
some type i ∈ W (2). That object is allocated either to the agent in position 1
(if i ∈ W (1)) or to the agent in position 2. In the former case, we can think
of the agent in position 2 also being immediately allocated a pseudo-object
with value v = ENPV1.
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That is, define a list of object values v′ such that v′i = ENPV1 for i ∈
W (1) and v′i = vi otherwise. Now EPNV2 satisfies an analog of Equation 10
with respect to v′ and W (2), which we then rewrite in terms of v.

ENPV W
2 =

(∑i∈W (2) µiv
′
i)− 1

r + µW (2)

= 1
r + µW (2)

µW (1) · ENPV1 +
∑

i∈W (2)\W (1)
µivi

− 1


This recursion relation generalizes to

ENPV W
k = 1

r + µW (k)

µW (k−1) · ENPVk−1 +
∑

i∈W (k)\W (k−1)
µivi − 1

 (11)

which we use to derive the following theorem.

Theorem 7 (discounted payoffs). Suppose agents continuously discount pay-
offs at nominal rate r per period and fix a policy, W . The expected NPV of
the payoff to an agent in position k is

ENPV W
k = 1

µW (k)

k∑
`=1

 ∑
i∈W (`)\W (`−1)

µivi − 1
 k∏
j=`

µW (j)

r + µW (j)

 (12)

This expression generalizes Equation 1 (the case r = 0). Equation 12
can be interpreted as follows. The ENPV to position k decomposes into k
components corresponding to the possible positions (` = 1, . . . , k) the agent
might yet reach before receiving an object. Each (`th) component has

• a “value part” (∑i∈W (`)\W (`−1) µivi), the expected value of objects as-
signed to that position, and

• a “cost part” (−1) the passing through that position.

More subtle is the final product term, whose interpretation differs across
these two parts. Applied to the value part, the product term is the amount
by which the future object value is discounted to the present (see Equation 9).
Applied to the cost part, the product term’s denominator is the amount by
which future flow costs are discounted to the present (see Equation 8), while
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its numerator is the the probability of reaching any such position ` ≤ k (and
thus incurring those waiting costs).

Strikingly, this payoff expression can be used to show Theorem 8, stating
that agents in consecutive queue positions have “opposed interests” in the
following sense. Fix a policy W and object type α assigned to position k+ 1
(so α ∈ W (k+1)\W (k)), and consider a policy change in which α is instead
assigned to position k (so α ∈ W ′(k) \W ′(k − 1)). It turns out that this
change would make the agent in position k+1 strictly better off if and only if
it would make the agent in position k strictly worse off. Recall by Theorem 2
that when r = 0, the agent in position k+ 1 necessarily would be indifferent
about such a change, making the statement a counterfactual. When r > 0,
however, the agent in position k + 1 is typically not indifferent.
Theorem 8 (Opposed interests). Fix a policy W , position k, and object
type α ∈ W (k + 1) \ W (k). Let policy W ′ be identical to W except that
α ∈ W ′(k) \W ′(k − 1). Then

ENPV W ′

k+1 > ENPV W
k+1 ⇐⇒ ENPV W ′

k < ENPV W
k (13)

The “opposed interests” described in Theorem 8 actually occur more
broadly than described. Specifically, moving object α intoW (k) as described
in the theorem clearly has no impact on earlier positions (1 through k − 1).
However, the agent in position k + 1 strictly prefers this change if and only
if the agent in position k + 2 strictly prefers it as well. This can be seen via
Equation 11: sinceW (k+2) andW (k+1) are being held constant, ENPVk+2
is affected only by changes in the term ENPVk+1. Iterating this argument,
position k+ 1 strictly prefers the change if and only if any position ` ≥ k+ 1
prefers it. To summarize, Equation 13 can be strengthened to
∀` ≥ k + 1 [ENPV W ′

` > ENPV W
` ⇐⇒ ENPV W ′

k < ENPV W
k ] (14)

Thus there is typically no single policy that emerges as Pareto-dominant
for discounting agents. A Pareto-dominant policy would have the thresh-
old structure of policies constructed in Section 3 or Section 4, where later
positions are assigned relatively worse objects that are deferred by earlier
positions. By Theorem 8, an agent in a later position would prefer a pol-
icy in which earlier agents cannot defer such objects, contradicting Pareto-
dominance. This observation is relevant in our next section, where we turn to
the organ spoilage problem discussed in Section 1. When discounting is a sig-
nificant part of agents’ preferences, agents later in the queue unambiguously
benefit from certain restrictions on earlier positions’ deferrals.
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6 Application: Organ Spoilage
We turn to our main motivating application, the organ spoilage problem
described in Section 1. Current policy requires the planner to adhere to first-
come-first-served principles, i.e. organs are to be offered according to patients
according to an exogenous priority order. This leads to a well documented
inefficiency. In the time it takes for, say, k̂ agents to reject the offer of a
(lower quality) organ, the organ spoils and cannot be used, even though an
agent in position ` > k̂ might have been willing to accept it.

There are various ways to possibly address the spoilage problem. A plan-
ner could go so far as to abandon the principle of priority-based allocation,
e.g. offering lower-quality organs directly to agents later in the queue. While
such a solution seems to make sense in theory, it also has its drawbacks. First
it requires the planner to evaluate the quality of each arriving organ rather
than the patient, when such an evaluation might best be done by the agent
(e.g. the patient’s own doctor). Second this solution invites legal challenges
from agents who believe that they were wrongly denied access to an organ
that went to a lower-priority agent. E.g. if an organ is offered first to an
agent in position k in the queue and accepted, an agent in position k − 1
would justifiably complain that the organ was not offered to him.

A less extreme solution is to (partially) limit (influence) the degree to
which agents defer organs. This solution preserves the spirit of first-come-
first-served (priority-based) allocation, and is less susceptible to the criticisms
above. We show that the desirability of such a solution depends (positively)
on the degree to which agents discount the future, and (negatively) on the
level of agents’ risk aversion.

6.1 A simple model of spoilage
To illustrate these two effects we consider a scenario in which an object spoils
after it has been offered to and deferred by the agents in positions up to and
including k̂; thus it is unavailable to the agents in positions ` ≥ k̂. Observe
that this model of spoilage can be expressed simply as a “spoilage constraint”
on waiting list policies: we require that for all ` > k̂, W (`) = W (k̂). No
arriving object can be assigned directly to a position ` > k̂. To demonstrate
our main points it is sufficient to consider the case k̂ = 1, i.e. an object spoils
immediately after the first agent defers it. This assumption merely simplifies
exposition, as the effects we demonstrate can also occur for k̂ > 1. Similarly
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k = 1 k ≥ 2
W S(1) = {1}
W I(1) = {1, 2}
W ∗(1) = {1}

W S(k) = {1}
W I(k) = {1, 2}
W ∗(k) = {1, 2}

Figure 1. Policies representing consumption in three scenarios: (W S)
spoilage occurs; (W I) deferrals are disallowed; (W ∗) spoilage does not
occur.

it is sufficient to consider only two object types.
Formally, fix two object types, O = {1, 2} with values v1 > v2, and arrival

rates µ1, µ2 > 0. Along with the baseline case of preferences (α = r = 0), we
alternately consider risk-averse agents (α > 0) or discounting agents (r > 0).
Once we fix all of these parameters of the model, we say that they exhibit a
spoilage problem for position 2 when

(I) an agent in position k̂ = 1 would prefer to defer (only) type 2 objects,
and

(II) an agent in position k = 2 would prefer to receive a type 2 object
immediately rather than wait to receive the second arrival of a type 1
object.

Condition (I) says that in a decentralized (uninfluenced) equilibrium, type 2
objects would spoil. Condition (II) says that this spoilage causes inefficiency.
Combined, these two conditions imply that v2 is neither very high (the first
condition would fail) nor very low (the second condition would fail). We
can more generally define the weaker condition of a “spoilage problem for
position k > 2” in which an agent in position k prefers instant consumption
of v2 over waiting for the kth arrival of a type 1 object.

We now imagine a planner attempting to solve a spoilage problem by
removing the ability of agents to defer objects. To determine whether such a
solution makes sense from a welfare perspective, we need to compare agents’
payoffs across three different scenarios summarized in Figure 1.

First imagine that agents are uninfluenced, selfishly optimizing their de-
ferral decisions. By condition (I) above, type 1 objects are assigned to po-
sition 1 and type 2 objects spoil. Thus agents’ consumption is described by
policy W S (see Figure 1).
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Second imagine the planner exerting influence in order to prevent defer-
rals.28 In this case, the agent in position 1 must consume whichever object
arrives next, resulting in policy W I .

Third consider the alternate scenario in which spoilage no longer occurs
(and deferrals are permitted). By conditions (I) and (II), type 2 objects now
go to the agent in position 2, resulting in the policy we label W ∗.29

To consider the implications of disallowing position 1’s deferrals, we wish
to compare payoffs under W S and W I . However we need to perform this
comparison only when a spoilage problem exists in the first place. Con-
dition (I) states that an agent in position 1 prefers W S (or W ∗) to W I .
Condition (II) states that an agent in position 2 prefers W ∗ to W S. Given
these two conditions, we also ask whether
(III) an agent in position k = 2 would prefer policy W I to W S.
Condition (III) would imply that, indeed, the agent in position 2 benefits
when any agent who reaches position 1 is prevented from deferring an organ.

It would be significant if we face a spoilage problem in which Condition
(III) fails. This means that, in an attempt to improve welfare by reducing
deferrals, a planner could paradoxically harm agents in later positions despite
the statistical evidence that spoilage rates decreased. It turns out that such
spoilage problems do exist, though they appear to be “rare.” Using our
earlier results we can show that Condition (III) has to do with the agents’
risk-aversion (α), and not their impatience (r) as we now explain.

Patient, risk-neutral agents. Consider our simplest setup of risk-
neutral, non-discounting agents. By Theorem 3, W ∗ Pareto-dominates all
other policies. By Theorem 2, any agent starting in position k ≥ 2 is indif-
ferent between W ∗ and W I , and hence prefers W I to W S. Thus Condition
(III) is always satisfied. In fact the more striking consequence of Theorem 2
is that removing position 1’s deferral option makes all other positions as well
off as if the spoilage problem never existed in the first place.

Impatient agents. Discounting merely serves to amplify the conclusion of
the baseline case. By assumption, the agent in position 1 prefers W ∗ to W I .

28As discussed earlier this could be done through indirect influence (doctors advising
patients), or directly by penalizing agents who defer.

29This notation is chosen intentionally: ignoring the spoilage constraint it is the Pareto-
dominant policy for non-discounting agents. See Corollary 4.
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With discount rate r > 0, Theorem 8 and Condition (I) imply that an agent
in position 2 prefers W I over W ∗ (and hence over W S by Condition (II)).30

Again Condition (III) is always satisfied. Now, however, position 2 can even
be strictly better off under W I than when the spoilage problem does not
exist at all. Repeated application of Equation 11 extends this conclusion to
positions k = 3, 4, . . . also prefer W I to W ∗.

Risk-averse agents. Risk-aversion can cause Condition (III) to fail. For-
tunately it appears that such cases are atypical, requiring either extreme
levels of risk-aversion or that the cost of the spoilage problem is low. To
establish an intuition, observe that restricting position 1’s option to defer
type 2 objects (moving from W ∗ to W I) strictly lowers position 1’s payoff,
so by Theorem 6 position 2 also strictly prefers W ∗ to W I . If the “cost of
spoilage” is low to position 2 (i.e. W ∗ is only slightly better than W S) then
an agent in position 2 could prefer W S to W I : he would prefer suffering the
spoilage problem over the “solution” of requiring any agent in position 1 to
accept lower quality objects.

Indeed if v2 is sufficiently close to v1, then this is intuition is always
accurate. For low levels of risk-aversion, however, v2 needs to be very close
to v1 in order for this to happen. The following result formalizes this.

Proposition 1. Fix two object types and define policies W ∗, W S, and W I

as in Figure 1. Fix values v1 > v2, arrival rates µ1, µ2 > 0, and CARA
parameter 0 < α < µ1. Then

1. UWS

1 ≥ UW I

1 (Condition (I) is satisfied),

2. UW ∗
2 ≥ UWS

2 (Condition (II) is satisfied), and

3. UWS

2 ≥ UW I

2 (Condition (III) fails)

if and only if

1
α

log
(
µ1(µ2

1 − α2 + µ2µ1)
(µ1 + µ2)(µ1 − α)2

)
≤ v1 − v2 ≤

2
α

log
(

µ1

µ1 − α

)
(15)

30More generally, that theorem implies that an agent in position k is better off if we
force an agent in position k − 1 to accept an object that the agent in position k would
have been willing to accept in a scenario where spoilage does not occur.

29



1.995

2

2.005

2.01

2.015

2.02

2.025

2.03

0 0.005 0.01 0.015 0.02 0.025 0.03

CARA parameter 

upper

Lower

Figure 2. An example of the bounds of Equation 15, as a function
of α, for the case µ1 = µ2 = 1. For instance when α = .02, v1 − v2
must lie roughly between 2.01 and 2.02. between

It can be checked that the width of the band described by Equation 15
(i.e. the upper bound minus the lower bound) is

1
α

log
(

µ1(µ1 + µ2)
µ1(µ1 + µ2)− α2

)

This is positive for any α > 0, so for any arrival rates µ1 > α and µ2
there exist object values v1, v2 jointly satisfying the inequalities. The width
of this range decreases in α, shrinking to zero as α converges to zero; see
Figure 2. This is not surprising since Condition (III) cannot fail under risk-
neutrality. More generally both the upper and lower bounds in Equation 15
converge to 2/µ1 as α converges to zero. Intuitively, as the agent in position 2
becomes risk-neutral he becomes indifferent between receiving a type 2 object
immediately versus paying an expected 2/µ1 additional units of waiting costs
to receive an object worth v1 − v2 additional units of value. One can also
verify that the width of the band is decreasing in both arrival rates µ1, µ2.

7 Conclusion
We have considered the welfare implications of arbitrarily influencing or con-
straining the deferral decisions of prioritized agents who are in a waiting list
for randomly arriving objects. Payoff expressions for both risk-averse agents
and for impatient (discounting) agents show that these two characteristics
of preferences lead to different prescriptions for the planner. Particularly,
our first main results (Theorem 3 and Corollary 4) show that such influence
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has an unambiguously negative welfare effect for risk-averse (but patient)
agents. On the other hand when (risk-neutral) agents are impatient, agents
later in the waiting list would typically benefit when deferral decisions are
constrained for any agents who reach earlier positions in the waiting list
(Theorem 8).

We then apply these results to the application of the organ spoilage prob-
lem. The spoilage problem can be modeled in our setup as a constraint
where agents sufficiently late in the waiting list are forced to defer all ob-
jects. First, when agents are impatient (and sufficiently risk-neutral), it is
generally welfare-improving to at (least partially) limit the deferral options
of agents early in the waiting list. At the time such a policy change is im-
plemented, the agents early in the waiting list would indeed suffer a welfare
loss from this change, but all remaining agents in the queue would benefit.

On the other hand, risk-aversion plays the opposite role. While a reduc-
tion in deferrals partially “solves” the spoilage problem by decreasing wastage
and increasing the organ yield rate, this efficiency gain is partially offset by
the welfare loss incurred when we prevent risk-averse agents from selfishly
optimizing their deferral decisions. Any policy change that hurts agents in
earlier queue positions typically also has a negative welfare effect on agents
in later positions, i.e. risk-averse agents have what we called “aligned inter-
ests” (Theorem 6). We even show that, under some parameter values, this
negative welfare effect can dominate the efficiency gains for at least some late
positions in the waiting list. Fortunately such parameter values seem to be
the exception rather than the norm. Nevertheless this suggests that welfare
analyses in such settings must carefully consider the degree to which agents
are risk-averse and/or impatient. Under risk-aversion, the planner must mea-
sure more than an organ yield rate in order to determine the general welfare
implications from constraining the agents’ rights to defer organs of marginal
quality.
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8 Appendix

8.1 Proofs
Proof of Theorem 2. The proof is by induction. For k = 1, the agent
consumes the first arrival from W (1), so the expected object value minus the
expected waiting time is

Π(1;W ) =
∑
j∈W (1) µjvj

µW (1)
− 1
µW (1)

=
∑
j∈W (1) µjvj − 1

µW (1)

consistent with Equation 1.
Fix k ∈ N and suppose that Equation 1 holds for k − 1. The next

object-type to arrive that belongs to W (k) either belongs to W (k − 1) or
to W (k) \W (k − 1). In the former case the agent in position k moves to
position k−1 and continues with an additional expected continuation payoff
Π(k − 1;W ). In the latter case the agent is assigned the object, receiving
payoff vj. Accounting for these two possibilities, along with the expected
waiting time for the arrival from W (k), we have the following.

Π(k;W ) = µW (k−1) · Π(k − 1;W )
µW (k)

+
∑
W (k)\W (k−1) µjvj

µW (k)
− 1
µW (k)

=
µW (k−1) ·

(∑
W (k−1) µjvj−(k−1)

µW (k−1)

)
+∑

W (k)\W (k−1) µjvj − 1

µW (k)

=
∑
W (k−1) µjvj − (k − 1) +∑

W (k)\W (k−1) µjvj − 1
µW (k)

=
∑
W (k) µjvj − k
µW (k)

proving the result.

Proof of Lemma 1. Fix k, and for any subset of types C ⊆ O, consider
the no-deferrals policy W defined by W (`) ≡ C 6= ∅. Rather than writing
Π(k;W ), let π(C) denote the expected payoff to position k under such a
policy, since we consider varying C.

From Theorem 2,
π(C) =

∑
j∈C µjvj − k

µC
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and for any i ∈ O \ C, adding i to C yields a payoff of

π(C ∪ {i}) =
∑
j∈C µjvj − k + µivi

µC + µi

which (weakly) improves on π(C) if and only if vi ≥ (∑j∈C µjvj − k)/µC .
Since object types are in decreasing order of the vi’s, any W ∗ defined via
Equation 2 maximizes Π(k; ·).31

Finally, observe that the right-hand side of the inequality within Equa-
tion 2 is decreasing in k. Therefore the type index i∗k is indeed increasing in
the position index k.

Proof of Theorem 1. The statement is obviously true when k = 1. In-
ductively, fix a k and suppose that the statement is true for any k′ < k.
Nothing happens for the agent in position k until the arrival of some object
type in W (k). Upon the arrival of such an object, the probability it is of
type i ∈ W (k) is µi/µW (k). If i ∈ W (k) \W (k − 1) then the agent consumes
that object (and otherwise cannot consume that object type), proving the
claim for i ∈ W (k) \W (k − 1).

Otherwise i ∈ W (k − 1), so the agent moves into position k − 1; that
is, the total probability of moving into position k− 1 is ∑j∈W (k−1) µj/µW (k).
By the induction assumption, the probability of eventually consuming any
j ∈ W (k−1) given that that the agent starts in position k−1 is µj/µW (k−1).
Hence the probability of ultimately consuming j ∈ W (k − 1) conditional on
starting in position k is

µW (k−1)

µW (k)
· µj
µW (k−1)

= µj
µW (k)

proving the claim for j ∈ W (k − 1).

Proof of Theorem 4. The wait time tWk is the sum of two independent
random variables: the initial wait t′ until the arrival of the next object i ∈
W (k), and the remaining wait t′′, which either has the same distribution as
tWk−1 (if i ∈ W (k − 1)) or is degenerately t′′ = 0 (if i ∈ W (k) \W (k − 1)).

Since t′ is exponentially distributed,

Var(t′) = 1/µ2
W (k).

31(Ties are irrelevant.) In the nongeneric case that vi∗
k

= π(W ∗(k)), it is easy to see
that W ′(k) ≡ W ∗(k) \ {i∗k} also maximizes k’s payoff. This impacts neither the Lemma
nor any other results of the paper.
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To consider the variance of t′′, we first recall the following easily proven
fact. Let a random variable Y equal the value of some r.v. X with probability
p and be degenerately Y = 0 with probability 1− p. Then

Var(Y ) = pVar(X) + (p− p2)E(X)2

Here,

Var(t′′) = µW (k−1)

µW (k)
Var(tWk−1) +

µW (k−1)

µW (k)
−
(
µW (k−1)

µW (k)

)2
E(tWk−1)2

By Corollary 1, E(tWk−1) = (k − 1)/µW (k−1). Therefore

Var(tWk ) = Var(t′) + Var(t′′)

= 1
µ2
W (k)

+ µW (k−1)

µW (k)
Var(tWk−1) +

µW (k−1)

µW (k)
−
µ2
W (k−1)

µ2
W (k)

 (k − 1)2

µ2
W (k−1)

= µW (k−1)

µW (k)
Var(tWk−1) + (k − 1)2

µW (k)µW (k−1)
− (k − 1)2 − 1

µ2
W (k)

(16)

which we can solve recursively.
For any policy, tW1 is exponentially distributed with variance of 1/µ2

W (1)
which coincides with Equation 3. We show that if Equation 3 holds for some
arbitrary k − 1 then it holds for k. Substituting into Equation 16,

Var(tWk ) = µW (k−1)

µW (k)
Var(tWk−1) + (k − 1)2

µW (k−1)µW (k)
− k2 − 2k

µ2
W (k)

= µW (k−1)

µW (k)

1
µW (k−1)

(
k−2∑
`=1

2`
µW (`)

+ 2(k − 1)− (k − 1)2

µW (k−1)

)
+ (k − 1)2

µW (k−1)µW (k)
− k2 − 2k

µ2
W (k)

= 1
µW (k)

(
k−2∑
`=1

2`
µW (`)

+ 2(k − 1)
µW (k−1)

− k2 − 2k
µW (k)

)

= 1
µW (k)

(
k−1∑
`=1

2`
µW (`)

+ 2k − k2

µW (k)

)
= 1
µW (k)

(
k∑
`=1

2`
µW (`)

+ −k2

µW (k)

)

proving the result.

Proof of Theorem 5. FixW , α, and a position k. By Theorem 1 an agent
in position k ultimately consumes object i ∈ W (k) with probability µi/µW (k).
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Conditional on consuming i ∈ W (k), the agent’s waiting time is tk + tk−1 +
· · ·+ t` where i ∈ W (`) \W (`− 1), and where tj is exponentially distributed
with parameter µW (j). This is because, in order to consume such an i, the
agent must first advance to position ` in the queue and then receive an object,
requiring waits for objects from W (k), W (k − 1), . . . , W (`).

Denoting t as the total (unconditional) waiting time and v as the value
of the received object, we have

UW
k ≡ E(u(v − t)) =

k∑
`=1

∑
i∈W (`)\W (`−1)

µi
µW (k)

E(u(vi − τi))

=
k∑
`=1

∑
i∈W (`)\W (`−1)

µi
µW (k)

E(u(vi))(−E(u(−τi)))

=
k∑
`=1

∑
i∈W (`)\W (`−1)

µi
µW (k)

u(vi)
k∏
j=`
−E(u(−tj))

=
k∑
`=1

∑
i∈W (`)\W (`−1)

µi
µW (k)

(−e−αvi)
k∏
j=`

µW (j)

µW (j) − α

where the second and third lines follow from Equation 5, and the last from
Equation 4. For each i, the µW (j)/(µW (j)−α) term appears for each position
j ≤ k satisfying i ∈ W (j), so the last line yields Equation 7.

Proof of Theorem 6. Observe that UW
k−1 ≥ UW ′

k−1 if and only if UW
k−1 ≥

u(vj) = −e−αvj , i.e. k− 1 prefers to defer j whenever the utility from vj does
not exceed the expected utility of continuing to wait. This follows intuitively
but can also be derived from Equation 7. Therefore we need to show that
UW
k ≥ UW ′

k if and only if UW
k−1 ≥ u(vi) = −e−αvi .

Observe that µW ′(k) = µW (k) and that W (k) \W (k− 1) = {j} ∪ (W ′(k) \
W ′(k − 1)). This cancels some terms in Equation 6, so that

UW
k ≥ UW ′

k ⇔
µW (k−1)

µW (k)
UW
k−1 + µj

µW (k)
u(vj) ≥

µW ′(k−1)

µW ′(k)
UW ′

k−1

Since µW ′(k−1) = µW (k−1) + µj the latter inequality becomes
µW (k−1)

µW (k)
UW
k−1 + µj

µW (k)
u(vj) ≥

µW (k−1) + µj
µW (k)

UW ′

k−1, or

µW (k−1)

µW (k−1) + µj
UW
k−1 + µj

µW (k−1) + µj
u(vj) ≥ UW ′

k−1 (17)
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Next we express UW ′
k−1 in terms of UW

k−1. The following equation can be
derived (tediously) from Equation 7; however it can be understood as follows.
After adding j toW (k−1), with probability µW (k−1)

µW (k−1)+µj the agent receives the
payoff he would have received under W , and with the remaining probability
he receives u(vj). In both cases the term µW (k−1)+µj

µW (k−1)+µj−α represents the waiting
cost utility as in Equation 4. However in the former case, UW

k−1 is corrected for
the fact that the waiting cost utility µW (k−1)

µW (k−1)−α
no longer applies. In summary,

we have

UW ′

k−1 = µW (k−1)

µW (k−1) + µj
UW
k−1

[
µW (k−1) − α
µW (k−1)

µW (k−1) + µj
µW (k−1) + µj − α

]

+ µj
µW (k−1) + µj

u(vj)
µW (k−1) + µj

µW (k−1) + µj − α

= µW (k−1) − α
µW (k−1) + µj − α

UW
k−1 + µj

µW (k−1) + µj − α
u(vj)

Now Equation 17 becomes
µW (k−1)

µW (k−1) + µj
UW
k−1 + µj

µW (k−1) + µj
u(vj)

≥
µW (k−1) − α

µW (k−1) + µj − α
UW
k−1 + µj

µW (k−1) + µj − α
u(vj) (18)

which is true precisely when UW
k−1 ≥ u(vi).

Proof of Theorem 7. Equation 10 proves the case k = 1. Supposing Equa-
tion 12 holds for some k, we show it to hold for k + 1.

Upon the arrival of an object i ∈ W (k + 1), the agent in position k + 1
either receives the object, or moves into position k. Conditional on the latter
event (moving into position k), that agent’s eventual (continuation) payoff
has an expected NPV of ENPVk by definition. Hence, starting from position
k+1, the agent incurs waiting costs until seeing an arrival of i ∈ W (k+1) and
then faces two possible lump sum payoffs: receiving vi if i ∈ W (k+1)\W (k)
or otherwise “receiving” ENPV1 as an expected continuation payoff.

The expected NPV of waiting costs for an arrival from W (k + 1) is

1/(r + µW (k+1))
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as described earlier. The expected NPV of the lump sum payoff is

µW (k)

µW (k+1)
·
ENPVk · µW (k+1)

r + µW (k+1)
+

∑
i∈W (k+1)\W (k)

µi
µW (k+1)

·
viµW (k+1)

r + µW (k+1)

Combining these terms and substituting, we have

ENPVk+1 = µW (k) · ENPVk
r + µW (k+1)

+
∑

i∈W (k+1)\W (k)

µivi
r + µW (k+1)

− 1
r + µW (k+1)

= 1
r + µW (k+1)

µW (k)

µW (k)

k∑
`=1

 ∑
i∈W (`)\W (`−1)

µivi − 1
 k∏
j=`

µW (j)

r + µW (j)


+
 ∑
i∈W (k+1)\W (k)

µivi − 1


= 1
µW (k+1)

k+1∑
`=1

 ∑
i∈W (`)\W (`−1)

µivi − 1
 k+1∏

j=`

µW (j)

r + µW (j)


yielding Equation 12 for k + 1.

Proof of Theorem 8. Fix notation as in the statement of the theorem. It
should be intuitively clear that

ENPV W ′

k < ENPV W
k ⇐⇒ vα < ENPV W

k

(Alternatively one can derive this fact using the same approach we use below
to rewrite the inequality ENPV W ′

k+1 > ENPV W
k+1.)

Define µW (j)’s with respect to W . Observe that they are the same for W ′

except at k, where it becomes µW (k) + µα. Denote

X =
k−1∑
`=1

 ∑
i∈W (`)\W (`−1)

µivi − 1
 k−1∏

j=`

µW (j)

r + µW (j)

+
∑

i∈W (k)\W (k−1)
µivi − 1

Thus Equation 12 becomes ENPV W
k = X/(r + µW (k)). Similarly,

ENPV W
k+1 = 1

r + µW (k+1)

X µW (k)

r + µW (k)
+

∑
i∈W (k+1)\W (k)

µivi − 1
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and, since W ′ moves α into W ′(k),

ENPV W ′

k+1 = 1
r + µW (k+1)

(X + µαvα) µW (k) + µα
r + µW (k) + µα

+
∑

i∈W (k+1)\W (k)
µivi − µαvα − 1


Canceling some terms, we have ENPV W ′

k+1 > ENPV W
k+1 being true if any

only if

(X + µαvα) µW (k) + µα
r + µW (k) + µα

− µαvα > X
µW (k)

r + µW (k)

X

(
µW (k) + µα

r + µW (k) + µα
−

µW (k)

r + µW (k)

)
> µαvα

(
1− µW (k) + µα

r + µW (k) + µα

)

X

(
µαr

(r + µW (k) + µα)(r + µW (k))

)
> µαvα

(
r

r + µW (k) + µα

)

ENPV W
k = X

(r + µW (k))
> vα

proving the theorem.

Proof of Proposition 1. By Equation 7,

UW ∗

1 = UWS

1 = µ1(−e−αv1)
µ1 − α

UW I

1 = µ1(−e−αv1) + µ2(−e−αv2)
µ1 + µ2 − α

and for k ≥ 2,

UW ∗

k = µ1(−e−αv1)
µ1 + µ2

(
µ1

µ1 − α

)(
µ1 + µ2

µ1 + µ2 − α

)k−1

+ µ2(−e−αv2)
µ1 + µ2

(
µ1 + µ2

µ1 + µ2 − α

)k−1

UWS

k = (−e−αv1)
(

µ1

µ1 − α

)k

UW I

k = µ1(−e−αv1) + µ2(−e−αv2)
µ1 + µ2

·
(

µ1 + µ2

µ1 + µ2 − α

)k

40



Therefore we have

UWS

1 ≥ UW I

1 ⇐⇒ v1 − v2 ≥
1
α

log
(

µ1

µ1 − α

)

UW ∗

2 ≥ UWS

2 ⇐⇒ v1 − v2 ≤
2
α

log
(

µ1

µ1 − α

)

UWS

2 ≥ UW I

2 ⇐⇒ v1 − v2 ≥
1
α

log
(
µ1(µ2

1 − α2 + µ2µ1)
(µ1 + µ2)(µ1 − α)2

)

Since α < µ1 + µ2, the third condition implies the first one. Hence all three
conditions are satisfied when (15) is true.
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