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Abstract

Strategy-proof allocation rules incentivize truthfulness in simulta-
neous move games, but real world mechanisms sometimes elicit pref-
erences sequentially. Surprisingly, even when the underlying rule is
strategy-proof and non-bossy, sequential elicitation can yield equilibria
where agents have a strict incentive to be untruthful. This occurs only
under incomplete information, when an agent anticipates that truth-
ful reporting would signal false private information about others’ prefer-
ences. We provide conditions ruling out this phenomenon, guaranteeing
all equilibrium outcomes to be welfare-equivalent to truthful ones.

JEL classification: C79, D78, D82.
Keywords: strategy-proofness; sequential mechanisms; implementation;
market design.

1 Introduction

One of the most desirable incentive properties in mechanism design is that
of strategy-proofness. It guarantees that when agents simultaneously report
their preferences to a direct revelation mechanism, each agent has a weak in-
centive to be truthful. In practice, however, agents sometimes participate in
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such mechanisms sequentially: the planner collects preference reports from
different agents at different times, sometimes even revealing individual or ag-
gregated preference reports during the collection process. Our objective is to
consider how the incentive properties of strategy-proof allocation rules extend
to environments in which they are operated as sequential mechanisms.

The analysis of sequential mechanisms becomes increasingly important
as technology increases our speed of communication. To illustrate this point,
consider the standard school choice problem in which a school district assigns
students to schools as a function of their reported preferences. In the past,
the practical elicitation of preferences could be done only through the use of
physical forms mailed through the postal service. Under such a system, agents
(students or families) have little to no information about each others’ reports at
the time each mails in their own form. Even if mailings occur on different days,
the agents are playing a simultaneous-move revelation game. More recently,
however, preference elicitation occurs through electronic communication (e.g.
email, web forms, or a smartphone app). The speed of such media opens up a
new possibility when agents’ reports are submitted asynchronously: the plan-
ner could choose to publicly reveal information about preference reports as
they are being submitted. Such feedback occurs, for example, in the school
district of Wake County, N.C., USA (Dur et al., 2018), where parents can see ag-
gregated information about previously submitted preferences. In various mu-
nicipalities of Estonia (Biró and Veski, 2016), the preferences of individual fam-
ilies over limited kindergarten slots are listed on a public web site. While this
interim information revelation may provide logistical benefits for the agents,1

the strategic impact of releasing this information is less clear.
Our main results identify conditions under which certain strategy-proof

rules are strategically robust to sequential forms of implementation, even un-
der incomplete information. As is already known, however, not all strategy-
proof rules can be robust in this way. Consider a second-price auction where a
fixed order of (private values) bidders sequentially announces their bids. Imag-
ine that the last bidder to act follows the (optimal) strategy that is truthful ex-
cept that, if any previous bid is higher than her value for the object, she “gives
up” and bids zero. Given this strategy, truthful bidding would no longer be op-
timal for the earlier bidders, under a variety of informational assumptions. It
is simple to construct non-truthful equilibria that involve such strategies; they
differ from truthful ones in both revenue and efficiency.2

1By narrowing the list of obtainable schools, a family may require less time to determine their
preferences.

2For a trivial example, consider the first bidder bidding above the support of the distribution
of bidders’ values, and all other bidders bidding zero.
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This “bad equilibrium” problem of the second-price auction can be at-
tributed to the fact it is bossy: a change in one bidder’s report, ceteris paribus,
can change another bidder’s payoff without affecting her own. Anticipating
that she will lose the auction anyway, the last bidder’s non-truthful decision
to bid zero is inconsequential to her. However it is not inconsequential to the
previous bidders, who can strictly benefit from inducing this non-truthful be-
havior through non-truthful reports of their own.

The lesson from this example is that, generally speaking, we should not
be surprised that the sequential implementation of bossy, strategy-proof rules
could lead to incentives for non-truthful behavior. On the other hand, many
prominent strategy-proof rules are non-bossy.3 Examples include the Top Trad-
ing Cycles rule (Shapley and Scarf, 1974; Abdulkadiroğlu and Sönmez, 2003) for
school choice and object allocation problems, the Median Voting rule (Moulin,
1980) used for the selection of a public goods level or alternative, and the Uni-
form Rationing rule (Benassy, 1982; Sprumont, 1991) used to fully allocate a
divisible good when agents have satiable preferences. Since the intuition from
the auction example does not apply to such rules, we are left with the ques-
tion of whether the sequential implementation of such rules might preserve
the incentive for non-truthful behavior in equilibrium.

There are at least two intuitive reasons to suspect a positive answer to this
question. First, the “bossy effect” described above in the sequential second-
price auction would no longer hold. If an agent’s decision to be non-truthful
is inconsequential to her, it must be inconsequential to everyone else, so it
would seem that the incentive to induce non-truthful behavior from later-
acting agents disappears.

Second, a related result of Marx and Swinkels (1997) also hints at a positive
answer to our question, at least in the special case of complete information.
Specifically, Marx and Swinkels provide results for general normal-form, com-
plete information games that imply the following corollary. Suppose a (deter-
ministic) sequential revelation mechanism is used to implement a rule that is
both strategy-proof and satisfies their “TDI” condition (which is a strong ver-
sion of non-bossiness). Then every subgame perfect equilibrium of the result-
ing game yields the same payoffs that would be obtained under truthful re-
porting. That is, a strong non-bossiness condition (TDI) rules out the kind of
non-truthful equilibrium behavior that could occur in the second-price auc-
tion described above, as long as there is complete information. Indeed, as a

3Formalized in Section 3, non-bossiness requires that, if an agent’s welfare is unaffected by a
misreport of her preferences, then so is the welfare of all agents. Various, similar conditions are
defined in the literature starting with Satterthwaite and Sonnenschein (1981).
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corollary of our results, this complete information result turns out to be true
even if we replace TDI with the weaker non-bossiness condition.

However, as we show in two examples below, this conclusion does not hold
in the more general case of incomplete information. Specifically, in a stan-
dard Bayesian setup, we show that a sequential revelation game derived from a
strategy-proof, non-bossy rule can yield sequential equilibria in which (i) pay-
offs differ from those obtained under truthful revelation, and (ii) a non-truthful
agent would be strictly worse off by deviating to a truthful report. This is sur-
prising since, as we have stated above, this phenomenon cannot occur under
complete information.

This point is illustrated via Example 1, where preferences are solicited ac-
cording to a fixed, deterministic ordering of the agents and an allocation rule is
then applied. As implied by our Theorem 1, the critical feature driving the ex-
ample is that the prior distribution of preference profiles has non-Cartesian
support. A second example (Example 2) covers a broader range of scenar-
ios in which the agents’ reporting order is uncertain. Formally it considers a
sequential revelation mechanism that randomizes the order in which agents
anonymously (but publicly) report preferences, then applies the same alloca-
tion rule as in the first example. This example involves independently drawn
preferences (hence Cartesian support) but from distributions with different
supports, which turns out to be what drives the example.

The intuition behind the occurrence of non-truthful equilibrium outcomes
in both examples is summarized by two observations. First is that an (out-of-
equilibrium) truthful report by an early acting agent would induce a later agent
to place zero weight (interim belief) on the true preference profile of all other
agents, leading to her incorrect belief that misreporting is costless to her and
to everyone else. Second, the earlier agent anticipates this, and finds that he is
strictly better off avoiding this out-of-equilibrium report (even when it is truth-
ful), in turn leading to a non-truthful outcome.4

Following these examples, we investigate the types of information struc-
tures that admit the intertwined phenomena in our examples, i.e. non-truthful
equilibrium outcomes and a strict disincentive for truthfulness. First, we pro-
vide conditions that rule out a sequential revelation mechanism’s “failure” to
sustain only truthful outcomes (Theorem 1). Second, we show that these same

4That is, the phenomenon we highlight is a consequence of the fact that, in a sequential rev-
elation game, preference reports also play a signaling role. This suggests that one might subject
the sequential equilibria in our examples to the additional scrutiny of signaling games refine-
ments in order to evaluate the sensibility of the belief systems sustaining them. We do this in
an Online Appendix, showing that our equilibria satisfy the forward induction arguments intro-
duced by Cho and Kreps (1987) and generalized to our setting by Govindan and Wilson (2009).
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conditions also rule out the possibility that an agent faces a strict disincen-
tive to be truthful in equilibrium (Theorem 2). For fixed order mechanisms (as
in Example 1, where the agents’ deterministic reporting order is commonly
known) it is sufficient for the prior distribution over type profiles to satisfy
a simple Cartesian Support (CS) condition, which is automatically satisfied,
for instance, in complete information, i.i.d., and full-support settings. In lay
terms, the CS condition requires that the private information of a coalition of
agents never rule out some admissible preference relation for an agent who
does not belong to the coalition. When there is uncertainty in the agents’ re-
porting order (i.e. random order mechanisms as in Example 2), a similar con-
dition suffices as long as the underlying rule also satisfies a weak anonymity
condition.

All in all, our results document a surprising informational phenomenon
that can derail incentives under strategy-proof, non-bossy rules when prefer-
ence reports are revealed sequentially. Our sufficient conditions ruling out this
phenomenon are naturally satisfied in many environments. In such settings,
our results provide a valuable tool to planners deciding whether to operate
such rules in a sequential form (see Section 5 for further discussion).

The motivation behind other work on extensive-form mechanisms and im-
plementability, briefly discussed here, typically differs from ours. For instance,
Moore and Repullo (1988) show how sequential mechanisms can help the plan-
ner by expanding the set of implementable social choice functions (SCFs) by
explicitly considering non-revelation mechanisms under complete informa-
tion.5 Li (2017) considers whether a strategy-proof SCF can be implemented
by such mechanisms in “obviously” dominant strategies. In contrast to such
work, we are motivated by the observation that some planners have already
committed to the use of a specific SCF as a revelation mechanism, but are mak-
ing the design choice to elicit preferences sequentially rather than simultane-
ously. Indeed when preferences are elicited simultaneously in complete infor-
mation environments, (Saijo et al., 2007) show that a strategy-proof, non-bossy
SCF avoids the sort of “bad equilibrium” problem described above only when
it also satisfies a particularly strong “rectangularity” property.6

The remainder of the paper is organized as follows. Section 2 presents the

5The experimental results of Klijn et al. (2019) also suggest that players can be better strate-
gists in dynamic mechanisms that in static ones.

6None of the SCF’s we mentioned earlier satisfies it. Indeed, certain forms of dictatorial rules
are typically the only strategy-proof, non-bossy SCF’s that do (Saijo et al., 2007; Bochet and
Sakai, 2010; Fujinaka and Wakayama, 2011). On the other hand the equilibrium problem can
be avoided by appealing to coalitional refinements (Bochet and Tumennassan, 2017) or “empir-
ical plausibility” refinements (Velez and Brown, 2019).
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examples described above. Section 3 introduces our model while Section 4
presents our results. In Section 5 we summarize and interpret our results.
Proofs are relegated to the Appendix.

2 Two Examples

In the interest of brevity and simplicity, we provide our examples using min-
imal notation and definitions since the terminology is standard. Readers un-
familiar with the concepts may refer to Section 3 for formal definitions. The
Appendix contains proofs that our examples are indeed sequential equilibria.

In both examples, we consider the rationing problem (Benassy, 1982),
where an endowment Ω of a divisible good must be divided amongst four
agents, N = {1, 2, 3, 4}, each with single-peaked preferences. Each agent i ∈N
has a privately known peak level of consumption, pi , so that consuming x units
of the good yields a payoff of−|pi −x |.7 Profiles of peaks are drawn from a prior
distribution specific to each example.

A well-studied rule for this problem is the Uniform rationing rule (Benassy,
1982; Sprumont, 1991) which works as follows. In “deficit” cases (where the
sum of the agents’ peaks exceeds Ω), the Uniform-rationing rule allocates an
equal share of the good, say λ, to all agents with the exception that any agent
i for whom pi < λ receives her peak amount, pi . Similarly in “surplus” cases
(where Ω exceeds the sum of peaks), all agents receive some common share λ,
with the exception that if pi > λ, then i receives her peak amount, pi .8 The
Uniform rule is both strategy-proof and non-bossy (see Section 3).

In our first example, the planner attempts to implement the Uniform rule
by sequentially soliciting the agents’ peaks according to a fixed order. Each
agent observes the reports of previous agents, and uses this information to
update beliefs about the remaining agents’ (correlated) preferences. One can
think of this procedure as representing roll-call voting, e.g. when preferences
are revealed according to the order in which people are sitting around a table.
In our second example, preferences are drawn independently but the planner
randomizes the order in which he solicits the agents’ reports. Each agent ob-
serves the previous reports—but not the identity of those who made them—
and uses this information to update beliefs about the identity of the remaining
agents. For each example we describe equilibrium payoffs which differ from
payoffs under truth-telling behavior.

7Our restriction to piecewise linear payoff functions is unimportant and merely simplifies
the example. It also means that peaks correspond to types in our general model.

8In both cases, this definition implicitly defines a unique λ.
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2.1 Example 1: Fixed-order revelation, correlated types

There are Ω= 4 units to be divided and, for simplicity, the set of possible peaks
is restricted to be {0, 1, 2, 2.5, 3}. We further restrict the possible combinations
of agents’ peaks via the common prior beliefs over types. Specifically, assume
there are six equally likely profiles of peaks listed in Table 1.

p1 p2 p3 p4

2 1 2 2
2.5 1 0 0
3 1 0 0
2 2 2 2

2.5 2 0 0
3 2 0 0

Table 1: The common prior belief is that these six profiles of peaks are equally likely.

Observe that Agent 2’s peak is equally likely to be p2 = 1 or p2 = 2 inde-
pendently of the other agents’ peaks. The list of the other three agents’ peaks,
(p1, p3, p4), is one of three equally likely subprofiles, (2, 2, 2), (2.5, 0, 0), or (3, 0, 0).

We consider the extensive form, incomplete information game in which
Agents 1–4 sequentially (and in numerical order) publicly announce their
peaks and the Uniform rule is applied to those announcements. A (mixed)
strategy for player i maps the agent’s peak pi and observed history of i −1 pre-
vious reports into a lottery over reports.

Let σ be the (pure) strategy profile in which each agent always truthfully
reports her peak, with two exceptions:

(i) if Agent 1’s peak is p1 = 3, then Agent 1 reports a peak of 2.5;

(ii) if Agent 1 has reported a peak of 3, then Agent 2 reports a peak of 2 (re-
gardless of p2).

Observe that when the profile of agents’ peaks is (3, 1, 0, 0),σ prescribes reports
of (2.5, 1, 0, 0). Thus the outcome under these reports, (2.5, 1, 0.25, 0.25), differs
from the Uniform allocation for these peaks, (3, 1, 0, 0). Furthermore, if Agent 1
were to deviate to a truthful strategy when p1 = 3, she is strictly worse off when
p2 = 1 (and otherwise indifferent): the resulting reports under σ−1 would be
(3, 2, 0, 0), yielding an allocation of (2, 2, 0, 0).

Nevertheless, as we show in the Appendix, there exists a belief system β
such that (σ,β ) is a sequential equilibrium. What drives the example is the fact
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that, following an (off equilibrium path) report of 3 by Agent 1, Agent 2 (under
β2) believes with certainty that p1 = 2, and hence that (p1, p3, p4) = (2, 2, 2). That
is, after Agent 1 reports a “large” peak of 3, Agent 2 believes that the next two
agents also will report relatively “large” peaks (p3 = p4 = 2), and so she will
be allocated one unit of the good regardless of her report (as long as it is one
or greater). She believes her misreport to be costless since her (possibly false)
inference about p1 gives her (possibly false) certainty about future reports. This
occurs due to the extreme correlation across preferences, and gives an intuition
behind our main results.

Backing up a step, if Agent 1 were to truthfully report a peak of p1 = 3, she
foresees being hurt by this because it could inflate the reported peak of Agent 2.
In terms of beliefs, Agent 1 realizes that Agent 2’s misreport will lead to her be-
ing “surprised” by the truthful reports of Agents 3 and 4 that do indeed (nega-
tively) correlate with 1’s report. Ex post, both Agents 1 and 2 would have been
harmed by Agent 1’s truthful report. Agent 1 foresees this, and averts this chain
of events by misreporting her peak. Agent 1’s incentive to do this is strict, de-
spite the strategyproofness and non-bossiness of the Uniform rule.

2.2 Example 2: Random-order revelation, independent types

Our first example showed that, with correlated preferences, sequential revela-
tion can lead to undesirable outcomes even when the underlying rule is both
strategy-proof and non-bossy. Our second example shows that, even without
correlation of preferences, undesirable outcomes can occur when the agents
anonymously announce preference in random order.9 In the example, an out-
of-equilibrium truthful report would cause an agent to falsely infer the identity
of an agent who has already reported and, because of an asymmetry in the sets
of agents’ possible types, to believe with certainty that a misrepresentation of
preferences would be costless. This in turn strictly discourages some agents
from making that report—even if it would be truthful—in the first place.

We consider a rationing problem identical to Example 1, except that there
are now Ω = 8 units of the good to be divided, and the distribution of peaks is
changed. Peaks are drawn independently, but not identically, across agents ac-

9As a special case of such mechanisms, one can imagine a planner that periodically an-
nounces updated, aggregate statistics of reported preferences to date. Agents who have not yet
reported can view information about previous reports without learning the identities of those
who reported.
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cording to the distributions in Table 2, where probabilityα is “somewhat close”
to 1.10

peak

0 2 2.5 2.9 3

Agents 1–3 0 0 α 1−α
2

1−α
2

Agent 4 α 1−α
2 0 0 1−α

2

Table 2: Each agent’s peak is independently drawn according to the given distribution, where α
is close to one.

Consider the extensive form game in which the agents report their peaks in
a uniformly random order. Agents observe their own positions in the ordering
and the previous agents’ reports (but not who made them). The Uniform rule is
then applied to those announcements. As before, a (mixed) strategy for player i
maps the agent’s peak pi and observed history of reports into a lottery over
reports.

We construct a non-truthful, sequential equilibrium that has positive prob-
ability of resulting in an inefficient outcome. The players are truthful on the
equilibrium path with the exception that no agent, when chosen first to report,
ever reports a peak of 3. This behavior is sustained by the possible “threat” of
agents 1–3 responding with subsequent non-truthful reports of a peak of 3, re-
gardless of their actual peaks. Letσ be the (pure) strategy profile in which each
agent always truthfully reports her peak, with these exceptions:

(i) If Agent i ∈ {1, 2, 3} is chosen to report first and her peak is pi = 3, then
she reports a peak of 2.9;

(ii) If Agent 4 is chosen to report first and her peak is p4 = 3, then she reports
a peak of 2;

(iii) If Agent i ∈ {1, 2, 3} is not chosen to report first and all previous reports
have been 3, then she also reports a peak of 3.

Observe that, for example, when the agents are asked to report in numerical
order, and when the profile of peaks is (3, 2.5, 2.5, 0), the agents report peaks of
(2.9, 2.5, 2.5, 0) underσ, yielding an allocation of (2.9, 2.5, 2.5, 0.1) to the agents.
This differs from the Uniform allocation that would result under truthful re-
ports, namely giving each agent her peak. In fact, when Agent i ∈ {1, 2, 3} is

10Details are in the Appendix. The example does not depend at all on the same parameter α
being applied to all four agents; this assumption merely simplifies exposition.
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chosen to report first and pi = 3, simple calculations show that the agent has a
strict incentive to misreport her peak to be 2.9.11

Nevertheless, there exists a belief system β such that (σ,β ) is a sequential
equilibrium (see Appendix). What drives this example is an idea similar to that
in Example 1, but that occurs through a different randomization device: the
ordering of agents. Following any (off equilibrium path) report of 3 in the first
round, any subsequent agent i 6= 4 believes (under βi ) with certainty that the
report came from Agent 4. Given this belief in an “inflated” report from Agent 4,
any other agent acting in, say, round 2 believes with certainty that regardless
of her report, all subsequent reports will be peaks of 2.5 or greater, and hence
any such report she makes will grant her an equal share (2 units) of Ω. It is the
“certain belief” that Agent 4 acted first that leads to the certain belief about
subsequent reports, which in turn leads to certain belief that she cannot harm
herself with a misreport. This occurs in part due to the fact that the support
of the marginal distributions of preferences vary across agents. Finally, as in
Example 1, if we back up a step to Round 1, an agent i ∈ {1, 2, 3} can foresee
all of this, and realizes that by (truthfully) reporting a peak of 3, she potentially
triggers exaggerated reports from the other two high-demand agents ( j , k 6∈
{i , 4}). This strictly encourages a misreport in round 1.

3 Model

3.1 Environment

There is an arbitrary set of alternatives A and a set of agents N ≡ {1, . . . , n},
n ≥ 2. Each agent i ∈N has expected-utility preferences on the space of mea-
sures on A,∆(A), represented by utility function ui belonging to some domain
of utility functions U , which is assumed to be countable. Denote a profile
of utility functions as u ≡ (ui )i∈N ∈ U N . Utility functions are private infor-
mation, but are drawn from a commonly known prior probability measure,

11Intuitively, if i reports 2.9, then with large probability the other three agents truthfully report
(2.5,2.5,0) in some order, giving i 2.9 units. If i reports 3, then with large probability agent 4
reports 0 and the remaining agents report 2.5 or 3, depending on whether they report after or
before Agent 4, respectively. Thus with large probability the others’ reports are equally likely to
be (3,3,0), (3,0,2.5), or (0,2.5,2.5). Respectively, these reports give i either 2.67, 2.75, or 3 units of
the good, a lottery worse than 2.9 units for sure when pi = 3. As long as α is sufficiently large, a
misreport of 2.9 is strictly better.
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µ ∈ ∆(U N ).12 We endow ∆(U N ) with the l 1 norm. Assumptions about µ,
which play a central role in our results, are described in Subsection 3.3.

For each pair of disjoint sets S , T ⊂ N , each uS ∈ U S , and each uT ∈ U T ,
we let (uS , uT ) denote the sub-profile obtained by joining uS and uT . We write
(u−T , uT ) in place of (uN \T , uT ) and write (u−i , ui ) in place of (uN \{i }, u{i }). For
S , T ⊆N with |S |= |T |, we write [uS ] = [uT ] to denote that uS ∈U S is a relabel-
ing of uT ∈U T , i.e.,

[uS ] = [uT ] ⇔ ∃ bijection ζ: S → T s.t. ∀s ∈ S , us = uζ(s ).

A social choice function (SCF), f :U N → A, associates with each utility pro-
file u ∈U N an alternative f (u ). The following four conditions on SCF’s are cen-
tral to the analysis. The first three are standard, and the fourth is a weakened
version of a standard anonymity condition. For any SCF f on a given domain
U N , we say that

• f is strategy-proof when for each i ∈ N , u ∈ U N , and vi ∈ U ,
ui ( f (u−i , ui ))≥ ui ( f (u−i , vi )).

• f is non-bossy (in welfare) when for each i ∈N , u ∈U N , and vi ∈U ,

ui ( f (u )) = ui ( f (u−i , vi )) =⇒ ∀ j ∈N , u j ( f (u )) = u j ( f (u−i , vi )).

• f is non-bossy* (in welfare/outcome) when for each i ∈N , u ∈U N , and
vi ∈U ,

ui ( f (u )) = ui ( f (u−i , vi )) =⇒ f (u ) = f (u−i , vi ).

• f is weakly anonymous when it is welfare invariant under any permu-
tation of the other agents’ reports, i.e. when for each i ∈N , ui ∈U , and
v, v ′ ∈U N , we have

vi = v ′i and [v ] = [v ′] =⇒ ui ( f (v )) = ui ( f (v
′)).

Non-bossiness* plays a role in strengthening the conclusion of our main the-
orem that guarantees outcome equivalence. It is satisfied, for example, by the

12Our results generalize to a model of non-common priors at the expense of additional nota-
tion. As part of our analysis we prove that, under the assumptions of Theorem 1 and Theorem 2,
each agent is behaviorally equivalent to a truthful agent. Thus even if agent types included a
prior over others’ types, an agent’s expected utility would be calculated with respect to the in-
duced distribution of payoff types.
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Uniform rationing rule, Median Voting rule, and TTC in their respective stan-
dard environments. The weak anonymity condition is implied by the standard
anonymity condition that requires an agent’s consumption to be invariant to
permutations of the other agents’ reports. Since weak anonymity plays the role
of a sufficient condition in our results, this weaker definition strengthens our
results.13 Most allocation rules considered in the literature satisfy the standard
anonymity condition, including the Uniform-rationing rule discussed in our
examples. To see that our condition weakens the standard one non-trivially,
consider the so-called “impartial division of a dollar” problem (de Clippel et al.,
2008). Many strategy-proof rules exist for that problem that are weakly anony-
mous yet violate the usual (stronger) anonymity condition.14

To describe the order in which agents sequentially report preferences we
denote a generic permutation of N as π: N → N , letting Π be the set of all
permutations of N . We interpret π as a mapping of positions to agents, so π(t )
denotes the t -th agent in the ordering. Finally let∆(Π) be the space of lotteries
on Πwith generic element Λ ∈∆(Π).

Given an SCF f , and a lottery Λ ∈∆(Π) over orderings, we consider the fol-
lowing extensive game form with imperfect information, denoted by Γ (Λ, f ).

Round 0: Nature randomly determines both a permutationπ ∈Π according to
Λ and a preference profile u ∈U N according to µ ∈∆(U N ); each agent i
privately learns ui .

Round 1: Agentπ(1) reports a preference relation u ′π(1) ∈U ; all agents observe

the report u ′π(1) but not the identity of π(1).

Round t (2≤ t ≤ n): Given the history of t −1 previous reports, which we de-
note by ht−1 ∈ U t−1, Agent π(t ) reports a preference relation u ′π(t ) ∈ U ;

all agents observe the report u ′π(t ) but not the identity of π(t ).

End: The outcome f (u ′) is chosen.

Each agent implicitly knows her own position in the realized ordering π by

13In fact an even weaker definition could be used that requires invariance in permutations of
reports, but only for the random orders of reports that could occur with positive probability in
the sequential revelation game form (i.e.Λ defined below). Unfortunately, formalizing this con-
dition would add complexity while offering little additional insight. For the sake of readability
we therefore omit this definition.

14These strategy-proof rules, characterized by de Clippel et al. (2008, Theorem 1), determine
an agent’s share of the dollar using a personalized “aggregator” of the other agents’ reports.
Such rules are weakly anonymous as long as all aggregators are symmetric; they fail the stronger
anonymity condition whenever the aggregators differ.
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observing the length of history ht−1 when she makes her report in round t .15

Of course, if Λ is deterministic, each agent knows the identity of each report-
ing agent. A deterministicΛ represents a simple roll-call voting procedure, e.g.
agents sitting around a table, publicly announcing reports in a foreseeable or-
der.

We denote the set of all histories by H = {ht ∈ U t : 0 ≤ t ≤ n}. When
we arbitrarily write ht ∈ H it is to be understood that the length of ht is t ∈
{0, 1, . . . , n}. At the beginning of Round 1, Agent π(1) faces the trivial history
denoted by h0 ≡ ;.

Depending on the distributionΛ, Agent i might have zero probability of be-
ing assigned to certain positions in the sequence, making it infeasible for that
agent to see histories of certain lengths. Denote the set of “feasible” histories
that Agent i ∈N could face by

H i ≡ {ht ∈H : ∃π ∈Π s.t. Λ(π)> 0 and i =π(t +1)}.

The dependence of H i on Λ is dropped from the notation since Λ is typically
fixed and clear from context. Of course some histories in H i could be ruled out
depending on the strategies of agents, but this is not relevant to this definition.

In the game Γ (Λ, f ), a (mixed, behavior) strategy for agent i ∈N is a func-
tion that maps her utility function and possible history into a randomized re-
port,σi :U ×H i →∆(U ), where∆(U ) is the space of countably additive prob-
ability measures on U . Conditional on ui ∈ U and h ∈ H i , the probability
that i makes a report of vi underσi is denoted byσi 〈ui , h〉(vi ). A strategy pro-
file is denoted by σ ≡ (σi )i∈N . A strategy subprofile for S ⊆ N is denoted by
σS ≡ (σi )i∈S ; similarly for arbitrary T ⊆ S , (σS\T ,σ′T ) denotes the strategy sub-
profile obtained by combining the listsσS\T andσ′T . For each agent i ∈N the
truthful strategy, denoted by τi , is the one that for each realized ui and each
history, reports ui .

3.2 Sequential equilibria

We define the standard notion of sequential equilibrium (Kreps and Wilson,
1982). A belief function for agent i ∈N specifies, for each utility function and
history seen by i , a distribution over player sequences (Π) and preferences of
the other agents. Specifically it is a function βi :U ×H i →∆(Π×U N \{i })where
∆(Π×U N \{i }) is the set of countably additive measures on permutations of N
and the other agents’ types. Conditional on ui ∈U and h ∈H i , the probability

15The analysis of the corresponding game in which agents learn only the set of the previous
reports (but not their relative order) is analogous to ours.
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that βi puts on a permutation and preference subprofile of the other agents
is denoted by βi 〈ui , h〉(π, u−i ). A belief system is a profile of belief functions
β ≡ (βi )i∈N .

An assessment is a pair (σ,β ) of a strategy profile σ and belief system β .
The assessment is consistent for 〈Γ (Λ, f ),U N ,µ〉 if there is a sequence of as-
sessments {(σk ,βk )}k∈N such that for each k ∈ N, (i) σk has full support,16

(ii) βk is obtained from Bayes’ rule given Λ, µ, and σk , and (iii) as k → ∞,
(σk ,βk )→ (σ,β ).17

The definition of sequential rationality—that each agent is playing a best
response at every possible information set—requires notation to denote the
conditional probability of future paths of play. For π ∈ Π and t , s ∈ {0, . . . , n}
such that s > t , we denote the set of predecessors and the set of s − t suc-
cessors of agent π(t ) in π by π(1, ..., t − 1) and π(t + 1, ..., s ), respectively. Ad-
ditionally, for types uπ(t+1,...,n ) ∈ U π(t+1,...,n ), history ht ∈ U t , and reports
vπ(t+1,...,s ) ∈U π(t+1,...,s ), we let

σ(hπ(t+1,...,s )|ht ,π, uπ(t+1,...,s ))

denote the probability of realizing final history (ht , vπ(t+1,...,s )) under strategy
profile σ conditional on: π being the selected permutation, agents π(1, . . . , t )
having selected actions ht , and agents π(t +1, . . . , s ) having types uπ(t+1,...,s ).

Assessment (σ,β ) is a sequential equilibrium of 〈Γ (Λ, f ),U N ,µ〉 if it is con-
sistent and for each i ∈ N , each ui ∈ U , each t ∈ {0, . . . , n − 1}, and each
ht−1 ∈H i ,σi 〈ui , ht−1〉 is sequentially rational: for each vi ∈ supp(σi 〈ui , ht−1〉)
and each deviation wi ∈U , the expected utility from reporting vi , namely
∑

π,u−i

∑

hπ(t+1,...,n )

ui

�

f
�

ht−1, vi , hπ(t+1,...,n )
��

σ
�

hπ(t+1,...,n )|(ht−1, vi ),π, uπ(t+1,...,n )
�

βi 〈ui , ht−1〉(π, u−i )

is greater than or equal to that from reporting wi , namely
∑

π,u−i

∑

hπ(t+1,...,n )

ui

�

f
�

ht−1, wi , hπ(t+1,...,n )
��

σ
�

hπ(t+1,...,n )|(ht−1, wi ),π, uπ(t+1,...,n )
�

βi 〈ui , ht−1〉(π, u−i ) .

Denote the set of sequential equilibria by SE〈Γ (Λ, f ),U N ,µ〉.

3.3 Information structure

Our results are centered around two conditions on the prior beliefsµ ∈∆(U N ).
The first condition applies to our results on sequential reporting when the or-

16Profileσ has full support if for all i ∈N , ui ∈U , ht ∈H i , and vi ∈U ,σi 〈ui , ht 〉(vi )> 0.
17Convergence is point-wise, i.e. fixing any i ∈ N , ui ∈ U , ht ∈ H i , vi ∈ U , and (π, v−i ) ∈

Π×U N \{i }, we haveσk
i 〈ui , ht 〉(vi )→σi 〈ui , ht 〉(vi ) and β k

i 〈ui , ht 〉(π, v−i )→βi 〈ui , ht 〉(π, v−i ).
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der Λ is deterministic. It states that the support of µ can be written as a Carte-
sian product of n subsets ofU .

Definition 1. A priorµ ∈∆(U N )has Cartesian support if its support is the cross
product of n non-empty subsets ofU , i.e. for any u , v ∈ supp(µ) and j ∈ N we
have µ(v− j , u j ) ∈ supp(µ). Denote the set of such priors byMCartesian.

This condition is violated in Example 1.18 It is satisfied by any prior with full
support onU N , butMCartesian also allows for asymmetric sets of possible util-
ity functions across agents. For example, the prior in Example 2 has Cartesian
support simply due to independence across agents’ preferences. More gen-
erally, the Cartesian support condition merely requires the support for beliefs
over agent j ’s preferences to be the same for any given realization of u− j .

To obtain our results for the case in which the agents’ reporting order, Λ, is
non-deterministic (as in Example 2), we introduce the next condition. It rules
out a preference report that could cause an agent to make “absolutely certain”
conclusions (correctly or not!) about the identity of the agent who made the
report. This requires strengthening the Cartesian support condition so that
agents’ possible preferences come from the same set.

Definition 2. A prior µ ∈∆(U N ) has symmetric Cartesian support if, for some
set V ⊆U , supp(µ) =V N . Denote the set of such priors byMsymm−Cartesian.

The condition requires that, if any profile of types occurs with positive
probability, then so does any permutation of that profile. Obviously it implies
the condition in Definition 1.

4 Results

We begin with the straightforward observation that, for any strategy-proof SCF
f and any randomization of sequences Λ, there is an “always truthful” equi-
librium in the sequential revelation game. The proof is obvious, but for com-
pleteness is provided in the Appendix along with all other proofs.

Proposition 1 (Truth-telling equilibrium). For any strategy-proof SCF f , any
distribution Λ ∈∆(Π), and any prior µ ∈∆(U N ), truthful reporting is an equi-
librium behavior: there exist beliefs β such that (τ,β ) ∈ S E 〈Γ (Λ, f ),U N ,µ〉.

We are interested in the converse question: When does an arbitrary se-
quential equilibrium of the sequential revelation game necessarily lead to

18E.g. there is no profile in the support of the prior where p1 = 3 and p3 = 2 simultaneously.
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truthful outcomes, at least in welfare terms? The auction example discussed
in the Introduction motivates our restriction to non-bossy SCF’s. Even with
this restriction, Example 1 and Example 2 show that for some information
structures, a sequential revelation game for a strategy-proof, nonbossy f yields
equilibrium outcomes that yield payoffs different from those under truthful
reporting. Our main result is that, if we rule out those kinds of information
structures, then all sequential equilibria must be payoff-equivalent to a truth-
ful equilibrium.

Theorem 1 (Truth-equivalent payoffs). Let f be a strategy-proof and non-bossy
SCF and letΛ ∈∆(Π). Suppose that at least one of the following conditions holds.

1. The prior has Cartesian support (µ ∈MCartesian) and Λ is deterministic.

2. The prior has symmetric Cartesian support (µ ∈Msymm−Cartesian) and f is
weakly anonymous.

Then equilibrium outcomes are welfare-equivalent to truthful ones: For each
(σ,β ) ∈ SE〈Γ (Λ, f ),U N ,µ〉, each u ∈ supp(µ), and each final history of re-
ports hN ∈ U N reached with positive probability given σ, Λ, and u, we have
u ( f (hn )) = u ( f (u )). If f is also non-bossy∗ then we also have f (hN ) = f (u ), i.e.
equilibrium outcomes are equivalent to truthful ones.

Theorem 1 establishes our main point, namely that even if a sequential
equilibrium involves non-truthful strategies, all of the agents receive payoffs
as if everyone had been truthful. Observe however that this statement still al-
lows for an agent to face a strict incentive to misreport preferences in equilib-
rium; recall that this occurs in both examples of Section 2. It turns out that this
phenomenon also can be ruled out under the same set of assumptions as in
Theorem 1: in any sequential equilibrium, an agent’s truthful strategy must be
sequentially rational with respect to the other agents’ strategy profile.

Theorem 2. Under the same assumptions as in Theorem 1, truthful behavior is
sequentially rational with respect to any sequential equilibrium: for any (σ,β ) ∈
SE〈Γ (Λ, f ),U N ,µ〉 and any i ∈ N , the truth telling strategy τi is sequentially
rational for i with respect toσ−i and βi .

In the remainder of this section, we explain the reasoning behind the ar-
gument that proves Theorem 1, relegating the formalization to the Appendix.
Theorem 2 follows from an an extension of these arguments that has essen-
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tially the same structure. Since the latter proof adds little insight to our main
point, its formalization is provided in a separate Online Appendix.19

To explain the reasoning behind Theorem 1, we first point out how the con-
clusion would be quite straightforward in the two-agent case. (Indeed, the the-
orem’s conclusions hold in the two-agent case whenever f is strategy-proof
and non-bossy, even without the remaining assumptions on µ, Λ, and f .) In
doing so, we observe a step in the reasoning at which the simplicity of the ar-
gument breaks down with n ≥ 3 agents, which in turn reveals the point where
the Cartesian support conditions play a role in deriving our results.

For the two-agent case, let f be a strategy-proof, non-bossy SCF and con-
sider the deterministic sequential revelation game in which Agent 1 reports her
preferences first. If Agent 1 reports v1 ∈ U , a best response for Agent 2 with
utility u2 is any report v2 that maximizes u2( f (v1, v2)). By strategy-proofness
the truthful report u2 is one best response, so for any best response v2 we have
u2( f (v1, v2)) = u2( f (v1, u2)). Since f is non-bossy, this implies u1( f (v1, v2)) =
u1( f (v1, u2)). That is, as long as Agent 2 is best-responding, Agent 1 receives a
payoff as if Agent 2 were committed to being truthful across the set of admissi-
ble utility functions for Agent 2.

Given this fact, a best response for Agent 1 with utility u1 is any report
v1 that maximizes E [u1( f (v1, u2))], where the expectation is with respect to
µ( · |u1). Strategy-proofness again implies that the truthful report u1 is one such
best response. However our results depend on the converse question: when is
a non-truthful v1 also optimal? This is where a subtle observation is relevant
in extending the argument to more than two agents.

For v1 to be an optimal report for u1, we must have
∑

u2∈U
u1( f (v1, u2))µ(u2|u1)≥

∑

u2∈U
u1( f (u1, u2))µ(u2|u1)

Of course strategy-proofness implies the opposite inequality pointwise:

∀u2 ∈U , u1( f (v1, u2))≤ u1( f (u1, u2)).

Hence if v1 is optimal we must have u1( f (v1, u2)) = u1( f (u1, u2)) for any u2 such
that µ(u2|u1)> 0. The latter qualification is important: v1 could be optimal for
u1 even though u1( f (v1, u2))< u1( f (u1, u2)) for some u2’s that have zero prob-
ability under µ( · |u1). If such u2’s had positive probability, the first inequality
above would be violated. At this point we reach the conclusion of Theorem 1

19In fact the Online Appendix provides a technically stronger result, stating that an agent’s
equilibrium strategy can be replaced with her truthful strategy in a way that, with appropriately
modified beliefs, yields a new, payoff-equivalent equilibrium.
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for the two-agent case. The previous equality, with non-bossiness, implies that
u2( f (v1, u2)) = u2( f (u1, u2)) for unit mass of u (under µ). Thus for each i ∈N ,
ui ( f (v1, v2)) = ui ( f (u1, u2)).

What made the argument simple in the two-agent case is the following: the
only agent who needs to forecast another agent’s type (i.e. Agent 1) is also the
first agent to act. Thus this agent’s beliefs are necessarily determined only by
Bayesian updating the prior (µ) with respect to her private information (u1). In
particular this means that, fixing u1, for any utility function u2 of Agent 2 for
which µ(u1, u2)> 0, Agent 1 must anticipate u2 with positive probability since
his beliefs are precisely µ( · |u1).

When n ≥ 3, however, an agent who acts neither first nor last has to form be-
liefs about later-to-act agents’ types, based both on the prior and on the earlier
agents’ reports. This is what led to the phenomenon of Example 1: following
an out-of-equilibrium report by Agent 1, Agent 2 would place zero weight on
the chance of being “punished” by certain, future truthful reports (by Agents 3
and 4).

So let us reconsider the above argument for the general case n ≥ 3, sup-
posing again that agents report preferences in the deterministic sequence
1, 2, . . . , n . As before, for any reports v−n of the first n − 1 agents and for any
realized utility un , truth-telling is a best response for Agent n and hence any
best response provides Agent n with the same payoff as truth-telling. By non-
bossiness each of the other agents also receives a payoff as if Agent n reported
un . Thus earlier agents can behave as if Agent n were committed to being truth-
ful across the set of Agent n ’s “foreseeable” utility functions un . Where the ar-
gument breaks down is in determining precisely which un ’s are foreseeable,
since this is an implication of interim beliefs. Out of equilibrium beliefs of in-
termediate acting agents need not be a Bayesian update of µ. As illustrated in
Example 1 and Example 2, following an off-equilibrium report, such an inter-
mediate agent may place zero probability on the report being truthful and con-
sequently could make a report that is, to the “surprise” of that agent, not payoff
equivalent to a truthful one. In turn this can unravel the incentive for truthful
reporting earlier in the game: earlier agents anticipate this agent’s (mis)belief
and are forced to report non-truthfully.

These arguments suggest that one can reach the same conclusion as in the
two-agent case if one guarantees that, in a sequential equilibrium, each agent’s
beliefs place positive probability on types that force her to act as if she were
truthful. In order to identify such conditions, we begin with two intuitive ob-
servations that apply to any consistent assessment, (σ,β ). First, whenever an
agent is called upon to report her preferences, she cannot anticipate an ex-ante
impossible event with positive probability. The second statement concerns the
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beliefs of an agent—who acts at some interim stage of the sequential game—
about the preferences of agents who have yet to act. Of course these beliefs are
affected by the actions of previous agents: those actions are a function of their
preferences, which correlate with later agents’ preferences. What the second
statement says is the converse of this idea: the history of play (ht−1) influences
a player’s beliefs about future agents’ preferences only to the extent that ht−1

influences that player’s beliefs about previous agent’s preferences.20

Lemma 1. Fix a SCF f , a distribution of sequencesΛ ∈∆(Π), and an assessment
(σ,β ) that is consistent for 〈Γ (Λ, f ),U N ,µ〉.

1. Whenever an agent is asked to report her preferences, her beliefs place pos-
itive probability only on events that have positive prior probability, i.e., for
each u ∈ supp(µ), π ∈Π, i ∈N , ht−1 ∈H i , and u ′−i ∈U

N \{i },

βi 〈ui , ht−1〉(π, u ′−i )> 0 =⇒ π(t ) = i , Λ(π)> 0, µi (u
′
−i , ui )> 0

2. At any history of play an agent does not learn anything about the types
of the agents who she believes have yet to act, other than what she learns
through her own type, and the history of play. That is, for each u ∈ U N ,
π ∈Π, i ∈N , and ht−1 ∈H i ,

βi 〈ui , ht−1〉(π, u−i )> 0 =⇒ βi 〈ui , ht−1〉
�

· |π, uπ(1,...,t−1)
�

=µi

�

· |uπ(1,...,t )
�

.

Property 2 in Lemma 1 suggests the types of conditions that would suffice to
guarantee that, at any information set (on or off the equilibrium path) the agent
will not “lose sight” of the true profile of types. First, in the deterministic-order
case, the Cartesian support assumption turns out to guarantee that the real-
ization of earlier-reporting agents’ types—and their resulting reports—cannot
lead an agent to rule out the actual realization of later-reporting agents’ types.
Second, in the random-order case, one also needs to rule out the possibility
that an agent loses sight of the true profile because she rules out the true re-
alized sequence of reports, π. For instance, in Example 2 Agent 1 fully believes
(off the equilibrium path) that the first report came from Agent 4. Since Agents

20Theorems 1 and 2 generalize to all Perfect Bayesian equilibria satisfying the minimal con-
sistency requirement in Lemma 1. In extensive-form games with perfect information in which
agents’ types are independent, this property is usually assumed as a basic consistency require-
ment of perfect Bayesian equilibria and is referred to as beliefs being action-determined, i.e., the
marginal belief about the type of an agent can be updated only when this agent takes an action
in the game, and this update exclusively depends on this agent’s action (c.f., Osborne and Rubin-
stein, 1994, Def. 232.1). See Watson (2017) for a general definition of this minimal consistency
condition with possibly correlated types.
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2 and 3 are always high-demand types, Agent 1 believes the good will be ra-
tioned anyway and thus believes there to be no loss in exaggerating her report.
However, if Agent 1 anticipated some chance of a future, truthful report from
Agent 4, Agent 1 would strictly prefer not to exaggerate her claim. As we show,
the requirements that the prior have symmetric Cartesian support and that the
social choice function be weakly anonymous together guarantee that, even if
the agent loses sight of the true sequence, she nevertheless envisions the pos-
sibility of another permutation and type profile that forces her to act as if she
were truthful.

The following lemma, which applies to the deterministic-sequence case,
states that in a consistent assessment, following any history, an agent must as-
sign positive belief to any admissible “continuation profile,” i.e. to any subpro-
file of preferences for the remaining agents that had positive prior probability
under µ.21

Lemma 2. Fix a prior µ ∈MCartesian exhibiting Cartesian support, a SCF f , and
a deterministic distribution over sequencesΛ ∈∆(Π), i.e. whereΛ(π) = 1 for some
π ∈ Π. Let assessment (σ,β ) be consistent for 〈Γ (Λ, f ),U N ,µ〉. Then for each
u ∈ supp(µ), t ∈ {1, . . . , n}, and ht−1 ∈ Ht−1, there exists vπ(1,...,t−1) ∈ U π(1,...,t−1)

such that
βi 〈ui , ht−1〉(π, (vπ(1,...,t−1), uπ(t+1,...,n )))> 0.

The next lemma extends the previous idea to the random-sequence case
when the prior has symmetric Cartesian support. It states that in a consistent
assessment, following any history, an agent must assign positive belief to some
reordering of any admissible continuation profile, i.e. if it is possible for some
set of later-reporting agents π(t + 1, . . . , n ) to have a certain subprofile of pref-
erences in u ′, then for any history ht−1 the t th reporting agent assigns positive
probability to some set of remaining agentsπ′(t +1, . . . , n ) having (some order-
ing of) that subprofile.

Lemma 3. Fix a prior µ ∈ Msymm−Cartesian, a SCF f , and Λ ∈ ∆(Π). Let (σ,β )
be consistent for 〈Γ (Λ, f ),U N ,µ〉. Then for each u ∈ supp(µ), π ∈ supp(Λ), t ∈
{1, . . . , n}, and ht−1 ∈Ht−1, there exist (i)π′ ∈Πwithπ′(t ) =π(t ) and (ii) v ∈U N

with [vπ′(t+1,...,n )] = [uπ(t+1,...,n )] such that

βπ(t )〈uπ(t ), ht−1〉(π′, v−π(t ))> 0.
21The conclusion in the lemma cannot be strengthened to state that the agent necessarily

places positive weight on the true profile. Consider for instance the agent who reports first.
Conditional on an off-equilibrium report, the other agents’ belief about this agent’s type is un-
restricted by consistency.
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That is, if it is ex-ante possible for a set of “true” types, [uπ(t+1,...,n )], to be
realized by the agents yet to act after round t , then agent π(t )must anticipate
with positive probability this same set of types to be realized by some ordering
of some set of agents yet to act, [vπ′(t+1,...,n )].

5 Discussion and concluding remarks

We have demonstrated that the use of strategy-proof, non-bossy rules as se-
quential revelation mechanisms may lead to equilibria that yield non-truthful
outcomes and that give agents strict disincentives to be truthful. This phe-
nomenon occurs in Bayesian settings; in contrast it is ruled out in complete
information settings such as those considered in previous literature. The non-
truthful equilibria in our motivating examples are robust to forward induction
arguments. Therefore the issue that we address is not simply an artifact of
some construction of “unreasonable” equilibrium beliefs, but rather is a conse-
quence of the structure of the primitives of the model: the prior beliefs. Our re-
sults state that the phenomena in our examples can be ruled across all sequen-
tial equilibria whenever prior beliefs satisfy our Cartesian Support (CS) condi-
tions (along with a weak anonymity assumption when reporting sequences are
random).

The degree to which our results have a positive or negative interpreta-
tion heavily depends on the planner’s interpretation of the CS conditions.22

In many applications, particularly when the agents are unfamiliar with each
other, such conditions are innocuous.23 One can imagine scenarios in which
the CS conditions do not apply, however. For example, imagine that Agent 2
knows (with certainty) that Agents 1 and 3 have identical preferences (e.g. they
are siblings or partners) but is unsure what those common preferences are. In
this case, Agent 1’s private information rules out certain preference relations
for Agent 3 with certainty, so the CS condition breaks down. Similar stories
can be constructed in which Agents 1 and 3 are certain to have opposed pref-
erences (e.g. they are competitors), violating the CS condition.

If a planner views our CS conditions to be applicable,24 then our results
should be interpreted as a positive robustness check on strategy-proof, non-

22We thank referees for raising this point.
23In a finite model, where the set of all priors is a simplex, Definitions 1 and 2 are satisfied

for almost every prior with respect to any measure over the set of all priors that is absolutely
continuous with respect to the Lebesgue measure.

24The applicability of CS is determined by the planner’s perception of the players’ prior beliefs.
Something that could aid this determination is historical data on the distribution of agents’ pref-
erences. For example in the school choice environment, there is a growing literature addressing
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bossy rules. It is “safe” to use such rules as sequential revelation mechanisms
in the sense that sequential equilibria are guaranteed to yield the desired out-
come.

If instead players are sufficiently informed about each others’ preferences
that the CS conditions fail, then our work highlights a channel through which
sequential revelation could lead to payoffs that differ from those prescribed
by the underlying allocation rule. On the other hand, a reduction in agents’
private information can make Bayesian implementation (with indirect mech-
anisms) easier to achieve. In an exchange economy setting, Postlewaite and
Schmeidler (1986) show that (monotonic) SCF’s are Bayesian implementable
whenever beliefs satisfy a condition implying the following: for any realization
of types for N \{ j }, agent j ’s type can be deduced with certainty. Since this con-
dition has the opposite flavor of CS, this loosely suggests an agenda for future
work: the structure of information could be used to guide the planner’s deci-
sion whether to use sequential revelation mechanisms or simultaneous (pos-
sibly indirect) mechanisms.25

When the CS condition fails, one might wonder how “far” equilibrium pay-
offs might be from truthful ones. Within a general allocation model such as
ours, it is not possible to provide any general answer to this question. The pri-
mary reason for this is the disconnection between our CS conditions (which
pertain only to prior beliefs) and the agents’ payoffs (which depend on the
specification and structure of type- and outcome-spaces). Indeed in some set-
tings, there may be no gap between equilibrium outcomes and truthful ones
even when the CS condition fails. In settings where truthful reports are strictly
dominant actions, for example, any sequential equilibrium outcome is a truth-
ful one, regardless of whether beliefs have Cartesian Support.

In other settings, non-truthful sequential equilibria can be arbitrarily “bad”
depending on the scale of payoffs. To see this, observe that the equilibria we
construct in Example 1 and Example 2 would be preserved under any affine
transformation of the agent’s payoffs. Therefore any absolute or relative mea-
sure of welfare loss or inefficiency in terms of payoffs can be achieved with an
appropriately rescaled version of these examples. Since our objective is to ad-
dress when undesirable outcomes occur, rather than to describe what they are,
we leave further consideration of the latter question to future work that is spe-
cialized to specific problems or domains.

preference estimation even when agents are not truth-telling or when the underlying SCF is not
strategy-proof. See Fack et al. (2019) and the references therein.

25We are grateful to a referee for this insight.
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Appendix

Sequential Equilibrium of Example 1

We provide the formal arguments of the claims given in Subsection 2.1, namely
that (σ,β ) is a sequential equilibrium with the properties described earlier.

Agent 1’s beliefs under β are, trivially, the conditional measures β1〈p1〉 =
µ( · |p1), i.e. a Bayesian update of Table 1 given p1. Following any report from
Agent 1 (i.e. any history h2) and independent of her own peak p2, Agent 2’s be-
liefs, β2, are described in Table 3. Denote the possible subprofiles (p1, p3, p4) by
u−2 = (2, 2, 2), v−2 = (2.5, 0, 0), and w−2 = (3, 0, 0).

Agent 1’s report (h2) Agent 2’s belief

0 1
3 u−2, 1

3 v−2, 1
3 w−2

1 u−2

2 u−2

2.5 1
2 v−2, 1

2 w−2

3 u−2

Table 3: Beliefs for agent 2 are independent of her type. The table shows the distribution on
U {1,3,4} that agent 2 believes is true when she observes the respective histories of play.

Finally, since agents 3 and 4 always report their peaks truthfully and the
Uniform rule is strategy-proof, it is straightforward to specify beliefs β3,β4 in a
way that satisfies consistency and sequential rationality. We omit these details.

To show that σ is sequentially rational for Agent 1, observe Table 4 which
shows the distribution of outcomes that Agent 1 predicts conditional on her
report and her peak (which informs her about the truthful reports of Agents 3
and 4). Agent 1’s strategy, σ1, places positive probability only on actions that
maximize her expected payoff conditional on her type. Of particular note is
that, when p1 = 3, agent 1’s unique best response is to misreport her peak as 2.5.
That is, Agent 1 strictly prefers to misreport her preferences in this equlibrium.

Similarly Table 5 shows the distribution of outcomes that agent 2 predicts,
conditional on her report and on the report of Agent 1. (Recall that agent 2’s
own peak does not influence her beliefs and thus is omitted from the table.)
Agent 2’s strategy,σ2, places positive probability only on actions that maximize
her expected payoff conditional on the history of play.

To complete the argument that (β ,σ) is a sequential equilibrium we ob-
serve that β2 is easily seen to be the limit (as ε → 0) of beliefs obtained by
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Agent 1’s peak

Agent 1’s report p1 = 2 p1 = 2.5 p1 = 3

0 0 1
2 (2/3),

1
2 (1)

1
2 (2/3),

1
2 (1)

1 1 1 1
2 1 2 2
2.5 1 1

2 (2),
1
2 (2.5) 1

2 (2),
1
2 (2.5)

3 1 2 2

Table 4: For each combination of Agent 1’s report and peak, the table provides the distribution
of the amount of good received by agent 1 under σ. For each peak, the payoff-maximal out-
comes are boldfaced. Observe that when p1 = 3, the payoff-maximal outcome is obtained only
by (mis)reporting a peak of 2.5.

Agent 1’s report, h1

Agent 2’s report 0 1 2 2.5 3

0 1
3 (0),

2
3 (1) 0 0 1

2 0
1 1 1 1 1 1
2 1

3 (
4
3 ),

2
3 (2) 1 1 2 1

2.5 1
3 (

4
3 ),

2
3 (2.5) 1 1 2 1

3 1
3 (

4
3 ),

2
3 (3) 1 1 2 1

Table 5: Agent 2’s consumption under σ, conditional on the reports of Agents 1 and 2. The
consumption may be a lottery whose outcome depends on the reports of Agents 3 and 4 (in-
dependent of agent 2’s type). E.g. when Agents 1 and 2 both report 0, Agent 2 receives 0 with
probability 1/3 and receives 1 otherwise.

Bayesian updating when Agent 1 plays the (full support) mixed strategyσε1 de-
fined in Table 6.

Sequential Equilibrium in Example 2

We provide the formal arguments of the claims given in Subsection 2.2, namely
that (σ,β ) is a sequential equilibrium with the properties described earlier.

Define strategy profileσε as follows. First, whenever Agent 1, 2, or 3 is cho-
sen to report first, that agent randomizes her report with the distribution in
Table 7.

Whenever Agent 4 is chosen to report first, she randomizes according to the
distribution in Table 8.
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Agent 1’s Type

Action 2 2.5 3

0 ε ε ε
1 ε ε2 ε2

2 1−4ε ε ε
2.5 ε 1−2ε−2ε2 1−2ε−2ε2

3 ε ε2 ε2

Table 6: Fully mixed strategies σε1, converging to σ1, whose associated Bayesian beliefs define
β2. Each column provides a distribution over actions for the respective type.

Peak of agent 1, 2, or 3

Report 2.5 2.9 3

0 ε ε ε
2 ε ε ε

2.5 1−3ε− ε2 ε ε
2.9 ε 1−3ε− ε2 1−3ε− ε2

3 ε2 ε2 ε2

Table 7: First-round strategies (σεi (pi ;;), 1≤ i ≤ 3) for Agents 1–3. Each column is a distribution
over reports given the agent’s peak.

Finally, when any agent i ∈N is not the first to report her peak, her strategy
falls into one of two cases.

• First, if both i ∈ {1, 2, 3} and all previous reports have been “3,” the agent
reports a peak of 3 with probability 1 − 4ε and reports any one of the
other four admissible peaks with probability ε (independently of her true
peak).

• Otherwise (if either i = 4 or at least one previous report was not “3”) the
agent reports her true peak with probability 1− 4ε and reports any one
of the other four admissible peaks with probability ε.

This completes the description of σε , which has full support on the set of
all reports. Let β ε be the unique Bayesian belief based on σε . Our example is
the assessment (σ,β )which is the limit of (σε ,β ε) as ε→ 0.

We argue that if an agent i ∈ {1, 2, 3} observes any history of reports with
a first entry of 3, then βi assigns probability one to the event that Agent 4 has
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Peak of agent 4

Report 0 2 3

0 1−3ε− ε2 ε ε
2 ε 1−4ε 1−4ε

2.5 ε ε ε
2.9 ε ε ε
3 ε2 ε ε

Table 8: First-round strategies (σε4(p4;;)) for Agent 4.

already reported her preferences. To see this, one can compute the probability
of this event induced by σε for any ε, using Bayes’ rule. Informally, however,
first consider the history (3), i.e. where i is reporting second. The probability
that an agent different from Agent 4 is chosen first and reports 3 is of order ε2,
while the probability that Agent 4 is chosen first and reports 3 is of order ε,
yielding the claim. Next consider any history (3, p )where p 6= 3. The probability
of this pair of reports coming from two agents other than Agent 4 is of order ε3;
The probability of this pair of reports coming from a pair containing Agent 4 is
of order ε2, proving the claim. Next consider history (3, 3). The probability of
this pair of reports coming from two agents other than Agent 4 is of order ε2;
The probability of this pair of reports coming from a pair containing Agent 4
is of order ε, proving the claim. Finally, the claim is trivial for such a history of
length 3.

To show that (σ,β ) is a sequential equilibrium, first observe that it is ob-
viously consistent, being defined as the limit of full-support assessments. To
show sequential rationality, first consider any history underσ in which at least
one agent has already reported some peak other than 3. In this case, regardless
of the realization of peaks, σ prescribes truthful behavior for all subsequent
agents regardless of what future reports are made. Thus no subsequent agent’s
report can affect which reports will be made by the agents who follow. Hence
by the strategy-proofness of the Uniform rule no agent can achieve a higher
payoff than the one obtained by making a truthful report, proving sequential
rationality ofσ following such histories.

Second consider an agent i ∈ N who must act following some history h ∈
{(3), (3, 3), (3, 3, 3)} in which all previous reports are 3. Recall that if i 6= 4, βi

assigns probability 1 to the event that Agent 4 already reported, i.e. will not act
in a future round. Of course if i = 4, this agent also knows that she, herself, will
not act in a future round. Thus all future reports following i ’s (if any) will be 2.5
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or higher. This leads to two possibilities. If i reports a peak of 0, the Uniform
rule assigns zero units to agent i . If i reports any other peak (2 or higher), the
Uniform rule assigns two units to agent i . Thus at each of these histories, a
report of 3 is sequentially rational when i ∈ {1, 2, 3} and truthful reporting is
sequentially rational for i = 4, i.e.σ is sequentially rational for agents acting in
round 2 or later.

Finally consider the anticipated distribution of consumption of an agent
who is selected to report her peak first. The simplest case is Agent 4, since un-
der σ, Agents 1–3 always report peaks of 2.5 or higher. Therefore if Agent 4
reports a peak of 2 or more, she receives 2 units with certainty. If she reports
a peak of 0, her consumption is at most 0.5 units. When Agent 4’s peak is 0, a
report of 0 maximizes her expected payoff; otherwise a report of 2 does. There-
foreσ4 is sequentially rational.

For an agent i ∈ {1, 2, 3}, it is readily checked that a reported peak of 0 is
never optimal given σ−i : reporting a peak of 0 yields at most 1.5 units of the
good, while reporting 2 guarantees her 2 units of the good, which is always
preferable since her peak is above 2. By reporting 2.5, i receives either 2.5 units
(if 4’s peak is 0) or 2 units (otherwise). Calculations for reports of 2.9 and 3 are
more tedious, but can be seen intuitively by considering the fact that α is close
to 1. Given this assumption, the approximate distribution over i ’s consump-
tion following any first round report is provided in Table 9. For instance, a first
round report of 0 triggers truthful behavior by the remaining agents, yielding
Agent i 1.5 units of the good with significant probability (at least α3). Similarly,
a report of 2.9 yields 2.9 units of the good with probability α3. If i reports 3,
however, then the outcome depends on which of the next three reports will be
made by (truthful) Agent 4, since agents {1, 2, 3} \ {i } are truthful only if they
report after Agent 4. It can be checked that when the other agents’ peaks are
(2.5, 2.5, 0) (probability α3), Agent i is equally likely to receive 8/3, 11/4, or 3
units of the good.

Therefore it should be clear that, when i ’s peak is 2.5 or 2.9, i should report
truthfully. However when i ’s peak is 3 (and due to piecewise linear utility in
outcomes), she strictly prefers misreporting her peak to be 2.9, as prescribed
byσ when α is reasonably close to 1.26

Observe in particular that, when chosen to act first, agents i ∈ {1, 2, 3} have
a strict disincentive to truthfully reveal a peak of 3. Doing so would lead the
remaining of those agents to (falsely) believe that Agent 4 made that report, and
thus (falsely) allow them to believe that over-reporting their peaks would have

26E.g. with some rounding, an agent with peak at 3 is indifferent between outcome distribu-
tions 1

3δ8/3+
1
3δ11/4+

1
3δ3 and δ2.805.
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First round Distribution of consumption
report for agent i

i ∈ {1, 2, 3} i = 4

0 ≈δ1.5 ≈δ0.5

2 δ2 δ2

2.5 (1−α)δ2+αδ2.5 δ2

2.9 ≈δ2.9 δ2

3 ≈ 1
3δ8/3+

1
3δ11/4+

1
3δ3 δ2

Table 9: Under σ, any first round report by Agent i yields a distribution over consumption as
given in the table. The notation δx represents a distribution with probability 1 on receiving x
units of the good. The approximation (≈) improves as α becomes close to one.

no repercussions. Finally, observe that Agent 4 indeed could be considered the
“most likely” agent to make such an out-of-equilibrium report, since, givenσ,
that is the unique agent who is merely indifferent between using the first round
report prescribed byσ and reporting 3.

Proofs

Proof of Proposition 1. Let f , Λ, and µ be as in the statement of the proposi-
tion. To construct β , fix an arbitrary mixed strategy profile with full support,
σ′, and defineσε ≡ (1−ε)τ+εσ′ for ε> 0. Let βε be the belief system defined
by Bayesian updating σε, and let β be the (well-defined) limit of βε as ε→ 0.
Clearlyσε→τ, and (τ,β ) is consistent.

Sequential rationality follows immediately from the strategy-proofness of
f since, for any i ∈ N , τ−i prescribes truthful behavior from the other agents
regardless of the history of play. Thus, when Agent i reports vi ∈ U , the out-
come ends up being f (u−i , vi ) for any realization of true preferences u ∈ U N

and for any realization of sequenceπ according toΛ. By strategy-proofness the
truthful report vi = ui maximizes i ’s payoff ex-post for any such realization, so
such a report also maximizes i ’s expected payoff at any information set. Hence
(τ,β ) is a sequential equilibrium.

Proof of Lemma 1. Fix f ,Λ, and (σ,β ) as in the statement of the lemma. Since
(σ,β ) is consistent, fix a sequence of assessments {(σk ,βk )}k∈N such that for
each k ∈ N, (i) σk has full support, (ii) βk is obtained by Bayesian updating
(w.r.t. Λ,µ,σk ), and (iii) as k →∞, (σk ,βk )→ (σ,β ).

Statement 1. Let u ∈ supp(µ), π ∈ Π, i ∈ N , ht−1 ∈ H i , and u ′−i ∈ U
N \{i }.
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Suppose that either π(t ) 6= i , Λ(π) = 0, or µi (u ′−i , ui ) = 0. Since for each k ∈ N
eachβk is obtained by Bayesian updating a full-support strategy profileσk , we
must have βk

i 〈ui , ht−1〉(π, u ′−i ) = 0, obtaining a limit of βi 〈ui , ht−1〉(π, u ′−i ) = 0.
Statement 2. Let u ∈ U N , π ∈ Π, i ∈ N , and ht−1 ∈ H i be such that

βi 〈ui , ht−1〉(π, u−i ) > 0. By Statement 1, µ(u ) > 0, so µi ( · |uπ(1,...,t )) is well-
defined. Since βk

i 〈ui , ht−1〉(π, u−i ) → βi 〈ui , ht−1〉(π, u−i ), there is K ∈ N
such that for all k ≥ K , βk

i 〈ui , ht−1〉(π, u−i ) > 0. Thus, for each k ≥ K ,
βk

i 〈ui , ht−1〉( · |π, uπ(1,...,t−1)) is well-defined, and specifically

βk
i 〈ui , ht−1〉(uπ(t+1,...,n )|π, uπ(1,...,t−1))

=
βk

i 〈ui , ht−1〉(π, u−i )
∑

vπ(t+1,...,n )∈U π(t+1,...,n )

βk
i 〈ui , ht−1〉(π, uπ(1,...,t−1), vπ(t+1,...,n ))

which, as k →∞, converges to

βi 〈ui , ht−1〉(π, u−i )
∑

vπ(t+1,...,n )∈U π(t+1,...,n )

βi 〈ui , ht−1〉(π, uπ(1,...,t−1), vπ(t+1,...,n ))

which equals βi 〈ui , ht−1〉(uπ(t+1,...,n )|π, uπ(1,...,t−1)). Since µ(u )> 0, each
βk

i 〈ui , ht−1〉(uπ(t+1,...,n )|π, uπ(1,...,t−1)) is equal to:

Λ(π)µ(u )σk (ht |h0,π, u )
∑

vπ(t+1,...,n )∈U π(t+1,...,n )

Λ(π)µ(uπ(1,...,t ), vπ(t+1,...,n ))σk (ht |h0,π, uπ(1,...,t ), vπ(t+1,...,n ))
.

For each vπ(t+1,...,n ) ∈ U π(t+1,...,n ), we have σk (ht |π, uπ(1,...,t ), vπ(t+1,...,n )) =
σk (ht |π, u ) (i.e. the probability of seeing ht is only a function of the first t
agent’s types), so the previous equation reduces to

βk
i 〈ui , ht−1〉(uπ(t+1,...,n )|π, uπ(1,...,t−1)) =µ(uπ(t+1,...,n )|uπ(1,...,t )).

Thus,

βi 〈ui , ht−1〉(uπ(t+1,...,n )|π, uπ(1,...,t−1)) =µ(uπ(t+1,...,n )|uπ(1,...,t )).

Proofs of Lemma 2 and Lemma 3. Supposeµ ∈MCartesian, and let u ,π, t , and
ht−1 be as in the statement of Lemma 3. Denote i ≡ π(t ) and choose any
(π′, v−i ) in the support of βi 〈ui , ht−1〉. By statement 1 in Lemma 1, Λ(π′) > 0,
µ(ui , v−i )> 0, and π′(t ) =π(t ) = i . By statement 2 in Lemma 1,

βi 〈ui , ht−1〉( · |π′, vπ′(1,...,t−1)) =µ( · |vπ′(1,...,t−1), ui ). (1)

We consider two (non-exhaustive) cases. The first case is implied when Λ is
deterministic, proving Lemma 2. The second adds the symmetric Cartesian
assumption, proving Lemma 3.
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Case 1: Λ is deterministic. By Lemma 1,π′ =π. Sinceµ(u )> 0 andµ(ui , v−i )≡
µ(uπ(t ), vN \π(t )) > 0, Cartesian support implies µ(uπ(t ,t+1), vN \π(t ,t+1)) > 0. Re-
peating the argument implies µ(uπ(t ,t+1,t+2), vN \π(t ,t+1,t+2)) > 0, etc., conclud-
ing with

µ(uπ(t ,...,n ), vN \π(t ,...,n ))> 0.

Therefore, with (1) we have

βi 〈ui , ht−1〉(uπ(t+1,...,n )|π, vπ(1,...,t−1)) =µ(uπ(t+1,...,n )|vπ(1,...,t−1), ui )> 0.

Since (π′, v−i )≡ (π, v−i ) is in the support of βi 〈ui , ht−1〉,

βi 〈ui , ht−1〉(π, (vπ(1,...,t−1), uπ(t+1,...,n )))> 0.

Case 2: µ ∈ Msymm−Cartesian. Let v ′π′(t+1,...,n ) ∈ U
π′(t+1,...,n ) be such that

[v ′π′(t+1,...,n )] = [uπ(t+1,...,n )]. Since µ(u ) > 0 and µ(ui , v−i ) > 0, symmetric Carte-
sian support implies

µ(ui , vπ′(1,...,t−1), v ′π′(t+1,...,n ))> 0.

Thus by (1), βi 〈ui , ht−1〉(v ′π′(t+1,...,n )|π
′, vπ′(1,...,t−1)) > 0. Since (π′, v−i ) is in the

support of βi 〈ui , ht−1〉,

βi 〈ui , ht−1〉(π′, vπ′(1,...,t−1), v ′π′(t+1,...,n ))> 0.

Thus with π′, (vπ′(1,...,t−1), v ′π′(t+1,...,n )) satisfies part (ii) of Lemma 3.

Proof of Theorem 1. Fix notation as in the statement of the theorem: let f be
a strategy-proof, non-bossy SCF, and let Λ ∈ ∆(Π), µ ∈MCartesian, and (σ,β ) ∈
SE〈Γ (Λ, f ),U N ,µ〉.

Case 1: Λ is deterministic. Without loss of generality, letΛ(π) = 1 whereπ(i )≡ i .
By Lemma 1, any player’s beliefs βi 〈〉() must assign probability 1 to the se-
quence π. Obesrve that, throughout Case 1, f (ht−1, vπ(t ,...,n )) is the outcome
anticipated by agent π(t ) after history ht−1, when the agent anticipates the re-
maining agents to make reports vπ(t ,...,n ).

27

We prove that for any feasible history (even off the equilibrium path), equi-
librium continuation strategies are welfare-equivalent to truthful continuation

27In contrast, whenπ is uncertain, if agentπ(t ) sees history ht−1 and anticipates future reports
vπ(t ,...,n ), the agent still cannot necessarily anticipate a particular outcome of f since the agent
does not know which agents made which reports in (ht−1, vπ(t ,...,n )).
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strategies. That is, for any t ∈ {1, . . . , n}, u ∈ supp(µ), ht−1 ∈ H π(t ), and (equi-
librium continuation) vπ(t ,...,n ) ∈U π(t ,...,n ) with σ(vπ(t ,...,n )|ht−1,π, uπ(t ,...,n ))> 0,
we have

u ( f (ht−1, vπ(t ,...,n ))) = u ( f (ht−1, uπ(t ,...,n ))). (2)

Moreover if f is also non-bossy∗ in outcomes we have f (ht−1, vπ(t ,...,n )) =
f (ht−1, uπ(t ,...,n )). Applying (2) to the case t = 1 yields the theorem. The proof
of (2) is by backward induction on t .

Initial step t = n. Fix u ∈ supp(µ), hn−1 ∈H π(n ), and an equilibrium report
vπ(n ) ∈U in the support of σπ(n )(uπ(n ), hn−1). There is no strategic uncertainty
for player π(n ) = n , so sequential rationality of (σ,β ) immediately implies

uπ(n )( f (hn−1, vπ(n )))≥ uπ(n )( f (hn−1, uπ(n ))) (3)

while strategy-proofness of f implies the reverse inequality,

uπ(n )( f (hn−1, vπ(n )))≤ uπ(n )( f (hn−1, uπ(n ))). (4)

yielding uπ(n )( f (hn−1, vπ(n ))) = uπ(n )( f (hn−1, uπ(n ))). Since f is non-bossy,

u ( f (hn−1, vπ(n ))) = u ( f (hn−1, uπ(n ))). (5)

Moreover if f is non-bossy∗ in outcomes we have f (hn−1, vπ(n )) = f (hn−1, uπ(n )).

Inductive step t < n. To prove the inductive step, fix t ∈ {0, . . . , n − 1}
and assume the induction hypothesis: for any u ∈ supp(µ), ht ∈
H π(t+1), and (equilibrium continuation) vπ(t+1,...,n ) ∈ U π(t+1,...,n ) with
σ(vπ(t+1,...,n )|ht ,π, uπ(t+1,...,n ))> 0, we have

u ( f (ht , vπ(t+1,...,n ))) = u ( f (ht , uπ(t+1,...,n ))) (6)

(and that, moreover, if f is non-bossy∗ in outcomes, f (ht , hπ(t+1,...,n )) =
f (ht , uπ(t+1,...,n ))).

Fix u ∈ supp(µ), ht−1 ∈H π(t ) ≡H t , and an equilibrium report vt ∈U with
σt (vt |ut , ht−1) > 0. Sequential rationality of (σ,β ) implies that the expected
payoff from reporting vt , namely
∑

v−t

∑

v ′π(t+1,...,n )

ut ( f (ht−1, vt , v ′π(t+1,...,n )))σ(v
′
π(t+1,...,n )|(ht−1, vt ), v−t )βt 〈ut , ht−1〉(π, v−t ),

(7)
is greater than or equal to the expected payoff from truth-telling, namely
∑

v−t

∑

v ′π(t+1,...,n )

ut ( f (ht−1, ut , v ′π(t+1,...,n )))σ(v
′
π(t+1,...,n )|(ht−1, ut ), v−t )βt 〈ut , ht−1〉(π, v−t )

(8)
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Now consider any v−t such that βt 〈ut , ht−1〉(π, v−t ) > 0. By Lemma 1 we
have (v−t , ut ) ∈ supp(µ), so the induction hypothesis (6) applies: for any report
v ′t and any v ′π(t+1,...,n ) in the support ofσ( · |(ht−1, v ′t ),π, vπ(t+1,...,n )),

u ( f (ht−1, v ′t , v ′π(t+1,...,n ))) = u ( f (ht−1, v ′t , vπ(t+1,...,n ))).

Thus, expression (7) is equal to
∑

v−t

ut ( f (ht−1, vt , vπ(t+1,...,n )))βt 〈ut , ht−1〉(π, v−t ), (9)

and expression (8) is equal to
∑

v−t

ut ( f (ht−1, ut , vπ(t+1,...,n )))βt 〈ut , ht−1〉(π, v−t ). (10)

While summation (9) is greater than or equal to summation (10), the
strategy-proofness of f implies a point-wise inequality in the reverse direction:
for any arbitrary vπ(t+1,...,n ) ∈U π(t+1,...,n ),

ut ( f (ht−1, vt , vπ(t+1,...,n )))≤ ut ( f (ht−1, ut , vπ(t+1,...,n ))). (11)

Thus, not only is summation (9) equal to summation (10), but it must be that
for each v−t satisfying βt 〈ut , ht−1〉(π, v−t )> 0, we have

ut ( f (ht−1, vt , vπ(t+1,...,n ))) = ut ( f (ht−1, ut , vπ(t+1,...,n ))). (12)

In words, after any history and for any subprofile of types that agent t antici-
pates for the future agents (βt > 0), any report by agent t leads to “as-if-truthful”
behavior from the future agents. What remains to be shown is that agent t in
fact does anticipate any admissible subprofile (or when Λ is random, antici-
pates subprofiles that are “strategically equivalent” to admissible subprofiles
and sequences of future agents). This would rule out the phenomenon in Ex-
ample 1, where an agent (off the equilibrium path) rules out what still could be
the actual types of agents yet to act. That is, in the deterministic case we need
to show that (12) holds for any v−t such that (ut , v−t ) ∈ supp(µ).

Therefore reconsider u−t which was assumed to satisfy
(ut , u−t ) ∈ supp(µ). By Lemma 2 there exists v ′π(1,...,t−1) such that

βt 〈ut , ht−1〉(π, (v ′π(1,...,t−1), uπ(t+1,...,n ))) > 0. Thus we can invoke (12) with

respect to the subprofile (v ′π(1,...,t−1), uπ(t+1,...,n )) to conclude

ut ( f (ht−1, vt , uπ(t+1,...,n ))) = ut ( f (ht−1, ut , uπ(t+1,...,n ))). (13)
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Since f is non-bossy,

u ( f (ht−1, vt , uπ(t+1,...,n ))) = u ( f (ht−1, ut , uπ(t+1,...,n ))). (14)

Moreover if f is also non-bossy∗ in outcomes we have

f (ht−1, vt , uπ(t+1,...,n )) = f (ht−1, ut , uπ(t+1,...,n )). (15)

Finally consider any v ′π(t+1,...,n ) in the support ofσ(·|(ht−1, vt ),π, uπ(t+1,...,n )).
By the induction hypothesis (6) with respect to history (ht−1, vt ),

u ( f (ht−1, vt , v ′π(t+1,...,n ))) = u ( f (ht−1, vt , uπ(t+1,...,n )))

and if f is non-bossy∗ in outcomes,

f (ht−1, vt , v ′π(t+1,...,n )) = f (ht−1, vt , uπ(t+1,...,n )).

Since (vt , v ′π(t+1,...,n )) can be chosen to be arbitrary equilibrium reports in the
support of σ(·|ht−1,π, uπ(t ,...,n )) > 0, these equalities combined with (14) and
(15) yield (2) and prove Case 1.

Case 2: µ ∈Msymm−Cartesian and f is weakly anonymous. The idea of the proof
is similar to Case 1, but the arguments and notation need to account for the fact
that each acting agent remains uncertain about the identity of agents who have
already reported. In order to evaluate an agent’s interim expected payoff, this
requires an additional piece of notation. Given a permutation π, an “anony-
mous” history ht , and a “non-anonymous” sequence of reports vπ(t+1,...,n ), let

f (ht , vπ(t+1,...,n )|π)

denote the outcome of f when (i) agentsπ(1), . . . ,π(t ) report the types listed in
ht , and (ii) agents π(t +1), . . . ,π(n ) report types vπ(t+1,...,n ).

As in Case 1, we begin by showing that, following any feasible history, equi-
librium continuation strategies are welfare-equivalent to truthful continua-
tion strategies, regardless of which agents have yet to act. That is, for any
t ∈ {1, . . . , n}, π ∈ supp(Λ), u ∈ supp(µ), ht−1 ∈ H π(t ), and (equilibrium con-
tinuation) vπ(t ,...,n ) ∈U π(t ,...,n ) withσ(vπ(t ,...,n )|ht−1,π, uπ(t ,...,n ))> 0, we have

u ( f (ht−1, vπ(t ,...,n )|π)) = u ( f (ht−1, uπ(t ,...,n )|π)). (2′)

Moreover if f is also non-bossy∗ in outcomes we have f (ht−1, vπ(t ,...,n )|π) =
f (ht−1, uπ(t ,...,n )|π).

Initial step t = n. Fix π ∈ supp(Λ), u ∈ supp(µ), hn−1 ∈H π(n ), and an equi-
librium report vπ(n ) ∈ U in the support of σπ(n )(uπ(n ), hn−1). Since f is weakly
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anonymous, there is no strategic uncertainty for playerπ(n ): playerπ(n )’s pay-
off depends only on her own report and the unordered list of reports [hn−1].
Formally, weak anonymity implies that uπ(n )( f (hn−1, vπ(n )|π′) is independent
ofπ′ (subject toπ′(n ) =π(n )), so her beliefs over sequences become irrelevant.

Therefore sequential rationality implies

uπ(n )( f (hn−1, vπ(n )|π))≥ uπ(n )( f (hn−1, uπ(n )|π)) (3′)

while strategy-proofness of f implies the reverse inequality,

uπ(n )( f (hn−1, vπ(n )|π))≤ uπ(n )( f (hn−1, uπ(n )|π)). (4′)

yielding uπ(n )( f (hn−1, vπ(n )|π)) = uπ(n )( f (hn−1, uπ(n )|π)). Since f is non-bossy,

u ( f (hn−1, vπ(n )|π)) = u ( f (hn−1, uπ(n )|π)). (5′)

Moreover if f is non-bossy∗ in outcomes we have f (hn−1, vπ(n )|π) =
f (hn−1, uπ(n )|π).

Inductive step t < n. To prove the inductive step, fix t ∈ {0, . . . , n − 1}
and assume the induction hypothesis: for any π ∈ supp(Λ), u ∈ supp(µ),
ht ∈ H π(t+1), and (equilibrium continuation) vπ(t+1,...,n ) ∈ U π(t+1,...,n ) with
σ(vπ(t+1,...,n )|ht ,π, uπ(t+1,...,n ))> 0, we have

u ( f (ht , vπ(t+1,...,n )|π)) = u ( f (ht , uπ(t+1,...,n )|π)) (6′)

(and that, moreover, if f is non-bossy∗ in outcomes, f (ht , hπ(t+1,...,n )|π) =
f (ht , uπ(t+1,...,n )|π)).

Fix an agent j ∈N who could feasibly act in round t , i.e. for whom π̃(t ) = j
for some π̃ ∈ supp(Λ). Fix u ∈ supp(µ), ht−1 ∈ H j , and (equilibrium) report
v j ∈U with σ j (v j |u j , ht−1) > 0. By sequential rationality, the expected payoff
from reporting v j , namely

∑

v−t ,π

∑

v ′π(t+1,...,n )

u j ( f (ht−1, v j , v ′π(t+1,...,n )|π))σ(v
′
π(t+1,...,n )|(ht−1, v j ), v−t )β j 〈u j , ht−1〉(π, v−t ),

(7′)
is greater than or equal to the expected payoff from truth-telling, namely
∑

v−t ,π

∑

v ′π(t+1,...,n )

u j ( f (ht−1, u j , v ′π(t+1,...,n )|π))σ(v
′
π(t+1,...,n )|(ht−1, u j ), v−t )β j 〈u j , ht−1〉(π, v−t )

(8′)
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Now consider any (π̃, ṽ−t ) such that βt 〈ut , ht−1〉(π̃, ṽ−t ) > 0. By Lemma 1
we have π̃ ∈ supp(Λ) and (ṽ−t , ut ) ∈ supp(µ), so the induction hypoth-
esis (6′) applies: for any report v ′j and any v ′π(t+1,...,n ) in the support of

σ( · |(ht−1, v ′j ), π̃, ṽπ̃(t+1,...,n )),

u ( f (ht−1, v ′j , v ′π̃(t+1,...,n )|π̃)) = u ( f (ht−1, v ′j , ṽπ̃(t+1,...,n )|π̃)).

Thus, expression (7′) is equal to
∑

v−t ,π

u j ( f (ht−1, v j , vπ(t+1,...,n )|π))β j 〈u j , ht−1〉(π, v−t ), (9′)

and expression (8′) is equal to
∑

v−t ,π

u j ( f (ht−1, u j , vπ(t+1,...,n )|π))β j 〈u j , ht−1〉(π, v−t ). (10′)

While (9′) is greater than or equal to (10′), the strategy-proofness of f
implies a point-wise inequality in the reverse direction: for arbitrary π̃ and
ṽπ̃(t+1,...,n ) ∈U π̃(t+1,...,n ),

u j ( f (ht−1, v j , ṽπ̃(t+1,...,n )|π̃))≤ u j ( f (ht−1, u j , ṽπ̃(t+1,...,n )|π̃)). (11′)

Thus, not only is summation (9′) equal to summation (10′), but it must be that
for each (π̃, ṽ− j ) satisfying β j 〈u j , ht−1〉(π̃, ṽ− j )> 0, we have

u j ( f (ht−1, v j , ṽπ(t+1,...,n )|π̃)) = u j ( f (ht−1, u j , ṽπ(t+1,...,n )|π̃)). (12′)

Therefore reconsider u− j which was assumed to satisfy (u j , u− j ) ∈ supp(µ),
and consider an arbitrary π ∈ supp(Λ) such that π(t ) = j . By Lemma 3 there
exist π′ and v ′− j , with π′(t ) = j and [v ′π′(t+1,...,n )] = [uπ(t+1,...,n )], such that

β j 〈u j , ht−1〉(π′, v ′− j ) > 0. Thus we can invoke (12′) with respect to π′ and v ′− j
to conclude

u j ( f (ht−1, v j , v ′π′(t+1,...,n )|π
′)) = u j ( f (ht−1, u j , v ′π′(t+1,...,n )|π

′)).

Since f is weakly anonymous and [v ′π′(t+1,...,n )] = [uπ(t+1,...,n )] this implies

u j ( f (ht−1, v j , uπ(t+1,...,n )|π)) = u j ( f (ht−1, u j , uπ(t+1,...,n )|π)) (13′)

which is analogous to (13). The remainder of the proof is identical to the proof
of Case 1 following (13).
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