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Abstract

In games with costly signaling, some equilibria are vulnerable to
deviations which could be “unambiguously” interpreted as coming
from a unique set of Sender-types. This occurs when these types
are precisely the ones who gain from deviating for any beliefs the Re-
ceiver could form over that set. We show that this idea characterizes
a unique equilibrium outcome in two classes of games. First, in mono-
tonic signaling games, only the Riley outcome is immune to this sort of
deviation. Our result therefore provides a plausible story behind the
selection made by Cho and Kreps’ (1987) D1 criterion on this class of
games. Second, we examine a version of Crawford and Sobel’s (1982)
model with costly signaling, where standard refinements have no ef-
fect. We show that only a Riley-like separating equilibrium is immune
to these deviations.
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1 Introduction

In games with asymmetric information, the standard notion of equilibrium

requires that players’ actions be best responses to their beliefs at each infor-

mation set. On the equilibrium path, these beliefs must be consistent with

Bayes’ rule; off the equilibrium path this requirement does not apply. In

Sender-Receiver games, out-of-equilibrium beliefs can be thought of as the

Sender’s hypothesis of what the Receiver would think upon observing a de-

viation. This hypothesis rationalizes the Sender’s anticipation of what the

Receiver would do, in turn justifying the Sender’s decision not to deviate. In

this sense, the concept of out-of-equilibrium beliefs should not be taken too

literally.

Yet, equilibrium refinements often operate directly on the concept of be-

liefs. Rather than stopping at the point where these beliefs serve only to

rationalize the Sender’s actions, much work in this literature interprets be-

liefs more literally, prescribing exactly what those beliefs should be.

In this paper we show that strong predictions neither require, nor neces-

sarily follow from, such specific impositions on beliefs. Rather than refining

the set of admissible beliefs, we ask whether it is possible for the Sender to

implicitly signal a candidate set of deviating types, even if he cannot antici-

pate exactly which beliefs the Receiver would form over that set. A Credible

Deviation is one that uniquely and unambiguously identifies a set of types

that gain from deviating, provided that the Sender anticipates the Receiver

to form some beliefs over that set. We analyze the extent to which equilibria

are immune to such deviations in costly-signaling games.

Our approach is comparatively agnostic in terms of what the Receiver

believes when an out-of-equilibrium message is sent. This reflects our less

literal interpretation of beliefs. While we do not advocate our concept as

a predictive criterion on its own, we show that it describes an equilibrium

vulnerability that is not captured by the standard refinements literature.

In Section 1.1 we motivate and explain the concept with an example.

Formal definitions are given in Section 2, followed by a comparison with

various concepts from the refinements literature in Section 2.2.

Our results concern two classes of signaling games. In Section 3 we show
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that on the standard class of monotonic signaling games, only the so-called

Riley equilibrium is immune to the Credible Deviations we describe. There-

fore, on this particular class of games, there is a connection between the

predictions made by standard refinements (D1, stability) and immunity to

Credible Deviations. That is, our concept provides one behavioral motivation

for selecting the stable outcome on this class.

In Section 4 we turn to signaling games whose structure is reminiscent

of Crawford and Sobel’s (1982) model: The Sender prefers the Receiver to

choose an action closer to his actual type, while the Receiver wants to target

that type offset by a bias. Unlike Crawford and Sobel, we model such a situ-

ation with costly messages, assuming a single-crossing condition. Because of

the lack of monotonic structure in this class of games, the connection between

other Credible Deviations and various refinements breaks down. Similar to

the previous model, only a “Riley-like” equilibrium is free of Credible De-

viations. Despite some similarity between this model and the previous one,

however, standard refinements widely used in practice (e.g. D1, D2, Divinity,

etc.) can have little predictive power here, as discussed in Section 4.2.

1.1 An example

In a Sender-Receiver game,1 a Sender privately learns his type θ, then sends

a (possibly costly) message m to the Receiver, who finally takes an action a.

The two players’ payoffs are both functions of (θ, m, a).

In this section we consider the game in Figure 1. The Sender pri-

vately knows whether he is a “Quantitative” type or not; both types are

equally likely from the Receiver’s (prior) perspective. The Sender must de-

cide whether or not to get an MBA.

If the Sender gets an MBA, the employer (Receiver) sees this message

and decides whether to promote the Sender to Head of Human Resources

(HR), to promote him to Chief Financial Officer (CFO), or to keep him at

his current job (Assistant) with a pay raise. If the Sender does not get an

MBA, the game ends.

The Receiver would like to promote an MBA in a way corresponding to his

1The standard terminology we use in this section is defined formally in Section 2.
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Assist. HR CFO Assist.
Quantitative 2, 2 0, 0 5, 5 3, 3
Non-Quant. 2, 2 1, 5 0, 0 3, 3

no MBA get MBA

Figure 1: A Sender-Receiver game. The Sender’s payoff is listed first.

type. Neither type wants to be promoted to HR, while only a Quantitative

type would like to be CFO. It profits both Sender types (and the Receiver)

to get an MBA and a raise with no promotion.

There are three kinds of (pure strategy) equilibria in this game.2 In one,

both Sender types get an MBA, and due to the balanced prior beliefs, the

Receiver keeps the employee as an Assistant. In another, only the Quanti-

tative type gets an MBA, which leads to promotion to CFO. We leave it to

the reader to see that these two kinds of equilibria are robust, and satisfy all

standard refinements in the literature.

There is a third kind of equilibrium where no Sender type gets an MBA.

This is supported by the Sender’s anticipation that the Receiver would pro-

mote an MBA to HR with sufficiently high probability. In turn, this means

the Sender thinks the Receiver will believe that only (or with high probabil-

ity) non-Quantitative types get an MBA.

We now argue that this equilibrium is not robust to the possibility that

an out-of-equilibrium message can be interpreted as an implicit statement

about the Sender’s possible type(s). Before doing so it is worth noting that,

perhaps surprisingly, this “pooling on no MBA” equilibrium does satisfy

various refinements commonly used in the literature, such as the Intuitive

Criterion, D1, and even Kohlberg and Mertens’ (1986) stability. Proofs of

this are available upon request.

To illustrate the central idea in this paper, suppose the “no MBA” pooling

equilibrium is being anticipated by the Receiver, and consider the possibility

that if the Receiver sees the out-of-equilibrium choice “get MBA,” he inter-

prets it as the following (implicit) statement: “I am the Quantitative type.”

Would this be credible?

2We consider only pure strategies throughout the paper. In any case, we make assump-
tions in both Sections 3 and 4 that imply pure best responses for the Receiver.
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If the Receiver were to believe this (implicit) statement, he would choose

the CFO action. Therefore the Quantitative type would gain from the Re-

ceiver’s trust in this statement. The non-Quantitative type however would

not. In this sense, this implicit statement is credible: the Quantitative type

is precisely the only one who would want to “send” it.3

On the other hand, “get MBA” cannot credibly convey the statement

“I am the non-Quantitative type.” The Receiver’s trust in this statement

would cause him to choose HR, under which the non-Quantitative type does

not gain. In fact neither type would gain if the Receiver believed such a

statement.

Finally, we also consider the possibility that if the Sender gets an MBA, he

is trying to convey the less precise statement: “I am either the Quantitative

type or the non-Quantitative type.” Is this a credible statement in the above

sense? In order to determine this, we need to predict how the Receiver would

respond to such a statement. More precisely, we need to determine what the

Sender anticipates the Receiver to believe about the likelihood of types in

order to predict a response.

One could argue that, due to the credibility of the “I am Quantitative”

speech, it should be less likely for a Quantitative type to send this less precise

message.4 On the other hand, one could admit the possibility that the two

types have different abilities to perform forward induction reasoning (which

have not been explicitly modeled here). For example, the Quantitative type

could be more likely to be able to perform this reasoning, which would make

this type more likely to have sent the message. A third, more stringent

approach would be to explicitly assume that the Receiver simply updates his

prior using Bayes’ rule when evaluating such a potential implied statement.

Since receiving this out-of-equilibrium message is a counterfactual event,

we see little justification for prescribing any single, particular belief over

the two types when evaluating this speech. In fact, we view the Sender’s

3This kind of reasoning also appears in Grossman and Perry’s (1986) Perfect Sequential
Equilibrium and in Farrell’s (1993) neologism-proofness. In fact those concepts would con-
sider the credibility of “I am the Quantitative type” sufficient to rule out this equilibrium.
Below we diverge from these two concepts; see also Section 2.2.

4Precisely this kind of argument leads Matthews et al. (1991) to require a consistent
set of “speeches” which may separate different deviant types from each other.
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anticipation of the Receiver’s posterior beliefs as being ambiguous. Therefore

as a first approach, we use a max-min criterion to evaluate preferences when

Sender types are deciding whether to deviate. This means that, in this

example, we ask whether both types would gain from conveying this less

precise message, regardless of the beliefs formed by the Receiver.

If the Receiver puts enough weight on the probability that the Quantita-

tive type is trying to make this speech, the Receiver would choose CFO.

As argued above, the non-Quantitative type would not gain in this sce-

nario. Similarly, with beliefs sufficiently biased toward the non-Quantitative

type, the Receiver would choose HR, making both types regret the deviation.

Therefore neither type would unambiguously gain from conveying this third

statement, undermining its credibility.5

To summarize, if we interpret the message “get MBA” as an implicit

attempt to convey information about a candidate set of types, only one such

message is credible: “I am the Quantitative type.” The uniqueness of this

credible message makes this equilibrium vulnerable to a deviation which can

be “unambiguously” interpreted to be coming from a unique set of possible

Sender-types, namely the singleton “Quantitative type.”

In more general games, we say that an equilibrium is vulnerable to a

credible deviation if there is an out-of-equilibrium message m through which

the Sender can convey the following statement. (This “speech” is not really

made by the Sender; it is implicitly communicated through m.)

“By sending this out-of-equilibrium message m, I am signaling

to you that my type belongs to the set of types C. To see this,

observe that if you form any belief (distribution) over C and take

a corresponding best response with respect to those beliefs (and

m), then any type θ ∈ C is guaranteed to be better off than he

would have been in equilibrium. Conversely, for any remaining

type θ′ /∈ C, there exists a belief over C (and your corresponding

5In contrast, Grossman and Perry (loc. cit.) would consider this statement credible
because they require the Receiver to update his prior off the equilibrium path. This is the
crucial difference between our concept and theirs. In a modified version of the example
(available upon request), they would eliminate all pure equilibria while we would not. The
same can occur in monotonic signaling games as well (Section 3).
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best response) that would make θ′ worse off than in equilibrium.

That is, C is precisely the set of types that gains regardless of

the beliefs you form, as long as those beliefs are over C. Lastly,

C is unique in this respect: Given message m, this speech cannot

be made for any other set C ′.”

The existence of such a message m and set of types C makes the equilib-

rium in question less plausible than others. Under a mild notion of forward

induction, it becomes a self-fulfilling prophecy for the Receiver, upon see-

ing m, to behave as if the Sender’s type is in C.

In this argument, we do not prescribe specific posterior beliefs for the

Receiver following the receipt of m. As discussed following the example

of Figure 1, this even allows for the possibility that the Sender’s type is

correlated with the ability to perform this forward-induction reasoning. If

the Receiver admits the possibility of such correlation, it is unclear how he

would update his beliefs without specifying a more detailed model. It is even

less clear how the Sender should anticipate the Receiver’s understanding of

this possibility. Since we think of the Receiver’s posterior beliefs simply as

a way to rationalize the Sender’s equilibrium behavior, a theory with fewer

specific assumptions on these posterior beliefs is more appealing.

The ideas outlined above may appear similar to certain concepts used in

the literature on equilibrium refinements. We postpone comparisons to this

literature to Section 2.2, after we formalize our definitions.

2 Sender-Receiver Games

Our main results concern two different classes of 2-player, Sender-Receiver

games with costly signaling. Since those two classes share some structure,

we introduce their shared notation here.

The Sender has private information that is summarized by his type

θ ∈ Θ = {θ1, θ2, . . . , θn} ⊂ R. For notational convenience, we order the types

so that θ1 < θ2 < · · · < θn. The commonly known prior probability that

the Sender’s type is θ is π(θ). Upon realizing his type, the Sender chooses

a message m ∈ R+. A strategy for the Sender is a function M : Θ → R+.

After observing any message m, the Receiver chooses an action a ∈ R. A
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strategy for the Receiver is a function A : R+ → R. The Sender and Receiver

receive respective payoffs of uS(θ, m, a) and uR(θ, m, a), which are both con-

tinuously differentiable in (m, a). A Sender-Receiver game is given by the

tuple (Θ, π, uS, uR).

To define a Perfect Bayesian Equilibrium, we introduce the concept of

the Receiver’s (posterior) beliefs: Upon receiving a message m ∈ R+, the

Receiver updates his beliefs over Θ regarding the Sender’s type. This update-

rule is a function µ : R+ →4(Θ), where 4(Θ) refers to the set of probability

distributions on Θ. A Perfect Bayesian Equilibrium consists of strategies and

an update rule that satisfy the usual incentive compatibility and consistency

conditions (Fudenberg and Tirole (1991a)), which we now formalize.

For any message m ∈ R+ and any fixed (posterior belief) distribution π̃ ∈
4(Θ), denote the Receiver’s best responses to m (given π̃) by BR(π̃, m) ≡
arg maxa∈R E[uR(θ,m, a) | π̃]. Assumptions made below guarantee the non-

emptiness of this correspondence. In a standard abuse of notation, for any

set of types T ⊆ Θ we write BR(T,m) ≡ ⋃
π̃∈∆T BR(π̃,m), which can be

thought of as the Receiver’s rationalizable actions knowing only that θ ∈ T .

The triplet (M, A, µ) is a Perfect Bayesian Equilibrium6 when the follow-

ing conditions hold.

• Sender incentive compatibility:

∀θ ∈ Θ, M(θ) ∈ arg max
m∈R+

uS(θ,m, A(m)).

• Receiver incentive compatibility:

∀m ∈ R+, A(m) ∈ BR(µ(·|m), m)

• Consistency of beliefs: for any equilibrium message m ∈ M(Θ), µ(· |m)

6Based on the results of Fudenberg and Tirole (1991b), Perfect Bayesian Equilibrium
is equivalent to Sequential Equilibrium (Kreps and Wilson (1982)) on the classes of games
we consider.
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is derived from Bayes’ rule:

µ(θ |m) =





π(θ)∑
θ′∈M−1(m) π(θ′)

if M(θ) = m,

0 otherwise.

There are no restrictions on beliefs following out-of-equilibrium mes-

sages m.

Throughout the paper, an equilibrium refers to a Perfect Bayesian Equilib-

rium.

When an equilibrium (M,A, µ) is clearly given in context, we denote the

Sender’s equilibrium payoff (as a function of his type) as

u∗S(θ) ≡ uS(θ, M(θ), A(M(θ))).

2.1 Formalizing Credible Deviations

As discussed in Section 1.1, we ask whether the Sender, upon sending an out-

of-equilibrium message m, can induce the Receiver to reason that it must have

been sent by a type within some set C. Under our definition, this reasoning

is justified when C is precisely the set of Sender types that would benefit

from deviating to m, whenever the Receiver plays any best response to m

with beliefs restricted to C. Hence, Sender types that do not belong to C

are worse off (compared to their equilibrium payoff) under some such best

response. An equilibrium is Vulnerable to a Credible Deviation if, for some

out-of-equilibrium message, there is a unique such C.

Definition 1 (Vulnerability to a Credible Deviation) Given an

equilibrium (M,A, µ), we say that an out-of-equilibrium message m ∈
R+\M(Θ) is a Credible Deviation if the following condition holds for ex-

actly one (non-empty) set of types C ⊆ Θ.

C = {θ ∈ Θ : u∗S(θ) < min
a∈BR(C,m)

uS(θ, m, a)} (1)
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We call C the (unique) Credible Deviators’ Club for message m. If such a

message exists, the equilibrium is Vulnerable to a Credible Deviation.

The fact that (1) is an equality (as opposed to, say, the inclusion relation

C ⊇) enforces the precision mentioned above. The uniqueness requirement

on C (given m) makes this a minimal attempt to implement the reasoning

discussed in Section 1.1. If two such sets, C and C ′, existed for m then it

would be arbitrary for types in C to assume that the Receiver would restrict

beliefs to C, and not to C ′ (or even C∪C ′). Hence we specifically require (1)

to hold for only one set C, resulting in a weaker invulnerability condition. It

is worth noting that the results in this paper would continue to hold under

a stronger version in which C is not required to be unique.

We use a max-min criterion to evaluate the Sender’s preferences because

it is unclear how the Receiver should form beliefs over C. This was illustrated

in the example of Section 1.1 for the case in which C consisted of both types.

We view our max-min approach as a natural starting point, though alternate

definitions could be considered. For example, one could require only that

the Receiver possess a single, “worst-case” belief over C that dissuades each

θ /∈ C from deviating.7 It turns out that this weaker condition would yield

the same results as our definition for the models in Sections 3 and 4. On the

other hand, games exist in which this alternate version has no bite and ours

does.

2.2 Relation to the refinements literature

The concept of a Credible Deviation may appear similar to certain equilib-

rium refinements used in the literature. It turns out, however, that there

is no general, logical relation between our vulnerability condition and these

equilibrium refinements. For instance there exist games in which all equi-

libria are Vulnerable to Credible Deviations. On the other hand, there are

equilibria of other games that are not Vulnerable, but still fail certain refine-

ments. In this section we review some of this literature and relate it to our

concept.

7We thank Johannes Hörner and Jeroen Swinkels for independent comments leading
us to these observations.
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Perhaps the least controversial concept in this literature is the Intuitive

Criterion (see Cho and Kreps (1987)). This refinement deems an equilibrium

implausible whenever some Sender type would benefit from deviating to an

out-of-equilibrium message, as long as the Receiver makes the minimal as-

sumption that it was sent by types that could potentially gain from sending

it.

Definition 2 (Intuitive Criterion) For a given equilibrium (M, A, µ)

and out-of-equilibrium message m ∈ R+ \M(Θ), denote by J(m) the set of

types whose equilibrium payoff is higher than any payoff they could get by

sending m, as long as the Receiver plays a rationalizable action, i.e.

J(m) ≡ {θ ∈ Θ : u∗S(θ) > max
a∈BR(Θ,m)

uS(θ, m, a)}.

The equilibrium fails the Intuitive Criterion (via m) if J(m) 6= Θ and

{θ ∈ Θ : u∗S(θ) < min
a∈BR(Θ\J(m),m)

uS(θ, m, a)} 6= ∅. (2)

Inequality (2) says that by sending m, at least one type θ gains unambigu-

ously so long as the Receiver restricts his beliefs to Θ\J(m). This restriction

on the Receiver’s beliefs is a very minimal requirement, since no type in J(m)

could gain by sending m if he anticipates any rational reaction from the Re-

ceiver. Given this restriction, the Intuitive Criterion merely checks for the

existence of some type θ /∈ J(m) who, anticipating such beliefs, would gain

unambiguously compared to his equilibrium payoff.

This concept differs from Vulnerability to Credible Deviations in two

ways, which can be seen by comparing eqns. (1) and (2). First8 consider

whether any type has an incentive to deviate from an equilibrium under some

restrictions on the Receiver’s response. In eqn. (1) the Receiver’s beliefs are

restricted more than in eqn. (2). This makes it easier to find deviating types

in (1) than in (2), making the Intuitive Criterion a relatively weak concept.

Second, however, consider which types should not have an incentive to

deviate. While eqn. (2) merely requires non-emptiness of the set of devia-

8We thank a referee for making this reasoning precise.
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tors, eqn. (1) precludes types (outside C) from wanting to perform certain

deviations. This makes it harder to find a deviating set (club) in (1) than

in (2), making the Intuitive Criterion a relatively stronger concept.

Therefore it turns out that there is no general logical relation between the

Intuitive Criterion and our vulnerability condition. On the classes of games

studied in this paper, and for any Sender-Receiver game where the Sender has

only two types, the Intuitive Criterion is weak: if an equilibrium fails it, then

it is also Vulnerable to Credible Deviations. If, in addition, the Receiver has

only two actions following any message, then the conditions are generically

equivalent. There are, however, games in which the Intuitive Criterion rules

out an equilibrium which is not Vulnerable to Credible Deviations.9

In certain important classes of Sender-Receiver games with more than two

Sender types (e.g. Spence (1973)), the Intuitive Criterion does not reduce

the set of equilibrium outcomes. This has led to, among others, a well-

known concept that makes specific requirements on posterior beliefs. The

D1 Criterion (see Banks and Sobel (1987), Cho and Kreps (1987), Cho and

Sobel (1990)) requires the Receiver to disbelieve that a deviating message

could be sent by a type θ who weakly gains “less often” (i.e. under fewer

a ∈ BR(Θ,m)) than some other type θ′ strictly gains.

Definition 3 (D1 Criterion) An equilibrium (M, A, µ) fails the D1 Cri-

terion if there exists an out-of-equilibrium message m ∈ R+\M(Θ) and types

θ, θ′ ∈ Θ such that µ(θ |m) > 0 and

{a ∈ BR(Θ,m) : u∗S(θ) ≤ uS(θ, m, a)}
( {a ∈ BR(Θ,m) : u∗S(θ′) < uS(θ′,m, a)}.

This refinement is stronger than the Intuitive Criterion. For its practical

usability, the D1 criterion is one of the most popular refinements used in

applied work.

Despite its predictive power, there is little intuitive justification for the

Receiver to put infinitely more weight on Sender types that gain from the

deviation “more often” (θ′) than others (θ). Fudenberg and Tirole (1991a)

9Straightforward proofs of these facts are available upon request.
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write (p. 460)

“Since the motivation for D1 is to refine the set of equilibria using
‘reasonable’ restrictions on beliefs, to the extent that [such] 0-1 restric-
tions are implausible they may cast doubt on D1 as an equilibrium
concept.”

While there are arguments against the “speeches approach” as well (e.g. the

Stiglitz Critique), one could argue that a missing behavioral motivation is a

disadvantage of this practically useful refinement.

This motivates our study of monotonic signaling games in Section 3,

where, as a corollary of our results, the D1 Criterion eliminates an equi-

librium if and only if it is Vulnerable to Credible Deviations. That is, the

Riley outcome can be justified by an intuitive, plausible robustness check:

Immunity to Credible Deviations. While we reject (as Vulnerable) the same

equilibrium outcomes that D1 eliminates, we do not impose any specific re-

strictions on out-of-equilibrium beliefs. On the other hand, D1 has little

predictive power in a class of non-monotonic signaling games we study in

Section 4, while our condition still selects a unique outcome.

A related notion is that of Kohlberg and Mertens’ (1986) Stability. In

generic Sender-Receiver games all Stable equilibria satisfy the D1 Criterion;

furthermore the two concepts are equivalent on the class of discrete mono-

tonic signaling games, resembling the continuous one we study in Section 3

(see Cho and Sobel (1990)). In contrast, on the general class of Sender-

Receiver games, the Stability of an equilibrium neither implies nor is implied

by its immunity to Credible Deviations.10

Our motivation for Credible Deviations has a flavor similar to the moti-

vation behind Grossman and Perry’s (1986) Perfect Sequential Equilibrium

(PSE). Roughly speaking, under PSE a set of types T breaks an equilibrium

with an out-of-equilibrium message m if all types in T improve their payoff

by sending that message as long as the Receiver believes that all (and only)

the types in T would always deviate and send m. The word always here

implies that the Receiver is specifically assumed to update his priors over T

10A less related notion is evolutionary stability in games with pre-play communica-
tion, which can select Pareto-efficient outcomes in more general games. See Kim and
Sobel (1995) and references therein.
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in accordance with Bayes’ Rule. This amounts to replacing BR(C, m) with

BR(π|C ,m) in the right-hand side of eqn. (1).11

In Section 1.1, we argued against doing this. When considering the case

C ′ = {Quant, Non-Quant} in that example, PSE would specify that the

Receiver use precisely his prior beliefs, which in turn would cause him to

choose the action “Assist.” Since both types prefer this outcome, this set

of types C ′ would break the pooling equilibrium under PSE. However, C =

{Quant} would also break the equilibrium under PSE by inducing the action

“CFO”. Therefore, when beliefs over C ′ are required to coincide with the

prior distribution, the Receiver is implicitly forced to ignore the possibility

that C is the deviating set. We find this inconsistent.

More generally, our opinion is that such specific assumptions off the equi-

librium path are too prescriptive. While we can think of equilibrium play

(and the resulting beliefs) as being self-enforced by, say, repeated interaction,

pre-play communication, or even explicit agreement, there is less justification

for this reasoning off the equilibrium path.

Even though the definition of PSE may seem to be only marginally differ-

ent from the ideas which define Credible Deviations, these two concepts can

yield strikingly different results. Even on the standard class of monotonic

signaling games, Perfect Sequential Equilibria may not exist; see Sec. 10.6 of

vanDamme (1991). We examine that same class in Section 3, and charac-

terize a single equilibrium outcome as being immune to Credible Deviations.

It is worth noting, however, that if an equilibrium is Vulnerable to a

Credible Deviation by a singleton C, then it also fails PSE. This is true since

there is only one belief the Receiver can form over a singleton set, in which

case the distinction between our definitions disappears.

Lastly we mention refinements defined on the class of cheap-talk sig-

naling games, i.e. those in which agents’ payoffs are constant with respect

to messages m. Farrell’s (1993) Neologism-proofness asks whether a set of

types can credibly distinguish itself by explicitly sending an out of equilib-

rium message that identifies a set of potential deviating types, e.g. “We are

11To be precise, Grossman and Perry allow the Receiver to put less weight on types
in T who are indifferent about deviating, reflecting the idea that such types may randomly
choose whether to deviate. Therefore the posterior beliefs may not be exactly π|T . PSE
also does not require uniqueness of the deviating set of types T , as we do.
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the types in T .”12 An equilibrium fails Neologism-proofness if the types in

T are precisely the ones who gain when, in response to the message, the

Receiver’s beliefs are a Bayesian update of his prior beliefs on T . As with

PSE, Neologism-proof equilibria need not exist in general. Furthermore,

any comparisons between our concept and PSE could be made regarding

Neologism-proofness as well.

Matthews et al. (1991) create the more sophisticated concept of

announcement-proofness by requiring deviating types to (implicitly) an-

nounce what could be called a complete deviation strategy. A deviation

strategy assigns messages to deviating types; it is credible if each such type

has an incentive to send his deviating message, while remaining types have

no incentive to send one. This approach avoids the ambiguity discussed in

Section 1.1 resulting when the Sender has a choice about how to identify

his type. In exchange for the high level of consistency in this approach, the

results for this concept are limited.

A similar concept is given by Rabin (1990), who asks whether one can

construct profiles of messages that give some types an incentive to “truth-

fully” communicate their type, and give the rest an incentive to imitate oth-

ers. Within his class of communication games, there always exist equilibria

in which such communication occurs. This idea of the Sender deviating to

another profile (or partial profile) of strategies can be traced back to Myer-

son (1989).

3 Monotonic Signaling Games

A subclass of Sender-Receiver games often used in economic applications is

that of monotonic signaling games. These games model situations where a

privately informed party chooses a costly action in order to convey payoff-

relevant information to another party, e.g. Spence (1973). As in other sig-

naling games there are often multiple Perfect Bayesian Equilibria on this

class. Cho and Sobel (1990) show that the D1 Criterion selects a unique

12Implicit in the definition is the assumption that such an out of equilibrium message is
always available; this escapes the modeling problem that any cheap-talk equilibrium can
be rewritten as a “babbling” equilibrium, where all messages are used (perhaps randomly)
in equilibrium. See Blume (1994).
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equilibrium outcome in the canonical form of this type of game—the Riley

outcome—which also happens to be the unique Stable outcome (Kohlberg

and Mertens (1986)) in a discrete version of the model. In this section we

show that this kind of equilibrium is the only one immune to Credible Devi-

ations.

The class of monotonic signaling games is meant to capture situations in

which

• the Sender would prefer the Receiver to take higher actions,

• the Receiver prefers his action to be correlated with the Sender’s type,

• higher Sender types are “stronger” in the sense that it is relatively less

costly for them to send higher messages than for lower types to do so.

Following Cho and Sobel (1990) and Ramey (1996), we formalize these char-

acteristics with the following assumptions.

For the first, we assume that uS(θ, m, a) is strictly increasing in a for all

(θ, m). One can think of a as some sort of compensation for the Sender;

all Sender types always prefer more. Additionally, in order to avoid so-

lutions involving arbitrarily large messages and actions we assume that

limm→∞ uS(θ,m, a) = −∞ for all θ and a.

We assume that uR is such that, for any type θ and message m, the

Receiver has a unique best response, i.e. that BR({θ},m) is a singleton.

Throughout Section 3 we denote this action as

{β(θ,m)} ≡ BR({θ},m).

Furthermore we assume that β(·, ·) is uniformly bounded from above. These

two assumptions would be implied by a standard list of assumptions on the

primitives; for brevity we assume them directly.

We assume that ∂uR/∂a is strictly increasing in θ for all (m, a). As

a result, BR(π̃,m) is greater for “more optimistic” beliefs π̃ (beliefs that

are greater in the first-order stochastic sense), and in particular, β(θ,m)

is strictly increasing in θ (Cho and Sobel (1990), p. 392). Together with

monotonicity, this captures the idea that the Sender wants to induce the
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Receiver to choose larger actions by trying to convince him that the Sender’s

type is greater.

We make a central assumption in Spencian signaling games, the single-

crossing condition: −(∂uS/∂m)/(∂uS/∂a) is strictly decreasing in θ. That

is, for a given increase in m, in order to keep the Sender at the same utility

level, a higher Sender-type needs less compensation in terms of a (in case m

is locally costly for the Sender) or he is willing to give up a larger amount of

a (in case m is locally beneficial for him).

Finally, we assume that uS(θ,m, β(θ,m)) is strictly quasiconcave in m.

In many applications, this assumption is implied by stronger assumptions

made directly on the primitives of the model.

The above assumptions all are made by Cho and Sobel (1990) and

Ramey (1996), and guarantee that the D1 criterion selects the unique “Riley

equilibrium outcome.”13 Both cited papers also contain results under other,

less restrictive assumptions (e.g. allowing multidimensional signals). How-

ever, a unique separating equilibrium is proven to be selected by D1 under

exactly the same assumptions that we have here. Our aim is not to repro-

duce an analog of each result in those two papers; rather it is to demonstrate

that in the canonical Spencian signaling model, an equilibrium fails the D1

Criterion if and only if a Credible Deviation exists.

Most applied signaling models have a lot more structure. For example,

since m is usually interpreted as a costly action undertaken by the Sender

that may be beneficial for the Receiver (e.g. the Sender’s education level), it

is often assumed that uS(θ, m, a) is weakly decreasing in m and β(θ,m) is

weakly increasing in m. We need not impose these conditions.

An additional piece of notation simplifies the exposition. Suppose for

some θ and m there exists â such that uS(θ, m, â) = u∗S(θ). This action by

the Receiver would give Sender-type θ his equilibrium payoff after sending m.

If such an action exists, it is unique by monotonicity. So for any θ and m,

13An unimportant difference is that Cho and Sobel (1990) assume compact message
and action sets, while we, following Ramey (1996), assume those sets are unbounded but
assume that the best responses are bounded. Ramey (1996) also extends Cho and Sobel’s
analysis to a continuum of types.
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let â(θ, m) be the action to satisfy

uS(θ,m, â(θ, m)) = u∗S(θ) (3)

if such an action exists, and denote â(θ,m) = ∞ otherwise (for notational

convenience).

The single-crossing property suggests that higher types need less compen-

sation for sending higher messages than do lower types. Lemma 1 strengthens

that idea, applying it relative to equilibrium payoffs. It states that if a higher

type θh deviates to a higher message m′, he needs less compensation to keep

him at his equilibrium utility than would a lower type θ` who sends that same

message m′. This is a standard type of result. Proofs of all Lemmas appear

in the Appendix.

Lemma 1 Fix an equilibrium (M,A, µ) and type θh ∈ R+. For all m′ >

M(θh) and all θ` < θh, â(θh,m′) < ∞ implies â(θh,m′) < â(θ`,m′).

3.1 Credible Equilibrium

We now turn towards results specific to the existence of Credible Deviations.

In order to convey some intuition about this in the monotonic environment, it

is useful to consider the following lemma. Lemma 2 states that, in searching

for a potential deviators’ club, it suffices to find a type θ′ who would prefer

to be self-identified by sending message m′, while no lower type would prefer

to be perceived as θ′ sending that same message. In this sense, “only the

lowest type matters” in finding such a club in this class of games.14

Lemma 2 Fix an equilibrium (M, A, µ), and suppose there exists a type θ′

and an out-of-equilibrium message m′ such that

u∗S(θ′) < uS(θ′, m′, β(θ′,m′)) and

u∗S(θ) ≥ uS(θ, m′, β(θ′,m′)) ∀θ < θ′.

14One of the points we wish to make in this paper is that Credible Deviations may be
identified in environments that are less structured than this one. Any intuition for the
results in monotonic signaling games may not capture the flavor for them in, for example,
the class of games examined in Section 4.
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Then there exists a unique credible deviators’ club for m′.

As shown in the proof (see Appendix), the unique club is precisely the

set of types who prefer (relative to equilibrium payoffs) to be perceived as θ′

by sending m′, i.e.

C ′ = {θ ∈ Θ : u∗S(θ) < uS(θ, m′, β(θ′,m′)).

The explanation for this result has two parts. First, in the monotonic set-

ting, the Sender is made worse off as the Receivers beliefs shift towards lower

types. Therefore, the minimization in eqn. (1) occurs at a ∈ BR(min C,m),

for any fixed m; i.e. the “worst” belief is the one putting probability one on

the lowest type in C. If C satisfies (1), then the inequalities of the lemma

must be satisfied for θ′ = min C. Furthermore these inequalities are sufficient

since adding higher types to a set C does not change the set BR(min C,m).

This explains why the inequalities generate some credible deviators’ club.

The uniqueness result also relies on monotonicity. Since lower types can-

not gain by sending m′ when being perceived as θ′, they also cannot gain

by being perceived as themselves, and hence cannot belong to any club C.

If only higher types formed a club C by sending m′, θ′ would want to join

this club; hence θ′ must belong to any club that exists, and be the minimum

member. But then all types in C ′ would want to join such a club, since θ′ is

the “worst case” member.

Using this result, we can show that immunity to Credible Deviations is

as restrictive as D1 on this class. First, we rule out pooling (or semi-pooling)

equilibria.

Lemma 3 If an equilibrium (M, A, µ) is not Vulnerable to Credible Devia-

tions, it is a separating equilibrium—no two types send the same message.

The intuition here is that the highest type θ′ in any pooling set would

be able to find a sufficiently high message m′ with which to satisfy the in-

equalities of Lemma 2. It is worth noting that the D1 Criterion creates a

similar conclusion in this model, but also goes on to require more of beliefs.

In this sense one can think of Vulnerability to Credible Deviations as a more

minimal requirement with a somewhat more palatable justification.
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We have established that if a sequential equilibrium is not Vulnerable

to Credible Deviations, then it must be fully separating. Below we show

that only the least-distortive separating equilibrium outcome—the Riley

outcome—is not Vulnerable.

In a separating equilibrium, each type θi ∈ Θ is uniquely identified by

his equilibrium message mi. As a result, µ(θi |mi) = 1 and the Receiver’s

response is ai = β(θi,mi). Labeling the types in ascending order (θi < θi+1),

the Riley outcome is the list of pairs (mr
i , a

r
i )1≤i≤|Θ| such that

mr
1 = arg max

m≥0
uS(θ1,m, β(θ1,m)) (4)

and for all 1 < i ≤ n,

mr
i = arg max

m≥0
uS(θi,m, β(θi,m)) (5)

s.t. uS(θj,m
r
j , β(θj,m

r
j)) ≥ uS(θj,m, β(θi,m)) ∀j < i,

and ar
i = β(θi,m

r
i ) for each i. The uniqueness of such messages is guaranteed

by our quasi-concavity assumption. Due to the single-crossing assumption,

the Riley messages mr
i also are increasing in i, This is obvious when mes-

sages are always costly, but it also holds on our more-general class of games.

In particular, single-crossing implies that if Sender θi is indifferent between

message-action pairs (m, a) and (m′, a′) where m > m′, then type θj > θi

strictly prefers (m, a), which is the essence of Cho and Sobel’s (1990) As-

sumption A4.

To characterize this outcome as the unique one to satisfy our requirement,

we first rule out any other separating equilibrium.

Lemma 4 Any equilibrium whose outcome is different from the Riley out-

come is Vulnerable to Credible Deviations.

The intuition for this result is that, if a separating equilibrium has a “gap”

between equilibrium messages beyond that of the Riley outcome, then some

type would be able to lower his message and still maintain the inequalities

of Lemma 2.
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Our main result adds the observation that the Riley outcome is not Vul-

nerable to Credible Deviations.

Theorem 1 The Riley outcome is the unique equilibrium outcome that is

not Vulnerable to Credible Deviations.

Proof: Lemma 4 makes any other outcome Vulnerable.

To prove that the Riley outcome is not Vulnerable, observe from Cho

and Sobel (1990) that the Riley outcome can be supported by a sequential

equilibrium (in fact, with out-of-equilibrium beliefs that satisfy D1). Fix

such an equilibrium, and suppose toward contradiction that C is a deviators’

club for some out-of-equilibrium message m′, i.e.

C = {θ ∈ Θ : u∗S(θ) < min
a∈BR(C,m′)

uS(θ, m′, a)}.

Denote the lowest type in C as θi = min C. As in the proof of Lemma 2, due

to the monotonicity of the Receiver’s best responses with respect to beliefs,

and the monotonicity of uS with respect to a, we have

min
a∈BR(C,m′)

uS(θ,m′, a) = uS(θ, m′, β(θi, m
′)) ∀θ ∈ Θ.

Therefore for any j < i, since θj /∈ C we have

u∗S(θj) ≥ min
a∈BR(C,m′)

uS(θj,m
′, a) = uS(θj,m

′, β(θi,m
′))

These are precisely the constraints in (5), which define mr
i . Hence (by

strict quasi-concavity)

uS(θi,m
r
i , β(θi,m

r
i )) > uS(θi,m

′, β(θi, m
′)).

That is, θi prefers not to deviate from mr
i to m′ when the Receiver believes

the message came from him, which contradicts θi ∈ C. ¤

Theorem 1 shows that on this class of games, an equilibrium is Vulnerable

to Credible Deviations if and only if it fails Cho and Kreps’ (1987) D1 re-

finement. As we show in the next section, however, this similarity breaks
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down even on a similar class of games, when we slightly weaken the mono-

tonic structure. It is also worth recalling that monotonic games may contain

no equilibria which satisfy Grossman and Perry’s (1986) Perfect Sequential

Equilibrium concept (vanDamme (1991)).

4 Information Transmission and Bias

In this section we consider a class of games which conveys the following type

of interaction. The Sender wants the Receiver to take an action that matches

his type; messages are costly; and the Receiver wants to take an action that

matches the Sender’s type offset by some bias. This is a version of Crawford

and Sobel’s (1982) model, but with discrete types and costly signaling. In

fact it is similar to the model of Austen-Smith and Banks (2000), who com-

bine costly signalling with Crawford and Sobel’s cheap talk; this extension

expands the set of Crawford-Sobel equilibria. More recently, Kartik (2005)

examines a model in which miscommunicating one’s type is costly, restricting

attention to equilibria satisfying a monotonicity condition in the Receiver’s

beliefs.

While one can imagine a very generalized model for such interactions, it

is not our intention to completely analyze every variation on this theme. In

particular, we are able to illustrate our main point—that only one equilibrium

is immune to Credible Deviations in this non-monotonic environment—by

restricting attention to the interesting cases (discussed and defined below)

where the bias is not trivially small.

As before, the types are ordered θ1 < θ2 < · · · < θn, the message space is

R+, and the Receiver chooses an action in R.

The Sender’s payoff is of the form

uS(θ,m, a) = −d(θ − a)− c(θ,m)

with the following assumptions. The distance function d is convex and sym-

metric about zero (d(x) ≡ d(|x|)); hence increasing on [0,∞). The cost func-

tion c is continuous, strictly increasing in m, satisfies limm→∞ c(·,m) = ∞,

and satisfies single-crossing: c(θ,m′) − c(θ, m) > c(θ′,m′) − c(θ′,m) for all
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m′ > m, θ′ > θ. In words, the Sender wants the Receiver to choose a as

close as possible to θ (with a symmetric convex loss function), while sending

larger messages is more costly for him, but relatively less costly if he has a

higher type.

The Receiver’s payoff is of the form

uR(θ,m, a) = −(θ − a− b)2

where b > 0 is a commonly known bias. As a consequence, in equilibrium the

Receiver chooses action a = E[θ |µ,m] − b, where E[θ |µ,m] is the Sender’s

expected type given the observed message m and Receiver’s update func-

tion µ.15 The two parties’ preferences are misaligned according to the bias

b.

By varying the size of b in relation to the values of the θi’s, one may

obtain models with somewhat different flavors. For instance, if b is very small

(compared to, say, each θi+1 − θi), there is little conflict of interest between

the Sender and Receiver; the situation essentially becomes a coordination

game with sequential actions.

A more interesting case is one in which the bias is not “too small” rela-

tive to the distance between types, where there is relatively more conflict of

interest. We obtain the most striking result by analyzing such cases. Since

we wish to impose this restriction without making assumptions on the prior

distribution of types, we assume that the bias is not small relative to the

distance between any two types—specifically that it is greater than half the

distance between the highest and lowest types.16

Assumption: The bias is not too small: b > (θn − θ1)/2.

To get intuition for the role of the bias assumption in our results, see

Figure 2. In this model, the no-small-bias assumption—coupled with the

15As in related literature, the particular functional form of uR is not critical; any that
implies this objective would yield the same results.

16If we merely made an assumption about the relative distance between each consecutive
θi and θi+1, it would have little bite in examples where the prior probability of “middle”
types goes to zero. An assumption which balances the distance between such types and
their relative probabilities would be intractable.
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Figure 2: If the Receiver’s bias is large enough, a low type prefers being
perceived as a higher type to being perceived as himself.

fact that b > 0—implies that a low type prefers to be perceived as any higher

type. For instance, θ1 prefers the action a = θn − b to the action a = θ1 − b,

due to the symmetry of the distance function. In the monotonic games of

Section 3, this feature of low types wanting to be perceived as high types is

more general in that the Sender always prefers any higher action to a lower

one. Therefore our bias assumption in this section preserves some of this

incentive in a slightly richer model.

Despite the fact that the two classes of models share this feature, and the

fact that Credible Deviations exist precisely when D1 fails in Section 3, we

shall see that this equivalence breaks down in this information transmission

model.

It is interesting (and perhaps tangential) to note that in the cheap talk

literature, small bias assumptions are used to obtain separation results. In

Crawford and Sobel’s (1982) original cheap talk model, more-informative

equilibria emerge as the bias becomes smaller. This is intuitive as a small

bias implies less conflict of interest.

In models with one Receiver and two Senders (who observe the same type

but have opposing biases), Morgan and Krishna (2001) and Battaglini (2002)

show the existence of a fully type-revealing equilibrium—somewhat anal-

ogous to a separating equilibrium in the present model—when biases are

sufficiently small relative to a bounded, 1-dimensional type space. Ambrus

and Takahashi (2006) demonstrate a necessity for small biases (relative to

the type space) in order to get full revelation in the multidimensional ver-

sion of Battaglini’s model. The small-bias assumption in these models plays

a different role than in ours, however, allowing the Receiver to “punish”

out-of-equilibrium (i.e. uncoordinated) behavior of the Senders.
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4.1 Credible Equilibrium

The only equilibrium outcome immune to Credible Deviations involves sep-

aration. It is the unique outcome that minimizes the Sender’s messages

subject to the incentive constraints: θ1 sends m1 = 0, θ2 sends a different

message m2 low enough to make θ1 indifferent between sending m1 = 0 and

deviating to m2, and so on. In this sense, this outcome resembles the Riley

outcome in Section 3.

To formalize this, observe that in any separating equilibrium (M, A, µ),

the Receivers equilibrium actions clearly satisfy A(M(θi)) ≡ θi − b. We

define a minimal-cost separating equilibrium to be one where A satisfies that

condition, and additionally, M(θ1) = 0 while for 2 ≤ i ≤ n,

−d(θi−1−A(M(θi−1)))−c(θi−1, M(θi−1)) = −d(θi−1−A(M(θi)))−c(θi−1,M(θi))

(6)

which states that θi−1 is indifferent between sending his equilibrium message

M(θi−1) and sending M(θi). Because of the assumption that the bias is not

too small, these messages are uniquely defined and strictly monotonic.

To prove that this is the unique surviving equilibrium, we show that in

any other equilibrium, a credible deviators’ club must exist in one of two

ways. First, there could exist a separating type who is greater than any

pooling types (if they exist), but for whom eqn. (6) fails to hold. In the

proof of Lemma 5 we show that if any such types exist, the highest of them

would form a unique deviators’ club. (It is unsurprising that this high type

could try to deviate; the non-trivial things to show are that no one else would

want to, and that he alone is the unique deviators’ club for some message.)

Second, there could exist pooling types. Using the previous case’s result, we

show (Lemma 6) that the highest one then would form a unique deviators’

club. Hence we arrive at Theorem 2: There can be no pooling, and the

separating equilibrium must be the one defined above.

Lemma 5 Suppose an equilibrium (M, A, µ) is immune to Credible Devia-

tions. If for some s ≥ 2, the types θs, θs+1,. . . , θn are all separating (i.e.

send unique equilibrium messages), then eqn. (6) holds for all i ≥ s.

The second main portion of the proof rules out pooling, given the result
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of Lemma 5. The idea of the proof is that, if a (highest) pooling type exists,

then he forms a singleton deviators’ club with respect to a particular mes-

sage. That message is one which is sufficiently high so as to make him almost

indifferent between forming the singleton club and just playing his equilib-

rium pooling strategy. (Other messages may also yield a unique deviators’

club; we only need to find one such message.) A message this high makes

lower types unwilling to join the club. The conclusion of Lemma 5 is then

used to show that higher types would not want to deviate to this message

either.

Lemma 6 Suppose a non-separating equilibrium exists, and let θp denote the

highest pooling type. If eqn. (6) holds for all i > p, then there exists a message

for which {θp} is a unique credible deviators’ club.

Alternating applications of Lemmas 5 and 6 prove the main result.

Theorem 2 If an equilibrium (M,A, µ) is immune to Credible Deviations

then it is a minimal-cost separating equilibrium: A(M(θi)) ≡ θi−b, M(θ1) =

0, and for 2 ≤ i ≤ n, M(θi) satisfies (6).

Proof: If an equilibrium is immune to Credible Deviations, then Lemma 6

implies that the highest type, θn, does not pool. Hence Lemma 5 implies

that eqn. (6) holds for i = n.

In turn, this means (again with Lemma 6) that θn−1 does not pool; hence

Lemma 5 implies that eqn. (6) also holds for i = n − 1. Continuing this

argument for i = n− 2, n− 3, . . . , 2, θi does not pool and eqn. (6) holds.

Therefore θ1 also does not pool. It remains to be shown that M(θ1) = 0.

This is true in any separating equilibrium, though, under our assumption θn−
θ1 < 2b. Indeed, the Receiver’s equilibrium response A(M(θ1)) = θ1−b is the

worst rationalizable action the Receiver could take (from θ1’s perspective),

regardless of beliefs. Given this, M(θ1) = 0 is strictly best for θ1. ¤

4.2 D1 and Pooling

We show that the D1 Criterion does not always restrict the set of equilibria

in the class of games examined in this section. Consider a 2-type example
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E(θ) = 4.7

θL − b θH − b

A(0) = 2.7

Figure 3: Rationalizable actions preferred by θL (dashed line) are disjoint
from those preferred by θH (solid line), so D1 permits pooling.

where θ1 = 2, θ2 = 5, b = 2, and the prior is π(θ2) = 0.9. These parameters

satisfy our previous bias-assumption, namely θ2 − θ1 < 2b. Let d(x) = |x|
and c(θi,m) = m/i.

There exists a pooling-equilibrium (M,A, µ) such that M(θ) ≡ 0 and,

accordingly, A(0) = E(θ) − b = 4.7 − 2 = 2.7. Furthermore µ can be

specified so that the equilibrium satisfies D1.17 Specifically, we show that if

A(m) = θ1 − b = 0 and µ(θ1 |m) = 1 for all m > 0, then the equilibrium

satisfies D1.

To see this, we examine the potential gains from deviation for both types.

Observe that regardless of the Receiver’s (posterior) beliefs, he would never

choose an action outside the range [θ1 − b, θ2 − b] = [0, 3]; hence we can

restrict attention to that interval.

If θ1 sends an out-of-equilibrium message m > 0 and the Receiver re-

sponds with a ∈ [0, 3], then θ1 gains (relative to his equilibrium payoff) if

and only if m ∈ (0, .7) and a ∈ (1.3 + m, 2.7 −m). This range of actions is

represented by the dashed line in Figure 3. Similarly, θ2 gains if and only if

m ∈ (0, 0.6) and a ∈ (2.7 + m/2, 3].18

For m ∈ (0, 0.6), both types could gain from deviation. In those cases,

however, (1.3+m, 2.7−m)∩ (2.7+m/2, 3] = ∅, i.e. the sets of actions which

make the two types better-off are not related by inclusion (and in fact do not

even overlap). Hence D1 does not restrict out-of-equilibrium beliefs following

such a message.

For m ∈ [0.6, 0.7), only θ1 could gain from deviation; D1 therefore requires

17In fact even the stronger D2 and NWBR conditions can be satisfied. We do not show
this, and refer the reader to Cho and Kreps (1987) for definitions.

18Type θ2 could also gain for some values a > 3, but we have stated such an action is
never a best response for the Receiver.
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µ(θ1|m) = 1. For m ≥ 0.7, neither type can gain from deviation and D1

places no restrictions µ().

Therefore the pooling equilibrium satisfies the D1 Criterion. Since the

Receiver respond with action A(m) = θ1 − b = 0 for m > 0, neither type

could gain by deviating. On the other hand, this equilibrium is Vulnerable

to Credible Deviations since C = {θ2} is a unique credible deviators’ club

for various out-of-equilibrium messages.

It is clear that this example is robust to perturbations. More extreme

priors would yield the same results, making the out-of-equilibrium beliefs we

used (with unit probability on the low type) even less appealing while still

satisfying D1. Furthermore, due to the slack in our arguments, it is clear

that there even exist D1 equilibria in which all types pool by sending some

positive message m > 0.

5 Conclusion

We have shown that some equilibria of Sender-Receiver games are vulnerable

to a particular kind of signaling. Credible signals identify a set of deviating

types who gain by deviating as long as the Receiver reacts as if only such

types could be deviating. Generally, this vulnerability is not captured by

standard concepts in the refinements literature. While Credible Deviations

are eliminated on the class of Monotonic Signaling Games (Section 3) by,

for example, Cho and Kreps’ (1987) D1 Criterion, this does not happen in a

related class of games (Section 4) where best response sets are not ordered

(see also the example in Section 1.1).

On the other hand we wish to emphasize the point that immunity from

Credible Deviations does not, by itself, serve well as a generally predictive

concept. In some games all equilibria may be Vulnerable to Credible Devia-

tions.19 In other games unappealing equilibria may be immune to Credible

Deviations, as in the following example.

It is an equilibrium for all types to send m1 when the Receiver plans

to play a1 (with beliefs sufficiently biased toward type L). This pooling

19For instance, the unique equilibrium of Example 10.5.5 in vanDamme (1991) is Vul-
nerable to Credible Deviations.
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a1 a2 a3

H 1, 1 0, 0 2, 1 2, 2
M 1, 1 0, 0 0, 2 2, 1
L 1, 1 0, 2 0, 0 0, 0

m1 m2

Figure 4: Pooling on m1 is not Vulnerable to Credible Deviations.

equilibrium is ruled out by standard refinements including the Intuitive Cri-

terion. In fact, it is even ruled out by only two rounds of deleting dominated

strategies: since L cannot gain by sending m2, a1 becomes dominated for the

Receiver. This makes H and M strictly prefer playing m2. Nevertheless, the

equilibrium is not Vulnerable to any Credible Deviation.

This observation reinforces the fact that our primary goal is not to propose

an equilibrium refinement that selects a unique equilibrium in every game.

Instead it is to be aware of a type of non-robustness which some (or all)

equilibria may possess in Sender-Receiver games that are used in applications.

The basis for our approach is centered on our view that the Receiver’s

beliefs (and subsequent action) in response to a deviant message m should

be regarded as ambiguous to the Sender. While previous work has allowed

agents’ beliefs to differ off the equilibrium path (e.g. Fudenberg and Levine

(1993)), ours is the first formalization (to our knowledge) which explicitly

allows ambiguity of the Receiver’s beliefs from the Sender’s perspective.
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6 Appendix: Proofs of Lemmas

Lemma 1 Fix an equilibrium (M,A, µ) and type θh ∈ R+. For all m′ >

M(θh) and all θ` < θh, â(θh,m′) < ∞ implies â(θ`,m′) > â(θh,m′).

Proof: Denote mh ≡ M(θh). Since θh sends mh in equilibrium, we have

â(θh,mh) = A(mh) (by definition and uniqueness of â()). Therefore the

incentive constraints for θ` yield

uS(θ`, mh, â(θ`,mh)) ≡ u∗S(θ`) ≥ uS(θ`,mh, â(θh,mh))

implying â(θ`,mh) ≥ â(θh,mh) by monotonicity of uS.

The derivative of (3) with respect to m is zero, so

∂â

∂m
(θ, m) = −∂uS/∂m

∂uS/∂a
(θ,m, â(θ, m))

for any θ and m. The single crossing assumption implies

−∂uS/∂m

∂uS/∂a
(θ`,m, a) > −∂uS/∂m

∂uS/∂a
(θh,m, a)

for any m and a. Combining these observations, for any m we have

[
â(θ`, m) = â(θh,m)

]
=⇒ ∂â

∂m
(θ`, m) >

∂â

∂m
(θh,m). (7)

Recall that â(θ`,mh) ≥ â(θh,mh). If there exists m′ > mh such that

â(θ`,m′) ≤ â(θh,m′), then there exists m′′ ∈ (mh,m′] such that both

â(θ`,m′′) ≤ â(θh,m′′) and ∂â/∂m(θ`,m′′) ≤ ∂â/∂m(θh, m′′), contradict-

ing (7). ¤

Lemma 2 Fix an equilibrium (M, A, µ), and suppose there exists a type θ′

and an out-of-equilibrium message m′ such that

u∗S(θ′) < uS(θ′, m′, β(θ′,m′)) and

u∗S(θ) ≥ uS(θ, m′, β(θ′,m′)) ∀θ < θ′.

Then there exists a unique credible deviators’ club for m′.
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Proof: Let θ′ and m′ satisfy the inequalities in the lemma. We show that

C ′ = {θ ∈ Θ : u∗S(θ) < uS(θ,m′, β(θ′,m′)) (8)

is the unique set of types to satisfy (1).

The inequalities imply θ′ ∈ C ′, and in fact that θ′ = min C ′. Perhaps C ′

contains some θ > θ′ (if any exist). Regardless, by monotonicity of uS() in a

and by monotonicity of the Receiver’s best response with respect to beliefs,

respectively, we have the following for any θ ∈ Θ.

min
a∈BR(C′,m′)

uS(θ,m′, a) = uS(θ, m′, minBR(C ′,m′))

= uS(θ, m′,BR(min C ′,m′)) (9)

= uS(θ, m′, β(θ′, m′))

Hence C ′ satisfies (1) with respect to m′ (showing existence).

To show that C ′ is the unique such set, let C satisfy (1). For any θ < θ′,
monotonicity of the Receiver’s best response implies

uS(θ,m′, β(θ, m′)) < uS(θ, m′, β(θ′,m′)) ≤ u∗S(θ)

where the last inequality follows from the lemma’s assumption. Hence no

such type can belong to a deviators’ club for m′. Hence min C ≥ θ′.
If min C = θ > θ′, then again by monotonicity of the Receiver’s best

responses (and that any distribution over C stochastically dominates the

degenerate one on θ′),

u∗S(θ′) < uS(θ′,m′, β(θ′,m′)) < uS(θ′,m′, a)

for any a ∈ BR(C, m′). But this contradicts the fact θ′ /∈ C. Hence θ′ =

min C.

By (9), a credible deviators’ club is uniquely determined by its minimum

element; no two distinct clubs can have the same minimum element. Hence

C = C ′ defined by (8). ¤

Lemma 3 If an equilibrium (M, A, µ) is not Vulnerable to Credible Devia-
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tions, it is a separating equilibrium—no two types send the same message.

Proof: Suppose to the contrary that some equilibrium message me is sent

by several types, the highest of which is θ′.
Note that A(me) < β(θ′,me) because θ′ is the highest of several types

that sends me (and due to the assumptions on uR). Therefore

u∗S(θ′) < uS(θ′,me, β(θ′,me))

i.e. θ′ would be better off if the Receiver “knew” it was θ′ sending me and

best-responded accordingly.

We claim that there exists m′′ > me such that both

u∗S(θ′) = uS(θ′,m′′, β(θ′,m′′))

and uS(θ′, m′′, β(θ′,m′′)) is locally decreasing in m. To see this, it is enough

to observe that uS tends to −∞ as m → ∞, and β(θ′,m) is bounded from

above by assumption.

By choice of m′′, â(θ′,m′′) = β(θ′,m′′) < ∞. By Lemma 1, for all θ < θ′

we have â(θ,m′′) > â(θ′,m′′), and hence u∗S(θ) > uS(θ, m′′, β(θ′,m′′)).
By continuity, there is an out of equilibrium message m′ < m′′ (sufficiently

close to m′′) such that

u∗S(θ′) < uS(θ′,m′, β(θ′,m′)) and

u∗S(θ) > uS(θ, m′, β(θ′,m′)) ∀θ < θ′.

By Lemma 2, there exists a unique deviators’ club with respect to m′. ¤

Lemma 4 Any equilibrium whose outcome is different from the Riley out-

come is Vulnerable to Credible Deviations.

Proof: Suppose an equilibrium (M, A, µ) is not Vulnerable to Credible De-

viations. By Lemma 3 it is separating: 1 ≤ i 6= j ≤ n implies M(θi) 6= M(θj).

If the Sender uses Riley messages (M(θi) ≡ mr
i ), the Receiver responds ac-

cordingly, and we are done.
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Otherwise, let θi be the lowest type such that M(θi) 6= mr
i . For any j < i,

we have

u∗S(θj) = uS(θj,m
r
j , β(θj,m

r
j)) ≥ uS(θj,M(θi), β(θi,M(θi)))

by incentive compatibility. Therefore M(θi) does not maximize

uS(θi,m, β(θi,m)) subject to the constraints of (5) (since the maximizer mr
i

is unique, by strict quasi-concavity in m).

That is,

u∗S(θi) = uS(θi, M(θi), β(θi,M(θi))) < uS(θi,m
r
i , β(θi,m

r
i ))

By Lemma 2, there exists a unique deviators’ club for message mr
i . ¤

Lemma 5 Suppose an equilibrium (M, A, µ) is immune to Credible Devia-

tions. If for some s ≥ 2, the types θs, θs+1,. . . , θn are all separating (i.e.

send unique equilibrium messages), then eqn. (6) holds for all i ≥ s.

Proof: To derive a contradiction under the hypothesis of the lemma, let

θj ≥ θs be the highest type for whom eqn. (6) fails; we prove the lemma by

showing that {θj} forms a unique credible deviators’ club. Throughout the

proof, denote equilibrium messages mi ≡ M(θi) and actions ai ≡ A(M(θi)).

(Existence) Incentive compatibility implies

d(θj−1 − aj−1)− d(θj−1 − aj) < c(θj−1,mj)− c(θj−1,mj−1) (10)

where the strictness follows from the choice of j. By assumption, either θj−1

is a separating type, or pools only with lower types. Therefore the Receiver’s

response to mj−1 satisfies aj−1 ≤ θj−1−b < θj−b = aj. With our assumption

that the bias is not too small, this makes the left hand side of (10) positive.

The right hand side then implies mj > mj−1.

By the convexity of d, for any ` < j − 1 we have

d(θ` − aj−1)− d(θ` − (θj − b)) ≤ d(θj−1 − aj−1)− d(θj−1 − (θj − b)).
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By the single-crossing property of c,

c(θj−1,mj)− c(θj−1,mj−1) < c(θ`,mj)− c(θ`,mj−1).

Combining the latter two inequalities with (10) we get

d(θ` − aj−1)− d(θ` − (θj − b)) < c(θ`,mj)− c(θ`,mj−1).

The incentive constraint for θ` not to send mj−1 is

d(θ` − a`)− d(θ` − aj−1) ≤ c(θ`,mj−1)− c(θ`,m`).

Adding it to the previous inequality yields

d(θ` − a`)− d(θ` − (θj − b)) < c(θ`,mj)− c(θ`,m`) (11)

for all ` < j − 1. With (10) this establishes that any θ` < θj strictly prefers

his equilibrium payoff to imitating type θj.

In the case that j < n, types θj and θj+1 both separate by assumption,

and θj is indifferent between sending mj and mj+1:

d(θj − (θj − b))− d(θj − (θj+1 − b)) = c(θj,mj+1)− c(θj,mj).

Since θj+1 − θj < 2b, the left hand side of the equality is positive.

By the convexity of d and the single-crossing property of c, for all h > j

we have

d(θh − (θj − b))− d(θh − (θj+1 − b)) > c(θh,mj+1)− c(θh,mj).

The incentive constraint for θh > θj+1 (if any exist) not to send mj+1 is

d(θh − (θj+1 − b))− d(b) ≥ c(θh, mh)− c(θh,mj+1).
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Adding the last two inequalities yields

d(θh − (θj − b))− d(b) > c(θh,mh)− c(θh,mj).

This establishes that any θh > θj strictly prefers his equilibrium payoff to

imitating type θj.

By continuity, this implies that C = {θj} satisfies (1) (forms a deviators’

club) for any message mj − ε, as long as ε > 0 is kept sufficiently small so as

not to violate the strict inequalities established above. Only type θj would

gain from sending mj − ε if the Receiver would react to it with the action

a = θj − b.

(Uniqueness) To finish the proof, we need to show that there can exist no

other deviators’ club C for such a message mj − ε, whenever ε is sufficiently

small.

For θ` < θj to belong to a credible deviators’ club requires that he gain

even when the Receiver believes the message came from θ`, i.e.

d(θ` − (θ` − b))− d(θ` − a`) < c(θ`, m`)− c(θ`,mj − ε).

Adding this to (11) (or (10) for ` = j − 1) yields

d(θ` − (θ` − b))− d(θ` − (θj − b)) < c(θ`,mj)− c(θ`,mj − ε).

The left hand side of this inequality, which can be written d(b)−d(b−(θj−θ`)),

is positive because 0 < θj − θ` < 2b. Hence for sufficiently small ε > 0, this

inequality is violated; θ` < θj cannot belong to any credible deviators’ club

C for message mj − ε, when ε > 0 is sufficiently small.

On the other hand, suppose some deviators’ club for mj − ε consisted

only of types higher than θj. Similar reasoning as above implies that θj

would want to “join that club” since |θj − (θh − b)| < |θj − (θj − b)| when

θh < θj, i.e. θj is even better off when the Receiver believes the message was

sent by θh than when the Sender believes it was θj. This contradicts the fact

that such a club C exists without θj.

Therefore, any such club C must contain θj. But we have already proven

that no other type gains by sending mj − ε when the Receiver chooses a =
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θj − b. We conclude that {θj} is the unique deviators’ club for (any out-of-

equilibrium) message mj − ε when ε > 0 is chosen sufficiently small, making

the equilibrium Vulnerable to a Credible Deviation. ¤

Lemma 6 Suppose a non-separating equilibrium exists, and let θp denote the

highest pooling type. If eqn. (6) holds for all i > p, then there exists a message

for which {θp} is a unique credible deviators’ club.

Proof: Throughout the proof, denote equilibrium messages mi ≡ M(θi)

and actions ai ≡ A(M(θi)).

Let m̂p denote the message that would give θp his his equilibrium payoff

if the Receiver would respond with action a = θp − b, i.e.

d(θp − ap)− d(θp − (θp − b)) = c(θp, m̂p)− c(θp,mp). (12)

We eventually prove that {θp} is a unique singleton deviators’ club for some

message m̂p − ε.

First, we show that for all i 6= p, if θi would send m̂p and the Receiver

would respond with a = θp− b, then θi would be strictly worse off than he is

in equilibrium, i.e.

d(θi − ai)− d(θi − (θp − b)) < c(θi, m̂p)− c(θi,mi). (13)

To prove this claim we separately address types lower and higher than θp.

(Low Types) Since θp is the highest pooling type, the Receiver’s re-

sponse to his equilibrium message is ap < θp − b. This implies that the left

hand side of eqn. (12) is positive, hence m̂p > mp.

By the convexity of d, for all ` < p we have

d(θ` − ap)− d(θ` − (θp − b)) ≤ d(θp − ap)− d(θp − (θp − b)).

Since m̂p > mp, the single-crossing property of c implies that for all ` < p,

c(θp, m̂p)− c(θp, mp) < c(θ`, m̂p)− c(θ`,mp).
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Combining these two inequalities with eqn. (12) yields

d(θ` − ap)− d(θ` − (θp − b)) < c(θ`, m̂p)− c(θ`,mp)

while the incentive constraint for θ` not to imitate θp is

−d(θ` − ap)− c(θ`, mp) ≤ −d(θ` − a`)− c(θ`,m`).

By adding the previous two inequalities, we get

d(θ` − a`)− d(θ` − (θp − b)) < c(θ`, m̂p)− c(θ`,m`)

for all ` < p.

(High Types) Lemma 5 says that θp+1 (if it exists) separates from θp at

the least cost, that is,

− d(θp − (θp+1 − b))− c(θp,mp+1) = −d(θp − ap)− c(θp,mp). (14)

Since |θp − (θp+1 − b)| < |θp − (θp − b)|, this equality with eqn. (12) implies

m̂p < mp+1.

Combine eqns. (12) and (14) to get

d(θp − (θp − b))− d(θp − (θp+1 − b)) = c(θp,mp+1)− c(θp, m̂p).

By the convexity of d and the fact θp+1 > θp, for all h > p we have

d(θh − (θp − b))− d(θh − (θp+1 − b)) ≥ d(θp − (θp − b))− d(θp − (θp+1 − b)).

By the single-crossing property of c and mp+1 > m̂p, for all h > p,

c(θp,mp+1)− c(θp, m̂p) > c(θh,mp+1)− c(θh, m̂p).

Therefore, for all θh > θp,

−d(θh − (θp+1 − b))− c(θh,mp+1) > −d(θh − (θp − b))− c(θh, m̂p).
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The incentive constraint for θh not to imitate type θp+1 is

−d(b)− c(θh,mh) ≥ −d(θh − (θp+1 − b))− c(θh,mp+1).

The last two inequalities imply that for all θh > θp,

−d(b)− c(θh,mh) > −d(θh − (θp − b))− c(θh, m̂p).

This establishes (13).

We finish the proof by arguing that for any sufficiently small ε, {θp} is

the unique credible deviators’ club with respect to message m̂p − ε. Since

these arguments are mostly the same as those used in the end of the proof

of Lemma 5, we keep these arguments brief.

Continuity in eqn. (13) implies that for sufficiently small ε, C = {θp}
satisfies (1) with respect to message m̂p − ε.

To show that no other deviators’ club C can exist, first consider θ` < θp.

Since 0 < θp − θ` < 2b, any such θ` would prefer the Receiver to take action

θp − b rather than θ` − b. Hence by transitivity and (13), θ` cannot belong

to a deviators’ club for message m̂p − ε, as in the proof of Lemma 5.

Finally, if a deviators’ club consisted only of higher types θh, θp would

want to join that club, which is a contradiction. Hence θp belongs to any such

C, in which case (13) implies θh could not belong to the club for message

m̂p−ε, preferring his equilibrium payoff to the one he gets when the Receiver

responds with action a = θp − b. ¤
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