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Abstract

During weather-induced airport congestion, landing slots are re-
assigned based on flights’ feasible arrival times and cancelations. We
consider the airlines’ incentives to report such information and to ex-
ecute cancelations, creating positive spillovers for other flights. We
show that such incentives conflict with Pareto-efficiency, partially jus-
tifying the FAA’s non-solicitation of delay costs. We provide mecha-
nisms that, unlike the FAA’s current mechanism, satisfy our incentive
properties to the greatest extent possible given the FAA’s own design
constraints. Our mechanisms supplement Deferred Acceptance with a
“self-optimization” step accounting for each airline’s granted right to
control its assigned portion of the landing schedule.

1 Introduction
Weather-caused flight delays frustrate policy makers as much as they frus-
trate airline passengers: the annual economic cost of such delays is measured
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in billions of dollars.1 Though weather delays are unavoidable, the resulting
delay costs are mitigated by rescheduling delayed flights into earlier landing
slots that have been vacated by newly canceled flights. In the U.S. (as else-
where) this rescheduling is done only after airlines report privately known
flight information through a centralized mechanism. While this problem has
yielded a significant optimization literature, there has been little analysis of
airlines’ incentives to report their information in the first place. We formalize
this problem with mechanism design constraints appropriate for the setting,
focusing on three forms of incentives pertaining to: reporting flight delays,
reporting waiting costs, and making and reporting flight cancelations.

Our first set of results can be viewed as an incentives-based justifica-
tion for the fact that the FAA’s rescheduling mechanism is not fully Pareto-
efficient. Specifically, we show that Pareto-efficiency would be incompatible
with any single one of our three incentive conditions. Nevertheless a weaker
form of efficiency—the one considered in the transportation literature on
this problem—is simultaneously compatible with two of our incentive condi-
tions and a weakened version of the third. We construct rules exhibiting this
compatibility by supplementing the Deferred Acceptance algorithm (Gale
and Shapley (1962)) with a procedure that accounts for the airlines’ granted
rights to rearrange their own portions of the landing schedule.

Our most significant finding is that our rules give strong incentive for air-
lines to execute and promptly report flight cancelations. This result is robust
to dynamic specifications of the model and to the endogeneity of cancelation
decisions. This is important during periods of congestion, when cancela-
tions create positive spillovers for other airlines. Under any of our rules,
in fact, a flight cancelation is necessarily welfare improving: each remaining
flight is assigned a (weakly) better landing slot. In contrast, Schummer and
Vohra (2013) show that the FAA’s current mechanism can provide a strict
disincentive for an airline to cancel flights even in a static model.

1A U.S. Senate report (Sen. C. Schumer and C. Maloney (2008)) estimates the economic
cost of all flight delays to exceed $40 billion per year for the U.S., around half of which is
direct cost to the airlines. Weather causes roughly one fifth of all delays.
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1.1 Ground Delay Programs

To justify our modeling assumptions and motivate our design constraints,
we describe the relevant institutional details of a Ground Delay Program
(GDP). A GDP is used to reduce the rate of air traffic at an airport when
demand for landing slots is projected to exceed capacity, e.g. when landing
rates are to be reduced due to inclement weather.

Hours in advance of a forecasted weather event, air traffic management
declares a GDP to be in effect. First, flights destined for the affected airport
are given delayed departure times while still on the ground at their origination
airport. This Ration-by-Schedule step of a GDP simply spreads out arrivals
so as not to exceed the new, reduced landing capacity. For example an airport
that normally lands sixty flights per hour may be reduced to thirty flights
per hour due to weather. Thirty 2-minute slots replace sixty 1-minute slots
and are assigned to thirty flights based on the original schedule. We take
this process as given, and it is not part of our analysis.

In fact this Ration-by-Schedule step would be the end of the process if
not for certain operating constraints of the airlines. When a flight is as-
signed a new arrival (and hence departure) time, its airline may have to
cancel it (e.g. if the crew now might exceed its legal work hours). Such flight
cancelations—made after Ration-by-Schedule—have the interesting effect of
freeing up additional units of the scarce resource: landing slots.

To utilize these newly created gaps in the landing schedule, the GDP’s
Reassignment step is executed, which is the focus of our analysis. First, air-
lines report their relevant flight information—cancelations and the feasible
arrival time of each remaining flight. Next, a centralized mechanism2 feasibly
reschedules the remaining flights to eliminate vacancies in the landing sched-
ule. Due to various design constraints, however, there is no single, obvious
choice of mechanism to use at this step.

First, a flight cannot be assigned to an arbitrary earlier slot since this
might violate its feasible arrival time constraint. Second, even though a
landing schedule specifies precisely which flight occupies which landing slot,
an airline may wish to swap the positions of two of its own flights. Such

2The FAA currently uses the Compression algorithm for Reassignment. Compression
was introduced in the 1990’s, in part to solve an incentives problem with the previous
assignment method; see Wambsganss (1997).
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swapping not only seems reasonable, but is a right explicitly granted by the
FAA’s operations guidelines.3 This novel design constraint plays a significant
role in Section 5, implying that even if a mechanism prescribes one landing
schedule, an airline may ultimately consume a different one based on its
privately known preferences for such swapping.

Third, the implementation of Pareto-efficient landing schedules requires
knowing the airlines’ full preferences over landing schedules. Significantly, the
FAA does not solicit such information during the Reassignment step. It may
be impractical for airlines to evaluate and report such complex information,
unique to every GDP event. Regardless, we consider mechanisms both with
and without this third (soft) design constraint. Section 4 considers Pareto-
efficient mechanisms when such preference information exists, and Section 5
considers mechanisms that use only the information solicited by the FAA.
The negative results of Section 4 lend support to the restriction of Section 5.

1.2 Related Literature

The paper most related to ours is by Schummer and Vohra (2013), who con-
sider our problem using an incomplete notion of airline preferences. Without
imposing all of the design constraints discussed above, they analyze the weak
core and provide results on weak incentives, discussed in Subsection 5.4. Our
paper also relates to both an operations-oriented literature on GDP’s and a
game theoretic literature on object assignment and matching.

The operations literature on GDP’s emphasizes optimization; incentives
are mentioned but not formalized.4 Vossen and Ball (2006a) use a linear
programming approach to minimize airline costs, yielding a generalization of
the Ration-by-Schedule process. Vossen and Ball (2006b) interpret the FAA’s
Compression algorithm as a barter exchange process. Various papers gener-
alize this optimization problem by modeling endogenous flight cancelations
(Ball, Dahl, and Vossen (2009)), intra-flight arrival constraints (Hoffman and
Ball (2007)), downstream costs from delays (Niznik (2001)), or prioritization
by flight distance (Ball and Lulli (2004) and Ball, Hoffman, and Mukher-
jee (2010)).

3The rule is in Section 17–9–5 of the Facility Operation and Administration Handbook.
The handbook is available through http://www.faa.gov/atpubs.

4An interesting exception is a rigorous, explicit example of manipulability provided by
Wambsganss (1997), in an historical perspective on GDP’s.
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Our emphasis on incentives fits more closely within the assignment and
matching literatures. With airlines exchanging endowed landing slots, our
model naturally appears to be a generalization of the (1-sided) housing mar-
ket model of Shapley and Scarf (1974).5 However, our approach in Section 5
is to embed this problem into a version of the celebrated two-sided College
Admissions model of Gale and Shapley (1962). We extend their Deferred
Acceptance algorithm to respect the design constraints mentioned earlier in
Subsection 1.1, deriving incentive conditions appropriate for this setting.

Despite some resemblance to the two-sided College Admissions model, it
is our colleges (i.e. the airlines) that have economically meaningful prefer-
ences, not our students (i.e. landing slots). Thus our environment reverses
the School Choice environment of Abdulkadiroğlu and Sönmez (2003) in
which students have preferences but colleges do not.6 This seemingly minor
difference—making the college side strategic—is significant since incentive
compatibility is well-known to be more elusive for the college side of such
markets.7 For instance, (student-proposing) Deferred Acceptance gives the
student side incentive to truthfully report preferences, but no analogous re-
sult holds for the college side. Despite this, we obtain positive incentive
results for our setting in Subsection 5.3 and Subsection 5.4.

Our model includes endowments of objects (slots) to airlines. Endow-
ments appear in the house allocation model of Abdulkadiroglu and Sön-
mez (1999), which yields an individually rational, Pareto-efficient, strategy-
proof mechanism. However the consumption of multiple objects again leads
to negative results: Konishi et al. (2001) show the weak core is often empty;
Atlamaz and Klaus (2007) show efficient rules to be manipulable by destroy-
ing, concealing, or transferring endowed objects.8 While Theorem 3 parallels
a result of theirs, neither result implies the other. More importantly we

5Schummer and Vohra (2013) take this approach. Balakrishnan (2007) uses the
Shapley–Scarf model directly by treating flights (rather than airlines) as agents. This
allows use of the Top Trading Cycle algorithm, but ignores incentives at the airline level.

6Relatedly, see Balinski and Sönmez (1999), Sönmez (2013), Sönmez and
Switzer (2013), and Kominers and Sönmez (2016).

7See Roth and Sotomayor (1990) for a survey, along with Dubins and Freedman (1981),
Roth (1982), Roth (1985), and extensions by Sönmez (1996), Alcalde and Barberà (1994),
and Takagi and Serizawa (2010).

8Endowment-manipulation is also considered by Postlewaite (1979). Sertel and Ozkal-
Sanver (2002) show that Deferred Acceptance is manipulable through the hiding of mon-
etary endowments, contrasting interestingly with our positive result in Subsection 5.3.
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provide a contrasting positive result in Subsection 5.3.

2 Model
There is a finite set of airlines, A. Each airline A ∈ A has a finite set of flights
denoted FA; let F = ⋃

A∈A FA. Flights are to be assigned to an ordered set of
available landing slots, denoted by a set of integers S ⊂ N ≡ {1, 2, . . .}, with
|S| ≥ |F |. We interpret the slot labels as physical units of time, so slot 1 is
the earliest slot, slot 5 is two units of time later than slot 3, etc.9

Each flight f ∈ F is to be assigned a slot no earlier than its earliest
feasible arrival time ef ∈ N. Assigning flights to slots, a landing sched-
ule is a function Π: F → S that is injective (f 6= f ′ implies Π(f) 6= Π(f ′)).
Landing schedule Π is feasible if for all f ∈ F , Π(f) ≥ ef .

Given some initial landing schedule Π0, one can infer for any flight f ∈
FA that slot Π0(f) is initially endowed to airline A; however Π0 does not
specify endowment of any initially vacant slots. As discussed in section 1.1,
whichever airline vacated such a slot maintains some degree of property rights
over it (footnote 3). Therefore we introduce the concept of a slot ownership
function, a function Φ: A → 2S such that A 6= B implies Φ(A)∩Φ(B) = ∅.
If s ∈ Φ(A) is vacant according to Π0, the interpretation is that A canceled
a flight previously occupying s.10

We say that Φ is consistent with a landing schedule Π when occupation
(under Π) implies ownership (under Φ): ∀A ∈ A, ∀f ∈ FA, Π(f) ∈ Φ(A).
Any pair (Π,Φ) satisfying this consistency condition is called an assign-
ment.

Preferences We model airlines’ preferences to reflect the fact that earlier
is better : all else being constant, airline A prefers flight f ∈ FA to be assigned
to as early a landing slot as possible (though not earlier than ef ). While this

9We model a “single runway, single airport” problem. Our results easily extend to
“multiple runway” problems in which each time-unit contains multiple, identical landing
slots. We ignore the modeling of multiple airports (like the majority of the cited oper-
ations literature in Subsection 1.2) since it would be rare to see many (distant) airports
simultaneously experiencing GDP’s due to unexpected weather events.

10Thus an initial landing schedule and slot ownership function describe the scenario
in which cancelations have already been made. The strategic decision whether to cancel
flights in the first place is implicitly captured by the non-manipulability conditions of
Definition 6 and Definition 12, and the result of Observation 2.
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assumption is what motivates our analysis, it says nothing about how an
airline evaluates tradeoffs amongst moving different flights to earlier slots in
the schedule. If given the choice, airline A’s preference to move flight f ∈ FA
to an earlier slot might be more intense than its preference to move g ∈ FA.11

Such preference intensities could vary due to differences in flights’ operating
costs, numbers of passengers, deadlines for crews timing out, future needs of
the aircraft, etc.

While this could make the class of real-world airline preferences very
rich (and complicated), it turns out that our results are quite robust to the
modeling of such preferences. To begin with, we perform our analysis using a
simple model of linear delay costs, in which an airline evaluates schedules by
aggregating its flights’ costs. It is then easily argued that our positive results
extend to any model of preferences in which earlier is better as defined above.
In addition, any of our negative results immediately extends to any richer
class of airline preferences using standard arguments. Since we believe that
any model of this problem should at least contain our class of preferences,
our conclusions are robust to this modeling specification.

Formally each flight f ∈ FA has a weight wf > 0, which can be inter-
preted as a (relative) delay cost per unit of time. To illustrate, suppose A
has two flights, FA = {f, g}, and consider landing schedules Π and Π′ where
Π(f) = 5, Π(g) = 6, Π′(f) = 3, and Π′(g) = 9. Moving from Π to Π′, A
gains 2 ·wf units through f and loses 3 ·wg units through g. If 2 ·wf > 3 ·wg
then A prefers Π′ to Π.

Definition 1. A list of weights (wf )f∈F induces for each airline A ∈ A a
(weak) preference relation over feasible landing schedules �wA (with
strict part �wA) as follows. For all feasible landing schedules Π,Π′:

Π �wA Π′ ⇔
∑
f∈FA

wf (Π′(f)− Π(f)) ≥ 0.

If Π is feasible but Π′ is infeasible for A, we say Π �wA Π′.

This linear delay cost model is common in the operations literature on
optimization in GDP’s (see Subsection 1.2). There the typical objective is

11Schummer and Vohra (2013) assume that an airline does not make such tradeoffs, and
only considers a landing schedule “better” if all its flights (weakly) improve. This yields
weaker incentive compatibility concepts, discussed in Subsection 5.4.
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to minimize aggregate delay costs, which implies inter-airline comparability
of weights. Our analysis does not depend on whether these weights are
comparable across airlines since they merely parameterize preferences.

To summarize our model, an Instance of a Landing Slot Problem is
a tuple I = (S,A, (FA)A∈A, e, w,Π0,Φ0) of slots, airlines, flights, earliest
arrival times, weights, and an initial (feasible) assignment (Π0,Φ0).12 While
our analysis is motivated by the GDP slot reallocation problem described
in Subsection 1.1, our model’s primitives describe any “job rescheduling”
problem in which agents (airlines) control multiple “jobs” (flights) that need
to be queued. The model is particularly relevant in problems where each job
f has its own earliest feasible processing time ef .13

3 Rescheduling Rules and their Properties
A rescheduling rule is a function ϕ that maps each instance I to a land-
ing schedule ϕ(I) that is feasible for I. We denote by ϕf (I) the slot to
which flight f is assigned, so if Π = ϕ(I) then Π(f) = ϕf (I); we also write
ϕA(I) ≡ ⋃

f∈FA ϕf (I). Our objective is to find rescheduling rules that im-
prove efficiency while respecting property rights and providing incentives for
airlines to promptly and truthfully report private information.

The primary objective of the Reassignment step in GDP’s is to utilize
any vacant slot that could improve the position of some flight. We consider
both this non-wastefulness property along with the stronger condition of
Pareto-efficiency.

Definition 2. A rescheduling rule ϕ is non-wasteful if, for any instance
I, there is no flight f ∈ F and no slot s ∈ S such that (i) s 6∈ ⋃g∈F ϕg(I)
(s is vacant) and (ii) ef ≤ s < ϕf (I) (f can feasibly move up to s). It is
Pareto-efficient if, for any instance I, there is no landing schedule Π′ such

12The initial schedule is interpreted as the one that the FAA issues during the Ration-
by-Schedule step described in Subsection 1.1.

13E.g. consider a manufacturing facility rescheduling jobs from various product design
firms. The starting time of job (f) is constrained by how early (ef ) its firm owner can
deliver that job’s design specifications. A similar story can be told for research institutes
submitting jobs to a shared supercomputer. Schummer and Vohra (2013) relate a similar
model to the problem of organ allocation when each agent (region) controls a set of patients
joining a common waiting list. Geographical fairness constraints could prevent patient f
appearing earlier than position ef in the list.
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that (i) for all A ∈ A, Π′ �wA ϕ(I), and (ii) for some A ∈ A, Π′ �wA ϕ(I).14

An even stronger definition would minimize the sum of delay costs across
all airlines. Such a requirement would conflict with the incentive to truthfully
report weights and with any form of property rights.

A trivial way to achieve Pareto-efficiency is to use serial dictatorship:
allow airline A to occupy whichever slots it wants, then allow airline B to
occupy its favorite of the remaining slots, etc. Aside from being unfair, such
a method would disrupt operational planning for most airlines, since none
(except A) could rely on keeping their initially assigned slots (following the
Ration-by-Schedule step of a GDP). Thus there is an operational argument
for giving airlines the option to keep their initially assigned slots. To achieve
this we impose an individual rationality constraint: no airline should be worse
off than they are at the initial assignment (Π0,Φ0).

There are two natural ways to define such a requirement in landing slot
problems depending on whether one grants airlines the right to use any slot it
initially “owns” according to Φ0. Specifically, a weak definition of individual
rationality would simply require airlines to prefer the final landing schedule
to the initial one, Π0. A stronger definition would first determine how each
airline A could optimally utilize the subset of slots it intially owns, Φ0(A),
and require airlines to prefer the final landing schedule to that scenario.15

It turns out that our negative results hold even under the weaker definition
formalized as follows.

Definition 3. A rescheduling rule ϕ is individually rational if for any
instance I = (S,A, (FA)A∈A, e, w,Π0,Φ0) and airline A we have ϕ(I) �wA Π0.

On the other hand our positive results would hold even under the stronger
definition; see the discussion following Theorem 5.

14One could consider both stronger and weaker notions of efficiency. One stronger def-
inition would minimize the sum of all airlines’ delay costs; such a requirement conflicts
with the incentive to truthfully report weights and with individual rationality (Defini-
tion 3). A weak Pareto-efficiency condition only rules out assignments from which every
airline can strictly improve. This condition is less appealing in our application since there
may typically be an airline whose schedule can no longer be improved at all. Neverthe-
less Theorem 1 and Theorem 2 hold even under weak Pareto-efficiency using our current
proofs.

15In the language of Section 5, the stronger definition would first self-optimize the initial
assignment, and then impose a standard IR condition. This definition would be justified
by the regulations documented in Footnote 3.
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3.1 Incentives

The various incentive properties we consider are defined by comparing the
outputs of a rule before and after some change in the parameters of an in-
stance, e.g. changes to the list of weights w, to the feasible arrival times e,
etc. Therefore we use the following “replacement notation.” For any instance
I = (S,A, (FA)A∈A, e, w,Π0,Φ0), let

Iw→w′ ≡ (S,A, (FA)A∈A, e, w′,Π0,Φ0)

denote the instance identical to I except with weights w replaced with w′.
Similarly Ief→e′

f
denotes I with ef replaced by e′f , etc.

Though airline preferences are parameterized by feasible arrival times and
weights, we separate the incentives to report these two types of information.16

Definition 4. A rescheduling rule ϕ ismanipulable by intentional flight
delay if there is an instance I = (S,A, (FA)A∈A, e, w,Π0,Φ0), airline A ∈ A,
flight f ∈ FA, and e′f > ef such that A gains from delaying f to e′f , i.e.
ϕ(Ief→e′

f
) �wA ϕ(I).

History strongly motivates this concept. The FAA’s previous slot alloca-
tion method was abandoned in the 1990’s in part because it gave airlines a
disincentive to report certain changes in their feasible arrival times (ef ’s).17

Our condition has two interpretations. One is that ef ’s are observable but
an airline can take some private action of “sabotage” (e.g. delay the reassign-
ment of a pilot) that commits a flight to some delay; hence the requirement
e′f > ef . Another interpretation is that ef ’s are private information and
an airline can misreport them without detection. In this case our restric-
tion to downward manipulations (e′f > ef ) weakens the non-manipulability
condition. This makes our conclusions stronger, however, since our results
regarding this condition are negative.

Definition 5. A rescheduling rule ϕ is manipulable via weights if there
is an instance I = (S,A, (FA)A∈A, e, w,Π0,Φ0), airline A ∈ A, flight f ∈ FA,
and weight w′f such that A gains from reporting w′f : ϕ(Iwf→w′

f
) �wA ϕ(I).

16We consider the incentive to misreport only a single flight’s information (ef or wf ).
Our results would continue to hold if airlines could misreport multiple flights’ information.

17Much of the work cited in Subsection 1.2 mentions this “double penalty” problem.
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The applicability of this condition depends on the degree to which delay
costs are observable to the planner. For example, if one interprets weights
merely as the (observable) fuel cost of keeping a particular type of aircraft
waiting, then this manipulability may not be an issue. But typically, other
privately known factors determine delay costs, such as the potential need to
change exhausted flight crews, number of connecting passengers on a flight,
etc., making the concept important.

Cancelations. Our third incentive property concerns the creation and re-
porting of vacated slots. The FAA knows that a slot has been vacated only
after an airline announces it.18 When this announcement is timely, the slot
can often be given to another airline. With a sufficiently late announcement,
however, the slot could go to waste (e.g. once airlines have committed to
their current schedules). Even more perverse would be a situation in which
an airline decides not to cancel a flight it otherwise would have. During times
of congestion, airlines clearly should be given proper incentives to make and
announce cancelations. Interestingly this concern is reflected in a 1996 US
Department of Transportation memo (Oiesen (1996)), which stated

“If an airline sits on a slot that it is not planning to use, is there
any way for ATMS to detect this and to take this slot away from
the airline? Should this be done?”

We consider two ways to formalize such incentives. The following, weaker
one considers a scenario in which an airline gains by permanently destroying
a slot that it initially owns.19 A practical motivation follows the definition.

Definition 6. A rescheduling rule ϕ is manipulable via slot destruction
if there is an instance I = (S,A, (FA)A∈A, e, w,Π0,Φ0), airline A ∈ A, and
slot s ∈ S such that
(i) s ∈ Φ0(A) (A owns s),
(ii) @f ∈ F such that Π0(f) = s (s is initially vacant), and
18Wambsganns (1997) explains “Airlines will send an ‘open’ message indicating a vacant

slot is eligible [for reallocation]. This is essential, since airlines may assign different flights
to their arrival slots until the slot ‘times out’ . . . The only way for [the planner] to know
if a slot is available. . . is by the users providing that information.”

19Atlamaz and Klaus (2007) and Schummer and Vohra (2013) use related definitions.
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(iii) ϕ(IS→S\{s}) �wA ϕ(I) (A gains when s is deleted from I).20

The FAA gives airlines “the capability to ‘freeze’ flights they don’t want
moved up through the submission of earliest time of arrival” (Wambsganss (1997)).
By freezing flight d in slot s, airline A achieves the instance IS→S\{s}) in Con-
dition (iii). Even without this real world design constraint, one could imagine
an airline A failing to announce cancelation of flight d, occupying slot s, with
ed = s and wd arbitrarily large. Seeing d as an active flight, an individually
rational rule would keep d in slot s, effectively removing s from I, again
yielding the reduced instance IS→S\{s} in which A gains in Condition (iii).

Non-manipulability via slot destruction may be too weak of a requirement
since Condition (iii) removes s from the problem. Imagine a dynamic setting
where rescheduling rules are applied iteratively (as done by the FAA). If
airline A announces the cancelation of d after an initial run of a rescheduling
rule, then what happens to slot s? When the rescheduling rule is re-run on the
new instance, the FAA’s rules of operation (Footnote 3) grant A first rights
to use slot s for another of its flights, possibly improving A’s outcome even
more. We eliminate this broader form of manipulation by postponing flight
cancelations in Definition 12, where A hides s as above, but then recovers s
for possible consumption after the rule operates.

We consider both Definition 6 and Definition 12 in order to emphasize
the gap between our negative and positive results. Our DASO rules (Sub-
section 5.3) satisfy the stronger non-manipulability condition. In contrast,
neither Pareto-efficient rules (Theorem 3) nor the FAA’s Compression algo-
rithm (Schummer and Vohra (2013)) satisfy even the weaker one.

4 Efficient Rules and Manipulability
Here we show that any one of our incentive conditions is incompatible with
Pareto-efficiency under the minimal constraint of individual rationality. These
incompatibilities will motivate us to consider rules in Section 5 that solicit
only the information necessary to compute non-wasteful assignments.

While efficiency conflicts with incentives in broader economic models, our
results in this section stand out for two reasons. First, our results hold even
though we have restricted ourselves to the linear-weight preference model.

20To be clear, IS→S\{s} is instance I but without slot s, so s is also deleted from Φ0.
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Second and more importantly, we consider the consequences of only a single
manipulability condition at a time rather than full strategy-proofness. Specif-
ically, an airline’s preferences depend both on earliest arrival times (e) and
flight weights (w). The analog of a full strategy-proofness condition in this
model would allow airlines the flexibility to misreport either (or both) of
these parameters. When we allow an airline to misreport only one of these
variables we restrict the dimension in which an airline misreports its prefer-
ences. In this sense, the results of this section are stronger than analogous
results in the matching literature. All proofs appear in the appendix.

Theorem 1. If a rescheduling rule is Pareto-efficient and individually ra-
tional, then it is manipulable by intentional flight delay.

Note that when an airline misreports feasible arrival times under Defini-
tion 4, it is required to abide by whatever landing schedule is output by the
rule. A stronger definition would further allow the manipulating airline to
subsequently rearrange flights amongst its assigned slots, i.e. what we call
“self-optimize” in Section 5. One also could argue that such manipulation
is more easily detectable (since manipulating airlines would frequently ad-
just their schedules in ways that initially appear infeasible or inefficient).
Theorem 1 makes such arguments irrelevant since Pareto-efficient rules are
manipulable even if airlines cannot reshuffle their flights after the mechanism
has operated. A similar observation also applies to the next two theorems.

Theorem 2. If a rescheduling rule is Pareto-efficient and individually ra-
tional, then it is manipulable via weights.

The intuition behind the proof is that an efficient rule could require airline
A to sacrifice a desirable slot to airline B in exchange for one or more of B’s
desirable slots elsewhere in the schedule; think of this as the “price” B pays
to A. Because such a price must remain individually rational, A (or B) could
find it beneficial to misreport weights in order to raise (or lower) this price.
A related intuition proves Theorem 1.

Finally, any Pareto-efficient and individually rational rule can give an
incentive to withhold slots from the system.21

21In a model of multi-object consumption with separable preferences, Atlamaz and
Klaus (2007) obtain a similar conclusion. However our results are not logically related
mainly for two reasons: our model’s consumption constraints lead us to a different defini-
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Theorem 3. If a rescheduling rule is Pareto-efficient and individually ra-
tional, then it is manipulable via slot destruction.

The proof uses an example based on a potential 3-airline trade of six
slots. Airlines A and B would gain from this trade but airline C would lose.
However both A and B own vacant slots that can be used to compensate C
for his loss in the 3-way trade. Efficiency requires either A or B (or both)
to “compensate” C to execute the trade. But by destroying its slot, A (or
respectively B) can make C’s compensation too high to pay (with respect
to individual rationality), forcing the efficient rule to make only the other
airline B (or respectively A) compensate C instead.

5 FAA-conforming Rules
The results of Section 4 motivate us to consider what we call FAA-conforming
rules, which adhere to the way in which the FAA currently collects informa-
tion and decentralizes certain scheduling decisions. Most significantly, while
the FAA solicits cancelations and arrival constraints (ef ’s), airlines do not
directly report other preference information (i.e. weights). Yet weight infor-
mation remains relevant since airlines may rearrange their own portions of
the landing schedule. These observations imply the FAA-conforming con-
straints formalized in Subsection 5.1. We then provide a class of such rules
that satisfy two of our incentive properties and a weakened version of the
third. Our rules also necessarily reward an airline for canceling a flight,
which is of obvious importance during periods of airport congestion.

5.1 FAA Conformation

Flight weights could be used to find efficiency improvements via both inter-
airline and intra-airline trades. By comparing flight weight ratios across
multiple airlines, one might find Pareto-improving (inter-airline) trades. Un-
fortunately Theorems 1–3 show that the execution of all such efficient trades
would lead to three forms of manipulability. By using flight weights within
a single airline, however, one may optimally rearrange that airline’s flights

tion of Pareto-efficiency than theirs, and our preferences have additional structure imposed
by the arrival time constraints (ef ’s).
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(intra-airline) within its own portion of the landing schedule. Indeed each
airline is granted the right to reorder its flights by the FAA’s Facility Op-
eration and Administration Handbook (see Subsection 1.1). This implies a
design constraint necessary to our analysis of incentives. An assignment is
self-optimized if each airline uses its own slots in the best possible way.

Definition 7. An assignment (Π,Φ) is self-optimized (for instance I) if
there exists no airline A and no landing schedule Π′ such that both (i) Π′ �wA
Π and (ii) Π′(f) ∈ Φ(A) for all f ∈ FA. We also call a landing schedule Π
self-optimized if it is part of a self-optimized assignment (Π,Φ) for some Φ.
A rescheduling rule ϕ is self-optimized if it always outputs a self-optimized
landing schedule.

Our motivation for this condition is strong: since an airline has the pro-
cedural right to rearrange its own part of the schedule, it is without loss of
generality to restrict attention to self-optimized rescheduling rules. Any at-
tempt to implement a non-self-optimized schedule would be thwarted by the
airlines’ right to subsequently reorder its flights.

The FAA does not directly solicit information from airlines analogous to
weights.22 Nevertheless such information is used when airlines self-optimize.
In practice this means that a rule uses weight information only to self-
optimize and not to determine the set of slots any one airline receives.

Definition 8. A rescheduling rule is simple if for any instances I and I ′ with
weight profiles w and w′, if I ′ = Iw→w′ then for all A ∈ A, ϕA(I) = ϕA(I ′).
Thus the set of slots consumed by an airline is invariant to changes in weights.

Besides the above institutional motivation for simple rules, a theoretical
motivation comes from the results of Section 4. The economic value of weight
(delay cost) information is reduced due to the incompatibility of efficiency
and incentive compatibility. A final, practical motivation for simplicity is
that such rules reduce the burden on airlines to compute delay cost informa-
tion across all flights.

The above requirements motivate the following class of rules.

Definition 9. A rescheduling rule is FAA-conforming if it is non-wasteful,
simple, and self-optimized.

22An exception is the Slot Credit Substitution procedure which does so implicitly but
has been described as unwieldy by Robyn (2007).
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5.2 Manipulability through arrival times

Since simplicity is a form of invariance with respect to the airlines’ reported
weights w, it is not surprising that it essentially rules out manipulability
by weights. Trivially, any rule that is both simple and self-optimized is
non-manipulable by weights. (More generally, self-optimizing any simple rule
makes it non-manipulable by weights.)

Less obvious is whether such a rule is vulnerable to other forms of ma-
nipulation: by intentional flight delay or by slot destruction. The next result
shows that no such rule can avoid the former, though we provide positive
news for the latter in Subsection 5.3.

Theorem 4. If an FAA-conforming rescheduling rule is individually ratio-
nal, then it is manipulable by intentional flight delay.

Remark 1. A subtle observation about our proof slightly strengthens its
interpretation. The proof only uses manipulations by intentional flight delay
under which the initial landing schedule still appears feasible. In other words,
it is sufficient in the proof to consider only manipulations for which e′f ≤
Π0(f). The interpretation for such a restriction is that, while the central
planner may not know each flight’s true earliest arrival time ef , in some
applications it might be common knowledge that the initial landing schedule
is feasible. Hence our result would hold even in such environments.

5.3 Deferred Acceptance with Self Optimization

To define our rules based on Deferred Acceptance, we define airline choice
functions over sets of slots and slots’ priority orders over airlines. We begin
with the former, extending the concept in Roth (1984) to our environment
where airlines care about how flights are assigned to slots.

5.3.1 Choice sets

To define choice functions, consider an airline A ∈ A with flights FA and
preferences �wA. How would A choose to assign its flights within some set of
slots T ⊆ S? Assuming it can feasibly do so, determining A’s “self-optimal”
assignment of FA to T typically requires knowing weights (wf )f∈FA . Even
without weight information, however, one can determine the subset of T that
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A would choose to occupy. Clearly A would not want to assign some f ∈ FA
to a slot t while leaving vacant some slot s with ef ≤ s < t. This necessary
condition is sufficient to identify the unique subset of T that A would choose
to occupy, which allows us to define choice functions as follows.

Definition 10. Fix an instance I, airline A, and set T ⊆ S such that A’s
flights can feasibly be scheduled within T . Airline A’s choice function,
CA(), over such sets T ⊆ S, is the output of the following simple algorithm.
• Order flights in FA in increasing order of ef (break ties arbitrarily).
• Assign flights sequentially to the earliest slot in T that each flight can

feasibly use.
• Denote the set of occupied slots CA(T ) ⊆ T .

It is straightforward to see that if an airline A could assign its flights
(self-optimally) within T ⊆ S, then its flights would occupy CA(T ) in some
order. It also can be shown that such choice functions satisfy the classic
substitutability condition of Kelso and Crawford (1982) and Roth (1984).

5.3.2 DASO Rules

We define a class of rules based on the Deferred Acceptance algorithm, aug-
mented with a self-optimization step. An example appears below. Each rule
in the class is parameterized by an arbitrarily profile of priority orders over
the set of A, which we have fixed. For any slot s ∈ N = {1, 2, . . .}, a priority
order �s is simply a linear order over A. For any fixed set of slots S ⊂ N
a profile of priority orders for S is a list (�s)s∈S.

Definition 11 (DASO rules). Fixing priorities (�s)s∈N over the set of A,
the Deferred Acceptance with Self-Optimization (DASO) rule with
respect to (�s)s∈N associates with every instance I the landing schedule
computed by the following “DASO algorithm.”

Step 0: Each slot s ∈ S proposes to the airline A that owns it (i.e.
Φ0(A) 3 s). For each A ∈ A, let T 0

A (≡ Φ0(A)) denote the slots who
proposed to A ∈ A and determine CA(T 0

A). We say that A rejects each
slot s ∈ T 0

A \ CA(T 0
A). If there are no rejected slots, proceed to the Self-

optimization step.
Step k = 1,2, . . . : Each slot s rejected in step k − 1 proposes to the

highest-ranked airline in �s that has not already rejected s in some earlier
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step. (If no such airline exists, s is to be permanently unassigned.) Let T kA
denote the slots who proposed to A in step k plus those in CA(T k−1

A ). For each
airline A, determine CA(T kA). We say that A rejects each slot s ∈ T kA\CA(T kA).
If there are no rejected slots, proceed to the Self-optimization step.

Self-optimization step: For each A ∈ A assign A’s flights to the last
CA(T kA) so that the resulting landing schedule is self-optimized. Break ties
among equally-weighted flights by preserving their relative order in Π0.

The DASO algorithm supplements the well-known algorithm of Gale and
Shapley (1962) with two adjustments: an instance-specific adjustment of
priorities in Step 0, and the addition of a self-optimization step. Step 0 plays
two related roles: it ensures individual rationality by giving each airline a
chance to keep its endowment,23 and, when the initial landing schedule is
feasible, it guarantees that each airline holds a feasible (if perhaps wasteful)
set of slots at each interim step of the algorithm.

Example 1. Consider a model with three airlines and fix a DASO rule whose
first eight slot priorities are defined as follows:

A�1 B �1 C A�2 B �2 C C �3 B �3 A B �4 A�4 C

A�5 B �5 C B �6 C �6 A A�7 B �7 C A�8 B �8 C

We calculate the rule’s outcome on the following instance.

Slot Flight Airline Earliest Weight

1 vacant C

2 a2 A 1 wa2

3 b3 B 1 wb3

4 c4 C 2 wc4

5 vacant A

6 a6 A 5 wa6

7 a7 A 5 wa7

8 b8 B 5 wb8

Step 0: Each slot proposes to its owner, and each airline rejects any slot
not in its choice set. Slots T 0

A = {2, 5, 6, 7} propose to airline A who chooses
23Guillen and Kesten (2012) use a similar “propose to owners first” idea.
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CA(T 0
A) = {2, 5, 6}, rejecting slot 7. Similarly slots {3, 8} propose to airline

B who rejects neither, and slots {1, 4} propose to airline C who rejects slot 1.
Step 1: Each rejected slot proposes to the highest priority airline that

has not yet rejected it: slot 1 proposes to airline A and slot 7 proposes to B.
From the set T 1

A = {1, 2, 5, 6}, A chooses CA(T 1
A) = {1, 5, 6}, rejecting slot 2.

Similarly B rejects slot 8 from T 1
B = {3, 7, 8}.

Step 2: The remaining steps are similar. Slot 2 proposes to airline B,
who now rejects slot 3. Slot 8 proposes to its final airline C, who rejects it.

Step 3: Slot 3 proposes to airline C, who now rejects slot 4.
Step 4: Slot 4 proposes to airline B, who rejects it.
Step 5: Slot 4 proposes to airline A, who rejects it.
Self-Optimization step: Each airline’s flights are self-optimally as-

signed to its current slots. In this example, feasibility uniquely determines
the slot of all flights except a6 and a7. If wa6 ≥ wa7 then a6 is assigned to
slot 5, otherwise a7 is. Assuming wa6 < wa7 for example, the rule outputs

Slot Flight Slot Flight

1 a2 5 a7

2 b3 6 a6

3 c4 7 b8

4 vacant 8 vacant

as its final landing schedule.24

It may seem strange that we use a “slot-proposing” Deferred Acceptance
algorithm. An “airline-proposing” version of the algorithm would have air-
lines proposing to their favorite sets of slots, and slots accepting proposals
only from their highest-priority airline. Such a formulation would seem more
appropriate within the matching literature since Deferred Acceptance algo-
rithms favor the proposing side of the market. In our model, however, it turns
out that both versions of the algorithm produce precisely the same outcome.

24In practice, without possessing information on relative weights (wf ’s), the FAA would
arbitrarily assign those two flights to slots 5 and 6. The airline would then request a swap
only if preferred. This illustrates the low informational requirement of simple rules: when
self-optimization decisions can be decentralized, the planner does not require full airline
preference information, e.g. in the form of weights.
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Observation 1. Fixing priorities and an instance, an airline-proposing ver-
sion of the DASO algorithm would yield precisely the same outcome as the
slot-proposing version described above.

This follows from an induction argument. If the algorithms yield identical
outcomes on the first s− 1 slots, then slot s is the “best” remaining slot for
those airlines that still have use for s. The highest-ranked such airline in
�s must receive s under either algorithm.25 The slot-proposing algorithm
simplifies some proofs and has the property that, throughout its execution,
every interim allocation of slots to airlines yields a feasible schedule.

5.3.3 Results

The following properties of DASO rules are trivial to prove.

Theorem 5. For any profile of priorities (�s)s∈N over A, the corresponding
DASO rule is non-manipulable via weights, individually rational, and FAA-
conforming.

In fact DASO rules satisfy the stronger version of individual rationality
mentioned in Section 3: each airline A weakly prefers the outcome to what
it could get by self-optimizing its own “endowment” Φ0(A).

Our main, positive result is that DASO rules induce prompt, truthful re-
porting of flight cancelations. Going beyond non-manipulability via slot de-
struction (Definition 6), we show that an airline cannot manipulate a DASO
rule by temporarily “hiding” a vacant slot then later retrieving it for con-
sumption. To define this stronger condition we change part (iii) of Defini-
tion 6 by allowing A to further improve its outcome using the “destroyed”
slot s. Below we discuss an alternative formulation that yields equivalent
conclusions.

Definition 12. A rescheduling rule ϕ is manipulable by postponing a
flight cancelation if there is an instance I = (S,A, (FA)A∈A, e, w,Π0,Φ0),
airline A ∈ A, and slot s ∈ S such that

25See the Online Appendix. This argument proves an analogous result when agents in
a classic matching market have aligned preferences. Airline preferences are only partially
aligned due to arrival constraints. The proof also suggests an alternative DASO algorithm
suggested to us by Utku Ünver: sequentially assign each slot to a (remaining) flight in
accordance with that slot’s priorities, then self-optimize the resulting schedule.
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(i) s ∈ Φ0(A) (A owns s),
(ii) @f ∈ F such that Π0(f) = s (s is initially vacant), and
(iii) ∃Π �wA ϕ(I) such that ⋃f∈FA Π(f) ⊂

(⋃
f∈FA ϕf (IS→S\{s})

)
∪ {s}.

The next result shows that DASO rules are non-manipulable in this sense,
and that if an airline does manipulate in this way, then no airline is made
better off. Such a strong result is important in environments where group
incentives are relevant. Even if one airline could compensate another to
postpone a cancelation, this ability would be of no use.26 By iteration, the
result would hold even if airlines could postpone multiple cancelations.

Theorem 6. For any set of airlines A and priorities (�s)s∈N, the corre-
sponding DASO rule is non-manipulable by postponing a flight cancelation.
Furthermore if an airline were to postpone a cancelation, then each flight (of
any airline) would receive a weakly later slot, making all airlines (weakly)
worse off.

The first part of the result is related to one of Crawford (1991), showing
that the addition of a student to a College Admissions model benefits all col-
leges under (either) Deferred Acceptance algorithm.27 This can be shown to
imply that slot destruction (a là Definition 6) would make all airlines weakly
worse off under any DASO rule. Theorem 6 strengthens that conclusion both
by (i) allowing an airline to recover and consume the destroyed slot, and (ii)
showing that airlines are worse off on a flight-by-flight basis.

Theorem 6 is robust in two important ways. First, the result would con-
tinue to hold in a dynamic setting where rescheduling rules are iteratively
applied as airlines continually report updated information about cancela-
tions, as in practice. Consider a 2-period model where a DASO rule is to be
applied twice. In period one the rule creates an interim schedule based on the
first-period reports. In period two airlines learn and report new cancelations,
and the DASO rule is applied to period one’s output. It can be shown that
no airline can benefit by postponing a period one (or two) flight cancelation.

Second, Theorem 6 is robust to airlines choosing whether or not to cancel
flights. While Definition 12 models the postponement of exogenously deter-
mined cancelations—s is predetermined to be vacant—the following obser-

26This immunity to manipulation with compensation contrasts with impossibility results
in more standard revelation games (e.g. Schummer (2000)).

27See also Kelso and Crawford (1982) and Kojima and Manea (2010).
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vation concerns the similar (but logically distinct) idea of endogenous can-
celations. Namely, the conclusions of Theorem 6 hold whenever any viable
flight f ∈ F is removed from the instance, formalized as follows.28

Observation 2 (endogenous cancelations). Under any DASO rule and for
any instance I, the deletion of any flight f ∈ F would assign each remaining
flight g ∈ F \ {f} to a (weakly) earlier slot.

This concept of flight deletion resembles, but is distinct from, the idea of
capacity manipulation in the classic College Admissions model (Sönmez (1997)).
Konishi and Ünver (2006) show that reducing a college’s capacity weakly
benefits the other colleges. A flight deletion similarly reduces an airline’s
“capacity” to consume slots; however it also simultaneously changes the air-
line’s preferences for slots as a function of which flight was deleted making
the two concepts logically independent.29

Finally, since DASO rules are not Pareto-efficient it is natural to ask
whether any other FAA-conforming rule could Pareto-improve upon DASO
while achieving the same incentive properties. This turns out to be impossible
even if we ignore incentives. Pareto-improving upon a DASO rule would
require the use of a non-simple rule.30

Proposition 1 (no Pareto-dominance). For any DASO rule, there exists no
other simple rule that makes every airline weakly better off at every instance.

5.4 Weak Incentives and Self-optimization

While the classic strategy-proofness condition makes it a dominant strategy
to truthfully report all preference information, Definition 4 does so merely
for the arrival time “dimension” of preferences. Nevertheless Theorems 1
and 4 show that even this narrow requirement is difficult to achieve. It turns
out that DASO rules satisfy a milder concept which we now define: no airline
can misreport arrival times in a way that would benefit all of its flights.

28We thank referees for comments leading to this robustness check of Theorem 6. Proof
is in the Online Appendix.

29Furthermore we obtain stronger conclusions due to our model’s structure, though they
can be proven using the approach of Konishi and Ünver (2006). Separately, Ehlers (2010)
shows that student-proposing DA satisfies a weaker capacity non-manipulation condition.

30We thank a referee for conjecturing this kind of result. Proof is in the Online Appendix.
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Definition 13 (Schummer and Vohra (2013)). A rescheduling rule ϕ is
weakly non-manipulable via earliest arrival times if for any instance
I = (S,A, (FA)A∈A, e, w,Π0,Φ0), airline A ∈ A, flight f ∈ FA, and earliest
arrival time e′f we have

[∃g ∈ FA with ϕg(Ief→e′
f
) < ϕg(I)] =⇒ [∃h ∈ FA with ϕh(Ief→e′

f
) > ϕh(I)].

Practically speaking, this condition implies that an airline cannot de-
termine whether a manipulation is beneficial unless it goes to the trouble
of determining its flight weight information. This weak notion31 yields the
following positive result, contrasting the negative result of Theorem 4.

Theorem 7. For any set of airlines A and priorities (�s)s∈N, the corre-
sponding DASO rule is weakly non-manipulable via earliest arrival times.

Schummer and Vohra (2013) show that two other rules satisfy this con-
dition: the FAA’s Compression Algorithm and their “TC” rule, a Top-
Trading-Cycle variant. They do so in a model ignoring flight weights, so
self-optimization is not part of their analysis. Since real world airlines are
permitted to self-optimize their landing schedules, it is natural for us to
ask whether Schummer and Vohra’s results are preserved if we supplement
Compression (or TC) with a self-optimization step.

Interestingly, Compression and TC remain weakly non-manipulable only
if the initial schedule is self-optimized before the rule is applied. These
rules lose the weak non-manipulability property if self-optimization is done
only after the rule operates as we illustrate below. More precisely both
the “self-optimize-then-Compression” and “self-optimize-then-TC” rules are
weakly non-manipulable via earliest arrival times, but “Compression-then-
self-optimize” and “TC-then-self-optimize” fail the condition.

While the formalization of these results is relegated to the Online Ap-
pendix, we provide an example to illustrate the intuition for the manipula-
bility of a Compression-then-self-optimize rule.32

Example 2. Manipulation of a Compression-then-self-optimize rule.
31Definition 13 does not technically weaken non-manipulability by intentional flight delay

because it allows e′f < ef . However this makes Theorem 7 a stronger result.
32The same example can be used to illustrate manipulability of TC-then-self-optimize.
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Slot Flight Airline Earliest Weight

1 vacant C

2 a2 A 2 1
3 b3 B 1 5
4 a4 A 1 4

The Compression algorithm works by “trading” each airline’s unusable slot
to the next flight in the schedule that can feasibly use it.33 Here, airline C
trades slot 1 for slot 3 since flight b3 is the next earliest one that can use
slot 1. Next, since C also cannot use slot 3, it is traded to a4 (in exchange
for slot 4). Following a self-optimization step, flights a4 and a2 end up in
slots 2 and 3 respectively.

If A misreports ea2 to be e′a2 = 1, one can verify that Compression’s
trading steps would ultimately assign a2 and a4 to slots 1 and 3 respectively.
Since ea2 = 2, this would be infeasible for a2, but a self-optimization step at
this point would swap a4 and a2 into slots 1 and 3 respectively, which satisfies
the true arrival time constraints. In particular, this misreport results in a
strong manipulation: none of A’s flights loses and one strictly gains.

The example illustrates how the initial order of A’s flights provides an
opportunity for manipulation. When slot 1 is allocated by Compression,
flight a2 is ineligible to receive it (by feasibility), and b3 has precedence over
a4 because b3 sits earlier in the schedule. By misreporting ea2 , however, a2

appears able to feasibly use slot 1 and has precedence over b3, giving A the
slot. While it is actually infeasible for a2 to use that slot, a self-optimization
step finally moves a2 to slot 3, fixing the problem.

Interestingly, if the initial schedule is self-optimized before running Com-
pression, the outcome changes. Flight a4 (starting in slot 2) has precedence
over b3 and receives slot 1 immediately. In this scenario A would have no
strong manipulation.34 Thus not only is Compression sensitive to the ini-
tial ordering of flights—a fact pointed out by Vossen and Ball (2006a)—but
how that initial ordering is determined can affect whether the mechanism is
weakly non-manipulable.

33See Schummer and Vohra (2013) for a complete formalization which is unneeded here.
34This follows from our general result that self-optimize-then-Compression is weakly

non-manipulable; see Online Appendix.
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On the other hand, DASO rules are invariant to the initial ordering. The
input to a DASO algorithm (Definition 11) includes the slot ownership func-
tion (Φ0) but not the relative orderings specified in the initial schedule (Π0).
Since the outcomes of DASO rules are independent of Π0, their weak non-
manipulability has nothing to do with whether Π0 is self-optimized. Since
airlines have the right to arrange their landing schedules at any time, we
argue that DASO rules satisfy Definition 13 more robustly than the other
two rules.

6 Summary
Airport landing schedules—created far in advance of their actual execution—
can become inefficient or even infeasible due to unforeseen weather events and
subsequent flight cancelations or delays. The information needed to resched-
ule flights must be elicited from individual airlines, yielding the mechanism
design problem analyzed here. We separately considered the airlines’ incen-
tives to report three kinds of relevant information: flights’ feasible arrival
times, cancelations, and relative delay costs.

The FAA does not elicit delay costs, which would be necessary to de-
termine Pareto-efficient schedules. An incentive-based justification for this
design choice is given by our first three results, showing that any Pareto-
efficient rule is manipulable in each of the three ways mentioned above.

This motivates our study of FAA-conforming rules which use delay cost
information only to reorder an airline’s own flights among its assigned slots.
Our main result provides a class of such (DASO) rules that induce airlines
to both execute and promptly report flight cancelations. This contrasts with
the potential disincentive to do so under the FAA’s Compression algorithm
(Schummer and Vohra (2013)), and emphasizes a distinction between incen-
tives to report cancelations and to report delays—two concepts that have
been intermingled in previous work. Though all FAA-conforming rules are
manipulable by misreporting delays, DASO rules provide a weak incentive
to report delays more robustly than do Compression and the TC rule of
Schummer and Vohra (2013). DASO rules thus dominate the other rules
that have been studied for this problem in terms of our incentive proper-
ties. Finally, while DASO rules cannot be Pareto-efficient, they cannot be
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Pareto-dominated by any other simple rule (Proposition 1).
Though we formalize an incentive for the timely report of exogenously de-

termined flight cancelations, it is also important to encourage the endogenous
decision to cancel otherwise viable flights. This is particularly true during
congestion (e.g. GDP’s), when a cancelation benefits the remaining flights by
reducing total delay. Hence it is significant that DASO rules always reward
cancelation decisions by improving the slot of each remaining flight (Obser-
vation 2). Neither the Compression algorithm (Schummer and Vohra (2013))
nor any Pareto-efficient rule (Theorem 3) possesses this property.

It is natural to ask which DASO rules (i.e. which parameters (�s)s∈S)
best accomplish any particular objective. While our results hold for any
choice of these parameters, fairness considerations could justify prioritizing
airlines by various factors (number of flights, total delay suffered in the GDP,
etc.), or to rotate priorities by slot, to randomize priorities, etc. Depending
on the distribution of primitives, certain priority structures could conceivably
provide a greater average reward for airlines who decide to cancel flights;35

however no DASO rule is Pareto-dominated by another. Since any optimiza-
tion exercises within the class of DASO rules would be sensitive to empirical
assumptions on the population of instances I, such future work would require
historical data on GDP’s, including initial schedules, feasible arrival times,
and reasonable assumptions on the airlines’ privately known delay costs.
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A Appendix: Proofs
Proof of Theorem 1. Let ϕ be an individually rational, Pareto-efficient
rule and consider the following instance I.

Slot Flight Airline Earliest Weight

1 b1 B 1 2
2 a2 A 1 6
3 a3 A 1 4
4 b4 B 3 3
5 a5 A 5 3.5
6 b6 B 5 3.5

By feasibility and Pareto-efficiency, ϕ must assign flights a5 and b6 to
slots 5 and 6 (in some order), and assign the remaining flights to slots 1–4
(in some order); additionally b4 must be assigned to slot 3 or 4. With the
further requirement of individual rationality, however, airline B must receive
one of the following four sets of slots: {1, 4, 6}, {2, 3, 6}, {2, 4, 5}, or {3, 4, 5}.
To see this, suppose B’s flights are assigned to slots {2, 4, 6}. Then b1 is the
only one of B’s flights to receive a different (furthermore worse) slot than in
the initial schedule, violating individual rationality. If B receives {1, 4, 5},
then A similarly loses out via flight a5. On the other hand if B’s flights are
(efficiently) assigned to slots {3, 4, 5}, then b1 is assigned slot 4 (for a loss of
6 units), b4 is assigned slot 3 (gain of 3 units), and b6 is assigned slot 5 (gain
3.5 units), for a net gain of −6 + 3 + 3.5 = 0.5. Similarly one can check that
A also gains from receiving slots {1, 2, 6}. All of the remaining cases follow
from similar calculations.

Next observe that two of these four individually rational landing sched-
ules are Pareto-dominated. The initial landing schedule (where B receives
{1, 4, 6}) is Pareto-dominated by the landing schedule in which B’s flights
are assigned to slots {2, 4, 5} and A’s flights are (efficiently) assigned to slots
{1, 3, 6}. (B’s payoff improves by −2 + 0 + 3.5 = 1.5 and A’s improves by
6 + 0− 3.5 = 2.5.) Similarly, the schedule in which B receives slots {2, 3, 6}
is Pareto-dominated by the same alternative schedule. In summary we must
have ϕB(I) ∈ {{2, 4, 5}, {3, 4, 5}}. We show that in either case ϕ is manipu-
lable by an intentional flight delay.
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Case 1: ϕB(I) = {2,4,5}. In this case a2 is assigned to slot 1, a3 is
assigned to slot 3, and a5 is assigned to slot 6.

Let I ′ denote the instance that is identical to I except that A intentionally
delays a2 with e′a2 = 2 (without altering the other ef ’s). There is only one
Pareto-efficient and individually rational assignment for I ′: a3 is assigned to
slot 1, a2 is assigned to slot 2, and a5 is assigned to slot 6. Airline A prefers
this assignment to the one he receives under ϕ(I). Therefore A is able to
gain from misreporting ea2 .

Case 2: ϕB(I) = {3,4,5}. In this case b4 is assigned to slot 3, b1 is
assigned to slot 4, and b6 is assigned to slot 5.

Let I ′ denote the instance that is identical to I except that B intentionally
delays b6 with e′b6 = 6 (without altering the other ef ’s). There is only one
Pareto-efficient and individually rational assignment for I ′: b1 is assigned to
slot 2, b4 is assigned to slot 3, and b6 is assigned to slot 6. Airline B prefers
this assignment to the one he receives under ϕ(I).

Proof of Theorem 2. Let ϕ be an individually rational, Pareto-efficient
rule and consider the following instance I.

Slot Flight Airline Earliest Weight

1 b1 B 1 1
2 a2 A 1 4
3 a3 A 2 4
4 a4 A 4 3
5 b5 B 4 3

One can verify that there are only two Pareto-efficient and individually
rational landing schedules for I using the kind of calculations done in the
previous proof. In one, B’s flights are assigned to slots 2 and 4; in the other,
they are assigned slots 3 and 4. Clearly B prefers the former and A prefers
the latter. We show that regardless of which is selected by ϕ, the rule is
manipulable.

Case 1: ϕB(I) = {3,4}. Let I ′ denote the instance that is identical
to I except that B reports a weight of w′b1 = 2 (without altering the other
weights). There is only one Pareto-efficient and individually rational assign-
ment for I ′: B is assigned slots 2 and 4. Since ϕB(I ′) = {2, 4} �wB {3, 4} =
ϕB(I), airline B gains by misrepresenting w1 at I.
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Case 2: ϕB(I) = {2,4}. Let I ′ denote the instance that is identical
to I except that A reports a weight of w′a2 = 1.5 (without altering the
other weights). There is only one Pareto-efficient and individually rational
assignment for I ′: B is assigned slots 3 and 4. Since ϕA(I ′) = {1, 2, 5} �wA
{1, 3, 5} = ϕA(I), airline A gains by misrepresenting w2 at I.

Proof of Theorem 3. Consider the instance I described in Table 1. Note
that airline D plays the role of a “dummy airline,” in that D’s flights already
occupy their most preferred slots. Individual rationality thus forces a rule
not to move any of D’s flights.

Slot Flight Airline Earliest Weight

1 a1 A 1 3
2 b2 B 1 4
3 b3 B 3 3
4 c4 C 3 2
5 c5 C 5 3
6 a6 A 5 4
7 a7 A 7 0.3
8 d8 D 8 1
9 d9 D 9 1
10 vacant A
11 c11 C 7 0.35
12 b12 B 12 0.3
13 d13 D 13 1
14 d14 D 14 1
15 vacant B
16 c16 C 16 0.35

Table 1. Main example in the proof of Theorem 3.

Within slots 1–6, three pairwise trades amongst airlines A, B, and C are
possible. If all three are performed, A and B each gain 1 unit while C loses
1 unit. There are two ways to compensate C for this loss. One is for a7 to
move down to slot 10, giving c11 slot 7 (though A is not willing to move down
to slot 11). Similarly B could compensate C via slot 12. We show that if A
is compensating C at slot 7, then A gains by destroying slot 10. A similar
argument applies to B and slot 15.

Let ϕ be an individually rational, Pareto-efficient rule. It can be checked
that only the three landing schedules in Table 2a satisfy the conditions cor-
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Slot Π1 Π2 Π3

1 b2 b2 b2
2 a1 a1 a1
3 c4 c4 c4
4 b3 b3 b3
5 a6 a6 a6
6 c5 c5 c5
7 a7 c11 c11
8 d8 d8 d8
9 d9 d9 d9
10 c11 a7 a7
11 − − −
12 c16 b12 c16
13 d13 d13 d13
14 d14 d14 d14
15 b12 c16 b12
16 − − −

A +1 +0.1 +0.1
B +0.1 +1 +0.1
C +0.75 +0.75 +1.8

(a)

Slot Π4 Π5

1 b2 b2
2 a1 a1
3 c4 c4
4 b3 b3
5 a6 a6
6 c5 c5
7 a7 c11
8 d8 d8
9 d9 d9
10 (destroyed) a7
11 c11 −
12 c16 b12
13 d13 d13
14 d14 d14
15 b12 (destroyed)
16 − c16

A +1 +0.1
B +0.1 +1
C +0.4 +0.4

(b)

Table 2. Proof of Theorem 3. (a) The three possible landing sched-
ules chosen by an individual rational, Pareto-efficient rule for I. They
differ only in slots 7, 10, 12, and 15. (b) Two landing schedules fol-
lowing slot destruction in I.

responding to individual rationality and Pareto-efficiency for instance I, so
ϕ(I) must be one of them. The bottom of the table shows the relative gain
in terms of weights for each airline, relative to the initial landing schedule.

We show that regardless of which of the three landing schedules is selected
by ϕ, airline A or airline B can manipulate ϕ by destroying its vacant slot.
First suppose that ϕ(I) ∈ {Π2,Π3}. Let IS→S\{10} be the instance obtained
from I by destroying A’s slot 10. There is only one landing schedule for
IS→S\{10} that satisfies the conditions for Pareto-efficiency and individual
rationality. It is Π4 described in Table 2b.

Therefore ϕ(IS→S\{10}) = Π4. However, A’s gain of one unit is greater
than his gain at Π2 or Π3 above, i.e. ϕA(IS→S\{10}) �wA ϕA(I). Since A gains
by destroying slot 10, ϕ is manipulable via slot destruction in this case.
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Therefore we must have ϕ(I) = Π1. Similar to the argument above, let
IS→S\{15} be the instance obtained from I when airline B destroys slot 15.
There is only one landing schedule for IS→S\{15}, namely Π5, that satisfies
the conditions for Pareto-efficiency and individual rationality.

Therefore ϕ(IS→S\{15}) = Π5. However, B’s gain of one unit is greater
than its gain at Π1 above, i.e. ϕB(IS→S\{15}) �wB ϕB(I). Since airline B gains
by destroying its vacant slot 15, ϕ is manipulable via slot destruction.

Proof of Theorem 4. Consider instances I and I ′ defined by weights w
and w′ in the following table.

Slot Flight Airline Earliest Weight wf Weight w′f

1 vacant A

2 vacant A

3 b3 B 1 1 1
4 c4 C 1 1 1
5 b5 B 2 5 1
6 c6 C 3 5 5
7 b7 B 4 1 7

Let ϕ be a simple, non-wasteful rescheduling rule. Denote the three slots
assigned to B’s flights by ϕB(I) = {ϕb3(I), ϕb5(I), ϕb7(I)}. Since ϕ is non-
wasteful, it must assign all five flights to slots 1–5, so ϕB(I) ⊂ {1, 2, 3, 4, 5}.
Define ϕC(I) and ϕB(I ′) similarly. Since ϕ is simple, note that ϕB(I ′) =
ϕB(I) (although ϕf (I) 6= ϕf (I ′) is certainly possible).

There are
(

5
3

)
= 10 candidate subsets to consider for ϕB(I), but B’s

flights cannot feasibly be assigned to {1, 2, 3} or {3, 4, 5}. We show that for
each of the remaining eight possibilities, ϕ must be manipulable in some way.
Case 1: ϕB(I) is {1,3,4}, {1,3,5}, or {1,4,5}. In this case ϕb5(I) ≥ 3.
From instance I, consider airline B delaying b3 to e′b3 = 2 (resulting in
Ĩ = Ieb3→e′

b3
). By non-wastefulness, ϕc4(Ĩ) = 1. With simplicity (and self-

optimization) this yields ϕb5(Ĩ) = 2. This improvement for b5 gives B a
relative gain of at least 5 (weight) units. It is simple to check that B can
lose at most 4 units combined through changes in the assignment of b3 and
b7. Since B would gain from such a manipulation, this rules out Case 1. In
all remaining cases, B must receive slot 2.
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Case 2: ϕB(I) is {2,3,4} or {2,3,5}. In this case ϕC(I) is {1, 5} or
{1, 4}, so ϕc4(I) = 1 and ϕc6(I) ≥ 4. From instance I, consider airline C
delaying c4 to e′c4 = 3 (resulting in Ĩ = Iec4→e′

c4
). By non-wastefulness B

receives the first two slots, and either ϕc4(Ĩ) = 3 or ϕc6(Ĩ) = 3, with self-
optimization implying the latter. This improvement for c6 gives C a relative
gain of at least 5 (weight) units, while C can lose at most 4 units through the
change in the assignment of c6. Since C would gain from such a manipulation,
this rules out Case 2. In all remaining cases, C must receive slot 3.
Case 3: ϕB(I) = {2,4,5}. In this case ϕb5(I) = 2, while b3 and b7 go to
slots 4 and 5 (the order being irrelevant). From instance I, consider airline B
delaying b3 to e′b3 = 3 (resulting in Ĩ = Ieb3→e′

b3
). By non-wastefulness,

ϕc4(Ĩ) = 1 and ϕb5(Ĩ) = 2.
We also show ϕb3(Ĩ) = 3. Suppose not, so ϕb3(Ĩ) > 3. Consider instance

I ′′, obtained from Ĩ by giving sufficiently high weight w′′b3 to b3. By simplicity,
B’s flights would be allocated the same set of slots as in Ĩ, and in particular
B would not be assigned slot 3 at I ′′. Since this implies ϕb3(I ′′) > 3, ϕ(I ′′)
would violate individual rationality for B. Therefore ϕb3(Ĩ) = 3.

But then at worst ϕB(Ĩ) = {2, 3, 5}, i.e. ϕb5(I) = ϕb5(Ĩ), while B gains
via the other two flights. Since B would gain from such a manipulation, this
rules out Case 3. In the two remaining cases, B must receive slot 1.
Case 4: ϕB(I) = {1,2,5}. Recall that simplicity then implies ϕB(I ′) =
{1, 2, 5}, so ϕb7(I ′) = 5. From instance I ′, consider airline B delaying b5 to
e′b5 = 4 (resulting in Ĩ = I ′eb5→e′

b5
). By non-wastefulness, flights c4 and b3 are

assigned the first two slots (in some order) and ϕc6(Ĩ) = 3. As B receives
slots 4 and 5, self-optimization results in ϕb7(Ĩ) = 4. This improvement for
b7 gives B a relative gain of 7 units, while B must lose strictly fewer than
that through the change in the assignments of b3 and b5, ruling out Case 4.
Case 5: ϕB(I) = {1,2,4} (so ϕC(I) = {3,5}).

By self-optimization, ϕc6(I) = 3. From instance I, consider airline C
delaying c4 to e′c4 = 4 (resulting in Ĩ = Iec4→e′

c4
). By non-wastefulness,

ϕb3(Ĩ) = 1, ϕb5(Ĩ) = 2, and ϕc6(Ĩ) = 3.
We also show ϕc4(Ĩ) = 4. Suppose not, so ϕc4(Ĩ) = 5. Consider instance

I ′′′ obtained from Ĩ by giving sufficiently high weight w′′′c4 to c4. By simplicity,
C’s flights would be allocated the same set of slots as in Ĩ, and in particular
C would not be assigned slot 4. Since this implies ϕc4(I ′′′) = 5, ϕ(I ′′′) would
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violate individual rationality for C. Therefore ϕc4(Ĩ) = 4.
Since ϕc6(Ĩ) = ϕc6(I) and ec4 ≤ ϕc4(Ĩ) < ϕc4(I), ϕ is manipulable.

Proof of Theorem 5. The algorithm makes no use of weight information
until the Self-optimizing step, by which time the set of slots to be received by
any airline A ∈ A has been fully determined. Subject to the constraint that
A receives precisely that set of slots, the Self-optimization step uses weights
only to give A its most-preferred landing schedule. Therefore an airline has
no incentive to misreport this information.

In Step 0 of the algorithm, each airline chooses its favorite set of slots
from amongst those which it owns (under the implicit assumption that it
may assign flights to the set in a self-optimized way). At each subsequent
step, an airline either keeps its current set or selects a better one. Hence
the rule is individually rational. It is obvious that the rule is non-wasteful,
simple, and self-optimizing.

Lemma 1 states that airline A never regrets rejecting a slot s at some step
of the algorithm, in that if the algorithm later assigns A’s flights to some set
of slots T , then A could not benefit by replacing some s′ ∈ T with s.36 This
is similar to Proposition 3 in Roth (1984) (“Rejections are final”).

Lemma 1. Fix an instance I and a DASO rule ϕ. Suppose airline A ∈ A
and slot s ∈ S satisfy s ∈ T kA \ CA(T kA) (s was rejected by A) in some
step k of the DASO algorithm. Then for all steps ` > k of the algorithm,
s /∈ CA(T `A ∪ {s}). In particular, for all f ∈ FA, ef ≤ s implies ϕf (I) < s.

Proof. Denote the flights of A that could feasibly use s as GA = {f ∈ FA :
ef ≤ s}. If A rejects s in step k (s /∈ CA(T kA)), then T kA contains at least |GA|
slots strictly earlier than s (see Definition 10).

This implies that CA(T kA) contains |GA| slots strictly earlier than s. At
every step of the algorithm ` ≥ k, if CA(T `A) contains at least |GA| such
slots, then so do T `+1

A and CA(T `+1
A ). Furthermore, at the conclusion of the

algorithm, each f ∈ GA satisfies ϕf (I) < s.

Proof of Theorem 6. Suppose by contradiction that there is an instance I,
airline B ∈ A, and slot h ∈ Φ(B) such that some flight is assigned an earlier

36An airline could regret accepting a slot, in that if it had not, then it would have
received a better set of slots later.
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arrival time when B “hides” h. Let I ′ = IS→S\{h} be the instance obtained
from I by deleting slot h. Let Π and Π′ denote the landing schedules output
by the DASO rule for I and I ′ respectively. Finally, let Π′′ be the landing
schedule obtained from Π′ by “unhiding h,” i.e. by self-optimizing the flights
of airline B over the slots CB(Π′(FB) ∪ {h}).

To simplify exposition, assume that the initial owner of any slot s has the
highest priority for that slot under �s. (This is without loss of generality
due to the first step of DASO, in which slots propose to their owners.)

Let f ∈ FA be the earliest flight of any airline that receives an earlier slot
under Π′′ than under Π, i.e. let f ∈ FA be such that both Π′′(f) < Π(f) and

∀f ′ ∈ F \ {f}, Π′′(f ′) < Π(f ′) =⇒ Π′′(f ′) > Π′′(f). (1)

Denote s′ = Π′′(f). Since DASO rules are non-wasteful, s′ must be occu-
pied by some f ′ 6= f under Π (otherwise it could be given to f); i.e. there
exist A′ ∈ A and f ′ ∈ FA′ such that Π(f ′) = s′. Each of two cases leads to a
contradiction.

Case 1: A′ = A. Both flights f, f ′ ∈ FA can feasibly use s′, but s′ =
Π(f ′) < Π(f). Therefore the Self-optimization step of DASO (applied to
I) implies that either wf ′ > wf , or both wf ′ = wf and Π0(f ′) < Π0(f)
(the tie-breaking condition). In either case, since Π′′(f) = s′, this implies
Π′′(f ′) < Π′′(f) (because Π′′ is self-optimized). This contradicts Equation 1,
the assumption that f was the earliest flight to move up in Π′′.

Case 2: A′ 6= A. Observe that at Π, A would strictly gain by receiving
s′. That is, A does not receive s′ under Π, but desires s′ in that both ef ≤ s′

and Π(f) > s′. Lemma 1 thus implies that s′ never proposed to A at any
step of the DASO algorithm under I. Since A′ receives s′ under I (hence s′

did propose to A′), s′ puts higher priority on A′ than on A: A′ �s′ A.
If s′ = h then we have A = B �s′ A′ (since B owns s′), which is a

contradiction. Thus s′ 6= h, implying that A receives s′ under Π′.
For A to receive s′ when DASO is applied to I ′, s′ must propose to A,

so A′ must have rejected a proposal from s′ (A′ �s′ A) at some step of the
algorithm. Lemma 1 thus implies that A′ cannot strictly gain at Π′′ from
receiving s′, hence Π′′(f ′) < s′ = Π(f ′). This contradicts Equation 1.

Proof of Theorem 7. Fix priorities (�s)s∈N and the corresponding DASO
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rule. Fix an instance I, airline B ∈ A, and flight g ∈ FB, and let Π be the
outcome of the DASO rule for I.

Let I ′ = Ieg→e′
g
be the instance where B misreports eg to be e′g, and let Π′

be the outcome of the DASO rule for I ′. Suppose by contradiction that for
all f ∈ FB, ef ≤ Π′(f) ≤ Π(f), with Π′(f) < Π(f) for at least one f ∈ FB.

At least one slot is assigned to different airlines under Π and Π′; denote
by s ∈ S the earliest such slot. Namely, s = Π(f) = Π′(f ′) for some f ∈ FA
and f ′ ∈ FA′ , where A 6= A′, and s is the earliest such slot.

Consider the number of slots A obtains at time slot s or earlier. By our
choice of s, A receives fewer such slots at Π′ than at Π. Therefore, B 6= A.

Case 1: A′ 6= B. Note that since A 6= B 6= A′, both A and A′ report the
same arrival times at both I and I ′.

Recall that under Π and Π′, the airlines receive the same sets of slots
strictly earlier than s. Since A receives s under Π, A could be made better
off at Π′ by being offered s. Therefore (Lemma 1) s never proposed to A in
the DASO algorithm under I ′, hence A′ �s A.

Symmetrically, since A′ receives s under Π′, A′ could be made better off
at Π by being offered s. By Lemma 1 A�s A

′, which is a contradiction.
Case 2: A′ = B. As above, B 6= A implies A′ �s A (so B �s A).
Since A receives s at Π, A′ = B must have rejected s at some stage of the

DASO algorithm applied to I. Lemma 1 thus implies that B cannot gain by
receiving s at Π: all of B’s flights that can feasibly use s must be assigned to
even earlier slots under Π. Since B receives the same number of such earlier
slots at Π′, B cannot feasibly use s according to the arrival times e reported
at I. Therefore, B must have reported an infeasible e′g causing it to receive a
slot s that it cannot feasibly use under its true arrival times. This contradicts
the assumption that airline B = A′ gains from such a misreport.
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B Online Appendix for Incentives in Land-
ing Slot Problems (not for publication)

B.1 Airline preferences: substitutable, not responsive

Preferences in our paper are defined only over sets of a fixed cardinality.
However, we show that we cannot imbed such preferences into “responsive
preferences” over sets of any size, as defined in the college admissions litera-
ture.

Definition: A relation P defined over all subsets of slots is responsive
when, for each s, s′ ∈ S,
• for each S ′ ⊆ S \ {s}, we have S ′ ∪ {s} �wA S ′ if and only if s P ∅; and
• for each S ′′ ⊆ S \ {s, s′}, we have S ′′ ∪ {s} �wA S ′′ ∪ s′ if and only if
s P s′.

The following example shows that some weight-based preferences over
subsets of size |FA| are not consistent with any responsive relation over all
subsets of S.

Example (Preferences of airlines are not responsive): Consider
S = {1, 2, 3, 4, 5}, and let airline A have FA = {f, f ′, f ′′} with ef = 1,
ef ′ = 2 and ef ′′ = 3, and with wf = 1.5, wf ′ = 1 and wf ′′ = 8. This induces
the following preference ordering �wA over subsets of size 3.

�wA
1, 2, 3
1, 3, 4
1,3,5

2, 3, 4
2, 3, 5
3,4,5

1, 2, 4
1, 4, 5
2,4,5

1,2,5

Let P be a preference relation over all subsets of S that coincides with
�wA on the above subsets. If P is responsive, then {1, 3, 5} �wA {3, 4, 5} would
imply {1} P {4} (by letting S ′′ = {3, 5} in the definition of responsiveness).
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Similarly, {2, 4, 5} �wA {1, 2, 5} would imply {4} P {1} (by letting S ′′ =
{2, 5}). Since these conclusions are contradictory, P cannot be responsive.

Denote A’s flights that can feasibly use s as

F s
A ≡ {f ∈ FA : ef ≤ s}.

For each airline A and each set of slots T ⊆ S, we say that T is feasible for A
if there exists a (feasible) landing schedule Π such that ⋃f∈FA Π(f) ⊆ T .37

The following requirement reflects the notion that if a slot is chosen from
a large set T ′ ⊆ S, then it should still be chosen from within subsets of T ′

that contain it.

Definition 14. (e.g. see Roth (1984)) Preferences of an airline A, yielding
choice function CA(), satisfy substitutability when for each T ⊂ T ′ ⊆ S,
with T feasible for A, we have [T ∩ CA(T ′)] ⊆ CA(T ).

The following result holds not only on our domain of linear-weight pref-
erences, but would hold on any airline preference domain in which “earlier is
better,” i.e. any domain in which an airline prefers to feasibly move one of
its flights earlier, with no further restriction on preferences.

Proposition 2. Preferences of airlines satisfy substitutability.

Proof. Let A ∈ A and let T ⊂ T ′ ⊆ S where T is feasible for A. Suppose
that s ∈ T \ CA(T ). We show s 6∈ CA(T ′) concluding the proof.

Since s /∈ CA(T ), the flights F s
A (defined above) all can be assigned to

slots within T that are earlier than s. This implies that F s
A = F s−1

A and
|{s̄ ∈ T : s̄ < s}| ≥ |F s

A| = |F s−1
A |.

Since T ⊂ T ′ these inequalities imply |{s̄ ∈ T ′ : s̄ < s}| ≥ |F s
A| = |F s−1

A |.
That is, the flights F s

A can be assigned to slots within T ′ that are earlier than
s. Therefore s 6∈ CA(T ′).

The only property assumed on choice functions CA() are that, if CA(T )
does not contain some s ∈ T , then it must contain enough earlier slots to
feasibly hold all of A’s flights that could have used s. This property would
hold on any preference domain in which “earlier is better.”

37Note that this implies |T | ≥ |FA|.
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B.2 Slot-propose and Airline-propose Deferred Accep-
tance coincide

On our domain of problems, both our slot-proposing and an airline-proposing
version (below) of Deferred Acceptance yield the same outcome. In other
words, the slot-optimal and airline-optimal stable matches coincide on our
domain of landing slot problems. This equivalence is straightforward in stan-
dard models whenever one side of the market has a common preference rank-
ing of the agents on the other side of the market. While this common ranking
does not hold in our model (due to the ef ’s), there is “enough” commonality
in their rankings for the result to hold. Indeed, any airline that can uti-
lize slot 1 agrees that it is, in a sense, a “best” slot (though not necessarily
“the” best slot since a highly weighted flight f with ef > 1 cannot use it).
Therefore, stability requires slot 1 to go to its highest ranked airline that can
feasibly use it. Conditional on this, a similar argument requires slot 2 to go
to its highest-ranked airline that can feasibly use it, and so on.

Formalizing this requires us to define an airline-proposing version of De-
ferred Acceptance that respects the initial landing schedule in the same way
that DASO rules do in Step 0. Effectively, Step 0 is equivalent to modifying
the priority orders� so that each slot ranks its owner (under the initial land-
ing schedule) highest. Indeed DASO rules could equivalently be defined this
way. Here we define A-DASO rules using this convention. The algorithm is
basically three parts: modifying the priorities, classic Deferred Acceptance,
and self-optimization as in DASO.

Definition 15. For any profile of priorities (�s) on A, the A-DASO rule
with respect to � associates with every instance I the landing schedule
computed with the following “A-DASO algorithm.”

Step 0: (Owner has top priority.) For each slot s, let �′s be
the priority order over airlines that satisfies (i) s ∈ Φ0(A) implies
that A is ranked first in �′s, (ii) s /∈ Φ0(B) ∪ Φ0(C) implies
[B �′s C ⇔ B �s C].

Step k = 1: Each airline proposes to its favorite set of slots. Each
slot s tentatively accepts the offer of its highest ranked proposer
under �′s, and rejects the other proposing airlines.
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Step k = 2, . . .: If there were no rejections in the previous round,
proceed to the Self-optimization step. Otherwise, each airline
A proposes to its favorite set of slots from among those slots
that have not already rejected A. (Note that by substitutability,
A will re-propose to all of the slots that accepted its offer in
the previous round.) Each slot s tentatively accepts the offer
of its highest ranked proposer under �′s, and rejects the other
proposing airlines.

Self-optimization step: For each airline A, assign A’s flights
to the slots who accepted its proposal in the previous step so that
the resulting landing schedule is self-optimized. Break ties among
equally-weighted flights by preserving their relative order in Π0.38

Theorem 8. For any priorities � and any instance I, the outcomes of the
DASO rule ϕ�(I) and the A-DASO rule associated with � coincide.

Proof. Fix priorities �, and suppose by contradiction that there is I such
that Π ≡ ϕ�(I) 6= ϕA−DASO,�(I) ≡ Π′. Let s be the earliest slot for which
the rules differ: s = Π(f) implies Π(f) 6= Π′(f), and Π(f) < s implies
Π(f) = Π′(f).

Let As be the set of airlines A that can both (i) feasibly assign some
flight f ∈ FA to s and (ii) assign other flights in FA to each slot t < s that A
receives under Π. It is obvious by feasibility that both DASO and A-DASO
must assign to s a flight from an airline in As. By Lemma 1, DASO gives s
to the highest ranked airline in As under �.

Denote this highest-ranked airline as A and suppose A-DASO yields the
set of slots Π′(A) to A. By definition, it is clear that s ∈ CA(T ∪ {s}),
i.e. A would choose to take s in exchange for some other slot assigned by
A-DASO. But this means that under an airline-proposing version of DA, A
would propose first to s before ultimately proposing to one of the other slots
in t > s that it ends up receiving. This means that s rejects A for one of
the other flights in As, contradicting the fact that A is highest-ranked in �′

among As.

While this equivalence can be intuitively attributed to the commonality of
airline preferences described above, one should note that airlines do not have

38This tie-breaking is irrelevant as in DASO.
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common preferences over sets of slots. Consider an airline with two flights
f and g, evaluating two (feasible) sets of slots: X = {1, 3} and Y = {2, 4}.
Depending on the flights’ parameters, it is obvious the airline could prefer X
to Y (e.g. whenever ef = eg = 1). But it also could prefer Y to X, e.g. when
ef = 1, eg = 2, and wg/wf is sufficiently large.

B.3 Alternate Algorithm

The proof of Theorem 8 suggests another algorithmic description of DASO
rules, exploiting the additional structure that our model adds to the classic
college admissions model.39 With its “greedy” structure, this algorithm may
yield a more efficient implementation of DASO rules in practice. To describe
it concisely, assume that the initial owner of any slot s is ranked highest in
�s and that S = N.

Step 1: Temporarily assign slot 1 to a (feasible) flight f ∈ FA
such that A is the highest-ranked airline in �1 that can feasibly
use slot 1. Remove f from the list of flights. (If no such flight
exists, slot 1 remains vacant.)

Step 2: Temporarily assign slot 2 to a (feasible) flight g ∈ FB
such that, subject to the removal of f , B is the highest-ranked
airline in �2 that can feasibly use slot 2. Remove g from the list
of flights. (If no such flight exists, slot 2 remains vacant.)

Step k: Continue similarly with slots 3, 4, . . ., until all flights are
temporarily assigned.

Final Step: Self-optimize the temporary landing schedule to
achieve the final schedule.

We leave it to the reader to verify that such an algorithm yields the same
outcome as Definition 11.

B.4 Endogenous flight cancelations

Observation 2 from Subsection 5.3 is more formally stated as follows.
39We thank Utku Ünver for pointing this out.
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Observation 3. Fix an instance I, and let instance I ′ = IF→F\{f} to be the
instance obtained by deleting f from I. Fix a DASO rule (priorities �),
and let Π and Π′ be the landing schedules output by the rule for I and I ′,
respectively. Then ∀g ∈ F \ {f} we have Π′(g) ≤ Π(g).

As we discuss below, this proof is essentially the same as the proof of
Konishi and Ünver’s (2006) (logically unrelated) Capacity Lemma.

Proof. Fix an instance I and a DASO rule with priorities �.
Step 1 uses the known idea of transforming a college admissions market

to a marriage market (e.g. see Roth and Sotomayor’s book) by giving the
student side of the market preferences over individual college “seats.” Rather
than breaking up a college (airline) into arbitrary seats, however, we order
the flights by weight, which turns out to handle the self-optimization step
of DASO. Formally, give each flight f preferences over slots, so that ef is
preferred to ef+1 is preferred to ef+2, etc. Give each slot s strict preferences
over individual flights, constructed from the priority ordering �S as follows:
for all airlines A,B and all f, g ∈ FA and h ∈ FB, (i) A �s B implies f
is preferred to h, and (ii) wf > wg implies f is preferred to g (break ties
according to flights’ relative order in Π0, as in the DASO algorithm).

Step 2 is to observe that a standard slot-proposing DA applied to this
marriage market yields the DASO rule’s outcome for I. This is straightfor-
ward to show, e.g. using the idea of the Alternate Algorithm we discuss in
Subsection B.3. Specifically, the highest-weight flight of the highest-priority
airline in �1 will be the first flight to get (and keep!) a DA-proposal from
slot 1. Given this, the highest-weight flight of the highest-priority airline in
�2 other than the previously assigned flight will ultimately receive (and keep)
a proposal from slot 2. Continuing the argument shows that the outcome
coincides with the DASO rule.

Step 3 is to apply the well known Gale-Sotomayor result that the removal
of a man weakly benefits all other men under deferred acceptance in marriage
markets. Hence all other flights gain in this artificial marriage market when
flight f departs, meaning they receive earlier slots in the DASO outcome.

The idea of deleting a flight is reminiscent of capacity manipulation in the
literature on college admissions problems. Consider the Capacity Lemma
of Konishi and Ünver, stating (under responsive preferences) that when a
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college reduces its capacity, all other colleges benefit under DA. Indeed, the
deletion of a flight f reduces airline A’s demand for slots by one unit, which
is effectively a capacity reduction.

There is a subtle difference here, however, in that when a flight is deleted,
the airlines preferences also change as a function of which flight is deleted.
For example, consider an airline with flights f, g, h such that

ef = 1 wf = 1
eg = 1 wg = 1
eh = 3 wh = 3

Suppose the airline deletes a flight, and ask what its resulting preferences are
over, say, the two sets of slots {4, 5} and {3, 6}. If the airline had deleted h, it
would be indifferent among these two sets. On the other hand, if the airline
deletes f (or identically, g), then it would have a strict preference for {3, 6},
where it is improving flight h (3 weight units) at the cost of flight g (1 unit).
In contrast, the idea of capacity manipulation (Sönmez, and Konishi-Ünver)
is to cap the number of students with whom a college can match, which does
not change the underlying preference that the college initially had for sets of
students strictly smaller than its true capacity.

B.5 Weak Incentives

Schummer and Vohra (2013) show that two simple rules—the FAA’s Com-
pression algorithm and the TC rule—satisfy weak non-manipulability via
arrival times. Since their paper considers only simple rules and weak incen-
tives, they need not model the part of airline preferences represented here
by weights wf . Consequently they need not consider whether any landing
schedule is self-optimized (since this is irrelevant when speaking of weak in-
centives). Here we show that their incentive results are robust if we assume
that the airlines (or the rule) first self-optimize the initial landing schedule.

Proposition 3. Consider the rule that first self-optimizes the initial landing
schedule and then applies the Compression algorithm. This rule is weakly
non-manipulable via earliest arrival times.

The same conclusion holds for the rule that applies the TC rule of Schum-
mer and Vohra (2013) to a self-optimized initial schedule.
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Proof. Let ϕ denote the rule that first self-optimizes the initial landing
schedule and then applies the Compression algorithm. Fix an instance I,
airline A, and flight f ∈ FA. Suppose A misreports ef to be e′f 6= ef . Let
I ′ = Ief→e′

f
. Denote Π = ϕ(I) and Π′ = ϕ(I ′) .

Let Π1 be the landing schedule that results from self-optimizing the initial
landing schedule Π0 using the parameters in I. Let Π′1 be the landing schedule
that results from self-optimizing Π0 using the parameters in I ′.

Suppose Π1 = Π′1, i.e. that A’s misreport has no effect on the self-
optimization of Π0. Then the Compression algorithm is applied to two
(optimized) instances that differ only in ef (and not in initial schedules).
The result of Schummer and Vohra (2013) thus implies the result (since they
take an arbitrary initial landing schedule as fixed and allow for arbitrary
misreports).

If Π1 6= Π′1 then the change of ef to e′f affects the self-optimization exer-
cise, so it must be that Π1(f) 6= Π′1(f). We show that f ends up either with
an infeasible slot or a later slot than it would without a misreport.

Case 1: e′f < ef .
Since Π′1 is self-optimal for I ′ but not for I, it must be infeasible for I,

i.e. Π′1(f) < ef . Since Compression never moves a flight to a later slot,
Π′(f) ≤ Π′1(f) < ef , i.e. f receives an infeasible slot. Therefore A does not
benefit from this manipulation.

Case 2: ef < e′f .
Since Π1 is self-optimal for I but not for I ′, it must be infeasible for I ′,

i.e. Π1(f) < e′f ≤ Π′(f). Since Compression moves no flight to a later slot,
Π(f) ≤ Π1(f) < Π′(f), i.e. f gets a strictly later slot after the misreport.

In both cases, the misreport cannot improve the outcome of each of A’s
individual flights.

The proof is identical for TC.

More generally, any rule that is weakly non-manipulable by arrival times
remains so if the rule is augmented by first self-optimizing the initial landing
schedule.

On the other hand when a rule does not self-optimize the initial sched-
ule, but performs self-optimization only after the rule operates, it may be
strongly manipulable. Example 2 illustrates this for the Compression rule.
The same manipulation illustrated in that example would benefit A if we
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apply a self-optimization step only after using the TC rule of Schummer and
Vohra (2013). That rule prescribes the same outcome for that example as
Compression does. However, the manipulation by A would assign flights a4

and a2 to slots 1 and 2 respectively. That is, A again has a strong manipu-
lation under the TC-then-self-optimize rule.

B.6 No Pareto-dominance

The following result implies Proposition 1. We are grateful to a referee for
suggesting a non-Pareto-dominance result, leading to this theorem.

A rule ϕ Pareto-dominates a rule ϕ′ 6= ϕ if at every instance, every airline
weakly prefers its outcome under ϕ to its outcome under ϕ′, with a strict
preference for some airline at some instance.

Theorem 9. No FAA-conforming rule is Pareto-dominated by a simple rule.

Proof. Suppose a simple rule ϕ′ Pareto-dominates an FAA-conforming rule
ϕ. Note that it is without loss of generality to assume that ϕ′ is also self-
optimized, since otherwise the rule ϕ′′ that is the “self-optimization of ϕ′”
Pareto-improves ϕ′ and hence also Pareto-dominates ϕ. We also assume
that when ϕ and ϕ′ self-optimize flights, ties are broken in the same way by
both rules (e.g. if two equal-weight flights can use the same two slots, the
rules preserve the relative order those two flights had in the initial landing
schedule). This is also without loss of generality since swapping equal-weight
flights is a Pareto-indifferent operation.

Let I be an instance where at least one airline strictly prefers ϕ′(I) to
ϕ(I). Let s be the earliest slot to which the rules make different assignments.
Since the rules coincide on slots earlier than s, and since ϕ is non-wasteful,
if ϕ leaves slot s vacant, then so must ϕ′ by feasibility. Therefore ϕ assigns
some flight f of some airline A to slot s. By our choice of s, ϕ′ must assign
f to a slot later than s. Furthermore, since ϕ′ is self-optimized (and by our
tie-breaking assumption), ϕ′ does not assign another of A’s flights to s.

Denote those of A’s flights that ϕ assigns to slot s or earlier by F ′ = {g ∈
FA : ϕg(I) ≤ s}. By our choice of s, for each flight g ∈ F ′ \ {f} we have
ϕg(I) = ϕ′g(I). Consider a new weight profile wλ in which we scale up the
weights of flights in F ′ by a factor of λ > 1, and leave all other flights’ weights
unchanged. By simplicity and self-optimization, ϕ and ϕ′ continue to assign
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flights F ′ \ {f} to exactly the same slots as before. For the same reason, ϕ
continues to assign f to s, and ϕ′ assigns f to some slot strictly later than
s. For sufficiently large λ, A would strictly prefer ϕ(Iw→wλ) to ϕ′(Iw→wλ),
regardless of how ϕ and ϕ′ assign A’s remaining (low-weight) flights FA \F ′.
Therefore ϕ′ does not Pareto-dominate ϕ.

The proof technically shows a stronger fact than the Theorem states: If
the outcome of a simple rule ϕ′ differs from that of an FAA-conforming rule
ϕ at any instance I, then there exists an airline A and another weight profile
w′ such that, at instance Iw→w′ , A strictly prefers the outcome under ϕ.
Hence this non-Pareto-comparability holds even on every (small) subdomain
in which we fix all parameters other than weights. To the extent that real
world airline preferences (e.g. weights) are private information, this yields a
fairly strong non-comparability result from the perspective of an uninformed
planner.

Online Appendix – page 10



B.7 Summary of properties for three simple rules

Non-manipulable by. . . Compression TC DASO

weak flight delay Yes* Yes* Yes
flight delay no no no
weak slot destruction no no Yes
slot destruction no no Yes
postpone flight cancelation no no Yes
selects from a weak core (S-V 2013) no Yes no

Yes*: Yes except when self-optimization is performed only after the rule
operates.
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